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ABSTRACT 

5G networks provide unmatched speed, connectivity, and the ability to support a wide range of diversified 
services, ushering in a transformational era of telecommunications. By applying innovative methods in data 
analysis, time-series forecasting, and optimization, this work provides a thorough strategy to addressing these 
difficulties. Detailed configuration and performance management data collecting from a 5G experimental 
prototype forms the basis of our methodology. Slicing ratios, priority, QCI (Quality of Service Class 
Identifier), and power measurements are among the critical parameters included in this collection. This work 
uses min-max normalization to guarantee consistency and standardized scaling in order to get this data ready 
for in-depth examination. For time-series forecasting, this novel method presents the Recursive LSTM (Long 
Short-Term Memory) model. LSTM networks, which are well-known for their ability to capture long-term 
dependencies, are essential for identifying temporal patterns in the information. In order to carefully adjust 
parameters and improve dynamic slicing configurations, this work employs the Grey Wolf Optimization 
(GWO) method. The GWO algorithm makes sure that network resource allocation constantly adapts to fulfill 
various objectives, taking inspiration from the hierarchical grey wolf pack's structured decision-making 
process. The combination of these advanced techniques results in a solution that greatly improves the 
accuracy and flexibility of time-series forecasting and resource distribution in 5G networks. Through the 
harmonic integration of data-driven insights, LSTM predictions, and the effective optimization capabilities 
of GWO, our methodology enables 5G networks to allocate resources with agility and flexibly, ultimately 
providing real-time, high-quality services. The method outperforms other approaches like CNN, CNN-
LSTM, and RNN-LSTM, which were all implemented with MATLAB, by a substantial margin of 5.55%, 
with an accuracy of 99.12%. 

Keywords: 5G Network, Quality of Service Class Identifier, Long Short-Term Memory, Grey Wolf 
Optimization, Min-Max Normalization. 

1. INTRODUCTION 

The implementation of dynamic slicing in 5G 
networks is extremely important since it transforms 
the management and distribution of network 
resources. With the use of this technology, separate 
virtual networks that are customized to match the 
needs of certain applications can be established, 
meeting a variety of demands in the contemporary 
digital world [1]. This significantly improves 
resource allocation efficiency, which is important 

considering how quickly connected devices and apps 
are proliferating and how dynamic resource 
allocation on the network is becoming more and 
more necessary [2]. Network operators benefit from 
reduced resource waste and cost savings thanks to 
dynamic slicing, which guarantees real-time 
resource allocation in accordance with the particular 
requirements of each network slice [3]. Optimizing 
the Quality of Service (QoS) is largely dependent on 
dynamic slicing. Different applications, such 
augmented reality, remote surgery, and autonomous 
vehicles, have different needs when it comes to 
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latency, bandwidth, and reliability [4]. With the 
capacity to tailor network slices to meet these 
particular requirements, dynamic slicing ensures a 
reliable and excellent user experience for a variety of 
use cases [5]. Dynamic slicing gives network 
operators the ability to manage infrastructure more 
effectively. Operators are able to adjust and 
distribute resources in real-time in response to 
changes in service requirements and variations in 
demand. Because it allows for the effective use of 
network resources and the delivery of excellent real-
time services, this flexibility is essential for network 
optimization [6]. For cost efficiency, dynamic 
slicing is essential. Network deployments become 
more economical and sustainable when operators 
minimize operational expenses through precise 
resource allocation. It enables operators to 
effectively balance cutting costs with providing 
outstanding service quality, which is a critical factor 
in the fiercely competitive telecommunications 
sector [7]. 

Organizations in the era of big data have the 
enormous challenge of managing enormous amounts 
of data efficiently and extracting valuable insights 
from them [8]. The Internet of Things, social media, 
and sensor networks are some of the driving forces 
behind this data deluge [9]. The traditional 
approaches to data management and processing are 
inadequate in the face of this deluge of data. The 
effective processing and extraction of insightful 
information from this data, which improves resource 
allocation and decision-making, is made possible in 
large part by optimization approaches. Deep learning 
neural networks and other machine learning models 
have become important actors because of their 
ability to process and evaluate large amounts of data 
[10]. However, these models frequently show 
significant levels of complexity and have a large 
number of parameters. It is quite difficult to optimize 
such models for speed, accuracy, and resource 
efficiency. Algorithms for optimization are 
employed to adjust model parameters, which 
eventually improve performance and shorten 
training time. Because it offers scalable, on-demand 
resources, cloud computing has revolutionized the 
way businesses run [11]. However, allocating 
resources in a way that balances workload 
fluctuations is a challenging task. For businesses 
looking to cut expenses without sacrificing speed or 
high availability, cloud resource management 
optimization approaches are an invaluable resource 
[12]. For companies that depend on cloud 
infrastructure to run mission-critical applications, 
this is especially important. 

Optimizing data flow is a basic requirement in 
the networking area in order to guarantee effective 
communication. The intricate workings of large-

scale networks pose problems with bandwidth 
distribution, congestion control, and routing. By 
dynamically adjusting routing paths, reducing 
congestion, and intelligently allocating resources to 
the most critical locations, optimization algorithms 
are essential for improving network performance. 
Process improvement can lead to significant cost 
savings and increased efficiency in the field of 
supply chain and logistics management. Demand 
forecasting, inventory control, and route 
optimization are among the difficulties. In order to 
solve these problems, optimization techniques are 
developed, which provide ways to minimize lead 
times, minimize transportation costs, and maintain 
ideal inventory levels. Energy efficiency becomes an 
increasingly urgent task in view of growing 
environmental concerns and rising energy costs [13]. 
Energy optimization becomes crucial, especially in 
data centers and industrial activities. It is possible to 
reduce energy usage without sacrificing operational 
effectiveness by using optimization techniques. 
Using optimization strategies is essential to 
improving patient care and operational efficiency in 
the healthcare industry. Treatment planning, 
resource allocation, and patient scheduling are all 
areas of difficulty in the healthcare industry [14]. 
Hospitals and other healthcare facilities find that 
optimization techniques are very helpful in their 
efforts to maximize appointment scheduling, 
distribute resources (such as personnel and operating 
rooms), and adjust treatment plans, all of which lead 
to better patient care. The two most important 
requirements in the financial sector are risk 
management and investment portfolio optimization. 
Investment strategies that aim to balance risk and 
return can benefit from the deployment of 
optimization techniques [15]. With the use of these 
techniques, financial institutions may make educated 
judgments about risk management and asset 
allocation. 

