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ABSTRACT 
 

For a broad numerical method to calculate the measure function, we give a convergence analysis. We 
suggest a particular approach for estimating the measure functional and examine the convergence ratio by 
combining Lagrange extrapolation. Additionally, we examine the numerical measure integration error 
bound and demonstrate how it can reduce singularity for singular integrals. Theoretical findings are 
supported by numerical examples. All of this will be studied in detail through mathematical equations and 
laws in this research, so that we will gradually clarify and introduce the approved method. 
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1. INTRODUCTION  
 

This guide provides details to assist authors in 
preparing a paper for publication in JATIT so that 
there is a consistency among papers. These 
instructions give guidance on layout, style, 
illustrations and references and serve as a model for 
authors to emulate. Please follow these 
specifications closely as papers which do not meet 
the standards laid down, will not be published. 

 
It was recommended to use a numerical 

integrating method based on the idea of the 
Lebesgue total in the essay "A New Approach to 
Quantitative Integration" [1]. The method was said 
to be especially beneficial for integrands that have a 
single or strong oscillatory character. In this 
manner, multivariate integrals are exactly reduced 
to one-dimensional integrals. It appeared to be a 
more useful method for handling various 
multidimensional integrals. For the sake of clarity, 
we refer to the new numerical integration proposed 
by B. L. Burrows as numerical measurement 
integrated (NMI) [1]. 

 
I = [a, b] and f(x) L(I) is a nonnegative 

constant. Let's take the integral I f(x)dx. Definitions 
of E(f(x)):= x I: f(x) y and E(f(y)):= m(E(f(x))), y R 
should be given first. It is straightforward to 
demonstrate that f(y) is a monotonically reducing, 
limited constant with 0 f(y) b a, y R. Give an 
explanation of y0:= minxIf(x) and yN:= maxxIf(x). 

R(f):= [y0, yN], where y0 0 and yN might both be 
infinite, denotes the range of f, showing that f(x) is 
unique. It is frequently challenging or even 
impossible to find a clear equation for f(y), an exact 
bound for y0 and yN, and both [1],[2]. 

 
Since the required values must be 

estimated, new mistakes (ii) and (iii) in the 
calculation of the results are introduced. Our goals 
are to determine the amount of the extra errors' 
impacts and to the extent as feasible, reduce the 
impact of extra errors on the ultimate Lebesgue 
integrated error. Therefore, we must Create 
techniques for estimating the unknowable values 
and evaluate convergence rates [3]. 

 
In this article, we'll mostly talk about the 

second kind of errors brought on by computation 
and how they affect NMI. The paper is structured in 
the course of further clarifications. We also discuss 
how it measures function's overall estimation. The 
corresponding assessment of affinity is then 
presented. Additionally, we suggest a particular 
approach for approximating the scaling function 
and analyzing convergence rate through the use of 
Lagrangian interpolation. For perfectly monotone 
functions, an extremely accurate approach is 
described. We give two instances of scaling 
estimates using an oscillatory value and a 
monotonic function as examples. For NMI, which is 
governed by numerical measurement mistakes and 
micro measure integrating error, we additionally 
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provide an error limitation. Additionally, we show 
that NMI of single fundamentals can reduce 
originality [3],[4]. On the basis of numerical 
expansion, we shall provide instances of numerical 
integrals calculated by NMI. Finally, we reach a 
decision and outcomes. 

 
2. METHODS 
 
2.1 Examine the Measurement Function's 
Resolution after Analyzing It 

It's crucial to get the values of the 
measuring variable at some crucial points in order 
to calculate Lebesgue fundamentals using the NMI 
approach. However, in most instances, a specific 
formula cannot be used to determine the precise 
values of the scaling function. It needs to be 
mathematically estimated [5],[6]. The precision of 
the scalability function's parameters will be 
observed to have a significant impact on the Liebig, 
who integral's final correctness. 

 
I was divided into n subgroups, Ii:= [xi, 

xi+1]: i = 1 to n, in order to figure out the measure 
of the a one-dimensional variable f(x). Pi is defined 
as m(Ii) = xi+1 xi, clearly. 

