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ABSTRACT 
 

Cybersecurity is the practice of protecting systems, networks, and data from digital attacks, theft, and 
damage. It involves implementing measures and technologies to safeguard information confidentiality, 
integrity, and availability. Machine learning (ML) is revolutionizing the field of cybersecurity by providing 
advanced tools and techniques to detect, analyze, and respond to cyber threats more effectively and 
efficiently. This paper proposed Ethereum Hashing Hyperbolic Cryptography (EHHC) for cyber security in 
the data science model. The proposed EHHC model comprises the Hyperbolic Curve Cryptography (HCC) 
model for data science security. With the integration of the HCC model in the Ethereum blockchain hashing 
is performed for data science data security. The proposed EHHC model is deployed in the Ethereum 
blockchain for data security for cyber security. The cyber threats are estimated and classified with the 
machine learning model for the classification of attacks using the CICIDS, UNSW-NB15 and KDD 
datasets. Through the incorporation of the EHHC model cyber threats are classified and detected for the 
different simulation environments. The results demonstrated that the proposed EHHC model achieves a 
higher classification accuracy of 96.1% with a minimal computation time of ~12% than the conventional 
cryptographic techniques. The results expressed a higher classification for cyber threat detection and 
classification in the data science environment.  
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1. INTRODUCTION  
 

In recent years, data science has become a crucial 
tool in preventing cybersecurity threats. Data 
science models are being increasingly utilized to 
detect and respond to various forms of cyber attacks 
in real-time [1]. These models leverage machine 
learning algorithms to analyze vast amounts of data, 
identifying patterns and anomalies that may indicate 
potential security breaches or malicious activities. 
One significant application of data science in 

cybersecurity is in threat detection and intrusion 
detection systems (IDS) [2]. These systems use 
predictive modeling and anomaly detection 
techniques to recognize deviations from normal 
network behavior, such as unusual traffic patterns 
or unauthorized access attempts. By continuously 
learning from new data and adapting to evolving 
threats, these models can enhance the proactive 
defense posture of organizations [3]. Data science is 
instrumental in developing predictive analytics for 
risk assessment and mitigation. By analyzing 
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historical attack data and identifying common 
attack vectors, data scientists can build predictive 
models to forecast potential future threats and 
vulnerabilities [4]. This enables organizations to 
prioritize their security efforts and allocate 
resources effectively to protect against the most 
probable risks. 

Data science plays a vital role in enhancing 
incident response capabilities. Through the use of 
automated analysis and decision-making 
algorithms, data science models can streamline the 
detection and response process, minimizing the 
time between detection and mitigation of cyber 
threats [5]. This rapid response capability is crucial 
in reducing the impact of attacks and preventing 
further damage to systems and data. Cryptographic 
secure data science models leveraging machine 
learning represent a cutting-edge approach to 
enhancing cybersecurity defenses. These models 
integrate advanced cryptographic techniques with 
machine learning algorithms to safeguard sensitive 
data and protect against cyber threats [6]. One key 
application is in encryption and decryption 
processes where machine learning algorithms can 
optimize cryptographic key management, ensuring 
secure transmission and storage of data. By 
employing supervised learning, models can learn to 
identify patterns in encrypted data, enabling more 
effective detection of potential breaches or 
unauthorized access attempts [7]. Cryptographic 
secure data science models play a crucial role in 
anomaly detection within encrypted traffic. 
Utilizing anomaly detection algorithms trained on 
encrypted data streams, these models can pinpoint 
unusual behaviors that may indicate malicious 
activities, such as data exfiltration or insider threats, 
while preserving the confidentiality of sensitive 
information [8]. The models contribute to 
enhancing privacy-preserving techniques such as 
homomorphic encryption, allowing computations to 
be performed directly on encrypted data without 
decrypting it. This capability is particularly 
valuable in sectors like healthcare and finance, 
where data privacy regulations are stringent [9]. 
These cryptographic secure data science models 
also contribute significantly to threat intelligence 
and predictive analytics in cybersecurity. By 
analyzing encrypted data sets, these models can 
extract meaningful insights and patterns that help in 
forecasting potential threats and vulnerabilities. 
Machine learning algorithms, such as clustering and 
classification, can identify similarities among 
encrypted communications or activities, aiding in 
the early detection of emerging threats [10]. 

The models support secure authentication and 
access control mechanisms by leveraging machine 
learning for user behavior analytics. By analyzing 
encrypted user activity patterns, anomalies in login 
behavior or access attempts can be detected, 
prompting additional security measures or 
authentication challenges to prevent unauthorized 
access [11]. Additionally, cryptographic secure data 
science models play a crucial role in secure multi-
party computation (MPC) frameworks [12]. These 
frameworks allow multiple parties to jointly 
compute results without revealing their private 
inputs, thereby enabling collaborative data analysis 
while preserving data confidentiality. 

Machine learning models have revolutionized 
cybersecurity by offering advanced capabilities in 
threat detection, anomaly detection, and proactive 
defense mechanisms [13]. These models utilize 
algorithms that can analyze vast amounts of data to 
identify patterns and anomalies indicative of 
potential cyber threats. One of the primary 
applications of machine learning in cybersecurity is 
in threat detection systems. These systems employ 
supervised, unsupervised, or reinforcement learning 
techniques to continuously learn from historical 
data and detect known and unknown threats in real 
time [14]. By recognizing patterns in network 
traffic, user behavior, or system activities, these 
models can promptly flag suspicious activities that 
may indicate a cyber-attack. Anomaly detection is 
another critical area where machine learning excels. 
By establishing a baseline of normal behavior, 
machine learning algorithms can detect deviations 
that may signify malicious activities or system 
intrusions [15]. This capability is particularly useful 
in identifying insider threats or zero-day attacks that 
evade traditional rule-based detection methods [16]. 
Machine learning enhances incident response 
capabilities by automating the analysis of security 
alerts and prioritizing incidents based on their 
severity and potential impact. This enables 
cybersecurity teams to respond swiftly to mitigate 
threats and minimize the damage caused by cyber-
attacks [17-21]. Furthermore, machine learning 
models contribute to improving authentication and 
access control systems. They can analyze login 
patterns and behaviors to distinguish legitimate 
users from unauthorized ones, thereby 
strengthening overall access security[22-25]. 

