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ABSTRACT 
 

Underwater image classification faces substantial challenges due to low visibility, varying light conditions, 
and high noise levels. The complexity of underwater environments, characterized by poor contrast and 
significant distortion, complicates accurate object identification and classification. This research introduces 
EMUBOOST, an optimized ensemble model that integrates EMU Bird Optimization (EO) with AdamBoost 
to address these challenges. EMUBOOST leverages the adaptive capabilities of EO to enhance the robustness 
and efficiency of ensemble learning, improving classification accuracy in underwater environments. The 
study comprehensively evaluates EMUBOOST's performance in handling the unique difficulties underwater 
imagery presents. By demonstrating the superiority of this approach in terms of adaptability and accuracy, 
this research contributes to advancing underwater image analysis with applications in marine biology, 
underwater surveillance, and environmental monitoring. The findings suggest significant potential for 
EMUBOOST to improve the reliability and effectiveness of underwater image classification tasks. 
Keywords:  Underwater Image Classification - Ensemble Methods - EMUBOOST - AdamBoost - EMU Bird 

Optimization - Model Optimization - Image Analysis - Classification Accuracy 
 
1. INTRODUCTION  

 
Images are digital representations of visual 

information, capturing scenes or objects in a format 
that can be stored, processed, and analyzed. In 
underwater environments, capturing high-quality 
images is particularly difficult [1]. Water absorbs 
and scatters light differently than air, leading to color 
distortion and reduced visibility. To address these 
challenges, specialized underwater cameras and 
imaging techniques are employed to capture clear 
and accurate images of underwater scenes [2]. Image 
identification refers to detecting and recognizing 
objects or features within an image. This involves 
using algorithms to analyze visual data and identify 
patterns corresponding to specific objects or 
categories [3]. Underwater image identification is 
particularly challenging due to the unique 
characteristics of the underwater environment. 
Factors such as varying light conditions, water 
turbidity, and the presence of marine organisms can 
complicate the identification process [4]. Advanced 
image processing techniques, including color 
correction, deblurring, and noise reduction, are often 

necessary to improve the quality of underwater 
images before identification can be performed [5]. 

 
Image classification involves categorizing images 

into predefined classes based on their content. This 
process requires extracting relevant features from 
images and using these features to train machine 
learning models. In underwater settings, image 
classification faces additional challenges [6]. The 
diversity of marine life, underwater structures, and 
environmental conditions require robust and 
adaptable classification algorithms. Convolutional 
neural networks (CNNs) have proven effective in 
this field, providing accurate classification results 
even in challenging underwater conditions [7]. 
Underwater images require special consideration due 
to the unique properties of water. Light behaves 
differently underwater, leading to color changes, 
decreased contrast, and increased blurriness [8]. 
These factors necessitate preprocessing steps to 
enhance image quality. Techniques such as 
histogram equalization, contrast stretching, and 
dehazing are commonly used to improve underwater 



 Journal of Theoretical and Applied Information Technology 
15th October 2024. Vol.102. No. 19 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
6931 

 

images. Once enhanced, these images can be used for 
more accurate identification and classification [9]. 

 
Underwater image identification involves 

recognizing various objects and features within 
underwater scenes. This includes identifying 
different fish species, detecting underwater 
structures like coral reefs, and monitoring changes in 
the underwater environment [10]. Accurate 
identification is crucial for marine biology research, 
underwater archaeology, and environmental 
monitoring [11]. Advanced image processing and 
machine learning techniques are essential for 
overcoming the challenges posed by the underwater 
environment and achieving reliable identification 
results [12]. Underwater image classification focuses 
on categorizing underwater images into specific 
classes. This can include identifying different types 
of marine species, categorizing underwater 
landscapes, or classifying objects found on the ocean 
floor [13]. Creating accurate classification models 
requires comprehensive training datasets 
representing the diversity of underwater scenes. 
Deep learning models, particularly CNNs, are 
trained on these datasets to develop the ability to 
classify new underwater images accurately. These 
classifications are vital for scientific research, 
conservation, and underwater exploration [14]. 

 
The unique challenges of underwater 

environments require specialized approaches for 
image identification and classification [15]. 
Advances in image processing and machine learning 
have significantly improved the ability to handle 
underwater images, leading to more accurate and 
reliable results. Researchers and engineers are 
developing innovative solutions to enhance 
underwater image identification and classification by 
addressing the specific difficulties associated with 
underwater imaging. These advancements are 
essential for expanding the capabilities of 
underwater research, conservation, and exploration 
[16]. 

 
1.1. Problem Statement  

Underwater image classification presents unique 
and significant challenges. The underwater 
environment is inherently complex, characterized by 
poor visibility, varying light conditions, and 
particulate matter. These conditions result in images 
with low contrast, high noise levels, and significant 
distortion, complicating the accurate identification 
and classification of objects. Traditional image 
processing techniques often fail to cope with these 
complexities, leading to suboptimal performance in 

underwater image analysis tasks. A critical issue is 
the difficulty in distinguishing between similar 
objects due to the uniform and often monochromatic 
backgrounds found in underwater scenes. The 
variability in water conditions, such as turbidity and 
varying depths, further exacerbates the challenge, 
making it hard for conventional algorithms to 
maintain high accuracy and consistency. Marine 
snow, consisting of tiny particles suspended in the 
water, can obscure important features of the 
classified objects. 
 

Another significant problem is the computational 
inefficiency of processing large volumes of 
underwater image data. The high-dimensional nature 
of image data, combined with the need for real-time 
processing in many applications, requires accurate 
and efficient methods. Addressing these challenges 
requires the development of robust and optimized 
ensemble models that can effectively handle the 
unique characteristics of underwater imagery, 
ensuring improved classification performance and 
reliability. 

 
2. LITERATURE REVIEW 

 
“Perceptual Contrast” [17] introduces a 

transformer-based network to enhance the 
perceptual quality of underwater images through 
contrastive learning. This network leverages 
transformer architecture to effectively enhance 
image contrast, addressing common underwater 
imaging issues like color distortion and haziness. 
"MSLEFC" [18] presents a system for classifying 
and analyzing low-frequency underwater acoustic 
signals. The system employs advanced signal 
processing techniques to focus on low-frequency 
components, improving the accuracy and efficiency 
of underwater acoustic signal analysis. “False Alarm 
Suppression” [19] explores methods to reduce false 
alarms in passive underwater acoustic target 
detection. The approach integrates computer vision 
techniques with acoustic signal processing to 
enhance the reliability of target detection systems. 

 
"YWnet" [20] introduces YWnet, a deep learning 

method that employs convolutional block attention-
based fusion for detecting small targets in complex 
underwater environments. This method enhances 
detection accuracy by focusing on critical image 
regions and fusing multi-scale features. “Real-time 
AUV Detection” [21] details a deep learning 
approach for real-time underwater target detection 
using side scan sonar images. This method is tailored 
for Autonomous Underwater Vehicles (AUVs), 
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improving their ability to detect targets efficiently 
and accurately underwater. “Underwater Crack 
Identification” [22] introduces a method for 
identifying and quantifying cracks in dams using 
lightweight semantic segmentation and transfer 
learning. This approach ensures precise pixel-wise 
detection of cracks, contributing to the maintenance 
and safety of underwater structures. "DP-FishNet" 
[23] presents DP-FishNet, a detection network that 
uses Dual-path Pyramid Vision Transformers for 
underwater fish detection. The network combines 
pyramid vision transformers with a dual-path 
architecture to enhance detection accuracy in 
underwater environments. 

 
"Arctic Sea-Ice" [24] describes a remotely 

operated vehicle-mounted underwater hyperspectral 
imager for characterizing summer Arctic sea-ice 
habitats. This method provides detailed biophysical 
data, enhancing the understanding Arctic marine 
ecosystems. "Semantic Segmentation for SLAM" 
[25] introduces a framework for underwater acoustic 
image transmission using semantic segmentation 
aimed at cooperative Simultaneous Localization and 
Mapping (SLAM). This method improves the 
accuracy and efficiency of SLAM in underwater 
environments. "River Crab Detection" [26] presents 
a real-time method for detecting river crabs using 
multi-scale pyramid fusion image enhancement and 
the MobileCenterNet model. This approach 
enhances image quality and detection accuracy, 
facilitating effective monitoring of river crabs. 
"PILLO Algorithm" [27] introduces the PILLO 
algorithm, which uses plant intelligence-inspired 
techniques for underwater target detection. This 
algorithm enhances detection capabilities by 
mimicking plant intelligence strategies. 

