
Journal of Theoretical and Applied Information Technology
31st January 2024. Vol.102. No 2

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

450

AN INSIGHT INTO HYBRID AGILE
SOFTWARE DEVELOPMENT APPROACH AND

SOFTWARE SECURITY AMONG SOFTWARE ENGINEERS:
A CRITICAL EVALUATION

SITI SARAH MAIDIN1 , NORZARIYAH YAHYA2

1Senior Lecturer, 1Faculty of Data Science and Information Technology, INTI International University,
Nilai, Malaysia

2Senior Lecturer. Kulliyah of Information and Communication Technology, IIUM, Gombak, Malaysia

E-mail: 1sitisarah.maidin@newinti.edu.my, 2norzariyah@iium.edu.my

ABSTRACT

The aim of this paper is to provide an overview of the hybrid agile development approach specifically in
software development. Different platforms were used to investigate the factors that influence developers in
choosing the preferred model for software development. In addition, this paper also examines the security
elements in a software development project. It identified 3 factors that motivate software developers to focus
on software security in a project. These are the company's policies and culture, i.e., the overall company
culture regarding security, the application domain, i.e., the developers' perception of the benefits of security
for their applications, and finally, the use and complexity of security tools. This article is organized as follows.
The first section is the introduction, which explains the software development methodology. The subsequent
Materials and Methods section provides an overview of searching journals in various databases, including
Google Scholar, IEEE, ACM, and Science Direct. This paper concludes with recommendations on other areas
that can be explored in the area of software security in the context of the hybrid agile approach.

Keywords: Agile, Hybrid Agile, Software Development, Software Security, Model

1. INTRODUCTION

Software is extremely important, particularly in
industry. As a result, software security has become
an essential component and requirement in SDLC
[1]. Traditionally, software security is added after the
software development process is complete. Security
is regarded as an optional feature in SDLC [2].
Secure software development methodologies are the
procedures for achieving security goals through the
design, construction, and testing of software.
Frameworks for secure software development
prioritize in integrating security in all phases of the
software development life cycle (SDLC). Some
well-known secure software development
approaches are as follows:

 Secure Agile is an Agile software
development extension that incorporates
security practises into the Agile process.

 Secure DevOps: Continual security
testing and delivery are prioritized in the
Secure DevOps methodology, which
combines the DevOps and security
principles.

 Microsoft's Security Development
Lifecycle (SDL): a thorough approach to
secure software development that
includes security testing, threat
modelling, and training throughout the
SDLC.

 The Open Web Application Security
Project (OWASP): compiled a list of the
top ten web application security risks,
along with advice on how to reduce those
risks.

 ISO/IEC 27034: a guideline for
integrating security into the SDLC,
including requirements, design,

Journal of Theoretical and Applied Information Technology
31st January 2024. Vol.102. No 2

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

451

implementation, testing, and
deployment, for secure software
development.

A secure software development methodology
should be chosen based on the project's size and
complexity, the type of software being developed,
and the security resources available. It's crucial to
pick a methodology that meets the requirements of
the development team and the organisation, and to
review and update it as necessary on a regular basis.

A software development methodology is a
framework for defining how software is created,
managed, and presented. Among the most popular
software development methodologies are Scrum,
Kanban, DevOps, Lean Software Development,
Test-Driven Development (TDD), Feature-Driven
Development (FDD), and the Spiral methodology.
Agile methodologies have grown in popularity since
a group of software practitioners published the
philosophy for agile software development in 2001
[3].

Agile software development methodologies have
provided significant benefits to software
development organizations over traditional waterfall
software development methodologies. Each
methodology has distinct software development
methodologies, strengths, and shortcomings. The
selection of a methodology is influenced by a
number of variables, including the scope of the
project, the nature of the software being built, and
the preferences of the development team. Although
each agile methodology has numerous processes,
theoretically, certain aspects of its core principles
were sometimes overlooked during implementation
[4]. The likelihood of resource exhaustion increases
as the speed of agile development increases. SDLC's
primary concern became software security. As a
result, some organizations transition from the agile
approach to the hybrid agile development approach,
which combines the waterfall and agile models.

The development process includes new coding as
well as the use of third-party components and
libraries. The purpose of incorporating software
security into the software development process is to
detect security flaws and prevent defects. According
to a study conducted by [6], the main reason
organisations do not incorporate software security
into their development process is a lack of security
plan, knowledge, procedures, and resources, as well
as dealing with competing priorities. This study
investigates the organisational and human issues that
contribute to insecure practises in software
development methodology.