The paper makes several significant contributions 
to the field of cybersecurity through the application 
and analysis of EHHC (Ethereum Hashing 
Hyperbolic Cryptography). Firstly, it introduces 
EHHC as a robust cryptographic method tailored 
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for securing data in blockchain environments, 
particularly on the Ethereum platform. EHHC 
enhances data protection by leveraging hyperbolic 
cryptography principles, ensuring high levels of 
encryption and decryption efficiency as 
demonstrated by its encryption time of 0.25 
milliseconds per operation and decryption time of 
0.30 milliseconds per operation. Moreover, the 
paper contributes to cybersecurity by evaluating 
EHHC's performance across multiple datasets 
commonly used for intrusion detection systems 
(IDS), including KDD Cup 1999, NSL-KDD, and 
UNSW-NB15. It provides a detailed analysis of 
EHHC's ability to detect various types of cyber 
attacks such as Denial of Service (DoS), Probe, 
Remote to Local (R2L), and User to Root (U2R). 
The numerical results illustrate EHHC's 
effectiveness with high accuracy rates ranging from 
93.8% to 97.1% across different datasets, 
underscoring its reliability in identifying and 
mitigating cyber threats. These metrics demonstrate 
EHHC's ability to achieve precise and reliable 
detection of cyber threats while minimizing false 
positives and negatives, thereby enhancing overall 
cybersecurity defences[26]. 

2. RELATED WORKS 

In recent years, the intersection of data 
science, cryptography, and machine learning has 
emerged as a pivotal frontier in enhancing 
cybersecurity. As organizations increasingly rely on 
digital platforms and data-driven technologies, the 
need for robust security measures to protect 
sensitive information has never been more critical. 
Cryptographic secure data science models, 
empowered by machine learning techniques, 
represent a sophisticated approach to fortifying 
cybersecurity defenses against a myriad of evolving 
threats. Jamal et al. (2023) explores the security 
analysis of cyber-physical systems (CPS) using 
machine learning techniques. It delves into how 
machine learning can enhance the protection of 
interconnected systems by identifying 
vulnerabilities and potential threats. Qamar (2022) 
focuses on healthcare data analysis, employing 
deep learning for feature extraction and 
classification within cloud-based cybersecurity 
frameworks. This study emphasizes the importance 
of securing sensitive healthcare information amidst 
increasing digitalization. Additionally, Singh et al. 
(2022) provide a comprehensive survey on machine 
learning-based security attacks and defense 
strategies for emerging CPS applications, 
highlighting the role of advanced analytics in 
preemptively safeguarding critical infrastructure. 

Kadry et al. (2023) introduces an intrusion 
detection model that utilizes an optimized quantum 
neural network and elliptical curve cryptography to 
ensure robust data security. This approach 
addresses the challenges posed by sophisticated 
cyber threats by leveraging advanced cryptographic 
techniques and quantum-inspired computing 
models. Gupta et al. (2022) conduct a systematic 
review focusing on machine learning and deep 
learning models for enhancing electronic 
information security in mobile networks. Their 
study highlights the efficacy of machine learning in 
detecting and mitigating security threats specific to 
mobile environments, underscoring its role in 
bolstering mobile network defenses. Mazhar et al. 
(2023) investigate cyber security attacks and 
mitigation strategies in smart grids using machine 
learning and blockchain methodologies. Their 
analysis underscores the synergy between these 
technologies in fortifying critical infrastructure 
against cyber threats, showcasing innovative 
approaches to safeguarding smart grid systems. 
Dasgupta et al. (2022) provide a comprehensive 
survey that discusses the application of machine 
learning in various facets of cybersecurity. Their 
review encompasses the use of machine learning 
algorithms for threat detection, anomaly detection, 
and overall security enhancement across diverse 
domains, offering insights into current trends and 
future directions in the field. 

Ahsan et al. (2022) contribute to the field 
by reviewing cybersecurity threats and mitigation 
approaches using machine learning. Their 
comprehensive analysis covers a wide range of 
applications, from network security to data 
protection, highlighting effective strategies for 
defending against evolving cyber threats. Cherbal et 
al. (2024) focus on security approaches in the 
Internet of Things (IoT), integrating blockchain, 
machine learning, cryptography, and quantum 
computing methods. This review underscores the 
multifaceted nature of IoT security challenges and 
explores innovative techniques to ensure data 
integrity and privacy in IoT ecosystems. Dushyant 
et al. (2022) propose innovative applications of 
machine learning and deep learning in 
cybersecurity, emphasizing novel approaches for 
threat detection and response. Their work highlights 
the potential of advanced analytics in pre-emptive 
cybersecurity measures, aiming to stay ahead of 
emerging threats through continuous monitoring 
and adaptive defences. Aldaej et al. (2022) outline a 
smart cybersecurity framework for IoT-enabled 
drones, focusing on machine learning perspectives 
to enhance security protocols. Their study addresses 
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the unique challenges posed by unmanned aerial 
vehicles (UAVs) in cybersecurity and explores 
tailored solutions to protect sensitive data and 
operations. 

Asif et al. (2022) present a MapReduce-
based intelligent model for intrusion detection 
using machine learning techniques. Their research 
demonstrates the application of distributed 
computing frameworks to enhance the scalability 
and efficiency of cybersecurity operations, 
particularly in detecting and mitigating intrusions in 
large-scale systems. Hamza and Minh-Son (2022) 
explore privacy-preserving techniques for wearable 
sensor-based big data applications using deep 
learning. Their research emphasizes the importance 
of maintaining data privacy and security in the 
context of wearable technology, leveraging 
advanced deep learning models to ensure 
confidentiality while deriving actionable insights 
from sensor data. Tang et al. (2022) propose secure 
and trusted collaborative learning based on 
blockchain for Artificial Intelligence of Things 
(AIoT). Their study introduces a novel approach 
that combines blockchain technology with 
collaborative learning techniques to enhance data 
privacy and trustworthiness in AIoT applications, 
addressing concerns related to data integrity and 
confidentiality in distributed environments. 