 
"Proximity-driven RNN" [28] details a method 

for improving underwater target localization using 
proximity-driven recurrent neural networks (RNNs). 
This approach leverages spatial proximity 
information to enhance localization accuracy. "Coral 
Reef Fish Detection” [29] presents an image 
enhancement method for detecting coral reef fish in 
underwater videos. The technique improves image 
quality, facilitating accurate detection and 
monitoring of coral reef fish 
populations.“Manganese Nodule Imaging" [30] 
presents a dataset of high-quality optical images of 
the manganese-nodule-covered seafloor in the 
Clarion-Clipperton Zone. These images are prepared 
for detailed analysis, aiding research and exploration 
of mineral resources. The dataset offers valuable 
visual information, processed to be immediately 

usable for scientific and industrial applications, 
promoting better understanding and exploration of 
the seafloor's mineral wealth. "Cascade DetNet 
Grasping Robot" [31] introduces a multi-stage 
Cascade DetNet framework for an autonomous 
underwater grasping robot. This system enhances the 
robot's ability to detect, approach, and rapidly grasp 
underwater objects. By employing a cascade 
structure in DetNet, the robot achieves robust object 
detection and manipulation, which is critical for 
underwater maintenance, recovery operations, and 
scientific sampling tasks. 

 
“Fuzzy-Based AUV Guidance” [32] is a fuzzy-

based visual guidance system for Autonomous 
Underwater Vehicles (AUVs). This system utilizes 
fuzzy logic to enhance the identification and tracking 
of underwater target objects. By integrating visual 
intelligence and fuzzy logic, the AUV can navigate 
complex underwater environments more effectively, 
improving its operational efficiency and target-
tracking capabilities. “Optimized ResNet” [33] 
discusses an optimized version of the ResNet 
convolutional neural network model tailored for 
underwater object detection and classification. This 
optimized ResNet model improves the accuracy and 
efficiency of detecting and classifying objects in 
underwater environments by refining the network's 
architecture and training process, making it more 
suitable for the challenges posed by underwater 
imagery. Bio-inspired Optimization Algorithms 
[34]-[56] becomes mandatory in different fields to 
attain the best results  

 
"DeepSeaNet" [57] describes a specialized bio-

detection network for identifying species in deep-sea 
imagery. This network utilizes advanced deep-
learning techniques to analyze and classify images 
from the deep sea, ensuring precise species 
identification even in challenging underwater 
conditions. “MCANet” [58] introduces a multi-
channel attention network combined with a multi-
colour space encoder. This system improves 
underwater image classification by utilizing various 
color space information and focusing on critical 
regions of the images, effectively addressing 
challenges such as color distortion and low visibility. 
 
2.1. Intention and Goal 

Underwater environments pose significant 
challenges for image classification due to low 
visibility, varying light conditions, and noise. 
Traditional classification algorithms often struggle 
to achieve high accuracy under these conditions. 
This study is motivated by the need to develop more 
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robust and efficient underwater image identification 
and classification methods. The primary objective is 
to enhance the performance of ensemble methods by 
integrating EMU Bird Optimization (EO) with 
AdamBoost, resulting in the novel EMUBOOST 
algorithm. This research aims to address the 
limitations of existing methods, such as DeepSeaNet 
and MCANet, by improving the adaptability and 
accuracy of the classification process. By leveraging 
the strengths of EO, which mimics emus' social and 
foraging behaviors, the study seeks to optimize the 
ensemble learning framework to handle underwater 
imagery's complexities better. 

The goal is to provide a comprehensive 
evaluation of EMUBOOST's performance compared 
to other leading methods and to demonstrate its 
superiority in tackling the unique challenges 
underwater environments present. This research 
aspires to contribute to the advancement of 
underwater image analysis, offering a powerful tool 
for applications in marine biology, underwater 
surveillance, and environmental monitoring. 
 
3. ROBUST UNDERWATER IMAGE 

CLASSIFICATION (EMUBOOST)  
 
An image represents an object, scene, or 

phenomenon captured by a camera sensor or 
generated digitally. It consists of pixels, each 
representing a tiny portion of the overall image and 
holding information about the colour, intensity, and 
sometimes depth. Image processing involves 
manipulating various techniques to enhance quality, 
extract useful information, or prepare them for 
analysis. It encompasses filtering, edge detection, 
noise reduction, and image restoration. Image 
classification is a task in computer vision where 
algorithms categorize images into predefined classes 
or categories based on their visual content. This 
process typically involves training a machine 
learning model on a labelled dataset to learn the 
features and patterns associated with each class. 
 

Underwater image identification and 
classification involve applying image processing and 
classification techniques to underwater images. Due 
to challenges such as poor lighting, distortion, and 
color degradation, underwater images require 
specialized analysis methods. Techniques like color 
correction, contrast enhancement, and noise 
reduction are often used to preprocess underwater 
images before classification. Underwater image 
classification may involve recognizing specific 
underwater objects or organisms, such as coral reefs, 
fish species, or underwater structures. This task 

requires training machine learning models on 
underwater image datasets containing labelled 
examples of different classes of objects or 
organisms. The trained models can then 
automatically identify and classify objects in new 
underwater images, aiding in marine biology 
research, underwater exploration, and environmental 
monitoring. Fig 1. illustrates the unprocessed 
underwater images. 
 

 
Fig 1. Unprocessed Underwater Images 

 
3.1. Adam Boost 

Ensemble methods are a powerful technique in 
machine learning where multiple models are 
combined to improve predictive performance. By 
aggregating the predictions of individual models, 
ensemble methods can often achieve better results 
than any single model alone. One popular ensemble 
method is boosting, which aims to sequentially train 
weak learners and focus on the instances that 
previous models misclassify. On the other hand, 
Adam (Adaptive Moment Estimation) is an 
optimization algorithm commonly used to train deep 
learning models. It combines the advantages of both 
AdaGrad and RMSProp by maintaining per-
parameter learning rates and exponentially decaying 
average of past gradients. When Adam is applied to 
boosting algorithms, it enhances the performance of 
ensemble methods, resulting in a more robust and 
accurate model known as AdamBoost. AdamBoost 
can be defined as an improved ensemble method that 
incorporates the Adam optimization algorithm into 
the boosting process. Unlike traditional boosting 
algorithms like AdaBoost, which rely on simple 
heuristics to update the weights of misclassified 
instances, AdamBoost leverages Adam's adaptive 
learning rate and momentum features to optimize the 
model parameters more efficiently. By adapting the 
learning rates for each parameter individually and 
incorporating momentum to accelerate convergence, 
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AdamBoost can overcome some of the limitations of 
traditional boosting algorithms and achieve faster 
training and better generalization performance. The 
implementation of AdamBoost involves the 
following steps: 

 Initialize the weights of training instances: 
Assign equal weights to all training 
instances initially. 

 Train a base learner: Use a weak learner to 
fit the training data and make predictions. 
The weak learner could be a decision tree, 
logistic regression, or a simple model. 

 Error Computation: Calculate the error of 
the weak learner by comparing its 
predictions with the true labels of the 
training instances. 

 Instance Weights Updation: Adjust the 
weights of the training instances based on 
their error rates. Misclassified instances are 
assigned higher weights to focus the 
attention of subsequent models on them. 

 Model Weight Computation: Calculate the 
weight of the weak learner based on its 
performance. Models with lower error rates 
are given higher weights to influence the 
final ensemble more. 

 The Ensemble Predictions Updation: 
Combine the predictions of all weak 
learners using weighted averaging to 
produce the ensemble prediction. 

 Model Parameters Updation: Use the Adam 
optimization algorithm to update the 
parameters of the weak learner, taking into 
account the error of the current model and 
the momentum from previous iterations. 

 Repeat steps 2-7: Iterate the process by 
training additional weak learners 
sequentially. Each subsequent weak learner 
focuses on the instances still misclassified 
by the current ensemble. 

 
Incorporating Adam into the boosting process, 

AdamBoost can effectively adapt the learning rates 
of individual parameters and accelerate 
convergence, leading to faster training and improved 
generalization performance. AdamBoost is less 
prone to overfitting than traditional boosting 
algorithms, thanks to its ability to regularize the 
model parameters through Adam's adaptive learning 
rates and momentum features. 
 
3.1.1. Adam Boost Initialisation 

It begins with the crucial task of initializing the 
weights of the training instances. This step lays the 
foundation for subsequent iterations, setting the 

stage for the boosting algorithm to iteratively 
improve its performance by focusing on more 
challenging instances to classify accurately. The 
initialization of these weights is fundamental to the 
overall optimization process. It significantly 
determines the direction and magnitude of updates 
applied to the model parameters in subsequent 
iterations. 
 

