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ABSTRACT 
 

The use of Smart Grids (SG) and smart meters is becoming widespread in several nations. Hackers with 
even a rudimentary understanding of computers can compromise smart meters and conduct cyber attacks. 
Government security and network operators are at risk in this cyberspace. SG companies should create 
defensive and preventative measures to lessen the impact of electricity theft on their bottom lines. Cyber 
assaults can compromise cyber-physical systems. In order to identify a cyber attack on the smart grid, 
numerous methods have been developed. Among the best security measures, weighted trust-based models 
are recommended. SGs use clustering model to group smart meters for monitoring them. There can be no 
trust unless the sensors work as intended, if they can communicate with one another, and if the nodes' 
servers are reliable. How the nodes have communicated in the past also has a role. This research proposes a 
smart grid sensor network security technique that is based on trust weights in a clustering model. The total 
trust of nodes by adding up their direct and indirect trust is performed in the smart grid that in a cluster. The 
presence of numerous bidirectional communication devices connecting consumers to the grid makes smart 
grid networks particularly vulnerable to network attacks. Malicious assaults can compromise the Smart 
Grid Network's backbone infrastructure, which consists of information and communication technologies. 
For the uninterrupted and effective supply of energy and to generate an accurate bill, it is vital to detect the 
assault and work on it. A large number of compromised grid communication devices or nodes send a flood 
of false data or requests to the smart grid network, which can disrupt smart meters, data servers, and the 
state estimator. As a result, end-user services could be affected. When it comes to protecting the network 
from malicious attacks, a malicious node detection model is proposed. The innovative model detects and 
eliminates malicious nodes from the network after successfully differentiating between physical and cyber 
intrusions. Data transmission in a smart grid is accomplished by wireless technologies. There are a variety 
of network attacks that could compromise SGs. When it comes to protecting massive communication 
networks from hostile network attacks, trust models are a key component. To avoid malicious actions in the 
SGs, this research proposes a Trust Priority based Clustering model to detect and avoid Malicious Attacks 
(TPbCMA) for secure data transmission and increasing the quality of service levels in smart grids. The 
proposed model efficiently detects the attacks in the smart grids to maintain quality of service levels. The 
proposed model achieved 98.7% accuracy in Node Clustering and 99.1% accuracy in Malicious Action 
Detection. The proposed model when contrasted with the traditional models performs superior than 
traditional models. 
Keywords: Smart Grid, Smart Meter, Cyber Attacks, Cyber Security, Malicious Attacks, Direct Trust, 

Indirect Trust, Clustering. 
 
1. INTRODUCTION  
 
By combining conventional power grids with 
modern information and communication 
technology, "smart grids" enhance power 
distribution and management [1]. Nonetheless, they 
bring about fresh security holes that cybercriminals 
might use to their advantage, which can have 
disastrous results like infrastructure destruction and 

widespread power outages [2]. Modern electricity 
usage and demand are going to skyrocket, and 
traditional power systems just can't keep up. There 
are a lot of factors contributing to this, such as 
problems with automated analysis and situational 
awareness, poor vision, and slow response times 
[3]. Smart grids enable more dependable power 
distribution and better demand-side management by 
utilizing modern information and communication 
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technologies to create a two-way flow of data and 
electricity. A smart grid's three tiers of hierarchical 
organized communication link the four main 
components: generation, transmission, distribution, 
and consumption. Consumers' smart home 
appliances can be linked to the smart grid by Smart 
Meters (SM) [4], which are transmitted at the 
consumption stage by the Home Area Network 
(HAN), the first level of the communication 
network, to enhance energy management and 
demand response. In order to relay control orders 
for sophisticated metering applications and receive 
data from smart meters, the distribution stage 
establishes contact with the Neighborhood Area 
Network (NAN), the second tier of the 
communication network [5]. Connecting NANs to 
utility control centers at the top level, the Wide 
Area Network (WAN) satisfies the communication 
requirement of the smart grid's power generating 
and transmission stages [6]. 
 
  
While traditional power grids gain greatly from the 
incorporation of advanced ICTs for power 
distribution and control, these same grids 
simultaneously become more susceptible to new 
security threats [7]. Cyber assaults can affect 
physical power systems; two common instances are 
the Aurora attack and the Stuxnet virus. A cyber 
attack in Ukraine recently knocked power off for 
hours, affecting over 200,000 customers. All of 
these incidents highlight the need to strengthen 
smart grid security in order to prevent cyber 
assaults. Here, a way to detect cyber assaults using 
data collected by phasor measuring units (PMUs) is 
considered. For the purpose of wide area 
monitoring, protection, and control, a PMU is a 
sensor device that is installed at the WAN level of a 
smart grid network [8]. It offers real-time 
measurements of the power system conditions. A 
phasor data concentrator (PDC) links several PMUs 
in a WAMS. After that, the data is gathered from 
PDCs by the WAMS central authority [9].  
  