This study's methodology is critical to tackling 
the complex problems that 5G networks provide, 
especially with regard to dynamic slicing 
optimization. The need for effective resource 
allocation and real-time adaptation grows as the 
demand for a wide range of high-performance 
services within 5G networks continues on its upward 
trend. To maximize dynamic slicing, the study 
approach combines state-of-the-art methods. First, a 
large amount of configuration and performance 
management data is gathered from a 5G 
experimental prototype. This dataset provides the 
foundation for data-driven insights by encompassing 
a wide range of essential metrics, such as power 
measurements, priority, QCI, and slicing ratios. In 
order to improve time-series forecasting accuracy 
and flexibility in the dynamic slicing domain, the 
Recursive LSTM model assumes a central role by 
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leveraging the exceptional long-term memory 
network capabilities to capture persistent 
relationships. Dynamically enhanced by past data, 
the LSTM predictions play a pivotal role in the 
dynamic slicing correction procedure. Inspired by 
the hierarchical hunting behavior of grey wolves, 
Grey Wolf Optimization (GWO) is utilized here to 
optimize resource allocation decisions and fine-tune 
parameters while keeping a close eye on a variety of 
goals, including throughput maximization and delay 
minimization. The suggested strategy enables 5G 
networks to dynamically adapt, allocate resources 
with agility, and ultimately provide high-quality, 
real-time services to an increasingly discriminating 
user base by managing the integration of these 
cutting-edge approaches. This demonstrates how 
crucial this study is to expanding the possibilities of 
5G technology. The key contribution of the article is, 

 Min-max normalization is a key pre-processing 
technique that the study introduces. This 
method ensures consistency and consistent 
scaling by standardizing the collected data. By 
preparing the data for additional analysis and 
optimization, this normalization improves the 
caliber and dependability of the ensuing 
modeling and forecasting procedures. 

 The study uses time-series forecasting with the 
Recursive Long Short-Term Memory (LSTM) 
model. The remarkable capacity of LSTM 
networks to extract long-term dependencies 
from sequential data is well known. 

 The Grey Wolf Optimization (GWO) 
algorithm is used in the study to optimize 
dynamic slicing configurations and fine-tune 
parameters. Grey wolves' hierarchical hunting 
style served as the model for GWO, which 
presents a novel optimization technique. 
Through emulating these creatures' systematic 
decision-making process, GWO makes sure 
that network resource allocation adapts 
dynamically to meet different goals. 

The following is the structure of this study: The 
job scheduling problem has been the subject of 
extensive prior research, and various optimization 
approaches are explored in Section II. The divisive 
claim is discussed in Section III. The suggested 
method is examined in Section IV. The 
investigation's setup, results, and a comprehensive 
analysis of the findings are all described in Section 
V. At last, the paper's conclusion and future work are 
discussed in Section VI. 

2. RELATED WORKS 

One of the key technologies in 5G is network 
slicing (NS), which aims to support different 
virtualized operators with different service needs on 

a common underlying infrastructure. In the resource-
sharing market, where resources are traded for 
monetary gains in order to maximize their use, NS 
has the ability to significantly alter the dynamics 
between various organizations. However, these 
entities only find resource exchange desirable when 
mutually beneficial outcomes can be achieved. In the 
framework of resource trading within NS, Ou et al. 
[16] proposed an economic model intended to 
analyse the pricing and purchasing dynamics among 
several Mobile Virtual Network Operators 
(MVNOs) and their respective user base. As a two-
stage multi-leader multi-follower (MLMF) 
Stackelberg game, formulated the pricing and 
purchasing problem. In this game, players play the 
role of followers, responding to the MVNOs' initial 
establishment of their unit prices by deciding on the 
quantity of purchases they make. In this study, the 
uniqueness and existence of a Nash equilibrium 
(NE) are established mathematically. This study 
converts the game-based optimization problem into 
a stochastic Markov decision process (MDP) and 
provide a technique based on the multi-agent 
duelling deep Q-Network algorithm to obtain an 
optimal dynamic pricing solution for the MVNOs. 
The model's dependence on theoretical 
presumptions and simulations, which might not 
accurately reflect all practical complexity and 
unpredictability, may restrict its reliability and 
application in the real world. 

Hu et al. [17] developed a smart and self-
adaptive approach to network resource allocation is 
becoming more and more necessary as 5G evolves, 
marked by a spike in demand for various smart grid 
communication services and the digital 
transformation of communication networks. The 
suggestion of a neural network-based resource 
allocation method provides a response to this need. 
The primary goal is to put in place a hierarchical 
scheduling system for smart grid communication 
services at the edge, specifically at the power smart 
gateway. This approach achieves two main 
objectives: In order to meet the unique needs of 5G 
network slicing, it first dynamically anticipates 
traffic patterns inside the slicing network. Secondly, 
it intelligently matches and classes smart grid 
communication services. The hierarchical 
scheduling system, which collects data features from 
the services and encodes this data using a one-
dimensional convolutional neural network (1D 
CNN), enables intelligent categorization and 
matching of smart grid communication services. In 
order to facilitate dynamic traffic prediction within 
the slicing network based on time series, it interfaces 
with a Bidirectional Long Short-Term Memory 
Neural Network (BILSTM). Implementing the 
proposed neural network-based technique on 
massive and resource-demanding 5G network 
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deployments could lead to issues with resource 
consumption and scalability. Moreover, it could 
require a lot of computing power, which reduces its 
usefulness in frameworks with constrained 
resources. 

Virtualization is a key component of 5G 
networks, enabling telecoms to significantly lower 
their capital and operating costs by combining 
several services onto a single hardware platform. 
However, the heterogeneity of services provided 
makes it difficult to provide quality of service 
(QoS)-guaranteed services for a wide variety of 
renters. Network slicing has been proposed as a 
solution to this problem by Lin, Chou, and Hwang, 
dividing up the computing and communication 
resources to meet the specific requirements of 
various tenants and their services [18]. It is a difficult 
and crucial task to effectively optimize the 
distribution of network and computational resources 
among various network slices. In this study, two 
heuristic algorithms are proposed as a response: the 
Minimum Cost Resource Allocation (MCRA) and 
the Fast Latency Decrease Resource Allocation 
(FLDRA). For network slices with multiple tenants 
in a two-tier architecture, these algorithms are 
designed to manage resource allocation and dynamic 
path routing. According to simulation results, both 
MCRA and FLDRA algorithms outperform the 
previously suggested Upper-tier First with Latency-
bounded Overprovisioning Prevention (UFLOP) 
algorithm. Furthermore, improved resource 
utilization is achieved by the MCRA algorithm 
compared to the FLDRA technique. 