2. MATERIALS AND METHODS

In this study, a uniform search of keywords or key
terms was defined. The keywords include "Hybrid
Software,” "Hybrid Development," and "Hybrid
Agile," which were the main words of study for
software security in hybrid agile software
development. The most relevant papers for the study
from different research databases for the previous
twelve years (12) are listed in Table 1 and the
outcome is the assessment from the combination of
the research paper title, abstract, and keywords. The
database used is Google Scholar, IEEE Explore,
ACM, and also Science Direct. In total, 2044
numbers of articles were returned from the search.
After the filter, only 196 articles are accepted for
review in this paper. Table 1 indicates the search
technique used to retrieve the relevant paper. There
were 4 databases included in the search which are
Google Scholar, IEEE Explore, ACM, and Science
Direct. A total of 2024 search results were obtained
for the search query:

 “Hybrid Software” OR “Hybrid Development”
OR “Hybrid Agile”.

 After the filter by Software Security or Secure
Software, only 196 papers are included in the study.
Duplicate papers found in the data collection from
the search were removed. The article must focus on
the study of secure software development
methodology as the definition stated in the
introduction and directly related to security
practices. Table 1 shows the distribution of the
articles.

Table 1: Relevant Papers included in the study (Jan
2010-Dec 2022)

 Search Query Filter

Database

Hybrid Software
OR Hybrid
Development OR
Hybrid Agile

Software
Security OR
Secure
Software

Google
Scholar

1550 149

IEEE Xplore 96 1
ACM 152 44
Science Direct 246 2
Total 2044 196

3. RESULTS AND DISCUSSION

Many SDLC processes or models have been
discussed and presented by researchers such as

Journal of Theoretical and Applied Information Technology
31st January 2024. Vol.102. No 2

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

452

waterfall, V-Model, and agile through comparison or
systematic review. Many works of literature
emphasize a secure development lifecycle. Some
study highlights the current security initiative. Only
a few of the literature focus on human factors, secure
development practices, and factors influencing the
adoption.

3.1 Traditional Model
The waterfall software development approach was

first introduced by Bennington in 1956 and later
improved by Royce in 1970 [7]. It created a
foundation for software development where the
requirement needs to be well-defined and analyzed
before any design or development. Bennington's
model included operational elements such as
operational plan and operational specification as part
of the model.

Royce improved the model by adding a feedback
loop to revisit each stage of his model to handle
unforeseen design difficulties. It is to ensure any
redefinition of requirements is taken care of by
design and validation (testing) stages [8]. Another
aspect of the waterfall approach is that it required
extensive documentation. However, the waterfall
model is suitable for a small-scale project whereby
all the requirements are well-defined. It can also cut
down the operational cost whereby there is minimal
possibility of revisiting the previous phase.

3.2 Agile Model
Agile can be defined as a development approach

that is both flexible and innovative. It's a strategy for
thriving during the chaos and unpredictability that
often characterizes software development projects.
The Agile Manifesto advocates for iterative and
evolutionary approaches to software development,
which shorten the development cycle and increase
the quality of the result. As a lightweight process
paradigm, agile places an emphasis on
communication and collaboration between all
stakeholders. Agile's primary intent is to shorten the
duration of development cycles, increase software
quality, and decrease overall costs. Agile encourages
iterative and evolutionary approaches to
development, which shorten the time required to
both create and deliver a product. The flexibility to
adapt to new circumstances and alter strategies is
another perk.

 Traditional software development approaches
face numerous challenges due to rapid market
changes. Agile methods were proposed to overcome
the challenges. These methods allow the software
engineering team to revolve around development
rather than its design and documentation [9]. Agile

principles are getting customer involvement
throughout the development process, having
incremental delivery, concentrating on people rather
than procedure, embracing change, and maintaining
simplicity [3]. Different agile approaches represent
these principles in different ways. Agile is derived
from the “agility” concept whereby it promotes
flexibility, especially for integration purposes.

3.2.1 Extreme Programming (XP)
XP evolved due to the lengthy development cycles

in traditional development methods. In 1996, Kent
Beck created the XP model through his payroll
project - Chrysler Comprehensive Compensation
System (C3). The model was released in the
Extreme Programming Methodology book in 1999.
The approach was developed to push recognized
good practices in development to the 'extreme' levels
[9]. It promotes frequent releases in short
development cycles. It focuses on lightweight
processes. The main phase involved in the cycle is
Planning, Design, Coding, and Testing. As an
iterative model, the overall project is divided into
small functions. The cycle of development for one
feature is started from the design to the testing phase.
After executing and debugging for one feature is
done correctly, the programmer will move to the next
feature. XP model required rapid release cycles in
which continuous communication between
stakeholders and developers [10].

3.2.2 Scrum
Scrum is a well-known Agile methodology for

managing and finishing projects in the software
development industry. It is founded on incremental
and iterative development and places a strong
emphasis on teamwork and adaptability. To provide
the customer with incremental value, a cross-
functional team works on sprints in Scrum. The
group regularly reviews project goals and priorities
in light of feedback from stakeholders and holds
daily stand-up meetings to discuss progress and
pinpoint any obstacles. Delivering high-quality
software that satisfies the needs of the client is the
objective of the Scrum methodology.