Smart Grid technologies are poised to revolutionize 
existing sectors by enhancing the efficiency of 
conventional electric networks. The term Smart 
Grid describes an electrical distribution system that 
relies on electronic communication. Issues 
including power outages, overheating, and voltage 
drops have arisen as a result of the increased 
demand [10]. Another important factor in reducing 
the impact of the cyber attack is the rise in carbon 
emissions from the current electrical network. 
Unfortunately, the US absorbs as much as 40% of 

the nation's CO₂ emissions. The Smart Grid is 
expected to improve the system's availability, 
efficiency, and reliability by integrating state-of-
the-art communication and calculating capabilities 
[11]. Smart Grids can also communicate with one 
another, which is a great feature. Renewable energy 
sources, including as solar panels and wind 
turbines, have long been a part of the Smart Grid's 
history, alongside fossil fuels and natural gas. Many 
different kinds of smart devices, transformers, and 
machines can reap the benefits of the Smart Grid's 
efficient power delivery and usage. It achieves 
these objectives by switching from the conventional 
grid system's one-way communication to a two-way 
one. The Smart Grid enables the rapid adoption of 
solutions to energy problems while also improving 
and speeding up customer services [12]. The smart 
grid general architecture is shown in figure 1. 
 

 
 

Fig 1: General Architecture of Smart Grid 
 
Nevertheless, there are several drawbacks to Smart 
Grid technology. One major issue is that it cannot 
protect data, which is an extremely important asset 
[13]. Since the Smart Grid could retain sensitive 
information, data sharing will need to happen often. 
There will be a proliferation of interconnected 
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devices, both at home and in the workplace, that 
will use various forms of cyber security to 
communicate with one another and keep the 
networks safe. Securing the Smart Grid from cyber 
threats is of the utmost importance [14]. In order to 
address these intricate issues, a number of security 
methods will be examined and evaluated. 
Electricity generation, distribution, and 
consumption are all handled by a smart grid that 
makes use of communication and information 
technologies [15]. Implementing two-way 
information flow allows for the integration of 
renewable technologies to decrease carbon 
footprint, real-time control, operational efficiency, 
and greater grid resilience. Theft or manipulation of 
sensitive data transmitted across smart grid 
networks poses a risk to user privacy. Following the 
discovery of these issues, the smart grid has 
attracted the attention of both public and private 
organizations [16]. Threat actors are increasingly 
targeting smart grids with False Data Injection 
(FDI) assaults [17]. Current data detection 
technologies are so inadequate that they cannot 
detect sneaky FDI attacks. One possible 
replacement for FDI detection is machine learning 
[18]. The concept of a false data injection attack 
(FDIA) initially emerged in a smart grid context. 
Even though it seems like tampering, there are 
actually quite a few methods an attacker can 
manipulate sensor readings in order to sneakily 
alter state variables and values [19]. Injection 
attacks allow for the injection of malicious input 
into online applications, which can then be used to 
execute specified commands [20].  
 
Distributed systems are far more complex, include 
a variety of smart software-controlled components, 
and have wider network connectivity than large-
scale, centralized structures that rely on offline or 
private network elements controlled by proprietary 
code. This transition is happening all over the world 
in electrical infrastructures [21]. By incorporating a 
multitude of smaller power sources, such 
commercial wind farms or individual customer 
solar panels, these systems are able to more 
effectively route power from supply to demand, 
which is just one of many benefits [22]. We can 
manage and monitor most, if not all, components 
remotely, and there are more interconnected 
software control systems in use than ever before—
all in an attempt to keep costs down. On the other 
hand, this makes systems vulnerable to hostile 
influence from entities that aren't necessarily 
physically close to them. Given the enormous 
damage that can be caused by disconnecting 

electrical infrastructure, this is also an obvious 
target for state-funded and well-organized gangs 
[23].  

Malicious assaults on electricity systems are 
considered where an attacker takes over a group of 
meters and tampers with their readings. Two attack 
regimes are analyzed. The adversary assaults 
enough meters in the strong attack regime for the 
control center to no longer be able to observe the 
network state. A graph theoretic technique is used 
to characterize the smallest set of attacked meters 
that can cause network unobservability for assaults 
in this regime. The identification of the lowest set 
of vulnerable meters is demonstrated to have 
polynomial complexity by recasting the problem as 
one of minimizing a supermodular graph 
functional.  

A thorough review of smart-grid applications and 
components is required first, along with the 
identification of susceptible components and 
possible cyberattack types. In addition, it is critical 
to comprehend the short-term and long-term 
techno-economic-safety-social consequences of 
cyberattacks on smart grids, particularly the domino 
effect on linked parts. Research on actual 
cyberattacks on live smart grids, as well as the 
creation of quantitative models and metrics to 
measure their effects, are essential. Further research 
is also required to determine the effects of 
cybersecurity measures on live smart grids and to 
provide quantitative models and metrics for 
evaluating these effects. 

By integrating Cyber Physical Systems (CPS) with 
information and communication technology, smart 
grids improve the performance of traditional power 
networks. Electricity providers may now offer low-
cost, dependable power with little losses with these 
technologies. These CPS have many benefits, but 
they are vulnerable to several types of assaults that 
might compromise sensitive information [24]. 
Much of the research that attempts to address these 
smart grid vulnerabilities has pointed to malicious 
actions detection models as a viable option. 
Nevertheless, such systems' primary issues are 
around their resilience, precision, and ability to 
adapt to novel threats.  Big energy systems provide 
data at a rate and volume that traditional threat 
detection systems can't keep up with. Cyber 
security systems must continue to be robust and 
efficient in order to handle these emerging threats 
and successfully identify harmful network data 
[25].  
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Smart grids have emerged as a result of the 
increasing dependence on interconnected 
technologies in contemporary power systems. 
These grids offer improved efficiency and 
sustainability and aim to mitigate the effects of 
climate change. On the other hand, these vital 
infrastructures are vulnerable to a plethora of cyber 
threats due to their rising complexity. A thorough 
comprehension of smart grids' components, 
vulnerabilities, and possible repercussions is crucial 
due to the increasing frequency and complexity of 
assaults on these systems. 
 