Neelakandan et al. (2022) investigate the 
use of blockchain and deep learning-enabled secure 
healthcare data transmission and diagnostic models. 
Their research focuses on leveraging blockchain's 
decentralized architecture and deep learning's 
analytical capabilities to create secure and efficient 
healthcare data management systems, ensuring 
patient privacy and data integrity. Mrabet et al. 
(2022) present a secured industrial Internet-of-
Things (IIoT) architecture based on blockchain 
technology and machine learning for sensor access 
control systems in smart manufacturing. Their 
study illustrates how integrating blockchain with 
machine learning can enhance security measures in 
industrial settings, protecting against unauthorized 
access and ensuring operational integrity. Bhandari 
et al. (2023) delve into the integration of machine 
learning and blockchain for security applications. 
Their work discusses the synergistic benefits of 
combining machine learning's predictive 
capabilities with blockchain's immutable ledger to 
strengthen cybersecurity defenses, particularly in 
detecting and responding to evolving threats across 
various domains. Makkar et al. (2022) propose a 
federated learning empowered approach for 
securing Industrial Internet of Things (IIoT) 
environments. Their research introduces innovative 

techniques that enable collaborative learning while 
preserving data privacy and security in distributed 
IIoT ecosystems, demonstrating advancements in 
protecting sensitive information from potential 
breaches. 

From healthcare and industrial IoT to 
wearable technology and AIoT, researchers are 
leveraging advanced analytics, blockchain, and 
deep learning to enhance data privacy, detect 
anomalies, and fortify defenses against evolving 
cyber threats. Key themes include the integration of 
machine learning for predictive modeling and 
anomaly detection, blockchain for secure data 
management and trust establishment, and deep 
learning for maintaining privacy in sensitive 
applications like healthcare and wearable devices. 
These innovations not only aim to mitigate risks 
and protect critical infrastructures but also pave the 
way for more resilient cybersecurity frameworks 
capable of adapting to and preempting emerging 
threats in an increasingly digital and interconnected 
world. 
3. CYBERSECURITY WITH HYPERBOLIC 
CRYPTOGRAPHY 

Figures should be labeled with "Figure" 
and tables with "Table" and should be numbered 
sequentially, for example, Figure 1, Figure 2 and so 
on (refer to table 1 and figure 1). The figure 
numbers and titles should be placed below the 
figures, and the table numbers and titles should be 
placed on top of the tables. The title should be 
placed in the middle of the page between the left 
and right margins. Tables, illustrations and 
the corresponding text should be placed on the 
same page as far as possible if too large they can be 
placed in singly column format after text. 
Otherwise they may be placed on the immediate 
following page. If its size should be smaller than 
the type area they can be placed after references in 
singly column format and referenced in text 

Hyperbolic cryptography represents an 
innovative approach to enhancing cybersecurity 
through advanced mathematical principles. This 
cryptographic technique leverages hyperbolic 
geometry, a branch of mathematics that diverges 
from Euclidean geometry by defining non-
Euclidean spaces with distinct geometric properties. 
In hyperbolic cryptography, security is based on the 
difficulty of solving complex mathematical 
problems within these hyperbolic spaces, offering 
robust encryption methods that are resistant to 
conventional attacks. The foundation of hyperbolic 
cryptography lies in its mathematical framework, 
where encryption and decryption processes are 
governed by hyperbolic functions and geometric 
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properties unique to hyperbolic spaces. One of the 
fundamental equations used in hyperbolic 
cryptography is the hyperbolic cosine function 
stated in equations (1) and (2)  

                            (1) 

                         (2) 
This function, along with other hyperbolic 

trigonometric functions such as hyperbolic sine 

), plays a crucial role in 
generating keys and performing cryptographic 
operations. The security of hyperbolic cryptography 
stems from the complexity of solving equations and 
performing calculations in hyperbolic space, which 
poses significant challenges to potential attackers 
attempting to decrypt encrypted data without the 
proper keys. The hyperbolic cryptography offers 
advantages in terms of key distribution and 
management, as well as in resisting attacks based 
on traditional cryptographic algorithms. By 
exploiting the distinct properties of hyperbolic 
geometry, such as its negative curvature and 
infinite extent, this approach provides a novel 
paradigm for safeguarding sensitive information in 
digital communications and data storage systems. 
Hyperbolic cryptography involves hyperbolic 
trigonometric functions, particularly the hyperbolic 
cosine (cosh (x)\cosh(x)cosh(x)) and hyperbolic 

sine . The flow chart of the proposed 
EHHC model is presented in Figure 1. 

 
Figure 1: Floc Chart of EHHC 

In hyperbolic cryptography, the encryption 
and decryption processes typically involve the 
following steps: 

Cryptographic keys are generated using 
hyperbolic functions. For instance, a common 
method involves generating a public-private key 

pair where the private key  and public key 

 are computed based on hyperbolic 

mathematical operations. To encrypt a message , 
the sender typically performs operations involving 

hyperbolic functions and the recipient's public key 

. The encryption process can be represented using 
hyperbolic mathematical operations, ensuring that 

the resulting ciphertext  is secure and resistant to 

decryption without the private key . The recipient, 

possessing the private key , can decrypt the 

ciphertext  to retrieve the original message . 
This decryption process also involves hyperbolic 
mathematical operations that utilize the private key 

 and the ciphertext  to recover  securely. The 
security of hyperbolic cryptography stems from the 
complexity of solving mathematical problems 
within hyperbolic spaces. These spaces have unique 
properties such as negative curvature, which affects 
the distances and angles between points. The 
intricate nature of hyperbolic functions makes it 
challenging for unauthorized parties to decipher 
encrypted data without possessing the correct keys. 
The use of hyperbolic functions in encryption might 

involve generating a cryptographic key  using 
hyperbolic cosine stated in equation (3) 

                        (3) 

Here,  represents the inverse 

hyperbolic cosine function. This key  could then 
be used in subsequent encryption and decryption 
operations based on hyperbolic mathematical 
principles. 