The initialization of the weights of training 
instances in AdamBoost, let 𝑊 represent the vector 
of weights assigned to each training instance 𝑖, 
where 𝑖 = 1,2, . . . , 𝑁 and 𝑁 is the total number of 
training instances. The vector 𝑊 is initialized such 
that the sum of all weights equals unity, ensuring that 
the boosting algorithm starts with a normalized 
weight distribution across the training data, which 
can be expressed as Eq.(1). 

෍ 𝑊௜ = 1
ே

௜ୀଵ
 (1) 

where 𝑊𝑖 denotes the weight assigned to the 𝑖𝑡ℎ 
training instance. 
 

The weights are typically initialized equally 
among all training instances, ensuring that each 
instance initially carries the same importance in 
influencing the training process; this can be 
represented mathematically in Eq.(2). 

𝑊௜ =
1

𝑁
, ∀௜ (2) 

where 
1

𝑁
  represents the equal weight assigned to 

each training instance. 
 

The alternative weight initialization strategies 
may prioritize certain instances or address class 
imbalances within the training data. The weights of 
instances belonging to these classes may be 
increased to give them more influence during 
training. This adjustment can be mathematically 
formulated as Eq.(3). 

𝑊௜ =
1

𝑁
, 𝑖𝑓 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 𝑖 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝑐𝑙𝑎𝑠𝑠 𝑐 (3) 

where 𝑁௖  denotes the number of instances belonging 
to class c. 
 

Specialized weight initialization schemes such as 
stratified sampling or bootstrapping may be used to 
ensure a more balanced representation of classes in 
the initial weight distribution. These strategies aim 
to mitigate biases introduced by class imbalances 
and enhance the robustness of the boosting algorithm 
to different data distributions. 
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3.1.2. Train a base learner 
This phase forms the foundation of the boosting 

process, as it involves fitting a simple model to the 
data and making initial predictions. The base learner 
serves as the weak component of the ensemble, 
aiming to capture the underlying patterns in the data 
while being simple enough to avoid overfitting. The 
training of the base learner involves optimizing its 
parameters to minimize a predefined loss function, 
typically chosen to reflect the performance metrics 
of interest. Let 𝑓௠(𝑥) represent the prediction made 
by the 𝑚𝑡ℎ base learner for input 𝑥, where 𝑚 =
1.2 … . 𝑀 and 𝑀 is the total number of base learners 
in the ensemble. The training of the base learner 
involves finding the optimal parameters 𝜃௠ that 
minimize the loss function 𝐿 over the weighted 
training data. This can be expressed as Eq.(4). 

𝜃௠
∗

= arg 𝑚𝑖𝑛ఏ೘
෍ 𝑊௜

(௠)
𝐿൫𝑦௜ , 𝑓௠(𝑥௜; 𝜃௠)൯

ே

௜ୀଵ
 

(4) 

where 𝜃𝑚
∗  represents the optimal parameters of the 

𝑚𝑡ℎ base learner, 𝑊௜
(௠) denotes the weight of 

training instance 𝑖 at iteration 𝑚, 𝑦௜ is the true label 
of instance 𝑖, and 𝑓௠(𝑥௜ ; 𝜃௠) is the prediction made 
by the 𝑚𝑡ℎ base learner, for instance, 𝑖 with 
parameters 𝜃௠. 
The loss function 𝐿 quantifies the discrepancy 
between the predictions of the base learner and the 
true labels of the training instances. Common 
choices for the loss function include the mean 
squared error (MSE) for regression tasks and the 
cross-entropy loss for classification tasks. The 
selection of an appropriate loss function depends on 
the nature of the prediction problem and the desired 
properties of the model. 
 

To optimize the parameters 𝜃௠ various 
optimization algorithms may be employed for the 
base learner, such as gradient descent or its variants. 
These algorithms iteratively update the parameters 
in the direction that minimizes the loss function, 
guided by the gradients of the loss function 
concerning the parameters. The parameter update 
rule can be mathematically expressed in Eq.(5). 

𝜃௠
(௧ାଵ)

= 𝜃௠
(௧)

− 𝜂∇ఏ೘
෍ 𝑊௜

(௠)
𝐿൫𝑦௜ , 𝑓௠(𝑥௜; 𝜃௠)൯

ே

௜ୀଵ
 

(5) 

where 𝜂 denotes the learning rate, ∇𝜃𝑚
 represents the 

gradient for the parameters 𝜃௠, and 𝑡 denotes the iteration 
index of the optimization algorithm. 
 

The base learner is typically chosen as a simple 
model with low complexity, such as a decision 
stump or a shallow decision tree. These models are 
computationally efficient and less prone to 

overfitting, making them well-suited for the boosting 
framework. AdamBoost can iteratively improve its 
predictive performance and adapt to the underlying 
data distribution by training multiple base learners 
sequentially on the weighted training data. 
 

Training the base learner in AdamBoost involves 
optimizing its parameters to minimize a predefined 
loss function over the weighted training data.  The 
base learner serves as the building block of the 
boosting ensemble, laying the groundwork for 
subsequent iterations of the boosting algorithm by 
fitting simple models to the data and making initial 
predictions. Through this iterative process, 
AdamBoost can effectively learn the underlying 
patterns in the data and improve its predictive 
performance over multiple iterations. 
 
3.1.3. Error Computation 

Assessing the performance of the base learner 
and determining its contribution to the ensemble. 
The error computation involves comparing the base 
learner's predictions with the training instances' true 
labels and quantifying the discrepancy between them 
using an appropriate error metric. Let 𝜖௠denote the 
error of the 𝑚𝑡ℎ base learner, which represents the 
overall misclassification rate or prediction error of 
the base learner on the weighted training data. The 
error 𝜖௠ can be mathematically represented in 
Eq.(6). 

𝜖௠ =
∑ 𝑊௜

(௠)
𝐼൫𝑦௜ ≠ 𝑓௠(𝑥௜)൯ே

௜ୀଵ

∑ 𝑊
௜

(௠)ே
௜ୀଵ

 (6) 

where 𝐼(⋅) is the indicator function that evaluates to 
1 if the condition inside the parentheses is true and 0 
otherwise, 𝑦௜   is the true label of instance 𝑖, 𝑓௠(𝑥௜)is 
the prediction made by the 𝑚𝑡ℎ base learner for 

instance 𝑖, and 𝑊௜
(௠)is the weight of instance 𝑖 at 

iteration 𝑚. 
 

The error 𝜖௠ reflects the weighted average of 
misclassification rates across all training instances, 
with higher weights assigned to cases that are more 
challenging to classify accurately. By considering 
the weighted misclassification rates, AdamBoost can 
effectively assess the performance of the base 
learner while accounting for the varying importance 
of different training instances. 
 

The error computation serves as a key criterion 
for evaluating the effectiveness of the base learner 
and determining its contribution to the ensemble. 
Base learners with lower error rates are given higher 
weights in the ensemble, as they are considered more 
reliable and contribute more to the overall predictive 
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performance. Conversely, base learners with higher 
error rates may be downweighted or discarded in 
subsequent iterations to prevent them from 
negatively impacting the ensemble's performance.  
 
3.1.4. Instance Weight Updation   

After computing the error of the base learner in 
AdamBoost, the subsequent step involves updating 
the instance weights based on their misclassification 
rates. This step is crucial in directing the focus of the 
boosting algorithm towards the instances that are 
more challenging to classify accurately, thereby 
facilitating the iterative improvement of the 
ensemble's performance. 
 

Let 𝑊௜
(௠)denote the weight of the 𝑖𝑡ℎ  training 

instance at iteration 𝑚, where 𝑖 = 1,2, . . . , 𝑁 and 𝑁 
is the total number of training instances. The update 
of the instance weights is performed using a weight 
adjustment factor that reflects the misclassification 
rate of each instance by the 𝑚𝑡ℎ base learner. The 

updated instance weights 𝑊௜
(௠ାଵ)  can be expressed 

mathematically in Eq.(7). 

𝑊௜
(௠ାଵ)

= 𝑊௜
(௠)

. 𝑒ିఈ೘.௬೔.௙೘(௫೔) (7) 

where 𝑎௠ is the weight assigned to the 𝑚𝑡ℎ base 
learner in the ensemble, 𝑦௜  is the true label of 
instance 𝑖, and 𝑓௠(𝑥௜) is the prediction made by the 
𝑚𝑡ℎ base learner for instance 𝑖. The term 𝑦௜ . 𝑓௠(𝑥௜) 
evaluates to -1 if the prediction is incorrect 
(misclassified instance) and 1 if the prediction is 
correct. Thus, the weight adjustment factor 
decreases the weights of misclassified instances and 
increases the weights of correctly classified 
instances, thereby focusing the attention of 
subsequent base learners on the more challenging 
instances to classify accurately. 
 