There will probably be tighter integration between 
the cyber infrastructure for sensing, control, 
scheduling, dispatch, and billing in future smart 
grids. In order to control generation and enable 
two-way communications between customers and 
providers, utility companies already depend on 
computer networks. A smart grid cannot exist 
without such interconnection, but this critical 
physical infrastructure is also more susceptible to 
cyberattacks from enemies all around the world. A 
generator reportedly self-destructed after 
researchers conducted an experimental cyber 
assault, and it has been widely claimed that cyber 
spies had hacked the US electrical grid. A 
uniformly most powerful test does not exist in 
general, and the challenge of detecting malicious 

data cannot be expressed as a simple hypothesis test 
since the adversary can pick where to attack the 
network and design the injected data. 
 
Data infiltration assaults are the most common kind 
of cyber attack that targets the smart grid. The three 
most common types of data intrusion assaults are 
Denial-Of-Service (DoS), Load Redistribution 
(LR), and FDI. Attacks like these give CAs the 
ability to change the data used by the power grid 
for management and control purposes, which can 
compromise the system's safety, lead to financial 
gain, or even cause physical damage. Identifying 
and distinguishing aberrant data from normal data 
is a crucial capability for modern malicious nodes 
detection [26]. Malicious actions detection systems 
protect networks from malicious actors and keep 
data accessible at all times. In its most basic form, 
the malicious attacks detection system is built on 
this paradigm. Since engineering problems are 
often nonlinear, ill-defined, and noisy, intrusion 
detection models are essential for dealing with 
them. Resolving such issues requires the 
implementation of an attack detection model that is 
resilient, dependable, and cost-efficient [27]. This 
concludes the part that offered an overview of 
current research into making smart grid malicious 
actions diagnosing models better. The attacks in 
smart grid network is shown in Figure 2. 
 

 
 

Fig 2: Attacks in Smart Grid 
 
 
In order to safeguard against malicious interference, 
solutions that go beyond patching are now essential 
due to the increased technical complexity and 
interconnectedness. One component of that 
defense-in-depth strategy has been the 

incorporation of learning algorithms to track 
command and sensor data traffic in networks. This 
helps identify injected commands and data that 
could be used to manipulate physical systems that 
are meant to safeguard electrical components from 
harm. The problem with detecting attacks is that 
sensor data can be almost indistinguishable from 
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anomalous readings that have been maliciously 
injected, such as when electrical transmission lines 
are down for emergency maintenance or when 
lightning strikes near the substation. To avoid 
malicious actions in the SGs, this research proposes 
a Trust Priority based Clustering model to detect 
and avoid Malicious Attacks (TPbCMA) for secure 
data transmission and increasing the quality of 
service levels in smart grids. 
 
 
2. LITERATURE SURVEY 

A smart grid incorporates state-of-the-art sensors, 
efficient measuring methods, advanced control 
technology, and other tools to ensure the grid 
system operates safely, efficiently, and affordably. 
However, because the smart grid is both dynamic 
and open, its energy and data are vulnerable to 
malicious attacks. Data integrity attacks are typical 
cyber-physical attacks that significantly impact grid 
functioning since the attackers might vary their 
attack vector to avoid traditional detection methods. 
Following the description of an adversarial attack 
method for power grid dynamic state estimation by 
D. An et al. [1], this study recasts the data integrity 
assault detection problem as a partially observable 
Markov decision process exhibiting sequential 
decision behavior. The multi-step learning method 
is employed to enhance the precision of the Q value 
estimation. An approach called prioritized 
experience replay has been put up to address the 
scarce rewards problem and improve training 
efficiency.  
 
Smart grid technology has quickly become the 
standard for future power systems due to its ability 
to make choices, allocate resources efficiently, and 
monitor systems in real-time. Due to the linked 
structure of the information system and the power 
physical system, a smart grid is susceptible to 
dangers such as hostile attacks. The fact that fake 
data injection attacks (FDIAs) are able to 
circumvent traditional bad data detection methods 
is a major and challenging problem with smart grid 
operations. Using matrix separation theory, Huang 
et al. [2] introduced a novel method for attack 
detection. It successfully detects FDIA by 
examining the structural sparsity of the attack 
matrix and the low-rank feature of the unattacked 
measurement matrix. Furthermore, a structural 
sparse matrix separation method is proposed to 
improve the precision of attack detection. To make 
sure the plan was effective, the author ran testing 
under three distinct attack scenarios.  