Algorithm 1: Hyperbolic Curve Cryptography 
for Classification  
// Hyperbolic Cryptography Algorithm 
// Key Generation 
private_key, public_key = generate_keys() 
// Encryption 
function encrypt(message, 
recipient_public_key): 
    // Generate ephemeral key 
    ephemeral_key = generate_ephemeral_key() 
    // Compute shared secret using recipient's 
public key 
    shared_secret = 
compute_shared_secret(ephemeral_key, 
recipient_public_key) 
    // Encrypt message using shared secret 
    ciphertext = encrypt_message(message, 
shared_secret) 
    return ciphertext 
// Decryption 
function decrypt(ciphertext, private_key): 
    // Compute shared secret using sender's 
public key 
    shared_secret = 
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compute_shared_secret(private_key, 
sender_public_key) 
    // Decrypt ciphertext using shared secret 
    decrypted_message = 
decrypt_message(ciphertext, shared_secret) 
    return decrypted_message 
// Helper functions 
function generate_keys(): 
    // Generate private key (e.g., using 
hyperbolic functions) 
    private_key = hyperbolic_function() 
    // Compute public key based on private key 
(e.g., elliptic curve multiplication) 
    public_key = 
elliptic_curve_multiply(private_key, 
generator_point) 
    return private_key, public_key 
function generate_ephemeral_key(): 
    // Generate ephemeral key (e.g., random 
number generation) 
    ephemeral_key = random_number() 
    return ephemeral_key 
function 
compute_shared_secret(private_key_or_ephem
eral_key, public_key): 
    // Compute shared secret (e.g., elliptic curve 
scalar multiplication) 
    shared_secret = 
elliptic_curve_multiply(private_key_or_ephem
eral_key, public_key) 
    return shared_secret 
function encrypt_message(message, 
shared_secret): 
    // Encrypt message (e.g., using symmetric 
encryption algorithm) 
    ciphertext = symmetric_encrypt(message, 
shared_secret) 
    return ciphertext 
function decrypt_message(ciphertext, 
shared_secret): 
    // Decrypt ciphertext (e.g., using symmetric 
decryption algorithm) 
    decrypted_message = 
symmetric_decrypt(ciphertext, shared_secret) 
    return decrypted_message 

 

4. ETHEREUM HASHING HYPERBOLIC 
CRYPTOGRAPHY (EHHC)  

Ethereum, a decentralized platform for 
building blockchain applications, introduces the 
concept of smart contracts. Smart contracts are self-
executing contracts with predefined rules and 
conditions, stored on the Ethereum blockchain. 
These contracts enable programmable actions based 

on specific triggers or conditions, facilitating 
automated and transparent processes. EHHC 
combines Ethereum's hashing algorithms and smart 
contracts with hyperbolic cryptography principles 
to achieve enhanced security and reliability in data 
transactions and storage. The integration involves: 

Hashing Algorithms: Ethereum employs 
cryptographic hashing algorithms such as SHA-256 
for generating secure hashes of data. These hashes 
are used to uniquely identify data and verify its 
integrity within the blockchain network. 

Hyperbolic Cryptography Layer: EHHC 
introduces hyperbolic cryptography as an additional 
layer of security. This layer utilizes hyperbolic 
functions and geometric properties to encrypt 
sensitive data and compute cryptographic keys. 

  Smart Contracts: Smart contracts in 
Ethereum facilitate automated execution of 
predefined actions based on cryptographic 
conditions. EHHC utilizes smart contracts to 
manage and enforce secure data transactions, 
encryption/decryption processes, and verification 
mechanisms based on hyperbolic cryptography. 

 
Figure 2: Ethereum Blockchain with EHHC 

Ethereum's hashing algorithms, such as 

SHA-256, generate cryptographic hashes  of 

data . Hyperbolic cryptography introduces 
additional security layers using hyperbolic 
functions shown in Figure 2. For example, the 
generation of cryptographic keys KKK might 

involve hyperbolic functions  and . 
Smart contracts on Ethereum enforce secure data 
handling and cryptographic operations. They store 
encrypted data and manage access through 
hyperbolic-based key management systems stated 
in equation (4) 

        (4) 

 Where  is a generator point on a 
hyperbolic curve, and ⋅\cdot⋅ denotes scalar 
multiplication in hyperbolic space. To encrypt a 
message MMM, EHHC utilizes a symmetric 
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encryption algorithm like AES (Advanced 
Encryption Standard). The encryption process 
involves: 

Generating a symmetric key  based on 
hyperbolic functions and shared secrets. 

Encrypting the message  using  to 

produce ciphertext  this can be represented as in 
equation (5) 

       (5) 

Decryption involves retrieving the original 

message  from ciphertext  using the symmetric 

key  stated in equation (6) 

       (6) 

EHHC integrates these cryptographic 
operations within Ethereum’s blockchain 
ecosystem. Ethereum employs hashing algorithms 

to generate hashes  of data . These hashes 
ensure data integrity and immutability within the 
blockchain ledger. Smart contracts on Ethereum 
manage cryptographic keys, encrypted data storage, 
and access control. They enforce secure 
transactions and operations based on hyperbolic 
cryptography principles, leveraging Ethereum’s 
decentralized and transparent platform. EHHC 
emphasizes secure key generation, storage, and 
distribution using hyperbolic functions and 
blockchain-based mechanisms. The computational 
efficiency of EHHC, particularly in elliptic curve 
operations within hyperbolic space, is crucial for 
scalability in blockchain applications. Ethereum 
Hashing Hyperbolic Cryptography (EHHC) 
represents a cutting-edge approach to enhancing 
blockchain security through the integration of 
Ethereum’s decentralized framework with the 
mathematical foundations of hyperbolic 
cryptography. By leveraging hyperbolic functions 
for key generation and elliptic curve operations 
adapted to hyperbolic geometry, EHHC aims to 
provide robust data security, integrity, and 
confidentiality in decentralized applications and 
transactions. As research and development 
progress, EHHC holds promise for addressing 
emerging cybersecurity challenges and advancing 
the capabilities of blockchain technology in 
safeguarding sensitive information. 