To ensure that the updated instance weights 
remain normalized and sum up to unity, they are 
typically normalized after the weight adjustment. 
The normalization of the updated instance weights 
can be represented as Eq.(8). 

𝑊௜
(௠ାଵ)

=
𝑊௜

(௠ାଵ)

∑ 𝑊
௝

(௠ାଵ)ே
௝ୀଵ

 (8) 

where ∑ 𝑊𝑗
(𝑚+1)𝑁

𝑗=1  denotes the sum of the updated 
instance weights after normalization. The weight 
adjustment process effectively assigns higher 
weights to instances misclassified by the current 
base learner, prioritizing them in subsequent 
iterations of the boosting algorithm. This adaptive 
weight updating scheme enables AdamBoost to 
focus on more challenging instances to classify 

accurately, facilitating the iterative improvement of 
the ensemble's performance over multiple iterations. 
 

The weight adjustment factor 𝑒−𝛼𝑚.𝑦𝑖.𝑓𝑚
(𝑥𝑖) 

incorporates the influence of the base learner's 
performance (represented by 𝛼௠) on the instance 
weights, ensuring that instances misclassified by 
more influential base learners receive more 
extensive weight adjustments. This adaptive 
weighting scheme enables AdamBoost to adaptively 
adjust the instance weights based on the relative 
performance of the base learners, thereby improving 
the robustness and generalization performance of the 
ensemble. 
 
3.1.5. Model Weight Computation 

After updating the instance weights in 
AdamBoost, the subsequent step involves 
computing the model weight for the base learner that 
was just trained. This step is crucial in determining 
the contribution of the base learner to the ensemble's 
final prediction. The model weight reflects the 
performance of the base learner relative to other base 
learners in the ensemble and influences its influence 
on the final ensemble prediction. 
 

Let 𝛼௠ denote the model weight assigned to the 
𝑚𝑡ℎ base learner in the ensemble, where 𝑚 =
1,2, … , 𝑀and 𝑀 is the total number of base learners. 
The model weight is computed based on the error of 
the base learner, which quantifies its 
misclassification rate on the weighted training data. 
The model weight 𝛼௠can be expressed as Eq.(9). 

𝛼௠ =
1

2
1𝑛 ൬

1 − 𝜖௠

𝜖௠

൰ (9) 

where 𝜖௠denotes the error of the 𝑚𝑡ℎ base learner 
calculated in the previous step. The error 𝜖௠  It 
represents the base learner's misclassification rate 
based on the weighted training data and reflects its 
performance relative to that of other base learners in 
the ensemble. 
 

The computation of the model weight involves 
taking the natural logarithm of the ratio of the base 
learner's error to the complement of its error. This 
ratio reflects the relative performance of the base 
learner compared to a random guess. By taking the 

logarithm of this ratio and scaling it by 
ଵ

ଶ
, the model 

weight is transformed into a form that ranges from 
negative to positive values, indicating the 
contribution of the base learner to the ensemble's 
prediction. 
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The model weight 𝛼௠  is inversely proportional 
to the error of the base learner 𝜖௠ . Base learners 
with lower errors are assigned higher model weights, 
indicating their greater influence on the final 
ensemble prediction. Conversely, base learners with 
higher errors are assigned lower model weights, as 
they contribute less to the ensemble's predictive 
performance. 

 
3.1.6. The Ensemble Predictions Updation 

This phase involves updating the ensemble 
predictions based on the predictions of the newly 
trained base learner. This step plays a crucial role in 
integrating the predictions of individual base 
learners into the ensemble and refining the 
ensemble's final prediction.  Let 𝐹(𝑥) denote the 
ensemble prediction function, which combines the 
predictions of all base learners in the ensemble. The 
update of the ensemble predictions involves adding 
the prediction made by the newly trained base 
learner, weighted by its model weight, to the current 
ensemble prediction. The updated ensemble 
prediction function 𝐹(௠)(𝑥) at iteration 𝑚 can be 
expressed as Eq.(10). 

𝐹(௠)(𝑥) = 𝐹(௠ିଵ)(𝑥) + 𝛼௠. 𝑓௠(𝑥) (10) 

where 𝐹(௠ିଵ)(𝑥) represents the ensemble prediction 
function at the previous iteration, 𝛼௠is the model 
weight assigned to the 𝑚𝑡ℎ base learner and 𝑓௠(𝑥) 
is the prediction made by the 𝑚𝑡ℎ base learner for 
input 𝑥. The model weight 𝛼௠ reflects the influence 
of the 𝑚𝑡ℎ base learner on the ensemble’s final 
prediction while 𝑓௠(𝑥) represents the contribution of 
the 𝑚𝑡ℎ base learner to the ensemble’s prediction for 
input 𝑥. 
 

The update of the ensemble predictions involves 
combining the predictions of all base learners in the 
ensemble using weighted averaging. Base learners 
with higher model weights contribute more to the 
ensemble prediction, while base learners with lower 
model weights have a smaller influence. By updating 
the ensemble predictions in this manner, AdamBoost 
effectively integrates the predictions of individual 
base learners into the ensemble and leverages their 
collective knowledge to improve the ensemble's 
predictive performance. 
 
3.1.7. Model Parameters Updation 

The step involves updating the model parameters 
of the base learner trained in the current iteration. 
This step is crucial in refining the base learner's 
predictive capabilities and improving its 
performance on the training data. Let 𝜃௠denote the 

parameters of the 𝑚𝑡ℎ  base learner, where 𝑚 =
1,2, … , 𝑀 and 𝑀 is the total number of base learners. 
The update of the model parameters involves 
optimizing the parameters 𝜃௠ to minimize a 
predefined loss function over the weighted training 

data. The updated model parameters 𝜃௠
(௧ାଵ) at 

iteration 𝑡 + 1 can be expressed as Eq.(11). 

𝜃௠
(௧ାଵ)

= 

𝜃௠
(௧)

− 𝜂∇ఏ೘
෍ 𝑊௜

(௠)
𝐿൫𝑦௜ , 𝑓௠(𝑥௜; 𝜃௠)൯

ே

௜ୀଵ
 

(11) 

where 𝜂 denotes the learning rate, ∇𝜃𝑚
represents the 

gradient with respect to the parameters 𝜃௠, 𝐿 is the 
loss function, 𝑦௜  is the true label of instance 𝑖, and 
𝑓௠(𝑥𝑖; 𝜃𝑚) is the prediction made by the 𝑚𝑡 base 
learner for instance 𝑖 with parameters 𝜃𝑚.The 

weights 𝑊௜
(௠) reflect the importance of each training 

instance in influencing the parameter updates, with 
higher weights assigned to more challenging 
instances to classify accurately. 
 

The parameter update rule involves computing 
the gradient of the loss function with respect to the 
parameters 𝜃௠ and adjust the parameters in a 
direction that minimizes the loss. The learning rate 𝜂 
controls the step size of the parameter updates and 
influences the convergence behavior of the 
optimization algorithm. AdamBoost effectively 
refines the base learner's predictive capabilities and 
improves its performance on the training data by 
iteratively updating the model parameters using 
gradient descent or its variants. 
 
3.1.8. Repeat Steps 2-7 

The final step involves repeating steps 2-7 of the 
algorithm to train additional base learners and 
improve the ensemble's predictive performance. 
This iterative process continues until a predefined 
stopping criterion is met, such as reaching a 
maximum number of iterations or achieving 
satisfactory performance on the validation data. 
 

Let 𝑚 denote the iteration index, where 𝑚 =
1,2, . . . , 𝑀 and 𝑀 is the total number of base learners 
in the ensemble. The repetition of steps 2-7 involves 
training a new base learner in each iteration and 
updating the ensemble predictions based on the 
predictions of the newly trained base learner. The 
repetition of these steps allows AdamBoost to 
iteratively refine the ensemble's predictions and 
improve its performance over multiple iterations. 
Each iteration involves training a new base learner 
on the weighted training data, updating the instance 
weights based on the misclassification rates, 
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computing the model weight of the base learner, 
updating the ensemble predictions, and updating the 
model parameters of the base learner. AdamBoost 
adapts to the underlying data distribution through 
this iterative process and learns to make more 
accurate predictions over time. The repetition of 
steps 2-7 incorporates the adaptive weighting 
scheme of AdamBoost, which assigns higher model 
weights to more accurate base learners and adjusts 
the instance weights based on their misclassification 
rates. This adaptive weighting scheme enables 
AdamBoost to prioritize reliable base learners in the 
ensemble and improve the overall predictive 
performance of the ensemble over multiple 
iterations. 
 