∑   𝑝 = 𝑏 − 𝑎  (1) 
 
We select xi xi,1 xi,2 xi,k xi+1, k N as 

testing locations on each period Ii. The values f(xij) 
are then determined as follows: xij Ii, i = 1,..., n, j = 
1,..., k, k N. The estimate of f(y), given any y R(f), 
is as follows: 

�̅� (𝑦) = ∑   𝜖 𝑝  (2) 

Where i = 1, 2,..., n will lead to a variety of 
estimations of f(y), depending on how i is chosen 
[7]. 
  
A general allocation for i is as follows: i = 1, 2,..., 
n. 

 𝜖 =

⎩
⎨

⎧
0     if 𝑦 > 𝑚𝑎𝑥

⩽ ⩽
 𝑓 𝑥

1     if 𝑦 ⩽ 𝑚𝑎𝑥
⩽ ⩽

 𝑓 𝑥

an arbitrary number in (0.1) otherwise

(3

) 
 
Let E(x) is the defining characteristic 

constant. 

𝜒 (𝑥): =
1     if 𝑥 ∈ 𝐸
0     if 𝑥 ∉ 𝐸

 (4) 

 

Set (𝑥):= ((𝑥)⩾𝑦)(𝑥). To date 

𝜇 (𝑦) = ∫   𝑔(𝑥)𝑑𝑥 (5) 

 
Define i(y):= ii g(x)dx. Then (𝑦) = ∑𝑛 𝑖=1 

(𝑦). 
 
Set M y:= the number of lines in E(f(x) y). 

Consider the case where f(x) = | sin 2x| on [0, ] and 
My = 2 for y (0, 1 This finding provides a measure 
that approximates analysis of errors (4) [6]. 

 
When f(x) =C[a, b] & f(x) =0 for x [a, b]. 

Theorem 1. 
 
A partition of [a, b] is [Ii: i = 1,..., n], 

where n N. If (𝑦) and {𝜖𝑖: 𝑖 = 1, 2, . . . , 𝑛} 

𝜇 (𝑦) − �̅� (𝑦) ⩽ 2𝑀 𝑚𝑎𝑥
∈𝕍

 𝑝  (6) 

 
Evidence. Eq (7) with the approximation 

of Eq (4) give us: 

𝜇 (𝑦) − �̅� (𝑦) = |∑   (𝜇 (𝑦) − 𝜖 𝑝 )|

⩽ ∑   |𝜇 (𝑦) − 𝜖 𝑝 |
(

7) 
 
Given the premise of i, for i V, we have 

i(y) ipi = 0. Thus, the inequality (7) can be written 
as follows: 

𝜇 (𝑦) − �̅� (𝑦) ⩽ ∑  ∈𝕍 |𝜇 (𝑦) − 𝜖 𝑝 |

 (8) 

Here, it is obvious that: 

|𝜇 (𝑦) − 𝜖 𝑝 | ⩽ 𝑝   (9) 

for 0 ⩽ 𝜇𝑖(𝑦), 𝜖𝑖𝑝𝑖 ⩽ 𝑝𝑖. 
 
A minimum of two end of a piece in the 

vicinity E(f(x) y) is present in i V. according to the 
interim value theorem, Ii [8]. Given that E(f(x)y) 
just includes My loops, the number of Ii, i V is not 
larger than 2M y. 

𝐶𝐴𝑅𝐷(𝑉) ≤ 2𝑀   (10) 

Where Card (V) is the total amount of cards in Set 
V as a whole. When inequality (8), inequality (9), 
and inequality (10), we get: 

𝜇 (𝑦) − �̅� (𝑦) ⩽ 2𝑀 𝑚𝑎𝑥
∈𝕍

 𝑝  (11) 

 
We see that Theorem 1 states that the 

quantitative measure is consistently converging and 
the degree of progress is linear provided. The field I 
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is uniformly partitioned into n pieces, and M y has 
boundaries [9]. 