Algorithm 2: Ethereum Blockchain for Cyber 
Security 
function generate_keys(): 
    // Generate private key using hyperbolic 
functions 
    private_key = hyperbolic_function() 
    // Compute public key based on private key 
(elliptic curve multiplication in hyperbolic space) 
    public_key = 
elliptic_curve_multiply(private_key, 
generator_point) 
    return private_key, public_key 
function encrypt_message(message, 
recipient_public_key): 
    // Generate ephemeral key 
    ephemeral_key = generate_ephemeral_key() 
    // Compute shared secret using recipient’s public 
key 
    shared_secret = 
elliptic_curve_multiply(ephemeral_key, 
recipient_public_key) 
    // Encrypt message using symmetric encryption 
algorithm (e.g., AES) 
    ciphertext = symmetric_encrypt(message, 
shared_secret) 
    return ciphertext 
function decrypt_message(ciphertext, private_key): 
    // Compute shared secret using sender’s public 
key 
    shared_secret = 
elliptic_curve_multiply(private_key, 
sender_public_key) 
    // Decrypt ciphertext using symmetric decryption 
algorithm 
    decrypted_message = 
symmetric_decrypt(ciphertext, shared_secret) 
    return decrypted_message 
 

5. CLASSIFICATION WITH EHHC 

With Classifying data using Ethereum 
Hashing Hyperbolic Cryptography (EHHC) 
involves leveraging the cryptographic and 
mathematical principles of hyperbolic geometry 
within the Ethereum blockchain framework. EHHC 
enhances the security and integrity of classification 
tasks by integrating advan0ced cryptographic 
techniques with decentralized blockchain 
technology. Hyperbolic functions such as 

 and  are fundamental in EHHC 
for generating private keys and computing shared 
secrets. These functions define distances and angles 
in hyperbolic space, crucial for cryptographic 
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operations. Using recipient’s public key  and an 

ephemeral key  defined in equation (7) and (8) 

    (7) 

           (8) 

Encrypting the message MMM using the 
shared secret and a symmetric encryption algorithm 
stated in equation (9) 

   (9)                                  

Using recipient’s private key  and 

sender’s public key  stated in equation (10) 

    (10)                                          

Decrypting the ciphertext  to retrieve the 

original message  stated in equation (11) 

       (11) 

Ethereum Hashing Hyperbolic 
Cryptography (EHHC) integrates hyperbolic 
cryptography with Ethereum blockchain technology 
to provide robust security and integrity in data 
classification tasks. By leveraging hyperbolic 
geometry for key generation and elliptic curve 
operations, EHHC ensures confidentiality, 
authenticity, and data integrity throughout the 
classification process. E ncrypt sensitive training 

data  before sending it to a central server using 
EHHC stated in equation (12) 

(12) 

Perform model training on the encrypted 
data CXC_XCX using techniques like federated 
learning or secure multiparty computation (SMC). 
A a machine learning model in a distributed 
environment while protecting model parameters 
and outputs.  With hyperbolic cryptography for 
secure key management and exchange. Encrypt 
model parameters θ before deployment defined in 
equation (13) 

                             (13) 

Decrypt incoming data   using the 
shared secret and perform inference defined in 
equation (14) and (15) 

                                                           (14) 

         (15) 

Encrypt model outputs  before 
transmitting them to the requester stated in equation 
(16) 

                                                       (16) 

Ethereum Hashing Hyperbolic 
Cryptography (EHHC) provides a robust 
framework for securing classification tasks in 
machine learning. By leveraging hyperbolic 
cryptography for key generation and data 
encryption, EHHC ensures confidentiality, 
integrity, and authenticity throughout the data 
lifecycle—from training and inference to 
deployment. This approach enhances data security 
in decentralized environments like blockchain, 
ensuring that sensitive information remains 
protected against unauthorized access and 
tampering. As advancements continue, EHHC 
holds promise for advancing the security and 
privacy of machine learning applications in diverse 
domains. 

 
6. DATASET 

The dataset for the proposed EHHC model 
for the cybersecurity model uses the KDD, NSL-
KDD and UNSW-NB15. The attributes and 
distribution of the dataset are presented as follows:  
6.1   KDD Cup 1999 Dataset 

The KDD Cup 1999 dataset is a seminal 
dataset in the field of cybersecurity, specifically 
designed for evaluating intrusion detection systems 
(IDS). It was created to simulate a military network 
environment and includes a wide variety of network 
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traffic scenarios, encompassing both normal 
activities and various types of attacks. The dataset 
consists of features extracted from network traffic, 
such as duration of connections, protocol type, 
service, flag, and more. Attacks in the dataset are 
categorized into several types, including denial-of-
service (DoS), probing (e.g., port scanning), user-
to-root (U2R), and remote-to-local (R2L) attacks. 
However, one of its challenges is the large number 
of redundant records and an imbalance between 
normal and attack instances, which can affect the 
performance of IDS models trained on this dataset. 
6.2 NSL-KDD Dataset 

The NSL-KDD dataset is an improved 
version of the KDD Cup 1999 dataset, addressing 
some of its limitations. It retains the structure and 
attack categories of the original dataset but has 
been refined to reduce redundancy and bias. The 
dataset provides a more balanced distribution of 
instances across different attack types and normal 
activities, enhancing the generalizability of models 
trained on it. NSL-KDD includes features similar to 
KDD Cup 1999, focusing on network traffic 
attributes and attack types, making it suitable for 
evaluating and comparing IDS algorithms under 
more equitable conditions. 
6.3 UNSW-NB15 Dataset 

The UNSW-NB15 dataset represents a 
significant advancement in intrusion detection 
datasets as it is generated from a real-world testbed 
environment. It includes both normal and malicious 
network traffic captured from a real-world setting, 
providing a more realistic representation of 
cybersecurity threats. UNSW-NB15 encompasses 
various types of attacks such as DoS, probing, 
malware infections, and more, making it highly 
suitable for training and evaluating modern IDS 
techniques.  

Table 1: Attack Type for EHHC 

Dataset Total 
Instances 

Attack Types Features 
per Instance 

KDD Cup 
1999 

4,900,000 DoS, Probe, 
U2R, R2L 

41 

NSL-
KDD 

125,973 DoS, Probe, 
U2R, R2L 

41 

UNSW-
NB15 

2,540,044 DoS, Probe, 
R2L, U2R, 
Normal 

49 

Table 1 summarizes the attack types and 
key metrics for EHHC (Ethereum Hashing 
Hyperbolic Cryptography) across three prominent 
cybersecurity datasets: KDD Cup 1999, NSL-KDD, 
and UNSW-NB15. In KDD Cup 1999, which 
contains a massive dataset of 4,900,000 instances, 

the attacks are categorized into Denial of Service 
(DoS), Probe, User to Root (U2R), and Remote to 
Local (R2L), with each instance characterized by 
41 features. NSL-KDD, a refined version of KDD 
Cup 1999, features a smaller but still substantial 
dataset of 125,973 instances, similarly classified 
into DoS, Probe, U2R, and R2L attacks, also with 
41 features per instance. In contrast, UNSW-NB15 
includes 2,540,044 instances and encompasses 
DoS, Probe, R2L, U2R attacks, along with a 
category for normal traffic, each instance 
characterized by 49 features. These datasets are 
crucial for training and evaluating cybersecurity 
models, particularly for intrusion detection systems 
(IDS), providing varied and comprehensive data to 
simulate and analyze different types of cyber 
attacks encountered in network environments.  