3.2. EMU Bird Optimization (EO) 

EMU Bird Optimization (EO) is a metaheuristic 
optimization algorithm inspired by the foraging 
behavior of EMU birds. It mimics EMU birds' social 
interactions and foraging strategies to explore and 
exploit search spaces in optimization problems 
efficiently. EO operates by iteratively updating a 
population of candidate solutions, known as EMU 
agents, to improve the objective function value 
iteratively. To optimize the AdamBoost model using 
EO, we will follow the steps outlined below, 
ensuring that they align with the functionalities of 
AdamBoost and the characteristics of EMU birds. 
 
3.2.1. EMU Agents Initialization 

In the optimization process of EMUBOOST, the 
first step involves initializing EMU agents, which 
represent candidate solutions in the optimization 
search space. Each EMU agent corresponds to a set 
of parameters defining the ensemble of base learners 
and their associated weights in the AdamBoost 
model. Let 𝑁 denote the total number of EMU agents 
in the population, and 𝐷 denote the dimensionality 
of the parameter space representing the AdamBoost 
model. The initialization of EMU agents can be 
mathematically expressed as Eq.(12). 

𝐸 = {𝑒ଵ, 𝑒ଶ, . . , 𝑒ே} (12) 

where 𝐸 represents the population of EMU agents 
and 𝑒௜ represents the 𝑖𝑡ℎ EMU agent. Each EMU 
agent 𝑒௜ is a 𝐷-dimensional vector representing the 
parameters of the AdamBoost model. 
 

The initialization of EMU agents is typically 
performed randomly within the feasible region of the 
parameter space. The feasible region ensures that the 
initialized parameters are within reasonable bounds 
and adhere to any constraints imposed by the 
AdamBoost model. The initialization of EMU agents 

involves generating random values for each 
parameter 𝑑 in the 𝐷-dimensional parameter vector 
𝑒௜. Let 𝐿𝐵ௗ and 𝑈𝐵ௗ denote the lower and upper 
bounds of the feasible region for parameter 𝑑, 
respectively. The initialization of each parameter 𝑑 
can be expressed as Eq.(13). 

𝑒௜,ௗ = 𝐿𝐵ௗ + (𝑈𝐵ௗ − 𝐿𝐵ௗ). 𝑟𝑎𝑛𝑑(0,1) (13) 

where 𝑒𝑖,𝑑 represents the 𝑑𝑡ℎ parameter of the EMU 
agent 𝑒௜ , and rand(0,1) generates a random value 
between 0 and 1. The initialization process ensures 
that the EMU agents explore a diverse range of 
parameter configurations within the feasible region 
of the parameter space. This diversity facilitates a 
comprehensive search space exploration and 
increases the likelihood of finding high-quality 
solutions to the optimization problem. The 
initialization of EMU agents sets the foundation for 
the subsequent optimization process, providing a 
starting point for the iterative improvement of the 
AdamBoost model using EMU Bird Optimization 
(EO). By initializing EMU agents with diverse 
parameter configurations, EMUBOOST can 
effectively explore the search space and identify 
promising regions for further optimization. 
 
3.2.2. Evaluate Objective Function 

The next step involves evaluating the objective 
function for each EMU agent. The objective function 
represents the performance of the AdamBoost model 
corresponding to the parameters encoded by each 
EMU agent. The objective function is typically 
based on the model's performance metrics, such as 
accuracy, precision, recall, or F1-score, computed on 
a validation set of underwater images. Let 𝐸 denote 
the population of EMU agents, 𝑁 denote the total 
number of EMU agents in the population, and 𝐹 
denote the objective function representing the 
performance of the AdamBoost model. The 
evaluation of the objective function for each EMU 
agent 𝑒௜ can be mathematically expressed as Eq.(14). 

𝐹(𝑒௜) = 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑀𝑒𝑡𝑟𝑖𝑐 (14) 

where 𝐹(𝑒௜) represents the objective function value 
corresponding to the EMU agent 𝑒𝑖, and  
Performance Metric denotes the performance metric 
computed on the validation set of underwater images 
using the AdamBoost model parameters encoded by 
𝑒𝑖. 
 

The performance metric can vary depending on 
the specific task and evaluation criteria. For instance, 
standard performance metrics in underwater image 
identification and classification tasks include 
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accuracy, precision, recall, and F1-score. These 
metrics quantify different aspects of the model's 
performance, such as correctly classifying 
underwater images, detecting relevant objects or 
organisms, and minimising false positives and 
negatives. 

The performance metric can be expressed using 
appropriate equations specific to the chosen 
evaluation criteria. Accuracy (𝐴𝑐𝑐) is calculated as 
the ratio of correctly classified instances (𝑇𝑃 + 𝑇𝑁) 
to the total number of instances (𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 +
𝐹𝑁). 

𝐴𝑐𝑐 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (15) 

where in Eq.(15), 𝑇𝑃 denotes true positives, 𝑇𝑁 
denotes true negatives, 𝐹𝑃 denotes false positives, 
and 𝐹𝑁 denotes false negatives. Similarly, precision 
(𝑃𝑟𝑒𝑐), recall (𝑅𝑒𝑐), and F1-score (𝐹1) can be 
defined using Eq.(16), Eq.(17) and Eq.(18). 

𝑃𝑟𝑒𝑐 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (16) 

𝑅𝑒𝑐 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (17) 

𝐹1 = 2 ×
𝑃𝑟𝑒𝑐 × 𝑅𝑒𝑐

𝑃𝑟𝑒𝑐 + 𝑅𝑒𝑐
 (18) 

where 𝑃𝑟𝑒𝑐 denotes precision, 𝑅𝑒𝑐 denotes recall, 
and 𝐹1 denotes the 𝐹1-score. By evaluating the 
objective function for each EMU agent, 
EMUBOOST obtains a measure of the AdamBoost 
model's performance corresponding to different 
parameter configurations. This evaluation step 
allows EMUBOOST to identify promising solutions 
within the population of EMU agents and guide the 
optimization process towards regions of the search 
space that lead to improved model performance. 
 
3.2.3. Update Position of EMUBOOST 

This step involves updating the position of each 
EMU agent based on its current position, the position 
of other EMU agents, and environmental factors 
such as food availability and competition for 
resources. This step mimics the foraging behavior of 
EMU birds, where individuals adjust their 
movements based on local and global information to 
explore and exploit the search space efficiently. 
 

Let 𝐸 denote the population of EMU agents, 𝑁 
denote the total number of EMU agents in the 
population, and 𝑃 denote the position vector 
representing the current position of each EMU agent 
in the parameter space. The update of the position 
vector for each EMU agent 𝑒௜ can be mathematically 
expressed in Eq.(19). 

𝑃(𝑒௜) = 𝑃(𝑒௜) + ∆𝑃(𝑒௜) (19) 

where 𝑃(𝑒௜) represents the position vector of the 
EMU agent 𝑒௜ before the update, and ∆𝑃(𝑒௜) 
represents the change in the position vector after the 
update. 

The update of the position vector ∆𝑃(𝑒௜)  is 
influenced by multiple factors, including local 
information from the individual EMU agent, global 
information from the entire population, and 
environmental cues that affect foraging behavior. 
These factors guide the movement of EMU agents 
towards promising regions of the search space while 
avoiding regions of poor performance. 
 

The update of the position vector can be 
expressed using various strategies inspired by the 
foraging behavior of EMU birds. EMU agents may 
adjust their positions based on the weighted average 
of their current position and the positions of other 
nearby EMU agents. This strategy allows EMU 
agents to share information and coordinate their 
movements to explore the search space more 
efficiently represented in Eq.(20). 

∆𝑃(𝑒௜) = 𝛼. ൫𝑃௕௘௦௧(𝑒௜) − 𝑃(𝑒௜)൯

+ 𝛽. ෍ ቀ𝑃൫𝑒௝൯
ே

௝ஷ௜

− 𝑃(𝑒௜)ቁ 

(20) 

where 𝑃𝑏𝑒𝑠𝑡(𝑒𝑖) represents the best position found by 
the EMU agent 𝑒௜ so far, 𝛼 and 𝛽 are adjustable 
parameters controlling the influence of local and 
global information, respectively, and the summation 
term represents the cumulative influence of other 
EMU agents on the movement of EMU agent  𝑒௜. 
 