 
The numerical measures can be more 

accurately estimated when the integrand forms have 
better features. Suppose each of the subinterval I i, i 
= 1, 2,..., n is invertible for the non-negative 
variable f(x).  

 
Define fi:= f|Ii and fi:= m(E(fi(x) y)Ii). 

R(fi) represents the fi in Ii's cooker, while fi1 [5, 9] 
represents the fi in Ii's opposite relationship. After 
that we succeed. 

𝜇 (𝑦) =

⎩
⎪
⎨

⎪
⎧

𝑓 (𝑦) − 𝑥 if 𝑓  is decreasing and 𝑦 ∈ 𝑅(𝑓 )

𝑥 − 𝑓 (𝑦) if 𝑓  is increasing and 𝑦 ∈ 𝑅(𝑓 )

𝑝 if 𝑦 < 𝑚𝑖𝑛
∈

 𝑓 (𝑥)

0 if 𝑦 > 𝑚𝑎𝑥
∈

 𝑓 (𝑥)

(

12) 
 

Make a (k 1)th Lagrange interpolation 
polynomial Pi (x) in R(fi) that interpolates "(f(xij), 
xij)" for j = 1, 2,..., k." The approximate values of 
fi(y) and f(y) are then, respective [10], 

�̅� (𝑦) =

⎩
⎪
⎨

⎪
⎧

𝑃 (𝑦) − 𝑥 if 𝑓  is decreasing and 𝑦 ∈ 𝑅(𝑓 )                                 

𝑥 − 𝑃 (𝑦) if 𝑓  is increasing and 𝑦 ∈ 𝑅(𝑓 )

𝑝 if 𝑦 < 𝑚𝑖𝑛
∈

 𝑓 (𝑥)

0 if 𝑦 > 𝑚𝑎𝑥
∈

 𝑓 (𝑥)             

 (13) 

�̅� (𝑦) = ∑   �̅� (𝑦)  (14) 
 
It can be seen that the estimated (14) is a 

special instance of the general assignment (4) by 
setting i = fi(y)/pi. This demonstrates that Theorem 
1 holds true for the estimate (14). 

 
Theorem 2. Assume that the not negative 

functional f(x) has the partition Ii: i = 1, 2,..., n in I 
and hence each subinterval possesses an inverse 
utility fi1 Ck(R(fi)) functions. If (13) and (14) are 
used to assess f(y) [11], then 

∥∥𝜇 (𝑦) − �̅� (𝑦)∥∥ = 𝒪(𝑛 ) (15) 

 
According to Theorem 1 and (12), (13), 

(14), we have: 

𝜇 (𝑦) − �̅� (𝑦) ⩽

𝑚𝑖𝑛 𝑛𝑚𝑎𝑥 ∥∥𝑓 (𝑦) − 𝑃 (𝑦)∥∥ . 2𝑀 𝑚𝑎𝑥
∈𝕍

 𝑝

 (16) 

The popular Lagrange interpolated 
quadratic error has been combined with the proof to 
completion. 

 
The preciseness of the measurement 

function is dependent on the precision for each 
subinterval, the values of Lagrange patched 
harmonics of its inverse function, pursuant to an 
evidence of Theorem 2. This method's validity will 
be confirmed by numerical experiments. We'd want 
to introduce a very precise approach for 
determining the measure [11],[12], specifically for 
strictly monotone functions, near the conclusion of 
this section. The algorithm is known as split-half. 

 
(Split-half algorithm) Method 3. Think 

about the actions listed below. 
 

Step 1: Assuming that y R(f) and N N, set i:= 0, = b 
a, x m = (b a)/2, and fi (y) = 0. Find out whether the 
coefficient of the function f is increasing or 
declining in monotonicity. 
 
Step 2: Assess the function at xm: 

𝑇 ≔

1    𝑓(𝑥 ) > 𝑦

−1    𝑓(𝑥 ) < 𝑦

0    𝑓(𝑥 ) = 𝑦

  (17) 

 
Step 3: We can determine the precise measurement 
if T1 = 0. 