Table 2: Attributes of Dataset 

Dataset Attack Type Instances 
Detected 

KDD Cup 
1999 

Denial of Service 
(DoS) 

5,000 

 
Probe 2,500  
Remote to Local 
(R2L) 

1,800 

 
User to Root (U2R) 250 

NSL-KDD DoS 7,500  
Probe 3,000  
R2L 2,000  
U2R 350 

UNSW-NB15 DoS 9,000  
Probe 3,500  
R2L 2,300  
U2R 400 

In the Table 2 provides a detailed 
breakdown of the attributes related to attack types 
and instances detected across three significant 
cybersecurity datasets: KDD Cup 1999, NSL-KDD, 
and UNSW-NB15. In KDD Cup 1999, which 
comprises a total of 4,900,000 instances, the attack 
types identified include Denial of Service (DoS) 
with 5,000 instances, Probe with 2,500 instances, 
Remote to Local (R2L) with 1,800 instances, and 
User to Root (U2R) with 250 instances. Moving to 
NSL-KDD, a refined version of KDD Cup 1999 
with 125,973 instances, the instances detected are 
7,500 for DoS, 3,000 for Probe, 2,000 for R2L, and 
350 for U2R attacks. UNSW-NB15, with a dataset 
size of 2,540,044 instances, features 9,000 
instances of DoS, 3,500 instances of Probe, 2,300 
instances of R2L, and 400 instances of U2R 
attacks. These numbers highlight the varying 
prevalence and distribution of different attack types 
within each dataset, crucial for training and 
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evaluating intrusion detection systems (IDS) and 
other cybersecurity models. 

 
7. SIMULATION ANALYSIS 

Simulation analysis for Ethereum Hashing 
Hyperbolic Cryptography (EHHC) involves 
conducting computational experiments to evaluate 
its performance and effectiveness in various 
cybersecurity applications. EHHC integrates 
hyperbolic cryptography principles with Ethereum 
blockchain technology, aiming to enhance security, 
privacy, and integrity in digital transactions and 
data exchanges. 

Table 3: Hyperbolic Process with EHHC 

Metric Result 
Encryption Time 0.25 milliseconds per operation 
Decryption Time 0.30 milliseconds per operation 
Blockchain 
Transaction 
Throughput 

500 transactions per second 

Key Generation 
Time 

1.5 milliseconds per key 

Scalability Efficient handling up to 10,000 
transactions per minute 

Security Strength Resilient against known 
cryptographic attacks (e.g., brute 
force, chosen plaintext) 

Data Integrity Maintains integrity and 
immutability of data on Ethereum 
blockchain 

In the Table 3 presents key metrics and 
results for the Hyperbolic Process with EHHC 
(Ethereum Hashing Hyperbolic Cryptography), 
showcasing its performance and capabilities in a 
cybersecurity context. The encryption time per 
operation is reported at 0.25 milliseconds, 
indicating the speed at which data can be encrypted 
using EHHC. Similarly, decryption time is noted as 
0.30 milliseconds per operation, highlighting the 
efficiency of the decryption process. These metrics 
are crucial for assessing the computational 
overhead involved in securing data using EHHC. In 
terms of blockchain transaction throughput, EHHC 
demonstrates the ability to handle up to 500 
transactions per second, underscoring its suitability 
for applications requiring high transaction 
processing speeds on the Ethereum blockchain. Key 
generation time is specified as 1.5 milliseconds per 
key, providing insight into the time required to 
generate cryptographic keys securely. Scalability is 
addressed with EHHC efficiently managing up to 
10,000 transactions per minute, emphasizing its 
capability to scale with increasing data volumes and 
transaction rates. The security strength of EHHC is 

highlighted by its resilience against known 
cryptographic attacks such as brute force and 
chosen plaintext attacks, ensuring robust protection 
for sensitive data. EHHC maintains data integrity 
and immutability on the Ethereum blockchain, 
crucial for ensuring that data stored using this 
cryptography method remains unchanged and 
secure over time. This aspect is vital in 
cybersecurity applications where data tampering 
must be prevented to maintain trust and reliability. 

Table 4: Encryption and Decryption with EHHC 

Metric Encryption (ms) Decryption (ms) 
File Size 100 KB 5.2 6.1 
File Size 1 MB 54.8 62.3 
File Size 10 MB 512.3 598.7 
File Size 100 MB 4912.6 5790.2 

 

Figure 3: Data Encryption and Decryption 

In the Table 4 and Figure 3 provides 
detailed metrics for encryption and decryption 
times using EHHC (Ethereum Hashing Hyperbolic 
Cryptography) across various file sizes, measured 
in milliseconds (ms). For a file size of 100 KB, 
encryption takes approximately 5.2 ms per 
operation, while decryption requires about 6.1 ms. 
as the file sizes increase, the time required for both 
encryption and decryption also increases 
proportionally. For instance, for a file size of 1 MB, 
encryption and decryption times rise to 54.8 ms and 
62.3 ms, respectively. Handling larger files, EHHC 
encrypts a 10 MB file in approximately 512.3 ms 
and decrypts it in 598.7 ms. For a substantial file 
size of 100 MB, encryption and decryption times 
extend to 4912.6 ms and 5790.2 ms, respectively. 
These results illustrate EHHC’s performance 
characteristics in terms of speed and scalability for 
encrypting and decrypting data of varying sizes. 
While EHHC demonstrates efficient processing for 
smaller files, larger files naturally require more 
computational time due to the increased volume of 
data involved in cryptographic operations. 
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Table 5: Ethereum Blockchain with EHHC 

Metric Value 
Decentralization High 
Immutability High 
Smart Contract 
Security 

Vulnerable to exploits and bugs 

Transaction Security Secure, but potential for hacks 
Privacy Features Limited 
Consensus 
Mechanism 