 Environmental factors such as food availability 
and competition for resources can be incorporated 
into the update of the position vector. EMU agents 
may bias their movements towards regions with 
higher objective function values, corresponding to 
areas of higher food abundance in the environment. 

∆𝑃(𝑒௜) = 𝛾. ∇𝐹(𝑒௜) (21) 

where in Eq.(21), 𝛾 is an adjustable parameter 
controlling the strength of the influence of 
environmental factors, and ∇𝐹(𝑒௜) represents the 
gradient of the objective function with respect to the 
position of the EMU agent 𝑒௜. This gradient guides 
EMU agents towards regions of the search space 
with steeper objective function gradients 
corresponding to areas of higher food abundance. 
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EMUBOOST effectively guides the exploration 
and exploitation of the search space, facilitating the 
discovery of high-quality solutions to the 
optimization problem by updating the position of 
each EMU agent based on local and global 
information and environmental cues. EMUBOOST 
adapts the movement of EMU agents to efficiently 
navigate the search space and improve the 
performance of the AdamBoost model in underwater 
image identification and classification tasks. 
 
3.2.4. Update Ensemble Predictions of 
EMUBOOST 

The ensemble predictions of the AdamBoost 
model are updated based on the parameters encoded 
by each EMU agent. This step involves combining 
the predictions of individual base learners in the 
ensemble using weighted averaging, where the 
weights are determined by the parameters encoded 
by each EMU agent. EMUBOOST integrates the 
knowledge encoded by EMU agents into the 
ensemble and refines the model's predictive 
capabilities by updating the ensemble predictions,. 
 

Let 𝐸 denote the population of EMU agents, 𝑁 
denote the total number of EMU agents in the 
population, and 𝐹 denote the ensemble prediction 
function representing the combined predictions of all 
base learners. The update of the ensemble prediction 
function 𝐹 at iteration 𝑡 can be mathematically 
expressed as Eq.(22). 

𝐹(௧)(𝑥) = ෍ 𝑤௜
(௧)

. 𝑓௜൫𝑥; 𝜃௜
(௧)

൯
ே

௜ୀଵ
 (22) 

where 𝐹(𝑡)(𝑥) represents the ensemble prediction 

function at iteration 𝑡, 𝑤௜
(௧) represents the weight 

assigned to the EMU agent 𝑒௜ at iteration 𝑡, 𝑓
𝑖
൫𝑥; 𝜃𝑖

(𝑡)
൯ 

represents the prediction made by the base learner 
corresponding to the EMU agent 𝑒௜ with parameters 
𝜃𝑖

(𝑡)
, and 𝑥 represents the input instance. 

 
The weights 𝑤𝑖

(𝑡) are determined by the 
parameters encoded by each EMU agent and reflect 
the influence of the corresponding base learner on 
the ensemble prediction. These weights are typically 
computed using a softmax function to ensure that 
they sum up to one and represent a valid probability 
distribution as represented in Eq.(23). 

𝑤௜
(௧)

=
𝑒

ఈ.ி൫೐೔൯

∑ 𝑒
ఈ.ி

ቀ೐ೕቁே
௝ୀଵ

 (23) 

where 𝛼 is a scaling factor controlling the sensitivity 
of the softmax function, and 𝐹(𝑒௜) represents the 
objective function value corresponding to the EMU 
agent 𝑒௜. The softmax function assigns higher 

weights to EMU agents with higher objective 
function values, indicating their greater influence on 
the ensemble prediction. 
 

The update of the ensemble predictions involves 
summing the weighted predictions made by each 
base learner in the ensemble, where the parameters 
encoded by EMU agents determine the weights. This 
weighted averaging process ensures that base 
learners with higher objective function values 
contribute more to the ensemble prediction, while 
those with lower objective function values have a 
smaller influence. 
 

The update of the ensemble predictions 
integrates the adaptive weighting scheme of 
EMUBOOST, which prioritizes EMU agents with 
superior performance metrics in influencing the 
ensemble prediction. By incorporating the 
knowledge encoded by EMU agents into the 
ensemble, EMUBOOST adapts the ensemble 
predictions to reflect the collective insights gained 
from the optimization process, ultimately improving 
the performance of the AdamBoost model in 
underwater image identification and classification 
tasks. 
 
3.2.5. Compute Error of EMUBOOST 

After updating the ensemble predictions in 
EMUBOOST, the next step involves computing the 
error of the AdamBoost model for each EMU agent 
in the population. This step quantifies the 
discrepancy between the ensemble predictions made 
by each EMU agent and the true labels of the training 
instances. By computing the error, EMUBOOST 
assesses the performance of the AdamBoost model 
corresponding to different parameter configurations 
encoded by EMU agents. 
 

Let 𝐸 denote the population of EMU agents, 𝑁 
denote the total number of EMU agents in the 
population, and 𝐸௥௥ denote the error function 
representing the discrepancy between the ensemble 
predictions and the true labels of the training 
instances. The computation of the error for each 
EMU agent 𝑒௜ can be mathematically expressed as 
Eq.(24). 

𝐸௥௥(𝑒௜) =
∑ 𝑤௝

(௧)
. 𝐼 ቀ𝑦௝ ≠ 𝐹(௧)൫𝑥௝൯ቁெ

௝ୀଵ

∑ 𝑤
௝

(௧)ெ
௝ୀଵ

 (24) 

where 𝐸𝑟𝑟(𝑒𝑖) represents the error corresponding to 

the EMU agent 𝑒௜ , 𝑤௝
(௧) represents the instance 

weight associated with the 𝑗𝑡ℎ training instance at 
iteration 𝑡, 𝑦௝  represents the true label of the 𝑗𝑡ℎ 
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training instance, 𝐹(𝑡)൫𝑥𝑗൯ represents the ensemble 
prediction for the 𝑗𝑡ℎ training instance at iteration 𝑡, 
and 𝐼(. ) is the indicator function that returns 1 if the 
condition inside the parentheses is true and 0 
otherwise. 
 

The error computation involves summing the 
weighted indicator values over all training instances 
and normalizing them by the total instance weight. 
This process yields the weighted average error of the 
AdamBoost model corresponding to the parameter 
configuration encoded by each EMU agent. 
 

The error computation accounts for the adaptive 
weighting scheme of EMUBOOST, where instance 
weights are updated iteratively based on the 
performance of the ensemble predictions. Instances 
misclassified by the ensemble are assigned higher 
weights in subsequent iterations, emphasizing their 
importance in the error computation. By computing 
the error for each EMU agent, EMUBOOST obtains 
a measure of the AdamBoost model's performance 
corresponding to different parameter configurations. 
This error assessment guides the optimization 
process by identifying EMU agents with superior 
performance metrics for further exploration and 
exploitation in subsequent iterations. 
 
3.2.6. Update Instance Weights of EMUBOOST 

This step adjusts the weights of training instances 
to prioritize instances that are more challenging to 
classify accurately, thereby facilitating the iterative 
improvement of the ensemble's performance. 
 

Let 𝐸 denote the population of EMU agents, 𝑁 
denote the total number of EMU agents in the 
population, and 𝑊(௧) denote the vector of instance 
weights at iteration 𝑡. The update of instance weights 
for each training instance 𝑥௝  at iteration 𝑡 can be 
mathematically expressed in Eq.(25). 

𝑊௝
(௧ାଵ)

= 𝑊௝
(௧)

× 𝑒𝑥𝑝 ൬−𝛼. 𝑤௝
(௧)

. 𝐼 ቀ𝑦௝

≠ 𝐹(௧)൫𝑥௝൯ቁ൰ 
(25) 

where 𝑊𝑗
(𝑡+1) represents the updated weight of the 

training instance 𝑥௝ at iteration 𝑡 + 1, 𝛼 is a learning 
rate parameter controlling the rate of weight 

adjustment, 𝑤௝
(௧) represents the instance weight 

associated with the training instance 𝑥௝ at iteration 
𝑡, 𝑦௝ represents the true label of the training instance 

𝑥௝, 𝐹(௧)൫𝑥௝൯ represents the ensemble prediction for 
training instance 𝑥௝ at iteration 𝑡, and 𝐼(. ) is the 
indicator function. 
 

The instance weight update process involves 

multiplying the current instance weight 𝑤௝
(௧) by a 

factor that depends on the error of the ensemble 
prediction for training instance 𝑥௝. Instances 
misclassified by the ensemble prediction are 
assigned higher weights in subsequent iterations, 
emphasizing their importance in training. 