Scrum is more suitable for small software projects
as it not as much emphasis on the process, which is
happening in a large project (central command
structure). In Scrum, development happens in a
series of short sprints [8]. In the iterations (sprints),
the task is decomposed and group in backlogs.
Scrum ensures the processes are simple and
effectively deliver small working software packages
[11]. Scrum starts with gathering user requirements
(user stories) in a product backlog. A sprint backlog
is created based on this product backlog. Each sprint

Journal of Theoretical and Applied Information Technology
31st January 2024. Vol.102. No 2

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

453

will have its development process. Scrum is having
a daily scrum meeting to discuss the problems that
arise and evaluate the progress in that sprint. After
each sprint concluded, there will be a deliverable
product to the customer [11]. Scrum is suitable when
the scope of the project is not well-defined, and it
also involved a large-scale of project. The
uniqueness of Scrum is it allows the “back and forth”
of the phases whereby there is a room for the
improvement for the software developer to enhance
back the outcome in each phase.

3.2.3 Iterative/Incremental Model
The iterative/incremental model is a software

development strategy that includes numerous cycles
of creation and enhancement. Every cycle, or
iteration, entails finishing a small section of the
project, assessing and testing the outcomes, and
using the feedback to guide the following iteration.
This method enables teams to adapt to altering
requirements and make improvements gradually,
resulting in the delivery of a usable product more
quickly and with less risk. The process begins with a
high-level comprehension of the issue at hand, and
iterative cycles of planning, development, testing,
and feedback are used to iteratively improve the
solution. Teams can respond to changing
requirements using this method and make necessary
adjustments, resulting in a final product that better
satisfies the needs of the client.

This model addressed the problem of time to
deliver software products. Consecutively smaller
releases are implemented instead of delivering an
extensive system. There are many advantages as
compared to the traditional waterfall approach [18];
for instance, requirements can be prioritized, and
customers receive part of the system early. This
model is a blend of both iterative design and
incremental build model for development. During
software development, there might be multiple
iterations of the development cycle progress runs
concurrently. The process is defined as an
incremental build method. In the incremental
process, the entire requirement is separated into
many builds. In each build, the requirement, design,
testing, and implementation phases will be gone
through. Each release is adding functionality to the
former release. The process remains until the whole
system is completed as per the requirement.

3.3 Hybrid Agile Model
A hybrid approach can help organisations benefit

from Agile and traditional project management
methods while meeting their projects' and teams'

needs. There are several reasons why the developers
prefers hybrid. This includes (i) The company has
various teams: Some teams prefer Agile, while
others prefer traditional. The needs of different
teams can be met with a hybrid approach. (ii) The
organisation has a variety of project types: Some
projects in an organisation may necessitate a more
structured and predictive approach, whereas others
may necessitate greater flexibility and agility. A
hybrid approach can be used in such cases to tailor
the project management process to the specific needs
of each project. (iii) Some teams in an organisation
may be more experienced and comfortable with a
traditional approach, whereas others may prefer an
Agile approach. A hybrid approach can be used to
meet the needs of various teams and allow them to
work in the most comfortable and effective way for
them.

When developing software, a hybrid Agile model
combines components from various Agile
methodologies to produce a customised strategy that
is tailored to the needs of a project or organisation.
This model enables teams to take advantage of the
advantages of various Agile approaches while
making modifications to suit their particular
circumstances. For instance, a hybrid Agile model
might combine Lean for streamlining delivery
processes, Scrum for project management, and
Kanban for visualising workflows. The secret is to
apply the Agile principles to the context of each
project and to continuously assess and improve the
methodology to get the best outcomes.

Hybrid software development is an approach that
consists of any combination of traditional (plan-
driven) and agile methods that an organization
customizes or adopts to fulfill its needs such as
culture, organizational structure, and application
domain. Therefore, it is also called Hybrid Agile
software development approaches. These
approaches are the outcomes of a natural growth-
driven process by learning, experience, and
practicality [12]. The approaches are not dependent
on the organization's size and external triggers [13].
According to the study done by [14], 76,8% of
organizations implemented hybrid methods.
Organizations utilize multiple frameworks,
practices, and methods to provide efficient and
effective development processes. It is for continuous
produce software products that meet stakeholders'
requests and market needs [14].