 
The newer, smarter smart grid is more efficient, 
flexible, and trustworthy than the older, less reliable 
electrical infrastructure. However, because to the 
increasing diversity of application needs, it 
struggles to find a balance between data privacy, 
efficiency, and robustness. In this paper, Pang et al. 
[3] presented a smart grid model that makes use of 
fog computing. In addition to facilitating 
communication for aggregated, malicious smart 
grid consumption data, the proposed model is the 
foundation for an efficient and privacy-preserving 
approach. To address problems like erroneous data 
detection, this smart grid solution is the first of its 
kind to integrate secure aggregate communication 
with data privacy and data resilience. Specifically, 
households can safely send data about their power 
use to the cloud and fogs via Boolean/Arithmetic 
secret-sharing protocols, according to the proposed 
method. To further protect against malevolent home 
users who try to insert fraudulent data, a method for 
detecting spurious data is proposed. 
  
Yan et al. [4] investigated the cyber-physical 
system problem of attack detection of fake data 
injection attacks for a certain sort of large-scale 
smart grid system. Remaining signals for the 
assault detection task are sourced from a 
meticulously constructed bank of dynamic reduced-
order observers. By decomposing the system under 
consideration into a network of interdependent 
subsystems, graph theory paves the way for this 
bank. We next propose a novel decentralized attack 
detection system that makes use of adaptive 
detection thresholds that meet the performance 
requirements. The proposed detection method is 
more robust against process disruption and 
measurement noise, and it uses less conservative 
thresholds, therefore it is more detectable than the 
present results. Lastly, two simulations and 
experimental data from an IEEE 30-bus system 
built in the OPAL-RT real-time simulator validate 
the accessibility and efficacy of the proposed 
scheme.  
 
Because of the growing openness of network 
settings brought about by the proliferation of 
information and communication technologies, 
smart-grid control systems are extremely 
susceptible to hostile attacks. Under the radar, FDI 
attacks alter measurement data, leading the control 
center to make incorrect decisions that have a 
significant impact on the power system's regular 
operation. In this paper, Lei et al. [5] presented a 
method for detecting FDI attacks that makes use of 
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edge computing for real-time data collecting and is 
based on CPRs. At the periphery of the sensing 
network, the CPR scheme generates a reliable 
prediction model to foretell the collected 
measurement data. It improves detection accuracy 
by classifying anticipated residuals apart from 
incorrect data using a new real-time classification 
algorithm supported by edge devices. These two 
measures substantially enhance the FDI assault 
detection rate. An actual microgrid testbed verifies 
the suggested method. The experimental findings 
demonstrate that the CPR method is effective in 
identifying FDI attacks and maintains sensitivity to 
the likelihood and severity of injection attacks. 
Even with a low injection attack probability of 5% 
and magnitude of 0.018 per thousand, the detection 
technique is effective.  
 
Cyberattacks on Industrial Control Systems (ICS) 
have been devastating in several sectors, including 
critical infrastructure, due to malware that 
masqueraded as an ICS process and transmitted 
legitimate ICS messages. Such actions are often 
missed by more traditional approaches. When it 
comes to ICS communications, intrusion detection 
systems (IDSs) typically employ pre-defined 
patterns to weed out harmful messages, whereas 
anomaly detection systems (ADSs) depend on 
statistics to spot unusual data packets by searching 
for specific traits, rather than performing in-depth 
analysis. Havlena et al. [6] presented a new 
detection method that uses Deterministic 
Probabilistic Automata (DPAs) to capture the 
intended semantics of the ICS message exchange. 
Using a set of DPAs that represent expected traffic 
patterns, the method may simulate the sequence of 
messages sent by ICS. The detection system 
employs model reasoning to unearth harmful 
actions in the ICS flow whenever it detects 
suspicious ICS signals. This study shows that the 
automata-based detection method is more effective 
and has a lower false-positive rate. A technique that 
produces additional information about detected 
abnormalities was also provided by the author, 
which is crucial for practical implementation.  
 
Cyberattacks are a real possibility with the Smart 
Grid due to the extensive usage of many forms of 
communication, control, and information 
technologies. Cyber assaults, if undetected by 
security systems, might compromise critical power 
system infrastructure and the services offered to 
many energy users. In particular, hackers might get 
control of the smart grid and install malicious 
instructions. A new tool for the Cyber-Physical 

Security Assessment (CPSA) of hostile control 
instructions that target actual smart grid 
components in real-time was developed by Saxena 
et al. [7] to address these concerns. The tool can 
identify and prevent known Trojans like 
BlackEnergy. It does more than just identify 
malicious commands; it also examines the power 
system's health in real-time and does it fast and 
effectively. The security analysis of this approach 
takes a look at three system-generated metrics: 
threat capability, access points, and system 
susceptibility. An examination of performance 
takes into account factors such as overhead, 
precision, scalability, resilience, reaction and 
execution durations, and robustness.  
 
Based on their analysis of the structural 
vulnerability of smart grids, Luo et al. [8] 
investigated resilient protection strategies for 
FDIAs. It achieves this by utilizing cybernetic and 
graph-based methods. By avoiding traditional bad 
data detection methods, a well-planned hack called 
FDIA can wreak havoc on smart grids. Enhance 
smart grids' inherent security flaws by 
implementing a solid defense control strategy based 
on concealed virtual networks. Preventing FDIAs 
will be easier with this. A local consensus dynamic 
model with reduced dimensions is derived using the 
Kron reduction approach as the first stage. Second, 
by constructing and connecting a virtual hidden 
network based on graph theory, we can indirectly 
increase the smart grid's structural vulnerability. 
Using a competitive connectivity strategy based on 
the network zero-sum game further enhances the 
smart grid's structural vulnerability. Improving the 
smart grid's resilience can be achieved by 
modifying the topology of the connection bipartite 
graph and the virtual hidden network. Third, the 
author demonstrated that while FDIAs are present 
or not, the virtual hidden network defense 
controller remains stable. The results show that the 
smart grid can effectively mitigate the effects of 
FDIAs, but that the steady-state operating point of 
the original grid stays the same after adding the 
virtual hidden network.  
 