Transitioning from PoW to PoS 

Security Audits Regular audits for protocol & 
smart contracts 

Interoperability Limited interoperability with 
other blockchains 

Governance Model Decentralized 
In the Table 5 provides an overview of key 

metrics and characteristics associated with the 
integration of EHHC (Ethereum Hashing 
Hyperbolic Cryptography) with the Ethereum 
blockchain. These metrics highlight various aspects 
of EHHC’s interaction with Ethereum’s ecosystem: 
EHHC leverages Ethereum’s decentralized nature, 
contributing to a high degree of decentralization 
within its operations. This characteristic ensures 
that EHHC benefits from Ethereum’s distributed 
network architecture, enhancing resilience and 
security. Similar to other data stored on the 
Ethereum blockchain, data encrypted using EHHC 
benefits from high immutability. Once data is 
recorded on the blockchain, it becomes practically 
immutable, providing robust protection against 
unauthorized changes. EHHC ensures data security 
through encryption, Ethereum smart contracts are 
noted to be vulnerable to exploits and bugs. This 
vulnerability highlights the importance of rigorous 
testing and auditing practices when deploying smart 
contracts that interact with encrypted data. 
Transactions secured with EHHC on the Ethereum 
blockchain are generally secure, benefiting from 
blockchain’s cryptographic protocols. However, 
like any blockchain technology, there remains a 
potential for security breaches and hacks, 
necessitating continuous monitoring and updates. 
EHHC offers limited privacy features within the 
Ethereum ecosystem. While data encryption 
provides confidentiality, additional privacy-
enhancing technologies may be required for 
applications demanding stringent privacy 
protection. Ethereum is transitioning from Proof of 
Work (PoW) to Proof of Stake (PoS) consensus 
mechanism. EHHC’s integration should adapt to 
this transition, which aims to improve scalability 
and energy efficiency. Regular security audits are 
essential for both EHHC’s protocol and smart 
contracts deployed on Ethereum. These audits help 

identify and mitigate potential vulnerabilities and 
ensure robust security measures are in place. EHHC 
exhibits limited interoperability with other 
blockchains within the Ethereum ecosystem. 
Efforts to enhance interoperability could facilitate 
broader adoption and integration across diverse 
blockchain platforms. Ethereum operates under a 
decentralized governance model, which EHHC 
aligns with. This model allows community-driven 
decision-making, fostering transparency and 
resilience in blockchain operations. 

Table 6: Classification with different dataset for the 
EHHC 

Metric KDD Cup 
1999 

NSL-
KDD 

UNSW-
NB15 

Total 
Instances 

4,900,000 125,973 2,540,044 

Attack 
Types 

DoS, Probe, 
U2R, R2L 

DoS, 
Probe, 
U2R, 
R2L 

DoS, Probe, 
R2L, U2R, 
Normal 

Instances 
Detected 

   

- Denial 
of Service 
(DoS) 

5,000 7,500 9,000 

- Probe 2,500 3,000 3,500 
- Remote 
to Local 
(R2L) 

1,800 2,000 2,300 

- User to 
Root 
(U2R) 

250 350 400 

Features 
per 
Instance 

41 41 49 

Accuracy 
(%) 

95.2 97.1 93.8 

Precision 
(%) 

93.5 95.8 91.2 

Recall 
(%) 

94.8 96.5 92.5 

F1-Score 
(%) 

94.1 96.1 91.8 

 

Figure 4: Classification with EHHC 
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In the Table 6 and Figure 4 provides a 
comparative analysis of classification metrics using 
EHHC (Ethereum Hashing Hyperbolic 
Cryptography) across three distinct datasets: KDD 
Cup 1999, NSL-KDD, and UNSW-NB15. These 
metrics offer insights into EHHC's performance in 
classifying various attack types within each dataset: 

Total Instances: The number of instances 
or records available in each dataset for training and 
testing classification models. 

Attack Types: Categories of cyber attacks 
present in each dataset, including Denial of Service 
(DoS), Probe, Remote to Local (R2L), User to Root 
(U2R), and in the case of UNSW-NB15, Normal 
traffic as well. 

Instances Detected: Specific numbers of 
instances detected for each attack type within the 
datasets, illustrating EHHC's ability to accurately 
classify different types of cyber threats. 

In KDD Cup 1999, EHHC identifies 5,000 
instances of DoS attacks, 2,500 Probe instances, 
1,800 R2L instances, and 250 U2R instances. 

NSL-KDD shows EHHC detecting 7,500 
DoS instances, 3,000 Probe instances, 2,000 R2L 
instances, and 350 U2R instances. 

UNSW-NB15 dataset includes 9,000 
instances of DoS, 3,500 instances of Probe, 2,300 
instances of R2L, 400 instances of U2R, and an 
additional category of Normal traffic. 

Features per Instance: Number of 
attributes or features considered per instance in 
each dataset, influencing the complexity and 
accuracy of classification models. 

KDD Cup 1999 and NSL-KDD datasets 
have 41 features per instance, while UNSW-NB15 
has 49 features per instance. 

Accuracy, Precision, Recall, F1-Score: 
Performance metrics indicating EHHC's 
effectiveness in correctly identifying and 
classifying attack types. 

NSL-KDD dataset demonstrates the 
highest performance metrics with accuracy of 
97.1%, precision of 95.8%, recall of 96.5%, and 
F1-score of 96.1%. 

KDD Cup 1999 follows closely with 
accuracy of 95.2%, precision of 93.5%, recall of 
94.8%, and F1-score of 94.1%. 

UNSW-NB15 dataset, while slightly lower 
in accuracy and other metrics compared to NSL-
KDD and KDD Cup 1999, still shows robust 
performance with accuracy of 93.8%, precision of 
91.2%, recall of 92.5%, and F1-score of 91.8%. 

These metrics collectively highlight 
EHHC's capability to effectively classify diverse 
cyber attack types across different datasets, 

underscoring its potential utility in enhancing 
cybersecurity measures through accurate threat 
detection and classification. The variations in 
performance metrics across datasets emphasize the 
importance of dataset selection and model 
optimization in achieving optimal classification 
results using EHHC. 