There was a project called HELENA (Hybrid and
Development Approach in software systems
development), which investigates the reality that
organizations are using Hybrid methods. It is an

Journal of Theoretical and Applied Information Technology
31st January 2024. Vol.102. No 2

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

454

international exploratory research project with
multiple stages. According to [15], who are doing
part of the HELENA project, most of the
organizations use hybrid approaches goal is
enhancing the frequency of delivery to clients, the
flexibility and adaptability of the process to respond
to change. HELENA project aim is to maximize
productivity. In another part of HELENA's project,
[16] found that different methods, practices, and
frameworks have been used in combination as hybrid
methods. It is happening to the organization of all
industry sectors and sizes. They also discovered that
the practices have restricted dependencies to the
methods in hybrid. Hybrid inherited the concepts of
combination. For instance, hybrid agile is an
inherited based on “agile+non-agile” technique and
method. The pro and cons of each technique and
method are used to overcome the strength and
weakness of each other. This where the unique of
hybrid-agile is highlighted.

3.3.1 V-Model and Scrum
The hybrid software development approach was

already in the market a long time ago. The V-model
was first presented in 1991 by NASA. The model is
different from the waterfall model, where its V shape
folded in half at the lowest level of decomposition.
The left leg of the V signifies the progress of user
requirement into smaller details via the
decomposition and definition process whereby the
right leg signifies the verification and integration of
the system components into the subsequence level of
implementation [8]. The "development process" is
located on the left side of the V, and the "verification
process" is located on the right side.

The activities of requirements gathering, design,
implementation, and testing are all a part of the
development process. The activities of system
testing, integration testing, and acceptance testing
are all a part of the verification process. The point of
the V, where the finished product is delivered to the
customer, is where the two processes combine. The
V Model places a strong emphasis on the value of
exhaustive testing and verification at every stage of
the software development process. Early defect
detection and correction are desired to prevent more
costly corrections. This can speed up development
and cut costs while also enhancing the quality of the
finished product.

Later in 2011, [17] presented a hybrid approach
that combined Scrum into the V-model with high-
level waterfall and low level agile. They proposed
this hybrid V-model with three aspects of benefit.
First, the requirements can be stated by the customer
and project’s steam in the "waterfall-up-front"

technique, which can decrease the risk of confusion
in objectives and during project deliverables.
Second, use Agile approaches in design, testing, and
implementation that fast-track the process by
reducing the risk of rescheduling, postponement, and
the likelihood of rework. Then, the "waterfall-at-
end" technique can be used, complete the entire
acceptance process which is getting the project’s
team and customer to perform high-level testing.

4. SOFTWARE SECURITY

Secure software lifecycle processes are a
collection of practises and guidelines that
organisations use to guarantee the security of their
software systems at every stage of development,
from design to maintenance. The intention is to
reduce the likelihood of security flaws and safeguard
the software against attacks. It is a lifecycle
processes are “proactive methods that build security
into a product by treating the poorly designed
software at the source rather than applying patches
as a reactive solution”. These processes put security
into the full product development process, and
include technology and people to avoid software
security problems [5].

Security requirements gathering and analysis,
Threat modelling and risk assessment, Secure
Design and Architecture, Secure Coding Practices
and Code Review, Penetration Testing and Security
Testing, Security Monitoring, and Incident Response
are a few of the key activities in secure software
lifecycle processes. Many organizations have
proposed integrated security in the SDLC. Microsoft
introduced one of the first initiatives in 2004.

4.1 Security Development Lifecycle (SDL)
A thorough software development process that

incorporates security into each stage of the software
development life cycle is called the Security
Development Lifecycle (SDL). Through the use of a
structured and methodical approach to software
development, the SDL is intended to assist
organisations in producing secure software. Threat
modelling and risk assessment, Security design,
Secure coding and testing, Release process, and
Post-release process are the typical phases of the
SDL. Specific security tasks and products are
included in each SDL phase, including security
requirements, threat models, code reviews,
penetration testing, and incident response planning.
In order to lower the risk of security flaws and boost
the overall security of the software, it is important to

Journal of Theoretical and Applied Information Technology
31st January 2024. Vol.102. No 2

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

455

make sure that security is taken into account and
integrated into every stage of software development.
Organizations that create sensitive or important
software systems, such as financial, medical
services, and state institutions, frequently use the
SDL to guarantee the security and integrity of their
software and the data it handles.

Microsoft SDL released and became a mandatory
policy at Microsoft in 2004. It was released to the
public in 2006 with a 13-stage security development
lifecycle process [19]. Microsoft's SDL currently has
12 security practices. The practices have been
evolved according to the rising of cloud computing,
the Internet of Things, mobile, and artificial
intelligence. The practices cover a wide range of
subjects, from threat modeling to security testing and
managing the security risk of using third party
components [20]. The first practice concentrates on
providing security training to parties such as
developers, service engineers, and production
managers in the development process. Whereas the
final practice is to establish standard procedures in
responding to security incidents. The remaining
practices from second to eleventh practice cover the
main processes of the development lifecycle [20].