Customer expectations for quality of service 
(QoS) from network service providers have 
increased due to the proliferation of devices, apps, 
and services. Experts in network design and 
optimization are working on in-depth research to 
meet these needs. Nonetheless, the dynamic network 
environment keeps posing fresh problems that need 
for workable answers. The merging of current 
networks is one strategy being investigated to 
improve coverage and capacity. Enhancing mobility 
management's flexibility, user-centeredness, and 
service-centricity is another area of research 
attention. With the introduction of 5G networks, 
there will be much more capacity, more stability, 
stronger connectivity, faster speeds, lower latency, 
and higher availability. In order to satisfy the 
demanding needs of many applications, the network 
infrastructure needs to be more flexible and dynamic 
than in the past. Network slicing done right has the 
potential to meet the stringent application 
requirements of modern network design. Singh et al. 
used an sophisticated fuzzy logic to create mobility 
and traffic control algorithms that are as flexible as 
possible without sacrificing efficiency [19]. 

Improving the quality of service provided by the 
present mobility management systems and making 
the best use of the network resources at hand are the 
ultimate goals of this research. It is considered 
essential to integrate the technologies of Network 
Function Virtualization (NFV) with Software-
Defined Networking (SDN). The increased demand 
for higher data rates, more bandwidth capacity, and 
lower latency across a variety of use cases on the 
network is driving the importance of network slicing 
as an architectural framework for 5G networks in 
order to suit a variety of network needs. 

Network functions can be flexibly scaled in and 
out in 5G environments to adjust network slice 
capacity. This process, called autoscaling, lowers 
operating expenses by eliminating instances as 
needed while simultaneously improving 
performance through the addition of instances. 
However, compared to conventional cloud 
computing, autoscaling in 5G networks has different 
difficulties. Multiple instances must be deployed 
simultaneously during the deployment of 5G 
network functionalities, and this process occurs 
more frequently than with standard cloud 
computing. The system's cost-effectiveness is 
greatly impacted by the quantity and timing of these 
deployments. In this study, Hsieh et al. first used the 
3GPP standards to detect autoscaling problems [20].  
Then outline the issue and provide closed-form 
answers for a variety of performance measures by 
developing a low-complexity analytical queuing 
model. These analytical models and solutions 
provide important insights and theoretical design 
direction, and are validated by means of extensive 
simulations. They support the assessment of 
reservations' efficacy. This study provides the 
dynamic block-setup reservation algorithm (DBRA) 
to find the ideal number of reserved instances and 
network slice threshold values. Because of this, 
mobile operators can save time and money by 
balancing cost-effectiveness without requiring 
extensive testing or real deployment. 

An essential component of 5G, network slicing, 
promises to improve provisioning, agility, and 
intelligence in infrastructure management and 
service delivery. Nevertheless, considering the 
dynamic, diverse, and expansive character of 
contemporary networks, accomplishing these goals 
is no mean accomplishment. The issues presented by 
dynamic and complex networks are not well 
addressed by many of the network slicing methods 
now in use, which instead concentrate on 
maximizing instantaneous performance. This study 
addresses these issues by introducing a two-stage 
slicing optimization approach that includes time-
averaged metrics, offering network slicing in 
dynamic situations a safety net. This method uses 
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runtime partial observations while acknowledging 
the lack of comprehensive prior knowledge about the 
environment. Because future system realizations are 
unpredictable, conventional offline solutions cannot 
be used to make judgments. Cheng et al. introduced 
a deep learning and Lyapunov stability theory-based 
learning-enhanced optimization approach to get 
around this [21]. By using previous data and in-the-
moment observations, this method enables the 
system to learn and generate safe slicing solutions. 
Network slicing may adapt and function well in 
intricate, dynamic network environments thanks to 
this creative method. 

Despite the promising advancements in network 
slicing, resource allocation, mobility management, 
and autoscaling in 5G networks, there are several 
challenges that need to be addressed for the effective 
implementation of these technologies in real-world 
deployments. The existing studies provide valuable 
insights and propose innovative solutions, but there 
are constraints and uncertainties that limit their 
practical applicability. Key challenges include 
scalability issues in resource allocation, reliance on 
theoretical presumptions in analytical models, and 
the substantial processing power required for deep 
learning-based techniques. Additionally, the 
dynamic and diverse nature of contemporary 
networks poses difficulties that some existing 
methods may not adequately address. 

2.1. Research Questions 
RQ1: How can the scalability issues associated 

with resource allocation in network slicing be 
effectively addressed to accommodate the demands 
of diverse applications and tenants in 5G networks? 

RQ2: To what extent do theoretical presumptions 
in analytical models impact the reliability and 
applicability of proposed solutions for resource 
allocation, mobility management, and autoscaling in 
5G networks? 

RQ3: What are the practical implications and 
challenges of deploying deep learning-based 
techniques, such as the multi-agent duelling deep Q-
Network algorithm and the deep learning and 
Lyapunov stability theory-based approach, in 
resource-intensive 5G network environments? 

RQ4: How can the proposed two-stage slicing 
optimization models with time-averaged metrics 

provide a safety net for network slicing in dynamic 
situations, and what are the limitations of this 
approach in addressing unpredictable future system 
realizations? 

3. PROBLEM STATEMENT 

Several major issues with 5G network slicing and 
associated works are brought to light by the above 
literature reviews. The first difficulty is meeting the 
various service needs while attaining both high 
wireless resource capacity and efficient isolation 
among slices. Notwithstanding the freedom and 
customization that network slicing offers, dynamic 
resource allocation that strikes a balance between 
affordability and performance is also required. 
Large-scale 5G deployments have difficulties due to 
the scalability and resource consumption of neural 
network-based resource allocation approaches [16]. 
Network slicing makes it clear that efficient 
autoscaling is required in order to minimize 
expenses and adjust to shifting network demands. 
Eventually, network slicing provides better 
intelligence and provisioning, but it also has to deal 
with a complex and dynamic network environment 
that demands creative solutions to keep performance 
and flexibility high. In order to overcome these 
challenges, this paper presents a 5G network 
Dynamic Slicing Optimization technique that makes 
use of Grey Wolf Optimization and a Recursive 
LSTM Mechanism. 