𝜇 (𝑦) = 𝜇 (𝑦) +   (18) 

Or: 

𝜇 (𝑦) = 𝜇 (𝑦) +   (19) 

For growing functions, set i i + 1, /2, & xm 
T1/2 for declining operates, set xm xm+T1/2. 
Return to 2 till i = N. 

 
A split-half method's mistake is satisfied 

[13]. 
 

2.2 Some applications for the measurement 
process 

Scenario 1: Take into account f(x) = ln x, 
x [1, 5]. Since ln x increases monotonically, y0 = 0, 
yN = ln 5, and f(y) = 5 ey, y R(f). 𝑓−1(𝑥) ∈ 
𝐶∞(𝑅(𝑓)). 
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The corresponding measure errors are 
listed in Table 1, together with their convergence 
ordering (C.O.). En,k:= f(y), whereby f(y) is 
determined by (14) and each ascending order is 
derived by ln(en/em)/ ln(m/n) [11],[13], displays 
the estimated error for the values of n and k. 

 
The values of y0 = 0 and yN = 1 represent 

f(x)'s lowest and greatest, correspondingly. We can 
find the explicit measure functional formula for the 
case where f(x) is a function with periodicity as 
follows: 

∥∥𝜇 (𝑦) − 𝜇 (𝑦)∥∥ ⩽ 2 (𝑏 − 𝑎) (20) 

Table 1: Error Table for Our Example. 

n n  
(𝑘 = 2) 

C.O Errors  
(k = 4) 

C.O 

8 2.5284e  - 2.2050e  - 
16 6.9679e  1.7894 1.6494e  3.7418 
32 1.8252e 1.9311 1.1349e  3.8614 
64 4.7207e  1.7526 5.4017e 4.3926 

128 1.1997e  1.9763 3.9920e  3.7529 
256 2.7682e  2.1151 2.5089e 3.9356 
512 7.1502e  1.9564 1.5805e  4.0461 

 
Table 1 displays numerical outcomes of 

errors [14]. The deviations are missing a steady 
converging order of O(nk) due to y = 0, the 
measurement's products lacks good distinctness. 
 
3. RESULTS AND DISCUSSION 
 
3.1 The Procedure of Assessing the 
Measurement's Integration Numerical Error 

This section will investigate the complete 
integration error ab f(x)dx. We assume that both the 
highest and lowest values of f(x) are known since 
we are more interested in the impact of mistakes 
resulting from numerical observations; hence, 
errors y0 and yN will not be taken into 
consideration in this context. When trying to 
evaluate the integration errors ab f(x)dx, it is crucial 
to choose an integral rule for determining the Euler 
residual of the scaling function. The characteristics 
of (y) determine the appropriate rule for a one-
dimensional inclusion [15]. 

𝜇(𝑦) = (𝜋 − 2 arcsin 𝑦)      𝑦 ∈ 𝑅(𝑓)

 (21) 

Where, wn,j, j = 0, 1,.., n, are real lavage weights 
and t n,j U, j = 0, 1,.., n, are split endpoints. 

 
Define E Qn(g) as Pursuant to the given 

quantification rule, Qn(g) represents the summed 
error of g. The measure function has been 

integrated into the fundamental formula using the 
symbolic summation method (22) as follows: 

𝑄 (𝑔): = ∑   𝑤 . 𝑔 𝑡 .  (22) 
Where, f and f stand for the measure measures and 
numerical measurement of f(x), respectively. The 
NMI, or numeric division rule for f, is as follows: 

∫   𝑓(𝑥)𝑑𝑥 = 𝑦 (𝑏 − 𝑎) + 𝑄 𝜇 + 𝐸 𝜇

= 𝑦 (𝑏 − 𝑎) + 𝑄 �̅� + 𝑄 𝜇 − �̅� + 𝐸 𝜇

 (23) 

When f(x) C[a, b] & f(x) 0  with  x [a, b]. Theorem 
4. 
 

The error meets the number approximation 
rule of NMI (25), which is used to estimate I 
f(x)dx. 