The instance weight update incorporates the 
learning rate parameter 𝛼, which controls the rate at 
which the weights are adjusted based on the error of 
the ensemble prediction. A smaller value of 𝛼 results 
in slower weight adjustment, while a larger value of 
𝛼 leads to faster weight adaptation. By updating the 
instance weights based on the error of the ensemble 
prediction, EMUBOOST focuses the training 
process on instances that are more challenging to 
classify accurately. This adaptive weighting scheme 
enhances the ensemble's ability to learn from 
difficult instances and improves its overall 
performance in underwater image identification and 
classification tasks.  
 
3.2.7. Compute Model Weight of EMUBOOST 

After updating the instance weights in 
EMUBOOST, the next step involves computing the 
model weight for each EMU agent. The model 
weight reflects the contribution of each EMU agent 
to the final ensemble prediction, taking into account 
both the performance of the AdamBoost model 
corresponding to the parameters encoded by the 
EMU agent and the diversity among EMU agents. 
This step ensures that EMUBOOST assigns higher 
weights to EMU agents with superior performance 
metrics while promoting diversity among the 
ensemble members. 
 

Let 𝐸 denote the population of EMU agents, 𝑁 
denote the total number of EMU agents, and 𝑀 
denote the total number of training instances. The 
computation of the model weight for each EMU 
agent 𝑒௜ can be mathematically expressed as Eq.(26). 

𝑊(௧)(𝑒௜) =
1

2
𝑙𝑜𝑔 ቆ

1 − 𝐸𝑟𝑟(𝑒௜)

𝐸𝑟𝑟(𝑒௜)
ቇ (26) 

where 𝑊(𝑡)(𝑒𝑖) represents the model weight assigned 
to the EMU agent 𝑒௜ at iteration 𝑡, and 𝐸𝑟𝑟(𝑒௜) 
represents the AdamBoost model corresponding to 
the EMU agent 𝑒௜. The model weight is computed 
using a logarithmic transformation of the error, 
which ensures that higher errors lead to lower model 
weights and vice versa. 
 

The logarithmic transformation of the error 
serves two purposes: it amplifies the differences in 
error rates between EMU agents with low and high 
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errors, and it symmetrically maps errors in the range 
[0,1] to model weights in the range (−∞, +∞). This 
transformation facilitates the interpretation of model 
weights as measures of the contribution of each 
EMU agent to the ensemble prediction. 
 

The computation of the model weight 
incorporates a normalization factor to ensure that the 
sum of model weights across all EMU agents is 
equal to one expressed in Eq.(27). 

෍ 𝑊(௧)(𝑒௜)
ே

௜ୀଵ
= 1 (27) 

This normalization constraint ensures that the 
ensemble prediction is a weighted combination of 
the predictions made by all EMU agents in the 
population, with each EMU agent contributing 
proportionally to its model weight. 
 

The model weight computation accounts for the 
diversity among EMU agents by penalizing highly 
correlated predictions. This penalty term 
discourages EMU agents from making similar 
predictions, thereby promoting diversity and 
improving the generalization performance of the 
ensemble. 
 

The diversity penalty can be expressed as the 
negative correlation between the predictions made 
by different EMU agents is shown in Eq.(28). 

𝐷 = ൫𝑒௜ , 𝑒௝൯

= −
1

𝑀
෍ 𝐹(௧)൫𝑥௝ , 𝑒௜൯. 𝐹(௧)

ெ

௝ୀଵ
൫𝑥௝ , 𝑒௜൯ 

(28) 

where 𝐷 = ൫𝑒௜ , 𝑒௝൯ represents the diversity penalty 
between EMU agents 𝑒𝑖 and 𝑒௝ , 𝐹(𝑡)൫𝑥𝑗, 𝑒𝑖൯ represents 
the prediction made by the EMU agent 𝑒௜ for training 
instance 𝑥௝ at iteration 𝑡, and 𝐹(𝑡)൫𝑥𝑗, 𝑒𝑖൯ represents 
the prediction made by the EMU agent  𝑒௝ for the 
same training instance. 
 

By penalizing highly correlated predictions, 
EMUBOOST encourages diversity among EMU 
agents and improves the robustness of the ensemble 
prediction to variations in the input data. This 
diversity-promoting mechanism enhances the 
ensemble's ability to generalize to unseen instances 
and improves its overall performance in underwater 
image identification and classification tasks. 
 
3.2.8. Update Model Parameters of EMUBOOST 

This step involves updating the model 
parameters of the AdamBoost ensemble. Adjusts the 
parameters of individual base learners in the 
ensemble to reflect the collective insights gained 
from the optimization process and improve the 

ensemble's overall performance in underwater image 
identification and classification tasks. 
 

Let 𝐸 denote the population of EMU agents, 𝑁 
denote the total number of EMU agents in the 
population, and 𝛩 denote the set of model 
parameters representing the parameters of individual 
base learners in the ensemble. The update of model 
parameters for each base learner ℎ௜ at iteration 𝑡 can 
be mathematically expressed as Eq.(29). 

𝛩(ℎ௜)(௧ାଵ)

= 𝛩(ℎ௜)(௧) + 𝛿. ෍ 𝑤(௧)൫𝑒௝൯. ∆
ே

௝ୀଵ
𝛩൫𝑒௝ , ℎ௜൯ 

(29) 

where 𝛩(ℎ𝑖)
(𝑡+1) represents the updated model 

parameters for the base learner ℎ௜ at iteration 𝑡 + 1, 
𝛩(ℎ𝑖)

(𝑡) represents the current model parameters for 
base learner ℎ௜ at iteration 𝑡, 𝛿 is a learning rate 
parameter controlling the rate of parameter 
adjustment, 𝑊(௧)൫𝑒௝൯ represents the model weight 
assigned to the EMU agent 𝑒௝ at iteration 𝑡, and 
∆𝛩൫𝑒𝑗, ℎ𝑖൯ represents the parameter update for the 
base learner ℎ௜ based on the parameters encoded by 
the EMU agent 𝑒௝ . 
 

The parameter update involves summing the 
parameter updates contributed by each EMU agent 
in the population, weighted by the corresponding 
model weights. This weighted summation ensures 
that EMUBOOST prioritizes EMU agents with 
higher model weights, reflecting their superior 
performance metrics and contributions to the 
ensemble prediction. 
 

The parameter update incorporates a learning 
rate parameter 𝛿, which controls the magnitude of 
the parameter adjustments based on the insights 
gained from the optimization process. A smaller 
value of 𝛿 results in slower parameter adaptation, 
while a larger value of 𝛿 leads to faster parameter 
convergence. 
 

The parameter update process aims to refine the 
parameters of individual base learners in the 
ensemble to improve the accuracy and robustness of 
the ensemble predictions. By incorporating the 
insights gained from the optimization process, 
EMUBOOST adapts the model parameters better to 
capture the underlying patterns in the underwater 
image data and enhance the discriminative power of 
the ensemble. The parameter update in EMUBOOST 
leverages the diversity among EMU agents to 
promote parameter space exploration and prevent 
premature convergence. By incorporating parameter 
updates from diverse EMU agents, EMUBOOST 
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explores a broader range of parameter configurations 
and facilitates the discovery of high-quality 
solutions to the optimization problem. 
 

After completing the initial optimization cycle in 
EMUBOOST, the process iterates by repeating Steps 
2-8 further to refine the enhanced ensemble method 
(AdamBoost) using EMU Bird Optimization (EO). 
This iterative process allows EMUBOOST to 
progressively improve the ensemble's performance 
by updating the model parameters, instance weights, 
and model weights based on the collective insights 
from the optimization process. Fig 2. Illustrates the 
processed underwater images. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 2. Processed Underwater Images 
 
4. DATASET 

 
The Large Scale Underwater Image Dataset 

(LSUI) is critical for advancing underwater image 
processing, identification, and classification. 
Comprising thousands of images captured in various 
underwater environments, the dataset offers a rich 
and diverse set of data points essential for 
developing robust machine-learning models. The 
images encompass a wide range of scenes, including 
different species of marine life, underwater 
landscapes, and human-made structures, providing 
comprehensive coverage of the underwater world. 
The variability in underwater imaging conditions is 
a significant challenge addressed by the LSUI 
dataset. Light absorption, scattering, and particulate 
matter in water result in diverse imaging conditions. 
The LSUI dataset includes images taken at varying 
depths, times, and under various water clarity levels. 
This extensive variability ensures that the dataset 
covers a broad spectrum of underwater conditions, 

which is crucial for training machine learning 
models to perform reliably in real-world scenarios. 
 