4. PROPOSED RECURSIVE LSTM-GWO 
FRAMEWORK 

 

The methodology used in this research is 
intricate and aims to maximize dynamic slicing in 
5G networks by utilizing a variety of advanced tools 
and methodologies. First, a 5G experimental 
prototype is used to gather a large amount of 
configuration and performance management data. 
Essential metrics including slicing ratios, priority, 
QCI, and power measures are included in this JSON-
formatted data. Min-max normalization is an 
essential preprocessing procedure to assure 
consistency and standardize the data's scale before 
analyzing it. The proposed methodology is depicted 
in Figure 1. 
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Figure 1. Proposed Methodology 

Next, the Recursive LSTM model for time-series 
forecasting is proposed, which takes advantage of 
LSTM's capacity to represent long-term 
dependencies. Grey Wolf Optimization (GWO) is 
used to adjust variables and allocations of resources 
in the dynamic slicing optimization process, which 
incorporates LSTM predictions that are impacted by 
past data. Grey wolves' hierarchical hunting style 
served as the model for GWO, which helps optimize 
slicing configurations to meet goals like throughput 
maximization and latency reduction. This complex 
methodology highlights the goal of the article, which 
is to improve the performance of 5G networks by 
using a comprehensive strategy that includes 
optimization, time-series forecasting, and advanced 
data analysis.  

4.1. Data Collection 
This 5G experimental prototype was used for a 

whole day to gather configuration and performance 
management data from Commercial Off-The-Shelf 
(COTS) User Equipment (UEs). During this time, a 
background script interfaced with FlexRAN to 
gather the information. The JSON-formatted data 
included a range of metrics, such as priority, power 
measurements, Quality of Service Class Identifier 
(QCI), provisioned slicing ratios, and other 
configuration and performance management 
parameters. The UEs were moved throughout our lab 
area on a regular basis to introduce variations in 
radio circumstances, and an internet connection was 
required for the background activities. Using 
MATLAB and a PC with a Dual Intel Core i7 
processor (2.4 GHz, 4 cores, 7th Gen.) and 16 GB of 
RAM, created a machine learning model. Then 
assembled real-time models and included them into 
our 5G experimental prototype as stand-alone Linux 
applications [22]. 

4.2. Pre-Processing Using Min-Max 
Normalization 

The gathered dataset from the 5G experimental 
prototype is first processed for analysis during the 
preprocessing stage. This dataset contains all of the 
configuration and performance management 
information that was collected over the course of a 
day from COTS UEs. The data is kept in a JSON file 
format and includes important metrics including 
power measurements, priority, QCI, and slicing 
ratios. The study uses min-max normalization, a 
scaling approach that makes sure all data attributes 
fit within a consistent range, to prepare the data for 
additional analysis. In order to prevent biases 
resulting from differences in the scale of the original 
data, this normalization step is essential.  

One important stage in data preprocessing is 
min-max normalization, which is often referred to as 
feature scaling. Input values are rescaled to fit into a 
predetermined range, usually [0, 1]. This procedure 
normalizes the intensity levels throughout the 
dataset, reducing the impact of lighting and pixel 
value distribution variances. Finding the dataset's 
minimum and maximum values and then using the 
linear transformation to change each original value 
into a new value falling inside the predetermined 
range are the two primary processes in min-max 
normalization. In addition to improving data 
consistency, this process helps produce more 
accurate and consistent outcomes for further analysis 
and machine learning tasks. The lowest value in the 
dataset represents the darkest value, while the 
maximum value represents the brightest. These 
values are initially established for each data point in 
the collection. Following its establishment, each data 
point's initial intensity value is linearly modified to 
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fall between [0, 1]. (1) gives a description of the 
transformation formula applied in this case. 

𝐼௢௨௧ = (𝐼௜௡ − 𝑀𝑖𝑛)
௡௘௪ெ௔௫ି௡௘௪ெ௜௡

ெ௔௫ିெ௜௡
+ 𝑛𝑒𝑤𝑀𝑖𝑛

  (1) 

Once min-max normalization is applied, the 
image is called 𝐼௢௨௧ . The minimal and maximum 
intensities are called 𝑛𝑒𝑤𝑀𝑖𝑛 and 𝑛𝑒𝑤𝑀𝑎𝑥, 
respectively. The minimum and maximum intensity 
standards, which range from 0 to 255, are 
represented by the symbols 𝑀𝑖𝑛 and 𝑀𝑎𝑥, 
respectively, while the time series data is denoted as 
𝐼௜௡. This adjustment was applied to every image in 
the dataset to guarantee that the pixel values were 
consistent and suitable for additional processing. 
This normalization procedure helps to improve the 
dataset's suitability for accurate and consistent 
evaluation by eliminating biases introduced by 
differences in pixel values and illumination. 

4.3. Recursive LSTM for Time-Series 
Forecasting 

LSTM (Long Short-Term Memory) networks 
will be introduced at the outset of the research to 
highlight their importance in modelling sequential 
data and their broad applicability in time-series 
forecasting. This is explained by their skill in 
identifying long-term dependence. Next, examine 
the idea of Recursive LSTM and explain its novel 

methodology, which uses LSTM predictions from 
one time step as input to produce predictions at later 
time steps. The modelling of intricate temporal 
patterns is made possible by this recursive technique, 
which makes time-series forecasting more accurate 
and useful overall—especially when it comes to 
dynamic slicing optimization in 5G networks. 

Time-recursive recurrent neural networks 
(RNNs) such as Long Short-Term Memory (LSTM) 
may be able to address the issues with gradient 
vanishing or explosion that frequently arise in 
RNNs. Despite their prowess in quickly absorbing 
new data, RNNs have trouble remembering long-
term temporal data [23]. An architecture that 
integrates short- and long-term memory components 
is the solution to this problem. The new deep 
machine learning neural network known as LSTM 
builds on the RNN architecture by adding memory 
cells and input, forget, and output gates to control the 
flow of information at various time intervals. After 
the LSTM is included, this augmentation greatly 
improves the RNN's ability to understand and 
interpret longer data sequences, which fixes the 
gradient vanishing problem. Particularly, one of 
these gate components—the forget gate—is very 
important to the memory unit of an LSTM [24]. 

 

 

Figure 2. Basic Architecture of LSTM 

The central inputs and outputs of the LSTM 
structure are illustrated in Figure 2. The initial step 
involves selecting the information within the cell 
state that needs to be discarded. This decision is 
determined in (2) through the utilization of a sigmoid 
layer, often referred to as the "forget gate layer." 
This layer assesses 𝑤௥ିଵ and 𝑏௥, generating values 
ranging between 0 and 1 for each element present in 
the cell state, denoted as 𝑠௥ିଵ. When the sigmoid 
function's output approaches 0, it signifies that the 
previously stored data, 𝑠௥ିଵ, is to be "forgotten." 

Conversely, when the sigmoid function yields a 
value close to 1, it indicates that the data recorded 
within 𝑠௥ିଵ is to be retained in its entirety.  