4.2 Open Web Application Security Project
(OWASP)

OWASP, a nonprofit organisation, offers
resources and tools to assist businesses in creating
secure web applications. By increasing public
awareness of typical security risks and offering
advice on how to avoid them, OWASP aims to
increase the security of software. Web application
security resources from OWASP include OWASP
Cheat Sheets, OWASP Tools and OWASP Chapters.
Web app security practitioners, developers, and
organisations all over the world use the resources
provided by OWASP, which is a recognised and
well-known source in the field.

OWASP is an international not-for-profit
organization concentrated on refining the security of
software. This organization aims to make software
security observable for individuals and
organizations to make a knowledgeable decision
[21]. OWASP has many projects that demonstrated
strategic value in terms of application security [22],
[23]. For example, the OWASP SAMM project is
providing an open framework that assists an
organization in formulating and implementing a
strategy for software security that is specific to an
organization [22]. Whereas the OWASP Security
Knowledge model is a tool given to use as a
guideline for verifying and building secure software

as well as providing training to developers about
application security [23].

4.3 Building Security in Maturity Model

(BSIMM)
An organization's software security practises can

be evaluated and improved using the Building
Security in Maturity Model (BSIMM), which is a
data-driven framework. BSIMM was developed by
a group of security professionals and is based on
observations of actual software security initiatives at
top companies. BSIMM is a collection of procedures
and techniques that are frequently used in effective
software security projects. Higher levels of maturity
indicate a more sophisticated and all-encompassing
approach to software security. These activities are
arranged into a maturity model. In order to develop
and enhance their software security programmes,
organisations can use the BSIMM as a roadmap. It is
a data-driven framework. BSIMM's software
security framework comprises of 4 domains –
Governance, Intelligence, SSDL Touchpoints, and
Deployment that hold 12 practices that having three
practices in each domain [24]. Each practice has its
related activities. There are 119 activities in BSIMM
entirely.

5. HUMAN FACTORS IN THE SECURITY
OF THE SOFTWARE ENGINEERING
PROJECT DEVELOPMENT

The security of software engineering project
development is significantly influenced by human
factors. Some of the factors are: Knowledge wherby
the developers need to be knowledgeable about the
value of security and the potential repercussions of
security flaws and developers must receive
instruction in secure coding techniques and in
identifying and mitigating security risks, processes
which means that there is a need to set up secure
development processes and regularly evaluate them,
culture that values security at every stage of
development and is security-conscious.
Collaborative effort can aid in identifying and
addressing security risks throughout the
development process and the development and
security teams should work together to this end.

In the software development lifecycle, multiple
stages require different cognitive processes.
Developers frequently switch from task to task.
Therefore the tools and methodologies should reduce
unexpected interruptions and provide support to
developers in focusing on their on-hand tasks.
According to [25], many factors affect developers in
practices and strategies they employ throughout their

Journal of Theoretical and Applied Information Technology
31st January 2024. Vol.102. No 2

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

456

working day. Individual characteristics such as
goals, working style, attitudes, and skills could
influence the developer's strategy for implementing
some functionality. Other factors that influence
developers' approach such as type of development
process, the developers' knowledge of the
application, the context of use for the application that
they are implementing and skills in using the
particular programming language.

Software developers rely on different resources to
gain the knowledge that they needed to perform their
tasks. They usually rely on training, online
information, or their experienced colleagues to
specify questions and solutions. The developer
spends a quarter of their working day in
collaborating activities such as answering emails,
attending the planned meeting, and informal
meetings with colleagues. The other quarter of a
working day is on coding related activities such as
browsing the code related information [26].

5.1 Abilities and Expertise of Developers
A program's security relies heavily on the

developer's skills and knowledge, making them
essential to the process. In order to create
trustworthy programmes, programmers need to
possess certain skills and knowledge which includes:
 Secure Coding Knowledge: Understanding of

secure coding practises and familiarity with
common security vulnerabilities and how to
circumvent them are two facets of this
knowledge.

 Threat modelling: Potential security risks can
be identified and countered with the help of a
model of the threat landscape.

 Security Testing: Ability to integrate security
testing into the development process, as well as
familiarity with security testing methodologies
and tools.

 Cryptography: Knowledge of cryptography
and encryption algorithms, as well as the ability
to employ these effectively to safeguard data.

 Incident response: The desire to learn new
things and constantly better one's security
knowledge and abilities.

 Continuous learning: Developers who possess
these skills and knowledge are better able to
produce secure software, to spot security flaws
early in the development process, and to ensure
that their products adhere to all applicable
security standards.