In order to improve billing, load monitoring, and 
energy management efficiency, the smart grid's 
advanced metering infrastructure (AMI) gathers 
more accurate data on power use through SMs. 
Unfortunately, some dishonest customers are able 
to hack their meters, which results in attempts at 
more complex evasion or the more prevalent type 
of power theft. The goal of employing EAs is to 
trick theft detection systems into believing that 
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there is an attempt to illegally decrease power 
consumption. Because they use users' massive 
consumption data to train detection algorithms, 
existing approaches for detecting these attacks 
present privacy concerns. Bondok et al. [9] suggest 
federated learning (FL), a method for cross-client 
collaborative training, to solve privacy issues. A 
solid starting point would be to safeguard ML 
models from evasion attacks by utilizing 
adversarial training (AT). The vulnerability of 
conventional power theft classifiers conditioned on 
FL to EAs for Non-IID and Independent and 
identically distributed (IID) consumption data is 
first examined in this research. Next, it assumes 
that all FL participants will behave responsibly and 
checks how well AT prevents EAs from 
compromising the global electricity theft detector. 
Distilation, No-Adversarial-Sample-Training, and 
False-Labeling were three additional attacks that 
the author introduced to make the global model 
susceptible to evasion during inference. It is most 
effective to conduct such an attack during the AT 
procedure. 
 
Electricity theft detectors that are data-driven use 
the energy usage readings that consumers report to 
identify suspicious activity. The proper tagging of 
the training data is a typical implicit assumption in 
such detectors. Detectors like these are susceptible 
to data poisoning assaults, which use bogus labels 
to train the system. Takiddin et al. [10] proposed a 
model that shows the detectors based on shallow 
and deep learning that are vulnerable to data 
poisoning assaults, which can significantly reduce 
their detection rate by as much as 17%. In addition, 
compared to shallow detectors, deep detectors 
provide a performance boost of 12%. Despite data 
poisoning assaults, generalized detectors 
outperform customer-specific detectors by 4%. The 
author suggested a sequential ensemble detector 
that combines feed-forward neural networks, gated 
recurrent units (GRUs), and a deep auto-encoder 
with attention (AEA) to make the detectors more 
resistant to data poisoning attacks.  
  
3. PROPOSED MODEL 

Significant societal shifts are being prompted by 
Cyber Physical Systems (CPSs). The current 
critical infrastructures rely on CPS, which consists 
of computing, communication, and physical 
systems and processes, to integrate and coordinate 
many components. These components are 
becoming more intelligent, interactive, and 
dispersed [28]. As one of the most intricate CPSs 

ever constructed, the smart grid is undergoing these 
changes as it continues to integrate power and 
energy systems with ICTs. Not alone will the 
energy industry feel the effects of these basic 
infrastructure changes, but so will a slew of other 
vital, interrelated industries.  
Power, energy, control, sensing, computation, and 
communication are all interconnected parts of the 
smart grid [29]. There are possible threats to the 
security and resilience of this architecture due to its 
complexity and heterogeneity. To begin with, 
safeguarding bulk power systems from their 
inherent physical vulnerabilities is becoming more 
difficult due to their interconnectedness. However, 
cyber-integration necessitates heavy expenditure on 
security architecture modifications to ward against 
cyberspace's unpredictable patterns and threats. 
Together, physical and cyber security researchers 
have made great strides, creating a new field of 
smart grid cyber physical (CP) security.  
 
Investigating intricate attack plans is a key and 
main concern of CP security. Malicious actors can 
use cyberspace's data and computing power to 
devise elaborate plans to exploit smart grid 
vulnerabilities, both those that are already known 
and those that are entirely unknown. When 
compared to more established forms of network 
security, such as those for power systems and 
communications, CP security is quite new. But 
previous research has shown certain disastrous 
outcomes for which the public, businesses, and 
government are woefully unprepared. The 
foundations for thorough defensive strategies and 
emergency actions for the vital electrical power 
grid are being laid by the vulnerability and 
resilience assessments against CP attacks [30]. 
 
 
In order to analyze the impact of cyber attacks and 
take precautions against them, further study is 
needed in the field of power system analysis that 
links FDI attacks with system stability. This 
research examines the power system's physical 
properties and establishes a connection between 
FDI attacks and system stability metrics. Operators 
can better manage power distribution on a bigger 
scale with the use of smart grids that have networks 
of sensors and generators that enable two-way 
communication inside the system with ICTs. 
Having said that, this functionality increase the 
power system's susceptibility to cyber attacks and 
FDI attacks. The primary goal of cyber assaults is 
to bring about complete system meltdown by 
causing extreme frequency passivity. One of the 
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most critical components of power grids, Automatic 
Generation Control (AGC) is also one of the most 
susceptible to cyber assaults. In order to keep the 
system's frequency within a safe range, AGC 
modifies the output of the generators. Damage to 
the system can occur if the frequency excursion 
induced by cyber attacks exceeds this safe range. 
Developing effective algorithms to identify various 
cyber attacks in real time is tough due to the high 
cost and time required to manually gather and label 
sensing data for each attack type. 
 