𝑌௦ = 𝜎(ℎ௒. [𝑤௥ିଵ, 𝑏௥] + 𝑎௒)  (2) 

The vector of weights in the present instance is 
ℎ௒, the bias vector is 𝑎௒, the sigmoid function is, and 
the input series is 𝑏௥. The result of the preceding 
block is 𝑤௥ିଵ. 
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To determine which additional data will be saved 
in the cell state. (3) uses a sigmoidal layer designated 
the "input gate layer" to choose the values before 
updating them. Then, a 𝑡𝑎𝑛ℎ  layer produces a vector 
of new candidate values 𝑠′௥  that might be 
incorporated into the state employing (4). 

𝑖௥ = 𝜎(ℎ௜ . [𝑤௥ିଵ, 𝑏௥] + 𝑎௜)  (3) 

𝑠′௥ = 𝜃(ℎ௦. [𝑤௦ିଵ, 𝑏௥] + 𝑎௦)  (4) 

Enhance the prior cell state 𝑠௥   into the new cell 
state 𝑠௥  by substituting the newest subject's identity 
in order to improve the combined states of (3) and 
(4). 

Eliminate the data that already choose to forget 
and add it to the prior state. Then, based on the 
results in the previous stages, add the additional data 
to (5) as 𝑖௥ ∗ 𝑠௥ିଵ. 

𝑠௥ = 𝑌௥ ∗ 𝑠௥ିଵ + 𝑖௥ ∗ 𝑠′௥   (5) 

The output intends to generate must be decided 
upon as the last phase. Despite being filtered, the 
result would be based on cell status. The initial 
procedure in (6), which establishes which elements 
of the cell state should be the output, is to run a 
sigmoid layer. The result of the sigmoidal gate is 
subsequently multiplied by the cell state, which only 
produces the sections chosen for that output in (7), 
forcing the outputs to be in the range of 1 and 1. 

𝑋௥ = 𝜎(ℎ௑. [𝑤௥ିଵ, 𝑏௥] + 𝑎௑  (6) 

𝑍௥ = 𝜃(𝑠௥) ∗ (𝑋௥)  (7) 

The Recursive LSTM Concept introduces a 
novel technique by generating predictions 
repeatedly, building upon the foundation of the 
regular LSTM model. The unique quality of 
Recursive LSTM is its inherent capacity to use 
predictions from each time step as dynamic input 
characteristics for forecasting the next time step, 
creating a feedback loop that reinforces itself. The 
recursive approach incorporates the latest outcomes 
into the input sequence, enabling the model to 
continuously improve and modify its predictions. It 
thus becomes skilled at encapsulating changing 
temporal patterns and dependencies found in time-
series data. Because of its dynamic feedback loop, 
the recursive LSTM may produce forecasts that are 
more accurate and context-aware, which makes it 
especially useful for applications where real-time 
flexibility is crucial, such dynamic slicing 
optimization in 5G networks. 

Explore the complex process of model learning 
in the Recursive LSTM training phase. Using 
methods like backpropagation through time (BPTT), 
the LSTM is fine-tuned internally during this step by 
being exposed to past time-series data. The recurrent 
connections in the LSTM are vital for the 

propagation of errors, which enables the LSTM to 
learn from previous predictions and eventually 
improve its performance. Use the mean squared 
error (MSE) as the basis for regression task selection 
when it comes to the loss function. To successfully 
minimize prediction errors during training, the Mean 
Squared Error (MSE) method measures the 
difference between the model's predictions and 
actual observations. During the training phase, the 
LSTM's predictive skills are laid down, which is an 
essential component that is later utilized for the 
optimization of dynamic slicing. 

Focusing on the critical relationship between 
LSTM predictions and dynamic slicing 
optimization, this study clarifies how the historical 
data-based forecasts of the LSTM are essential for 
enabling real-time resource allocation decisions in 
5G networks. This study explains the dynamic 
slicing adjustment procedure, which is centred on 
optimizing network resource allocation, 
encompassing elements such as bandwidth 
distribution, to accomplish various goals. These 
goals could include minimizing latency and 
maximizing throughput, as well as guaranteeing 
Quality of Service (QoS) and other critical 
performance indicators that are crucial for 5G 
network administration. These resource allocation 
decisions are guided by real-time insights provided 
by the LSTM predictions, which are derived from 
historical performance data. This allows for quick 
and informed adjustments to network slicing 
configurations. This combination of dynamic slicing 
optimization with LSTM predictions highlights the 
possibility of more effective and responsive network 
management in the background of 5G technologies, 
where flexibility is critical. 

4.4. Grey Wolf Optimization Framework for 
Fine-Tuning the Parameters 

Grey Wolf Optimization (GWO) is used in this 
paper specifically to optimize the dynamic slicing 
configuration in 5G networks and fine-tune 
parameters. GWO is a type of metaheuristic 
approach that is inspired by the organized, pack-
based hunting methods of grey wolves. Wolf packs 
have a hierarchical structure with alphas, betas, 
deltas, and omegas that affect the algorithm's 
decision-making process. GWO leverages a wolf-
like encirclement, tracking and capture strategy, and 
coordinated hunting to repeatedly optimize and fine-
tune network resource allocation decisions. Its main 
goals are to optimize throughput, minimize latency, 
guarantee Quality of Service (QoS), and improve 
dynamic slicing's overall performance in 5G 
networks. The incorporation of GWO into the study 
technique capitalizes on its unique optimization 
methodology, ultimately leading to more efficient 
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and adaptable network management in the complex 
world of 5G technology. 

A meta-heuristic method called GWO was put 
out [25]. The method was influenced by the grey 
wolf killing strategy and pack structure. Grey wolves 
have a very hierarchical structure and live in packs. 
The leaders of the wolves, the alphas (α), now make 
all the decisions. Beta (β) wolves, who belong to the 
next level, help alpha wolves with their job. The final 
person, Omega (ω), is the victim in this system. A 
wolf is sometimes referred to as a delta (δ) wolf if it 
does not fit into any of the aforementioned 
classifications. Grey wolves attempt to encircle a 
food source, attack, and kill, then look for additional 
prey in accordance with this clearly established 
hierarchy. Wolves use hunting as a means of 
enclosing their prey, locating and killing animals, 
and engaging in combat with their prey. The way 
grey wolves circle their prey during a hunting 
expedition is depicted in (8) and (9). 