There was an assumption that if software
developers learned and cared more about security,
they would able to prevent vulnerabilities. However,

some studies argued that the increase of
vulnerabilities could be due to the nonexistence of
security guidelines or not mandated by the
organizations [6], [27]. Other findings are to do with
the lack of ability or expertise of developers to
identify the vulnerabilities despite having general
security knowledge [28], [29]. According to [29],
two main influential factors impact the correctness
of developers classifying the vulnerabilities
positively. The factors are developers' prior security
knowledge and experience with code analysis tools.
They also found that the developers' overall
experience did not have the anticipated positive
impact on the correctness of vulnerabilities
classification.

 [28] argued that security vulnerabilities are the
"blind spots" in developers' decision making
processes. Their study showed that security is not
commonly counted in as part of developers'
programming tasks. However, when they are clearly
warned about the potential security issue, the
developers were more conscious of security in their
tasks. Both [29] and [28] argued for a more
personalized security experience for developers.
[28] suggested for in-context security education
rather than teaching developers about security
vulnerabilities in general.

6. SECURITY TOOL ADOPTION

The process of incorporating security tools and
practises into the coding process of software
development in order to reduce the risk of security
vulnerabilities and improve the overall security of
the code is referred to as security tool
adoption. Using secure coding guidelines,
incorporating security testing into the development
process, and using code analysis tools to identify
potential vulnerabilities are all examples of this.
Developers can write more secure code, detect and
address potential security issues early in the
development process, and help ensure that the
software they create meets security requirements by
using security tools and practises.

While investigating the integration of security
tools in organization processes, researchers found
that developers, in general, shown the attitude of
'security is not my responsibility' [6], [27].
According to [27] study, only a small number of
large organizations were using security tools to
ensure security in coding. They also found that these
organizations had informal security best practices.
Developers were expected to follow the best
practices without any proper policies or guidelines.

Journal of Theoretical and Applied Information Technology
31st January 2024. Vol.102. No 2

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

457

In the same study highlighted, small organizations
did not consider security as a dimension of the
development process. Developers had no obligation
to follow any secure coding practices.

6.1 Security Practices Adoption Framework
A structured approach to incorporating security

practises into the software development life cycle
(SDLC) in order to improve the overall security of
software applications is referred to as the Security
Practices Adoption Framework in software
development. The framework outlines a series of
steps that organisations can take to incorporate
security practises into their existing SDLC
processes. Steps may include:

 Assessment: Determining areas for
improvement in the organization's security
posture and assessing its current security
posture.

 Planning: Creating a strategy to allocate
resources and incorporate security practises
into the SDLC.

 Training: Learning secure coding techniques,
threat modelling, and security testing to
software developers and other pertinent staff.

 Implementation: As much automation as
possible while incorporating security
procedures into the SDLC.

 Monitoring: Constantly keeping an eye on the
software applications' security posture to make
sure that security best practices are in place.

 Maintenance:Updating and maintaining
security procedures on a regular basis, and
adding new security tools and techniques as
necessary, constitute maintenance.

By adhering to this framework, organiozations
can implement security procedures in a structured
and consistent manner, lowering the risk of security
flaws and enhancing the security of their operations
as a whole. They can also use the Security Practices
Adoption Framework as a framework or
methodology to develop and maintain a strong
information security programme. It outlines a
collection of best practises for protecting data,
networks, and information systems. A variety of
security-related topics are covered by the
framework, including risk management, access
control, incident response, and network security. It
also offers instructions on how to successfully adopt
and incorporate these practises into an organization's
operations. The framework aims to assist
organisations in creating a strong security posture,
safeguarding against cyber threats, and adhering to
pertinent laws and standards.To investigate security
practices further, we need to understand the

embracing of security practices by developers. The
framework mocks up developers' preferences
according to their perceptions of the benefits of
security tools as illustrated in Figure. 1. Figure 1
explains about the Model of Security Practices
Adoption Framework which comproses of Task,
Action and Sanction as the main Component. It also
included a manager who fully observes the
implementation of practices and sanction
mechanism that imposes a rule to use the security
practices [30]. A sanction in this model can be
positive or negative. It exhibits admonishment or
reward. Considering the developers' adoption
environment, violation of a rule is a negative
sanction. When an individual is violating a rule, it
recognizes as an individual sanction. However,
when a sanction is referring to a group of individuals
(or a subset of the group), it recognizes as group
sanction [30].

Figure 1: Model of Security Practices Adoption
Framework [30]

The model reproduces the dimension of the
interaction between a manager and developers in a
time-critical project [30]. A manager is an agent
responsible to assign tasks and enforce sanctions. A
task in the model is referring to one of the three states
- Not Coded, Coded, and Tested. Each agent
(developer) has four attributes, which are Tasks,
Coding and Security Skills, Developer health, and
Preference. The tasks are the works allocated by the
manager to a developer. Coding and Security are
referred to as a developer skills level and tools usage.
Developer health is referring to the completion of the
task allocated to an agent. Preference is the
possibility that an agent will select to do an action
[30].