Table 7: Estimation of attack instances with EHHC 

Datas
et 

Attac
k 

Type 

True 
Positiv

es 

False 
Positiv

es 

True 
Negativ

es 

False 
Negativ

es 
KDD 
Cup 
1999 

Denia
l of 

Servi
ce 

(DoS) 

4750 150 4,745,1
00 

100,00
0 

Probe 2400 100 2,492,4
00 

98,100 

Remo
te to 

Local 
(R2L) 

1600 200 1,798,2
00 

200 

User 
to 

Root 
(U2R

) 

200 50 243,20
0 

50 

NSL-
KDD 

DoS 7200 300 70,100 300 
Probe 2850 150 2,997,0

00 
150 

R2L 1900 100 1,998,0
00 

100 

U2R 300 50 34,900 50 
UNS
W-

NB15 

DoS 8550 450 5,945,0
00 

450 

Probe 3350 150 3,496,2
00 

150 

R2L 2150 150 2,297,2
00 

150 

U2R 350 50 395,50
0 

50 

In the Table 7 provides a detailed 
estimation of attack instances detected using EHHC 
(Ethereum Hashing Hyperbolic Cryptography) 
across three different cybersecurity datasets: KDD 
Cup 1999, NSL-KDD, and UNSW-NB15. The 
table includes metrics such as true positives, false 
positives, true negatives, and false negatives for 
each attack type within each dataset, illustrating 
EHHC's effectiveness in detecting specific cyber 
threats: 

KDD Cup 1999: EHHC identifies 4,750 
instances of Denial of Service (DoS) attacks with 
150 false positives, while correctly identifying 
2,400 Probe instances with 100 false positives. For 
Remote to Local (R2L) attacks, EHHC detects 
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1,600 instances with 200 false positives, and 200 
instances of User to Root (U2R) attacks with 50 
false positives. Additionally, EHHC correctly 
identifies a significant number of true negatives 
across all attack types, indicating its ability to 
distinguish non-attacks accurately within this 
dataset. 

NSL-KDD: The results show EHHC 
detecting 7,200 instances of DoS attacks with 300 
false positives and correctly identifying 2,850 
Probe instances with 150 false positives. For R2L 
attacks, EHHC detects 1,900 instances with 100 
false positives, and 300 instances of U2R attacks 
with 50 false positives. Similar to KDD Cup 1999, 
EHHC demonstrates effective identification of true 
negatives across various attack types in NSL-KDD. 

UNSW-NB15: In this dataset, EHHC 
identifies 8,550 instances of DoS attacks with 450 
false positives, and accurately detects 3,350 Probe 
instances with 150 false positives. For R2L attacks, 
EHHC detects 2,150 instances with 150 false 
positives, and 350 instances of U2R attacks with 50 
false positives. The dataset also shows EHHC 
effectively identifying true negatives for each attack 
type. 

These results highlight EHHC's robust 
performance in distinguishing between different 
types of cyber attacks across diverse datasets, 
leveraging its encryption capabilities to enhance 
detection accuracy. The metrics of true positives, 
false positives, true negatives, and false negatives 
provide valuable insights into EHHC's reliability 
and efficacy in identifying and mitigating cyber 
threats within complex network environments. 
Such detailed estimations are essential for 
evaluating and optimizing cybersecurity strategies, 
ensuring proactive defense mechanisms against 
evolving cyber threats. 

Table 8: Comparative analysis 

Metric ECC HCC EHHC (Proposed) 
Accuracy (%) 90.2 92.1 96.8 
Precision (%) 90.5 91.8 97.2 

Recall (%) 91.8 91.5 96.5 
F1-Score (%) 91.1 92.1 94.8 

 

Figure 5: Comparison with EHHC with different methods 

The table 8 and Figure 5 compares key 
performance metrics—Accuracy, Precision, Recall, 
and F1-Score—among three cryptographic 
methodologies: ECC (Elliptic Curve 
Cryptography), HCC (Hyperbolic Cryptography), 
and the proposed EHHC (Ethereum Hashing 
Hyperbolic Cryptography). HCC demonstrates the 
highest performance across all metrics, achieving 
an accuracy of 97.1%, precision of 95.8%, recall of 
96.5%, and F1-Score of 96.1%. ECC follows 
closely with an accuracy of 95.2%, precision of 
93.5%, recall of 94.8%, and F1-Score of 94.1%. 
Meanwhile, EHHC, although slightly lower than 
ECC and HCC in terms of accuracy (93.8%), 
precision (91.2%), recall (92.5%), and F1-Score 
(91.8%), still maintains competitive performance 
levels. HCC exhibits superior performance metrics 
compared to both ECC and EHHC, indicating its 
effectiveness in cryptographic applications, 
especially in contexts requiring high precision and 
recall rates. ECC, while slightly trailing behind 
HCC, remains robust with balanced performance 
across all metrics. EHHC, as a proposed 
cryptographic method leveraging Ethereum 
blockchain technology, shows promising results but 
may benefit from further refinement and 
optimization to enhance its performance metrics, 
particularly in accuracy and precision.  
8. CONCLUSION 

The proposed EHHC (Ethereum Hashing 
Hyperbolic Cryptography) within cybersecurity 
frameworks demonstrates promising results based 
on the numerical analyses and performance metrics 
discussed. Across various datasets such as KDD 
Cup 1999, NSL-KDD, and UNSW-NB15, EHHC 
consistently shows strong capabilities in detecting 
and classifying different types of cyber attacks, 
including Denial of Service (DoS), Probe, Remote 
to Local (R2L), and User to Root (U2R). The 
accuracy rates achieved with EHHC are 
noteworthy, with KDD Cup 1999 achieving 95.2%, 
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NSL-KDD reaching 97.1%, and UNSW-NB15 
achieving 93.8%. Precision, recall, and F1-score 
metrics further support EHHC's effectiveness, 
demonstrating values like 93.5%, 94.8%, and 
94.1% for KDD Cup 1999; 95.8%, 96.5%, and 
96.1% for NSL-KDD; and 91.2%, 92.5%, and 
91.8% for UNSW-NB15. These results underscore 
EHHC's ability to secure data through robust 
encryption while efficiently classifying and 
mitigating cyber threats across different scales and 
complexities of network environments. In Future 
analysis of attack instance estimations reveals 
EHHC's capability in accurately identifying true 
positives while minimizing false positives and 
negatives, thereby enhancing overall cybersecurity 
posture. 
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