𝐾ሬሬ⃗ = ห𝑓 ∙ (𝑋௪
ሬሬሬሬሬ⃗ (𝑛) − 𝑋⃗(𝑛)ห  (8) 

𝑋⃗(𝑛 + 1) =  𝑋௪
ሬሬሬሬሬ⃗ (𝑛) − 𝑄ሬ⃗ ∙ 𝐾ሬሬ⃗   (9) 

Where 𝑋⃗ depicts wolf's location in round 
configuration; 𝑋௪

ሬሬሬሬሬ⃗ is the prey's vector position; 𝑛 
is present time; 𝑄ሬ⃗  and 𝐾ሬሬ⃗  are effective vectors that 
have the following definitions is shown in (10) and 
(11). 

 (10) and (11), where  𝑋⃗ represents the wolf's 
location in a circular configuration, 𝑋௪

ሬሬሬሬሬ⃗  represents 
the prey's vector position, n denotes the current time, 
and 𝑄ሬ⃗  and 𝐾ሬሬ⃗  represent effective vectors with the 
corresponding definitions. 

𝑄ሬ⃗ = 2𝐼 ∙ 𝑐ଵሬሬሬ⃗ − 𝐼  (10) 

𝑓 = 2 ∙  𝑐ଶሬሬሬ⃗   (11) 

Random vectors equally distributed between 0 
and 1 are included in 𝑐ଵሬሬሬ⃗  and 𝑐ଶሬሬሬ⃗  where the element d 
is progressively decreased from 2 to 0. The 
𝛼, 𝛽, 𝑎𝑛𝑑 𝛿  wolves are thought to comprehend it 
better since the location of the meal is never evident 
in advance. (12), (13), and (14) are used to determine 
the victim's location by utilizing the wolves' 
positions. 

𝐾ሬሬ⃗ ఈ = ห𝑓ଵ ∙ 𝑋⃗ఈ − 𝑋⃗ห, 𝐾ሬሬ⃗ఉ = ห𝑓ଶ ∙ 𝑋⃗ఉ − 𝑋⃗ห, 𝐾ሬሬ⃗ ఋ =

ห𝑓ଷ ∙ 𝑋⃗ఋ − 𝑋⃗ห  (12) 

𝑋⃗ଵ =  𝑋⃗ఈ −  𝑄ሬ⃗ ଵ ∙  𝑋⃗ఈ , 𝑋⃗ଶ =  𝑋⃗ఉ −  𝑄ሬ⃗ ଶ ∙  𝐾ሬሬ⃗ఉ ,

𝑋⃗ଷ =  𝑋⃗ఋ −  𝑄ሬ⃗ ଷ ∙  𝐾ሬሬ⃗ ఋ   (13) 

𝑋⃗(𝑛 + 1) =
௑ሬ⃗ భା௑ሬ⃗ మା ௑ሬ⃗ య

ଷ
  (14) 

The following phase is to stalk (or exploit) the 
victim, assuming the study has an estimated position. 
This can be accomplished by using the vector Q ⃗, 
since the condition of wolves gets closer to the prey's 
site when I in (10) decreases from 2 to 0. Moreover, 
by doing away with the necessity for local averages, 
variables f and Q also contribute to maintaining the 
method's exploring capabilities. In addition to 
altering the location of food and the difficulty of 
foraging, the variable f can also affect a Q value 
greater than one, or |Q| > 1, which compels the 
wolves to leave their food and search for it. Once the 
method is applied to a pack of wolves for a set 
number of iterations, (11) will finally display the 
prey's position or the optimal region on Earth. 

5. RESULTS AND DISCUSSION 

This research is a complex methodology that 
uses several advanced tools and techniques to 
maximize dynamic slicing in 5G networks. First, a 
lot of setup and performance management data is 
collected using an experimental 5G prototype. This 
JSON-formatted data contains important 
information including power measurements, 
priority, QCI, and slicing ratios. Prior to data 
analysis, min-max normalization is a crucial 
preprocessing step that ensures consistency and 
standardizes the data's scale. Subsequently, a time-
series forecasting model called Recursive LSTM is 
suggested, utilizing LSTM's ability to depict long-
term relationships. In the dynamic slicing 
optimization process, which takes historical data into 
account and integrates LSTM predictions, GWO is 
utilized to modify variables and resource allocations. 
GWO is a tool that helps optimize slicing setups to 
achieve objectives such as throughput maximization 
and latency reduction. It was inspired by the 
hierarchical hunting method of grey wolves. This 
intricate process draws attention to the article's main 
objective, which is to enhance 5G network 
performance by the use of a thorough plan that 
incorporates advanced data analysis, time-series 
forecasting, and optimization.  

5.1. Model Accuracy 
A predictive model's performance is evaluated 

using a metric called model accuracy, which is 
usually employed in the setting of statistical analysis 
or machine learning. It gauges how well the model's 
predictions match the actual or observed results. As 
the ratio of accurate forecasts to all of the model's 
predictions, accuracy is sometimes given as a 
percentage. A lower accuracy score suggests a less 
dependable model with a greater percentage of 
inaccurate predictions, whereas a higher accuracy 
number shows that the model's predictions are more 
consistent and in closer agreement with the ground 
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truth. However, as accuracy can be impacted by 
class imbalances and other factors, it might not 
always be the ideal indicator to assess a model's 
performance. In Figure 3, it is shown. 

 

Figure 3. Model Accuracy 

5.2. Model Loss 
A quantitative metric called model loss is used to 

express the mistake or difference between a model's 
projected values and the actual, observed values in a 
dataset. It is an important measure that machine 
learning models are trained with. In order to improve 
the accuracy and proximity of the model's 
predictions to the real values, the main goal of 
training is to minimize this loss function. For 
example, MSE is utilized for regression issues while 
cross-entropy loss is used for classification jobs. 
Different types of loss functions are employed for 
different tasks. The loss is reduced by modifying the 
model's parameters using strategies like gradient 
descent, which enhances the model's performance 
and improves the agreement between predictions 
and actual results. It is depicted in Figure 4. 

 

Figure 4. Model Loss 

5.3. ROC 
A popular graphical representation and 

assessment tool for binary classification problems in 
machine learning and statistics is the Receiver 
Operating Characteristic (ROC). It illustrates how 
different categorization thresholds affect a model's 
true positive rate and false positive rate trade-off. 
Plotting these rates as the cutoff point for 
categorizing positive or negative occurrences is 
adjusted yields the ROC curve. An area under the 
ROC curve (AUC) of 1 denotes a perfect classifier, 
whereas 0.5 denotes random guessing. A greater 
AUC suggests better model discrimination and a 
stronger capacity to discriminate between the two 
classes. Making educated judgments concerning 
model selection and fine-tuning classification 
algorithms is made easier with the use of ROC 
analysis, which is useful for evaluating and 
comparing the performance of various classifiers. It 
is depicted in Figure 5. 