𝐿𝑄 (𝑓): = 𝑦 (𝑏 − 𝑎) + 𝑄 �̅�  (24) 

Theorem 4 states that the precision of the 
NMI's numeric integration rule based on the context 
of a gauge function f plus the accuracy of the 
statistical measurement. The measure functions f 
must have improved qualities in order for NMI to 
operate with greater precision [16]. 

 
 Because of its monotonic nature, the 

integral of the precise measurement function can be 
more precisely estimated for limited oscillatory 
processes. Regarding unique functions, the next 
section illustrates how NMI might lessen the extent 
of the integral's singularity [15],[16]. 

 
By changing the variable z = 1/y in NMI 

foundational Eq (1), It may be communicated as 
when yN is infinite. 

𝐸 (𝑓) ⩽ 𝑄 𝜇 − �̅� + 𝐸 𝜇 ⩽

∥∥𝜇 − �̅� ∥∥ ∑   𝑤 . + 𝐸 𝜇

 (25) 

In which y0 should be y0 > 0. 
 
Write down [g(x):= (1/x2)f(1/x), x (0, 

1/y0)]. A lemma needs to be presented before we 
can demonstrate that g(x) is less singular than f(x). 

 
Lemma 5. Given that k > 0 and c R, when 

f(x) C(I), h(t)= f(x(t)), & x(t)= kt +c. The measure 
values that equate to f and h, each, are f and h. 
Consequently, f(y) = kh(y), y R(f) ), wherein R(f) is 
the f's dynamical range. 
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Proof. Because k > 0, G has the same 
repetition as f. F(y) = f1(y) a and h(y) = h1(y) (a 
c)/k, accordingly, when f drops consistently [17]. 
We learn that: 

∫   𝑓(𝑥)𝑑𝑥 = 𝑦 (𝑏 − 𝑎) +

∫   𝜇 𝑑𝑧 (26) 

When we replace h with the inverse 
function of h, we get: 

ℎ (𝑦) = (𝑓 (𝑦) − 𝑐) (27) 

If f increases monotonically, f(y) = b f(y) 
& h(y) = (bc)/k h(y), correspondingly. In a similar 
way, it may be shown that h(y) = f(y)/k. 

 
There is a division of I called Ii: i N 

assuming that f is monotonic throughout each 
subinterval for any f C(I). Define fi:= f|Ii and fi:= 
m(E(fi y) Ii), i N. In accordance with this, define h 
i:= fi(x(t)) and hi:= m(E(hi y) x1(Ii)), i N. Thus, it 
follows that: 

𝜇 (𝑦) = (𝑓 (𝑦) − 𝑎) =
( )

 (28) 

As shown by the evidence above: 

𝜇 (𝑦) = ∑  ∈ℕ 𝜇 (𝑦). 𝜇 (𝑦) =

∑  ∈ℕ 𝜇 (𝑦) (29) 

Fi is monotone in its domain because i N. 
 

The calculation f(y) = kh(y) is finally 
reached through the combination of (29) and (30). 

 
Let S be a collection of points with the 

identity I = [a, b] in it. Define an S-related function 
using: 

𝛾 (𝑦) = 𝑘 (𝑦)   (30) 

If and only if, a real unbounded functions f 
is of type (, I, S) for values of 0 to 1, 

𝑤 ≔ inf{|𝑥 − 𝑡|: 𝑡𝜖𝑠}  (31) 

Where, C is an integer in the positive [15],[18]. The 
variable is also known as the index of absurdity. 

 
Proposition 6. Assume f Type(, I, S) and 

f(x) > 0 for x I. 
 
y0 = minxIf(x) > 0, and g(x) = 

(1/x2)f(1/x), x (0, 1/y0], f is the measure functions 
of f. Then (𝑥) ∈ ((2𝛼 − 1)/𝛼, (0, 1/𝑦0], {0}). 

 

Proof. Assume S is either an or b. We 
define h(t):= f(x(t)), t (0, 1] by changing the 
variable to be x(t) = (b a)t plus a for S = an or x(t) = 
(b a)t plus b for S = b. Then, h becomes Type(, (0, 
1], "0") [17]. 