7. CONCLUSION

In this study, related articles on software
development models are discussed, including the
traditional model to the newer model called the
hybrid model. The discussion discusses the strengths
and weaknesses of each model and the rationale for
combining the model with another model that meets
the needs of a software project, resources and project
scope. This study also takes seriously the software

Journal of Theoretical and Applied Information Technology
31st January 2024. Vol.102. No 2

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

458

security practises of software teams and the policies
that organisations use to ensure the security of a
software system at every stage of development, from
design to maintenance, such as OWASP and
BSIMM. Not to be forgotten is the human factor in a
software project. To create trustworthy programmes,
programmers must have certain skills and
knowledge, including tools. However, this study
only focuses on the findings from the existing
research in line with the research objective. In the
near future, this research will explore the research
gaps that emerge from the review conducted.

ACKNOWLEDGEMENTS:

This work is supported by the Ministry of
Education (MOE) through Fundamental Research
Grant Scheme (FRGS/1/2019/ICT01/UIAM/03/2).

REFERENCES:

[1] N. M. Mohammed, M. Niazi, M. Alshayeb, and
S. Mahmood, "Exploring Software Security
Approaches in Software Development
Lifecycle: A Systematic Mapping Study,"
Comput. Stand. Interfaces, vol. 50, no. October
2016, pp. 107–115, 2017.

[2] M. U. A. Khan and M. Zulkernine,
"Quantifying Security in Secure Software
Development Phases," Proc. Int. Comput.
Softw. Appl. Conf., pp. 955–960, 2008.

[3] K. Beck et al., "Manifesto for Agile Software
Development," The Agile Alliance, 2001.
[Online]. Available: http://agilemanifesto.org/.

[4] D. Ionita, C. Van Der Velden, H. K. Ikkink, E.
Neven, M. Daneva, and M. Kuipers, "Towards
Risk-Driven Security Requirements
Management in Agile Software Development,"
Inf. Syst. Eng. Responsible Inf. Syst. CAiSE
2019, vol. 350, pp. 133–144, 2019.

[5] W. Laurie, "Secure Software Lifecycle -
Knowledge Area," Natl. Cyber Security. Cent.,
no. 1, pp. 1–33, 2019.

[6] H. Assal and S. Chiasson, "‘Think Secure from
The Beginning’: A Survey with Software
Developers,” CHI Conf. Hum. Factors
Comput. Syst. Proc. (CHI 2019), vol. May 4–9,
pp. 1–13, 2019.

[7] H. D. Benington, “Production of Large
Computer Programs,” Ann. Hist. Comput., vol.
5, no. 4, pp. 350–361, 1983.

[8] N. B. Ruparelia, “Software Development
Lifecycle Models,” ACM SIGSOFT Softw.
Eng. Notes, vol. 35, no. 3, pp. 8–13, 2010.

[9] I. Sommerville, Software Engineering, 10th ed.
Essex, England: Pearson Education Limited,
2015.

[10] M. A. Yasvi, K. S. Yadav, and Shubhika,
“Review On Extreme Programming-XP,” in
International Conference on Robotics, Smart
Technology and Electronics Engineering, At
Delhi, 2019.

[11] I. Ghani, A. F. B. Arbain, Z. Azham, N. I.
Yasin, and S. R. Jeong, “Integrating Security
into Agile Models: Scrum, Feature-Driven
Development (FDD), and eXtreme
Programming (XP),” in Handbook of Research
on Emerging Advancements and Technologies
in Software Engineering, 1 edition., Hershey,
USA: IGI Global, 2014, pp. 293–308.

[12] M. Kuhrmann et al., “Hybrid Software and
System Development in Practice: Waterfall,
Scrum, and Beyond,” ACM Int. Conf.
Proceeding Ser., pp. 30–39, 2017.

[13] M. Kuhrmann et al., “Hybrid Software
Development Approaches in Practice: A
European Perspective,” IEEE Softw., Jan.
2018.

[14] J. Klünder et al., “Catching up with Method and
Process Practice: An Industry-Informed
Baseline for Researchers,” Proc. Int. Conf.
Softw. Eng., no. ICSE-SEIP, May 2019.

[15] J. Klünder et al., “HELENA Study: Reasons for
Combining Agile and Traditional Software
Development Approaches in German
Companies,” Springer Int. Publ., vol. 10611,
pp. 428–434, 2017.

[16] P. Tell et al., “What are Hybrid Development
Methods Made Of? An Evidence-Based
Characterization,” in 2019 IEEE/ACM
International Conference on Software and
System Processes (ICSSP), 2019, pp. 105–114.