Power distribution systems and communication 
networks are the two main components of the smart 
grid. Devices are able to communicate with one 
another over the communication network. The 
proliferation of computer connections in the 
communication network has introduced a host of 
new security risks. In particular, the AMI network 
and physical security are of the utmost importance 
because of the AMI's central role in smart grid 
security. Deploying malicious attack detection 
system in the smart grid is more difficult than in 
other contexts due to the serious consequences for 
system security and the associated economic fallout 
in the event of an attack or failure. Ensuring 
seamless and dependable power transfer and usage 
data is a key component of the smart grid, which 

also involves addressing security restrictions in the 
power system network, sensor networks, and the 
complex process of communication between 
utilities and consumers. However, issues with data 
availability, integrity, and connectivity pose 
security risks to the system, of which the sensor 
network is a component. In addition, being a CPS, 
the power system can be physically affected by 
such smart grid incursions as a big blackout, loss of 
control, or system collapse if they are not detected. 
To improve predictions based on information-
extensive data exemplars with no human 
interventions relying on learned behavior, and to 
enhance the process of computers self-learning and 
self-configuring from data patterns. The proposed 
model framework is shown in Figure 3. 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Fig 3: Proposed Model Framework 
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By making use of some novel structure, the smart 
grid outperforms the current matrix in terms of 
productivity. In order to improve the two-way flow 
of energy, sensors, smart meters, control relays, 
phases, or measurement units were typically 
introduced. In a typical scenario, customers can use 
their own optimum algorithms to purchase the most 
cost-effective power. They can even generate their 
own power and sell it to the smart grid. Similarly, 
smart grids allow energy providers to always know 
about power requests, allowing them to 
continuously assist their clients. This concept has 
several effects on the power distribution 
mechanism, even if it has greatly increased the 
smart grid's execution rate. The introduction of 
several new complicated devices at various 
locations has led to concerns that these devices 
might serve as vulnerabilities that could be 
exploited to inject malware and disrupt the normal 
functioning of smart grid, posing a serious threat to 
intelligent networks. To avoid malicious actions in 
the SGs, this research proposes a Trust Priority 
based Clustering model to detect and avoid 
Malicious Attacks for secure data transmission and 
increasing the quality of service levels in smart 
grids. 

 
 

Table 1: Notations 
 
Notation Description 

sgn Smart grid node 

 Model to retrieve node address 

 Model to retrieve values 

getVal Retrieves node attaributes 

 Smart Grid Node set 

 Node Information 

 Unique ID 

 Distance among nodes 

 Trust Factor 

 Smart Grid Node Cluster 

Tpr Trust Priority Allocation 

 Node Pattern Pattern Analysis 

MNset Malicious Node Set 

M Total nodes in smart grid 

Simm Model to identify similarity 
levels 

δ Model to calculate distance 
among the nodes 

τ Transmission Range 

µ Node Energy 

 
Algorithm TPbCMA 
{ 
Input: Smart Grid Nodes List {SGNset} 
 
Output: Malicious Nodes List {MNset} 
 
Step-1: The nodes in the smart grid list is 
considered as input and each node information is 
processed and a unique identity is allocated to each 
node for node recognition and for further 
communication. This unique ID is allocated to each 
node that is generated as 
 

 

 
 
Here µ is the energy level of a node in SG and τ is 
the range of transmission of a SG node. 
Getnodeaddr() model considers each node address 
to generate unique ID, sgn represents the smart 
grid node and getVal() model considers smart grid 
node attributes. 

 
Step-2: The proposed model considers the trust 
factor of each node in the smart grid. The nodes 
that are authenticated with the unique ID are 
allotted with a trust factor. The trust factor is 
calculated based on the nodes performance. The 
trust factor calculation is performed as 
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Here δ model is used to consider the distance 
among the adjacent nodes in SG. UnqID() model 
considers the unique identity value generated for 
each sgn, maxrange() model considers the 
maximum value of nodes in the allocated range, 
and dist() model considers the distance among the 
nodes. 

 
Step-3: To all the nodes that has a trust factor, 
priority allocation is performed. Priority is allotted 
to the nodes that has highest trust factor. The 
priority allocation helps to consider the nodes for 
transmission in smart grid. The priority allocation 
based on trust factor is performed as 
 

 
The maximum trust factor is considered for priority 
allocation and minimum distance nodes are 
allocated with highest priority. 
 
Step-4: Nodes in the smart grid are allocated with 
priorities and based on the trust factor priorities, 

the node clustering is performed. Nodes having 
priority and trust similarities are grouped as a 
cluster for monitoring the malicious actions. The 
node clustering is performed as 
 

 
 
The simm() model performs the similarity checking 
among the two adjacent smart grid nodes that have 
trust factors. The nodes that have maximum trust 
factor, minimum distance and similar in trust factor 
are grouped as a cluster. 
  