 
There exist t0 (0, 1], such that h(t) is 

monotonic in the range (0, t0], because h(t) is 
unique at t = 0. In other words, y h(t0) s.t. h(y) = 
|h(y)|. The characteristic of h allows us to acquire: 

|𝑓(𝑥)| ⩽ 𝐶[𝑤 (𝑥)] . 𝑥 ∉ 𝑆. 𝑓 ∈ 𝐶(𝐼 ∖ 𝑆)
 (32) 

Lemma 5 gives us f(y) = (ba)h(y) (ba)y1/. 
Then, by f's contradiction and g's equation 
combined, we may get 0 g(x) (b a)x(21)/, x (0, t0]. 

 
 
There is a constant integer C such that x 

(0, 1/y0), because g(x) is constant in [t0, 1/y0]. 

𝑦 = ℎ(ℎ (𝑦)) ⩽
| ( )|

  (33) 

We have g(x) Type((2 1)/,(0, 1/y0],0) 
based on specification (32). S, in broad terms, 
contains many points. Assume that S = a = s1, s2, 
,,,,, s m = b. Set: 

𝑡 = 𝑠𝑖 
𝑡 = (𝑠𝑖 + 𝑠 )  𝑖 → 𝑚 − 1 (34) 

The function called f(x) has a single 
catastrophe in each of the intervals (ti, ti+1). In 
other words, if i is even, a single point is at ti, and if 
i is strange, it is at ti+1. 

 
Define fi(x) as f(x)|(ti,ti+1), and fi(y) as 

m(E(f(x) y) (ti, ti+1)) 

𝛾 (𝑦) = ∑ 𝛾 (𝑦)  (35) 

NMI can lessen the singularity for single 
integrals because (2 1)/, 0, 1. It offers the chance to 
increase the precision of integrals. In theory, we 
need not be aware of the location of the 
singularities. 

 
The degree of precision of the 

mathematical measure determines whether NMI 
can achieve the higher accuracy of integrals. The 
results of several quantitative integrals using NMI 
will be shown in the section after that, along with 
results obtained using more traditional techniques 
[19]. 
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3.2 Examples of Numeric Measurement 
Integration in Numbers 

To demonstrate the effectiveness of NMI, 
we are going to discuss three different types of 
integrals throughout this section: typical, 
oscillatory, and exceptional integrals. In 
computational tests, the integral of measurement 
functions will be calculated using the Gauss-
Legendre method or a combined one. 

 
Think about the integration ∫15 ln(𝑥)𝑑𝑥 = 

5 ln 5 − 4. We already know that y0 = 0, yN = 5, 
and (y) = 5 ey, y0 y yN.  

 
In this mathematical example, the measure 

functional integral and source integral are 
computed using the 5-point Gauss-Legendre 
method. The flaws in the initial fundamental and 
Exact measure functions have integrals of 3.4436e 
005 and 1.6780e 010, respectively. It demonstrates 
how using the NMI inversion to this example can 
significantly increase the accuracy of arithmetic 
integral. 

 
The precision of measure measures as 

shown in Table 2 is required for the high accuracy 
of the numerical outcomes of NMI. 

Table 2: Mistakes in Integration. 

n Errors  
(k = 1) 

Errors 
(k = 3) 

Errors 
(k = 5) 

8 3.0858e  1.9660e - 5 3.4806e  
16 7.5973e  4.3251e - 6 2.3129e  
32 5.4257e  5.6089e - 7 1.6558e  
64 2.8068e  2.2432e - 8 2.6776e  

128 1.3053e  3.5017e - 9 1.5779e  
256 7.9865e  5.2733e - 10 1.6878e  
512 9.9905e  1.7423e - 5 2.5712e  

 
Example 2. Imagine integrating an 

oscillating function with the following formula: 0/3 
| sin 30x|dx = 0.43. 