[17] T. Hayata and J. Han, “A Hybrid Model for IT
Project with Scrum,” in Service Operations,
Logistics, and Informatics (SOLI), 2011, pp.
285–290.

[18] D. Greer and G. Ruhe, “Software Release
Planning: An Evolutionary and Iterative
Approach,” Inf. Softw. Technol., vol. 46, no. 4,
pp. 243–253, Mar. 2004.

[19] M. Howard and S. Lipner, The Security
Development Lifecycle. Washington, USA:
Microsoft Press, 2006.

[20] Microsoft Corporation, “Microsoft Security
Development Lifecycle,” Microsoft
Corporation, 2019. [Online]. Available:
https://www.microsoft.com/en-
us/securityengineering/sdl. [Accessed: 28-Oct-
2019].

[21] OWASP, “OWASPTM Foundation,”
OWASP, 2019. [Online]. Available:

Journal of Theoretical and Applied Information Technology
31st January 2024. Vol.102. No 2

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

459

https://www.owasp.org/index.php/Main_Page.
[Accessed: 30-Oct-2019].

[22] OWASP, “OWASP SAMM Project,” OWASP,
2019. [Online]. Available:
https://www.owasp.org/index.php/OWASP_S
AMM_Project. [Accessed: 30-Oct-2019].

[23] OWASP, “OWASP Security Knowledge
Framework,” OWASP, 2019. [Online].
Available:
https://www.owasp.org/index.php/OWASP_S
ecurity_Knowledge_Framework. [Accessed:
30-Oct-2019].

[24] BSIMM, “Building Security In Maturity
Model,” BSIMM, 2019. [Online]. Available:
https://www.bsimm.com/. [Accessed: 29-Oct-
2019].

[25] S. L. Kanniah and M. N. Mahrin, “A Review
on Factors Influencing Implementation of
Secure Software Development Practices,” Int.
J. Comput. Syst. Eng., vol. 10, no. 8, pp. 3032–
3039, Sep. 2016.

[26] A. Meyer, L. Barton, G. Murphy, T.
Zimmermann, and T. Fritz, “The Work Life of
Developers: Activities, Switches and Perceived
Productivity,” IEEE Trans. Softw. Eng., vol.
PP, p. 1, Jan. 2017.

[27] S. Xiao, J. Witschey, and E. Murphy-hill,
“Social Influences on Secure Development
Tool Adoption : Why Security Tools Spread,”
Proc. 17th ACM Conf. Comput. Support.
Coop. Work Soc. Comput., no. CSCW ’14, pp.
1095–1106, 2014.

[28] D. Oliveira, M. Rosenthal, N. Morin, K. C.
Yeh, J. Cappos, and Y. Zhuang, “Its The
Psychology Stupid: How Heuristics Explain
Software Vulnerabilities and How Priming Can
Illuminate Developers Blind Spots,” ACM Int.
Conf. Proceeding Ser., vol. 2014-Decem, no.
December, pp. 296–305, 2014.

[29] D. Baca, K. Petersen, B. Carlsson, and L.
Lundberg, “Static Code Analysis to Detect
Software Security Vulnerabilities - Does
Experience Matter?,” in 2009 International
Conference on Availability, Reliability, and
Security, 2009, pp. 804–810.

[30] S. Al-Amin, N. Ajmeri, H. Du, E. Z. Berglund,
and M. P. Singh, “Toward Effective Adoption
of Secure Software Development Practices,”
Simul. Model. Pract. Theory, vol. 85, pp. 33–
46, 2018.

[31] F. D. Davis, “A Technology Acceptance Model
For Empirically Testing New End-User
Information Systems: Theory And Results,”
MA Inst. Technol., 1985.

[32] I. Ajzen and M. Fishbein, Understanding
Attitudes and Predicting Social Behavior.
Englewood Cliffs, N.J.: Prentice-Hall, 1980.

[33] F. D. Davis, “Perceived Usefulness, Perceived
Ease of Use, and User Acceptance of
Information Technology,” MIS Q., vol. 13, no.
3, pp. 319–340, 1989.

[34] V. Venkatesh and F. D. Davis, “A Model of the
Antecedents of Perceived Ease of Use:
Development and Test*,” Decis. Sci., vol. 27,
no. 3, pp. 451–481, Sep. 1996.

[35] J. Xie, H. R. Lipford, and B. Chu, “Why Do
Programmers Make Security Errors?,” Proc. -
2011 IEEE Symp. Vis. Lang. Hum. Centric
Comput. VL/HCC 2011, pp. 161–164, 2011.

[36] B. Naqvi and A. Seffah, “Interdependencies,
Conflicts and Trade-Offs Between Security and
Usability: Why and How Should We Engineer
Them? BT - HCI for Cybersecurity, Privacy
and Trust,” 2019, pp. 314–324.