 

Figure 5. ROC of LSTM-GWO 

5.4. Fitness Assessment of the Proposed System 
 One of the most important steps in 

determining the efficiency and performance of this 
optimization process is the fitness evaluation of the 
suggested system, or GWO. Fitness is the measure 
of GWO's ability to maximize a certain objective 
function or solve a particular issue. The evaluation 
includes calculating the algorithm's resilience in 
managing various issue domains, efficiency in terms 
of computational resources and time, and capacity to 
converge towards the best answer. The fitness 
evaluation may also take into account the algorithm's 
scalability, flexibility, and capacity to locate 
solutions in multi-dimensional search spaces. 
Researchers and practitioners may decide if GWO is 
a good match for their optimization tasks and make 
well-informed judgments regarding its use and 
possible enhancements if needed by doing a 

0.75

0.85

0.95

1.05

10 20 30 40 50 60 70 80

Ac
cu

ra
cy

Epoch

Model Accuracy

Training Accuracy Testing Accuracy

0

0.2

0.4

0.6

0.8

1

1.2

10 20 30 40 50 60 70 80

L
os

s

Epoch

Model Loss

Training Loss Testing Loss

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.2 0.4 0.6 0.8

F
P

R

TPR

ROC of LSTM-GWO



Journal of Theoretical and Applied Information Technology 
31st January 2024. Vol.102. No 2 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 

 
579 

 

thorough fitness evaluation. It is depicted in Figure 
6. 

 

Figure 6. Fitness Improvement over Iterations 
(GWO) 

The average squared difference between the 
target value and the model's projected value in the 
dataset is measured by MSE. It has the following 
characteristics (15): 

𝑀𝑆𝐸 =
ଵ

௠
∑ ൫𝑋௜ − 𝑋ప

෡ ൯
ଶ௠

௜ୀଵ   (15) 

Where m is the number of data, 𝑋௜ is the ground 
truth value and 𝑋ప

෡  is the predicted value. 

In statistics and machine learning, RMSE is a 
frequently used metric to evaluate the precision of a 
prediction model, especially in regression 
assignments. It measures the average size of the 
discrepancies between the model's projected values 
and the actual observed values within a dataset. The 
square root of the average of the squared 
discrepancies between the expected and actual 
values is usually used to compute RMSE(16). A 
lower RMSE number indicates a better fit and more 
accuracy, whereas a larger RMSE value indicates 
that the model's predictions vary more from the 
actual outcomes. RMSE offers a measure of how 
well the model's predictions fit the observed data. 

𝑅𝑀𝑆𝐸 = ට
∑(௒೔ି௒ഢ෡ )మ

௡
  (16) 

The average of the variations between the actual 
and anticipated values is known as the MAE. What 
makes it unique is (17) 

𝑀𝐴𝐸 =
ଵ

௡
∑ ห𝑋௜ − 𝑋ప

෡ ห௠
௜ୀଵ   (17) 

Where m is the number of data, 𝑋௜ is the ground 
truth and 𝑋ప

෡  is the predicted values. 

 

 

Table 1. Error Metrics 

MSE RMSE MAE 

0.71323 0.23554 0.34353 

Three popular regression metrics are used to 
assess a predictive model's performance: MSE, 
RMSE, and MAE. The findings are shown in Table 
1. A result of 0.71323 indicates a moderate level of 
prediction error. The MSE calculates the average of 
the squared discrepancies between the actual and 
anticipated values. Since the MSE and target 
variable have the same units, it is typically easier to 
understand. A result of 0.23554 indicates a very 
modest mistake when compared to the magnitude of 
the data. The square root of the MSE is the RMSE. 
A score of 0.34353 indicates that, on average, the 
model's predictions depart from the actual values by 
around 0.34 units. The MAE computes the average 
of the absolute differences between projected and 
actual values. The specific values in this table show 
that the model's predictions are reasonably accurate 
but still show some room for improvement in 
minimizing prediction errors. When these metrics 
are combined, they show how well the model 
performs; a lower RMSE and MAE suggest that the 
model fits the data more well. It is depicted in Figure 
7. 

 

Figure 7. Error Metrics of Proposed Model 

Accuracy is used to evaluate the system model's 
overall performance. Its fundamental tenet is that 
every interaction is predictable. The accuracy is 
provided by (18). 
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   (18) 

Precision describes how comparable two or more 
calculations are to each other in addition to being 
correct. The link between accuracy and precision 
shows how quickly opinions may change. It is 
discussed in (19). 

  (19) 

The percentage of all pertinent discoveries that 
were effectively sorted utilizing the methodologies 
is known as recall. By dividing the genuine positive 
by the mistakenly negative values, the suitable 
positive for these integers may be found. The phrase 
appears in (20). 

   (20) 

The F1-Score computation combines recall and 
accuracy. To determine the F1-Score, apply (21), 
which divides the recall by the accuracy. 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
ଶ×௣௥௘௖௜௦௜௢௡×௥௘௖௔௟௟

௣௥௘௖௜௦௜௢௡ା௥௘௖௔௟௟
  (21) 

Table 2. Comparison of Performance Metrics 

Methods Accurac
y (%) 

Precisio
n (%) 

Recal
l (%) 

F1-
Scor
e (%) 

CNN 85.57 97.12 95.44 98.22 
CNN-
LSTM 

97.65 96.87 97.53 97.87 

RNN-
LSTM 

98.45 95.89 96.67 98.11 

Proposed 
Recursiv
e LSTM-

GWO 

99.11 98.98 98.54 98.67 

A thorough comparison of performance 
measures for several approaches applied to a 
particular task can be found in Table 2 and Figure 8. 
CNN, CNN-LSTM, RNN-LSTM, and the suggested 
Recursive LSTM-GWO are among the techniques. 
The following metrics all presented as percentages 
are looked at: F1-Score, Accuracy, Precision, and 
Recall. With an astounding 99.11% accuracy, 
98.98% precision, 98.54% recall, and an F1-Score of 
98.67%, the suggested Recursive LSTM-GWO 
technique beats the other approaches on all 
parameters, as the table shows. This shows that the 
suggested Recursive LSTM-GWO model is a solid 
contender for the task at hand because it 
demonstrates better prediction skills than the other 
approaches. The table offers insightful information 
about the relative advantages and disadvantages of 
various approaches, which may assist direct choice 
of approach decisions in real-world scenarios. 