Step-5: Each node pattern analysis is performed to 
identify the malicious actions in the smart grid. The 
pattern dissimilarities are used to identify the 
malicious actions at nodes. The pattern analysis is 
performed and the nodes causing malicious actions 
and attacking the smart grid is listed as 
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The pattern analysis is performed by considering 
the user ID, and the difference levels in the 
adjacent node properties and similarity levels in the 
cluster group. The trust factor similarity is also 
considered in pattern analysis. The malicious nodes 
are identified as the nodes that has differences in 
the data patterns, differences in trust factors and 
having high energy consumption. 
 
} 
 
4. RESULTS 

The smart grid's novel two-way, real-time (RT) 
communications are made possible by the AMI 
systems, which include millions of smart meters in 
distribution systems. These technologies encourage 
various advantages from energy management, 
consumer interaction, and demand response. 
Electricity generation, transmission, and 
distribution are also undergoing continuous change 
due to new technologies such as energy storage and 
electric vehicles. Along with the PSs, the cyber 
infrastructure that the smart grid's information, 
computation, and communication technologies have 
produced is pervasive and interwoven. 
Measurements and instructions are continuously 
generated and transmitted between internet and 
PSs. The majority of the measurements made by 
PSs are digital data, which measures system 
dynamics, and status data, which includes the 
topological connectedness of power grid 
components. The measurements that determine the 
relevant control policies are used by operators to 
issue control instructions that coordinate the 
actuators in the PSs. To help with the localization, 
evaluation, mitigation, and restoration of faults or 
disturbances, extra recording devices capture 
diagnostic logs during emergencies.  
 
Recent developments in intelligent electronic 
devices and programmable logic circuits have made 

the smart grid more reliant on distributed and 
localized computations. These advancements strive 
to make the grid more efficient, resilient, and 
flexible. Despite the numerous benefits, there is a 
significant rise in the surface area for cyber-attacks 
when power grids are transformed into smart cyber-
physical systems. Consequently, a solution is 
necessary. Problematically, data-driven defenses 
against cyber-attacks, validation, and testing 
procedures lack essential information derived from 
real cyber-occurrences. Machine learning-based 
detection methods are part of this category. As 
opposed to attack data derived from real cyber 
occurrences, infrastructure standards and expertise 
can be accessible through expert and topic 
knowledge. The proposed approach uses domain 
knowledge to describe a smart grid's behavior when 
assaults are not present, in order to detect attack 
patterns and anomalies. An analysis of malicious 
attacks on electrical systems is conducted in which 
an attacker gains control of a cluster of meters and 
manipulates their results. Under the strong attack 
regime, the enemy hits enough meters that the 
control center loses all visibility into the network's 
status. Here, the graph-theoretic approach is 
employed to define the bare minimum of attacked 
meters that could lead to unobservability in the 
network. The issue of finding the minimum set of 
susceptible meters is shown to have polynomial 
complexity when reformulated as a reduction of a 
supermodular graph functional. To avoid malicious 
actions in the SGs, this research proposes a Trust 
Priority based Clustering model to detect and avoid 
Malicious Attacks (TPbCMA) for secure data 
transmission and increasing the quality of service 
levels in smart grids. The proposed model is 
compared with the traditional False Data Injection 
Attacks Detection in Smart Grid: A Structural 
Sparse Matrix Separation Method (FDIA-SSMS) 
and FDI Attack Detection at the Edge of Smart 
Grids Based on Classification of Predicted 
Residuals (CPRs) model. 
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The proposed model identifies malicious actions in 
the network by identifying pattern dissimilarities at 
each node level. Each node is allocated with a 
unique identity value that is used for future 
communication. The Node Identity Allocation 
Accuracy Levels are shown in Table 1 and Figure 
4. 

 
Table 1: Node Identity Allocation Accuracy Levels 

 
Nodes 

Considered 
in Smart 

Grid 

Models Considered 
TPbCMA 

Model 
FDIA-
SSMS 
Model 

CPRs 
Model 

50 97.9 94.6 92.8 
100 98 94.8 93.1 
150 98.2 95 93.5 
200 98.5 95.2 93.8 
250 98.6 95.5 94 
300 98.8 95.6 94.3 

 
 

 
Fig 4: Node Identity Allocation Accuracy Levels 

 
The proposed model considers the trust factor of 
the smart grid nodes in the network. The trust factor 
is calculated based on the node performance levels 
and energy consumption. The trust factor represents 
the genuine levels of each node to consider them in 
communication. The Trust Factor Calculation 
Accuracy Levels are indicated in Table 2 and 
Figure 5. 
 
 
 
 
 
 
 

Table 2: Trust Factor Calculation Accuracy Levels 
 
 

Nodes 
Considered 

in Smart 
Grid 

Models Considered 
TPbCMA 

Model 
FDIA-
SSMS 
Model 

CPRs 
Model 

50 13.2 17.3 20.3 
100 13.5 17.6 20.5 
150 13.7 17.9 20.8 
200 14 18 21.1 
250 14.2 18.2 21.3 
300 14.5 18.4 21.6 

 
 

 
Fig 5: Trust Factor Calculation Accuracy Levels 

 
The nodes that has best performance levels will be 
allocated with the trust values. The priorities are 
allocated to the nodes based on the trust levels. The 
nodes with highest trust levels are considered to be 
high priority nodes. The Trust based Priority 
Allocation Time Levels are indicated in Table 3 
and Figure 6. 
 