 
This illustration, y0 = 0 & yN = 1, & (y) = 

/3 (2 arcsin(y)/3), y0 y, yN. And we use the Gauss-
method computation for weakly exceptional 
integrals suggested by [2] since the dimension 
function is weak exceptional at y = 1. We chose the 
values k = 4 and q = 6 in accordance with the 
quadrature formula. 

 
Set N = n/k, whereby n is the total amount 

of times the formula in Table 3 has been calculated. 
So that those sub intervals Ij:= [tj, tj+1], j = 0, 1,..., 

N, create a partitioning for [0, 1], choose (N+1) 
points t j = 1 (j/N)q. 

 
The integral is then calculated using the k-

point Following translating the divide into the 
domain of a vital, use the Gauss-Legendre equation 
for every subinterval. 

 
Table 3 quadrature displays the errors of 

the summation with accurate measure function, as 
stated by GL [19]. 

 
To show the efficacy of the recommended 

strategy, we compared the results with those 
obtained using composite Simpson's equation with 
n + 1 function assessment, denoted by CS in Table 
3. It is obvious that utilizing the proper 
measurement technique can improve accuracy 
utilizing of the GLNMI integration by numerical 
measurement integrated integrating GL are 
displayed in Table 3. For the integral of, we fixed 
the amount of function iterations at 32. 

Table 3: Errors of integration for case A1. 

n Gauss 
Legendre 

Numerical measure 
integration Gauss Legendre 

8 7.5026e  2.1605e  
16 1.2212e  1.3594e  
32 3.1096e  3.9276e  
64 7.9320e  8.5708e  

128 2.7858e  4.0289e  
256 2.4575e  3.1686e  
512 1.8056e  2.2109e  

 
Using quadrature of the Gauss type, test a 

function. The action measured by (13) and (14) 
using the variables n and k. The preciseness of 
measure severely limits the NMI's efficiency. 

 
Example 3: Take into account integrating a 

single function, 01(1/x0.7)dx = 10/3. 
 
We utilize the Gauss-type computation 

used in the second example since both the whole 
and the value of the integral are strongly singular. 
The values for k = 2 and q = 50/3 were chosen. In 
this example, a measurement variable with N = 100 
is approximated using the splithalf algorithm. The 
numerical findings are with GL denoting the use of 
only the Gauss-type computation technique and 
GLNMI denoting the use of both of the NMI and 
Gauss-type computation. It has been shown that 
NMI can boost precision. 
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4. CONCLUSIONS 

 
In this work, we primarily cover how to 

figure out a function's measurement as well as the 
qualitative measure's converging. 

 
We also examine the numerical measures 

integral inaccuracy and confirm that theoretical 
advancements can theoretically be made to singular 
integrals. As a result, a few numerical instances are 
provided to support the theoretical findings. 

 
It is crucial to estimate the parameters as 

correctly as possible in order to calculate the 
integrate by NMI. For functions with a piecewise 
parametric inverse function, the approach described 
here works quite well. 

 
The field of NMI research is continuously 

being studied. The scope of the research should 
include multimodal metrics and integrates. Due to 
its precise reduction of multimodal integrals to one-
dimensional integrals, the NMI approach may be 
better appropriate for multidimensionality in this 
area, additional study may be done. 

 
When numbering equations, enclose 

numbers in parentheses and place flush with right-
hand margin of the column. Equations must be 
typed, not inserted. The study was strengthened 
through a good set of examples according to each 
of the cases studied, in addition to attaching a 
number of tables. 

 
Also, it was demonstrated that the 

integrated numerical measurement of the GL 
integration given in Table 3 may be used to 
increase the measurement technique's accuracy 
when employing GLNMI integration. We set a 
predetermined number of function iterations of 32 
for the integration. 

 

REFERENCES: 
 
[1] Geçmen MZ, Çelik E. Numerical solution of 

Volterra–Fredholm integral equations with 
Hosoya polynomials. Mathematical Methods in 
the Applied Sciences. 2021;44(14):11166-73. 

[2] Shokri J, Pishbin S. On the convergence 
analysis of the Tau method applied to fourth-
order partial differential equation based on 
Volterra-Fredholm integral equations. Applied 
Numerical Mathematics. 2022;173:144-57. 