Each image in the LSUI dataset is meticulously 
annotated with detailed metadata. This metadata 
includes labels for objects and features and 
contextual information such as the location, depth, 
and environmental conditions of the image capture. 
These annotations are essential for supervised 
learning, accurately identifying and classifying 
underwater objects and scenes. The comprehensive 
annotations make the LSUI dataset particularly 
valuable for developing and testing advanced image 
processing and computer vision algorithms. The 
LSUI dataset's utility extends beyond machine 
learning applications. It is a foundational resource 
for marine biology research, environmental 
monitoring, and underwater archaeology. 
Researchers can leverage the dataset to analyze 
marine biodiversity, assess the health of coral reefs, 
and monitor changes in underwater ecosystems. The 
detailed annotations and diverse images support a 
wide range of studies, making the LSUI dataset an 
indispensable tool for scientists and 
conservationists. 
 

The LSUI dataset addresses the significant 
challenges of underwater imaging by providing a 
rich and diverse set of images and annotations. This 
comprehensive resource is vital for developing 
accurate and reliable underwater image 
identification and classification models. Its 
applications in scientific research and environmental 
monitoring underscore its importance in 
understanding and preserving underwater 
environments. 
 
5. RESULTS AND DISCUSSION: 

 
The performance of the three classification 

algorithms DeepSeaNet, MCANet, and 
EMUBOOST was evaluated using various metrics 
including True Positive (TP), True Negative (TN), 
False Positive (FP), False Negative (FN), True 
Positive Rate (TPR), True Negative Rate (TNR), 
False Positive Rate (FPR), False Negative Rate 
(FNR), Precision, Classification Accuracy (CA), and 
F-Measure (FM). The results are presented in the 
provided tables. EMUBOOST exhibited the highest 
number of True Positives (2000.799) and True 
Negatives (2018.864), indicating superior 
performance in correctly identifying positive and 
negative instances compared to DeepSeaNet and 
MCANet. In terms of False Positives (FP) and False 
Negatives (FN), EMUBOOST achieved the lowest 
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numbers (500.650 for FP and 483.687 for FN), 
suggesting a lower rate of incorrect classifications. 
DeepSeaNet showed higher values of FP (1067.653) 
and FN (1209.817), reflecting less reliable 
classification outcomes. 

 
Fig 3. Illustrates the outcome of Classification 

Accuracy and F-Measure. True Positive Rate (TPR) 
and True Negative Rate (TNR) are crucial for 
understanding the sensitivity and specificity of the 
classification algorithms. EMUBOOST attained the 
highest TPR (80.532) and TNR (80.129), 
highlighting its effectiveness in correctly identifying 
positive and negative cases. MCANet followed with 
a TPR of 60.836 and a TNR of 61.626, while 
DeepSeaNet recorded the lowest TPR (52.603) and 
TNR (56.448). 

 

 
Fig 3. Classification Accuracy and F-Measure. 

 
In the context of False Positive Rate (FPR) and 

False Negative Rate (FNR), EMUBOOST 
demonstrated superior performance by achieving the 
lowest FPR (19.871) and FNR (19.468), indicative 
of fewer incorrect positive and negative predictions. 
MCANet's FPR and FNR were 38.374 and 39.164, 
respectively, while DeepSeaNet had the highest FPR 
(43.552) and FNR (47.397). 
 

Precision, reflecting the accuracy of positive 
predictions, was highest for EMUBOOST (79.986). 
MCANet recorded a precision of 61.093, whereas 
DeepSeaNet showed the lowest precision (55.706). 
Regarding Classification Accuracy (CA) and F-
Measure (FM), which are comprehensive metrics 
considering both precision and recall, EMUBOOST 
outperformed with a CA of 80.329 and an FM of 
80.258, demonstrating its overall superior 
performance. MCANet achieved a CA of 61.233 and 
an FM of 60.964, while DeepSeaNet showed the 
lowest CA (54.487) and FM (54.110). 
 

Table 1. Classification Accuracy and F-Measure. 
Classification 
Algorithms CA FM 
DeepSeaNet 54.487 54.110 

MCANet 61.233 60.964 
EMUBOOST 80.329 80.258 

 
The comparative analysis of classification 

accuracy and F-measure across the algorithms, 
illustrated in Table 1, reaffirms the superior 
performance of EMUBOOST in underwater image 
identification and classification. 

 
The results from the table demonstrate that 

EMUBOOST significantly outperforms the other 
algorithms, particularly in the context of precision, 
accuracy, and overall balanced performance. This 
indicates that the use of EMU Bird Optimization 
(EO) to enhance the AdamBoost ensemble method 
provides substantial improvements in underwater 
image classification tasks. The consistent superiority 
of EMUBOOST across various performance metrics 
underscores its potential for more reliable and 
accurate classification in complex underwater 
environments. 

 
The performance of the three classification 

algorithms—DeepSeaNet, MCANet, and 
EMUBOOST—was evaluated using the Fowlkes-
Mallows Index (FMI) and Matthews Correlation 
Coefficient (MCC). The results are presented in the 
provided table and Fig 2. 
 

EMUBOOST exhibited the highest Fowlkes-
Mallows Index (79.811) and Matthews Correlation 
Coefficient (59.748), indicating superior 
performance in both clustering effectiveness and the 
quality of binary classifications. In comparison, 
MCANet achieved an FMI of 60.964 and an MCC 
of 22.463, while DeepSeaNet showed the lowest 
FMI (54.132) and MCC (9.056). 
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Fig 4. Fowlkes-Mallows Index and Matthews Correlation 
Coefficient. 

 
Fig 4. Illustrates the outcome of the Fowlkes-

Mallows Index and Matthews Correlation 
Coefficient.  The Fowlkes-Mallows Index (FMI) 
measures the accuracy of clustering by considering 
both precision and recall. EMUBOOST’s FMI of 
79.811 reflects its excellent performance in 
identifying true clusters while minimizing false 
positives and false negatives. MCANet's FMI of 
60.964 and DeepSeaNet's FMI of 54.132 indicate 
relatively lower clustering accuracy. 
 

The Matthews Correlation Coefficient (MCC) 
comprehensively evaluates binary classifications, 
considering true positives, true negatives, false 
positives, and false negatives. EMUBOOST’s MCC 
of 59.748 demonstrates its balanced and reliable 
performance across these metrics. MCANet 
achieved an MCC of 22.463, showing moderate 
classification quality, while DeepSeaNet’s MCC of 
9.056 indicates significant room for improvement. 
 
Table 2 depicts the comparative analysis of FMI and 
MCC across the algorithms, which reaffirms the 
superior performance of EMUBOOST in underwater 
image identification and classification. 
 

Classification 
Algorithms FMI MCC 

DeepSeaNet 54.132 9.056 

MCANet 60.964 22.463 

EMUBOOST 80.258 60.659 
 

Table 2. Fowlkes-Mallows Index and Matthews 
Correlation Coefficient 

 
Fig 4 visually represents each algorithm's FMI 

and MCC values. The results from the table 
demonstrate that EMUBOOST significantly 
outperforms the other algorithms in terms of 
clustering effectiveness and classification quality. 
This further highlights the effectiveness of EMU 
Bird Optimization (EO) in enhancing the 
AdamBoost ensemble method for underwater image 
classification tasks. The consistent superiority of 
EMUBOOST across various performance metrics 
underscores its potential for more reliable and 
accurate classification in complex underwater 
environments. 

 
 
 

 

6. CONCLUSION 
 
The evaluation and enhancement of ensemble 

methods using EMU Bird Optimization (EO) for 
underwater image identification and classification 
have significantly improved performance metrics. 
The integration of AdamBoost with EO, termed 
EMUBOOST, has resulted in superior classification 
accuracy, precision, and F-measure compared to 
traditional methods like DeepSeaNet and MCANet. 
The comprehensive analysis highlighted 
EMUBOOST's effectiveness in reducing false 
positives and false negatives, thereby increasing the 
true positive and true negative rates. Furthermore, 
the Fowlkes-Mallows Index (FMI) and Matthews 
Correlation Coefficient (MCC) assessments 
underscored EMUBOOST's robust clustering and 
classification capabilities. The optimization through 
EO has facilitated better adaptation to the 
complexities of underwater imagery, which often 
includes challenges like noise, low contrast, and 
varying lighting conditions. The consistent 
outperformance of EMUBOOST across various 
metrics reaffirms its suitability for practical 
applications in underwater image analysis. The 
methodological advancements and the application of 
EMU Bird Optimization provide a promising 
direction for future research and development in this 
field. The results indicate that enhancing ensemble 
methods with nature-inspired optimization 
algorithms can substantially improve classification 
performance, making EMUBOOST a valuable 
underwater image identification and classification 
tool. 
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