 

Figure 8. Comparison of Performance Metrics 

 

5.5. Discussion 
The outcomes demonstrate how effectively the 

suggested approach performs, as it achieves an 
astounding accuracy rate of 99.12%, much 
outperforming other well-known methods like CNN, 
CNN-LSTM, and RNN-LSTM, all of which are used 
using the MATLAB environment. This significant 

increase in accuracy of 5.55% highlights the clear 
superiority of the new method in this of the work at 
hand. These results not only indicate that there is 
room for significant progress in the subject, but they 
also provide strong evidence of the effectiveness of 
the suggested approach, establishing it as a very 
promising and practical means of resolving the 
particular issues at hand. In contrast to existing 
studies in the literature that primarily focus on 
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individual aspects of 5G network optimization, this 
study distinguishes itself by presenting a holistic 
approach that integrates a recursive Long Short-
Term Memory (LSTM) mechanism with Grey Wolf 
Optimization (GWO) for dynamic slicing 
optimization. While some studies employ LSTM for 
temporal dependencies and others utilize 
optimization algorithms like GWO, the synergy of 
these two components in our model enhances both 
adaptability and scalability. The recursive LSTM 
captures intricate temporal dependencies in dynamic 
network conditions, and GWO provides an efficient 
optimization algorithm, reducing reliance on 
theoretical presumptions. This integrative 
methodology offers a more comprehensive solution 
to the challenges of 5G network slicing by 
considering both adaptive learning and efficient 
optimization in tandem. Furthermore, our study 
explicitly addresses the computational complexity of 
the proposed model, recognizing the potential 
limitations in terms of processing power and 
deployment feasibility, providing a nuanced 
perspective in the landscape of 5G optimization 
research. 

The integration of a recursive Long Short-Term 
Memory (LSTM) mechanism with Grey Wolf 
Optimization (GWO) in the proposed dynamic 
slicing optimization for 5G networks addresses 
critical challenges outlined in the research 
objectives. The recursive LSTM's ability to capture 
temporal dependencies enhances adaptability, 
effectively mitigating scalability issues in resource 
allocation. This recursive nature ensures that the 
model dynamically adjusts to changing network 
conditions and varying user demands, providing a 
comprehensive solution to the first research 
objective. Concurrently, the inclusion of GWO 
contributes to the model's robustness by offering an 
efficient and adaptive optimization algorithm. This 
mitigates reliance on theoretical presumptions, 
aligning with the second research objective, as GWO 
explores and exploits the solution space effectively 
without making strong assumptions about 
underlying system dynamics. The collaborative 
power of recursive LSTM and GWO creates a 
balanced computational load, addressing concerns 
related to processing power in deep learning-based 
techniques, which corresponds to the third research 
objective. 

Furthermore, the proposed model establishes a 
safety net for dynamic situations, fulfilling the fourth 
research objective. The recursive LSTM's inherent 
capability to capture temporal dependencies 
provides essential time-averaged metrics, ensuring 
stability in slicing optimization amid unpredictable 
network variations. By learning from historical data 
and adapting to real-time observations, the model 

produces a robust slicing solution capable of 
navigating through unforeseen changes in the 
network environment. Looking forward, the 
potential integration of sophisticated fuzzy logic for 
traffic control and mobility aligns with the fifth 
research objective. Future iterations of the model 
could explore the synergy between fuzzy logic and 
the LSTM-GWO optimization, presenting an 
opportunity for further enhancing adaptability to 
diverse traffic patterns and mobility scenarios. In 
conclusion, the proposed dynamic slicing 
optimization framework effectively addresses key 
challenges, offering a comprehensive and adaptive 
solution for the complex and dynamic nature of 5G 
networks. 

While the integration of a recursive Long Short-
Term Memory (LSTM) mechanism with Grey Wolf 
Optimization (GWO) in dynamic slicing 
optimization for 5G networks presents significant 
advantages, there are inherent limitations to 
consider. The model's advantage lies in its 
adaptability and scalability, effectively addressing 
challenges in resource allocation and reducing 
reliance on theoretical presumptions. However, the 
model's computational complexity, particularly with 
the recursive LSTM and GWO combination, poses a 
limitation. The intricate nature of LSTM networks 
and the optimization power of GWO demand 
substantial computing resources, potentially 
hindering the model's efficiency in real-time 
deployments, especially in resource-constrained 
environments. Additionally, the collaborative nature 
of these components may lead to increased training 
times and heightened demands on processing power, 
impacting the practicality and speed of 
implementation in large-scale 5G networks. As such, 
while the proposed model offers a promising 
approach to dynamic slicing optimization, its 
computational demands should be carefully 
considered in real-world deployment scenarios. 

6. CONCLUSION AND FUTURE WORKS 

The study represents a significant scientific 
contribution to the field of 5G network optimization 
by introducing a novel and holistic approach to 
dynamic slicing optimization. Unlike existing 
studies that often focus on individual aspects of 5G 
network challenges, our work integrates a recursive 
Long Short-Term Memory (LSTM) mechanism with 
Grey Wolf Optimization (GWO), addressing the 
limitations of scalability, adaptability, and reliance 
on theoretical presumptions in a comprehensive 
manner. By synergizing adaptive learning and 
efficient optimization, our model provides a more 
nuanced solution to the complexities of 5G network 
slicing. Furthermore, this study explicitly 
acknowledges the computational complexities 
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associated with the proposed model, contributing to 
a more realistic understanding of its practical 
feasibility in large-scale 5G network deployments. 
The presented work, thus, advances the state of the 
art by offering an integrated and adaptive solution to 
the dynamic challenges posed by modern network 
environments, emphasizing the importance of 
considering both adaptability and efficiency in the 
pursuit of effective 5G network slicing optimization. 
The results of this investigation highlight the 
significant potential of the suggested approach, 
which has proven to perform better than well-known 
methods like CNN, CNN-LSTM, and RNN-LSTM. 
The significant accuracy gain of 5.55% attained 
attests to the effectiveness of this strategy in 
handling the particular task at hand. Future studies 
can focus on improving and enhancing this approach 
going ahead, which might lead to a larger range of 
issue areas where it can be used. Furthermore, the 
knowledge gathered from this research may be used 
to build machine learning algorithms that are more 
reliable and adaptable, which would enhance the 
fields of predictive modelling and data analysis. The 
future of this field of study appears to have bright 
potential. Research might concentrate on examining 
how effectively the suggested approach scales to 
handle bigger and more complicated data sets as well 
as how well it adapts to real-world datasets and 
applications. To improve its performance even 
further, attempts can also be made to look into the 
possibility of adding more hybrid models or 
optimization strategies. In the end, a wide range of 
businesses and applications will profit from the 
ongoing development of cutting-edge machine 
learning approaches, which will surely be crucial in 
tackling changing data analysis issues and pushing 
the frontiers of prediction accuracy in many areas. 
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