 

Table 3: Trust based Priority Allocation Time 
Levels 

Nodes 
Considered 

in Smart 
Grid 

Models Considered 
TPbCMA 

Model 
FDIA-
SSMS 
Model 

CPRs 
Model 

50 97.6 93.4 93.7 
100 97.9 93.8 94.1 
150 98 94 94.5 
200 98.2 94.2 94.7 
250 98.5 94.5 95 
300 98.7 94.7 95.2 
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Fig 6: Trust based Priority Allocation Time Levels 

 
The node clustering is performed that groups nodes 
with high trust factor as a single unit to involve in 
communication. The node clustering helps to 
identify the trusted and non trusted nodes. The 
Table 4 and Figure 7 represents the Node 
Clustering Accuracy Levels. 
 

Table 4: Node Clustering Accuracy Levels 
 

Nodes 
Considered 

in Smart 
Grid 

Models Considered 
TPbCMA 

Model 
FDIA-
SSMS 
Model 

CPRs 
Model 

50 97.7 93.2 92.6 
100 98 93.5 92.8 
150 98.2 93.8 93 
200 98.3 94 93.2 
250 98.5 94.2 93.4 
300 98.7 94.3 93.7 

 
 

 
Fig 7: Node Clustering Accuracy Levels 

 
The trusted nodes are considered and involved in 
data transmission. The node patterns are frequently 
analyzed and the similarity levels and dissimilarity 
levels are considered for detection of malicious 
actions in the smart grid. The Node Pattern 
Analysis Accuracy Levels are indicated in Table 5 
and Figure 8. 
 

Table 5: Node Pattern Analysis Accuracy Levels 
Nodes 

Considered 
in Smart 

Grid 

Models Considered 
TPbCMA 

Model 
FDIA-
SSMS 
Model 

CPRs 
Model 

50 98.1 94.3 92.7 
100 98.3 94.8 92.9 
150 98.5 95 93 
200 98.7 95.2 93.2 
250 99 95.3 93.4 
300 99.2 95.4 93.6 
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Fig 8: Node Pattern Analysis Accuracy Levels 
 

The proposed model effectively detects the 
malicious attacks in the smart grid. The node 
patterns are monitored frequently and the malicious 
attacks are detected and nodes causing malicious 
attacks are listed to label them so such nodes will 
nor be used in smart grid communications. The 
Malicious Action Detection Accuracy Levels are 
shown in the Figure 9 and Table 6. 
 

Table 6: Malicious Action Detection Accuracy 
Levels 

  
Nodes 

Considered 
in Smart 

Grid 

Models Considered 
TPbCMA 

Model 
FDIA-
SSMS 
Model 

CPRs 
Model 

50 98.3 93.4 91.7 
100 98.4 93.6 92 
150 98.6 93.9 92.2 
200 98.7 94 92.4 
250 99 94.2 92.5 
300 99.1 94.5 92.7 

 
 
 

 
Fig 9: Malicious Action Detection Accuracy Levels 
 
5. CONCLUSION 

An adversary controls a set of meters and can 
modify the measurements from those meters; 
malicious attacks against smart grids are researched 
in this context. When an attacker hits enough 
meters in a powerful attack regime, the control 
center is unable to see the network's status. When it 
comes to smart grid attack detection, the challenges 
lie in statistical learning for various assault 

scenarios with batch or online measurements. This 
method uses machine learning techniques to 
classify measurements as either secure or attacked. 
The sparse structure of the problem can be 
circumvented and all system knowledge can be 
utilized with the help of an attack detection 
framework. Due to the increased reliance on 
communication technologies and procedures, grid 
operation is becoming increasingly vulnerable to 
cyber-attacks and breakdowns as a result of the 
widespread use of ICTs. Cyberattacks pose a new 
threat to smart grid and ICS process networks. The 
major characteristics of this environment are assets 
with a lengthy lifespan and the use of outdated 
components with inadequate security protocols. To 
protect critical security objectives like availability, 
secrecy, and integrity, as well as to stave off new 
dangers like cyber assaults, proactive or reactive 
cyber security remedies are required. The 
information and communication technology that 
make up the backbone of the Smart Grid Network 
is vulnerable to malicious attacks. Identifying and 
fixing the attack is critical for a reliable and 
effective energy supply and for producing an 
accurate bill. In light of power grids transitioning to 
SGs, countermeasures against sophisticated 
cyberattacks that depend on reliable detection 
methods are important. For safe data transfer and 
improved service quality in smart grids, this study 
suggests a Trust Priority based Clustering model to 
identify and prevent malicious attacks in SGs. The 
proposed model efficiently detects the attacks in the 
smart grids to maintain quality of service levels. 
The proposed model achieved 98.7% accuracy in 
Node Clustering and 99.1% accuracy in Malicious 
Action Detection. In future, meta-heuristic 
optimization techniques can be applied for the 
better dynamic attack detection models. Feature 
dimensionality reduction models can be applied in 
future for selecting the most relevant features to 
detect the dynamic attacks for improving the 
security in smart grids.   
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