[3] Oruç Ö. A local radial basis function-finite 
difference (RBF-FD) method for solving 1D 
and 2D coupled Schrödinger-Boussinesq (SBq) 
equations. Engineering Analysis with Boundary 
Elements. 2021;129:55-66.    

[4] Kolmanovskii V, Myshkis A. Introduction to 
the Theory and Applications of Functional 
Differential Equations. first ed. Dordrecht, 
Netherlands: Springer Dordrecht; 2013. 648 p. 

[5] Zarebnia M, Shiri L. Convergence of 
approximate solution of delay Volterra integral 
equations. Iranian Journal of Numerical 
Analysis and Optimization. 2016;6(2):39-50. 

[6] Brunner H, Hu Q, Lin Q. Geometric meshes in 
collocation methods for Volterra integral 
equations with proportional delays. IMA 
Journal of Numerical Analysis. 2001;21(4):783-
98. 

[7] Sahu PK, Saha Ray S. A new Bernoulli wavelet 
method for accurate solutions of nonlinear 
fuzzy Hammerstein–Volterra delay integral 
equations. Fuzzy Sets and Systems. 
2017;309:131-44. 

[8] Laeli Dastjerdi H, Nili Ahmadabadi M. Moving 
least squares collocation method for Volterra 
integral equations with proportional delay. 
International Journal of Computer Mathematics. 
2017;94(12):2335-47    

[9] Ismailov N, Yüzbaşı Ş. Differential transform 
method to solve two-dimensional Volterra 
integral equations with proportional delays. 
New Trends in Mathematical Science. 
2017;4:65-71. 

[10] Nili Ahmadabadi M, Laeli Dastjerdi H. 
Numerical treatment of nonlinear Volterra 
integral equations of Urysohn type with 
proportional delay. International Journal of 
Computer Mathematics. 2020;97(3):656-66. 

[11] Nikan O, Avazzadeh Z. Numerical simulation 
of fractional evolution model arising in 
viscoelastic mechanics. Applied Numerical 
Mathematics. 2021;169:303-20. 

[12] Oruç Ö. A radial basis function finite difference 
(RBF-FD) method for numerical simulation of 
interaction of high and low frequency waves: 
Zakharov–Rubenchik equations. Applied 
Mathematics and Computation. 
2021;394:125787. 

[13] Zhang L, Huang J, Li H, Wang Y. Extrapolation 
Method for Non-Linear Weakly Singular 
Volterra Integral Equation with Time Delay. 
Mathematics. 2021;9:1856.    



Journal of Theoretical and Applied Information Technology 
31st January 2024. Vol.102. No 2 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 

 
709 

 

[14] Mokhtary P, Moghaddam BP, Lopes AM, 
Machado JAT. A computational approach for 
the non-smooth solution of non-linear weakly 
singular Volterra integral equation with 
proportional delay. Numerical Algorithms. 
2020;83(3):987-1006. 

[15] Hasegawa T, Sugiura H. Uniform 
approximation to finite Hilbert transform of 
oscillatory functions and its algorithm. Journal 
of Computational and Applied Mathematics. 
2019;358:327-42. 

[16] Rza̧dkowski G, Tohidi E. A fourth order 
product integration rule by using the 
generalized Euler–Maclaurin summation 
formula. Journal of Computational and Applied 
Mathematics. 2018;335:334-48. 

[17] Xu Z, Geng H, Fang C. Asymptotics and 
numerical approximation of highly oscillatory 
Hilbert transforms. Applied Mathematics and 
Computation. 2020;386:125525. 

[18] Wang H, Kang H. Numerical methods for two 
classes of singularly oscillatory Bessel 
transforms and their error analysis. Journal of 
Computational and Applied Mathematics. 
2020;371:112604. 

[19] Abramowitz M, Stegun IA. Handbook of 
Mathematical Functions With Formulas, 
Graphs, and Mathematical Tables. Washington, 
D.C.: National Bureau of Standards; 1964. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 


