
 Journal of Theoretical and Applied Information Technology 
15th October 2024. Vol.102. No. 19 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
7216 

 

OPTIMIZING ENCRYPTED DATA RETRIEVAL: PARALLEL 
SEARCH TECHNIQUES WITH HASH TABLE INDEXING 

 
WAFA  ALDABABAT1 

 

1Instructor, SE Dept., Prince Abdullah bin Ghazi Faculty of Information and Communication Technology, 
Al-Balqa Applied University, Jordan 

E-mail:  1w.dababat@bau.edu.jo  
 

ID 55516 Submission  Editorial Screening Conditional Acceptance  Final Revision Acceptance  
07-09-2024 07-09-2024 24-09-2024 09-10-2024 

 
 

ABSTRACT 
 

String matching is one of the fundamental operations in many applications, it is more challenging today to 
handle string searching while maintaining the security and privacy of data. In this paper a mechanism for 
searching in encrypted data is presented, this is done by using index-based searching on encrypted data, with 
using hash tables as index for searching and encrypting both the keys and values stored in the hash table for 
security. Also, parallel searching of multiple patterns is used in our implementation by using multiple threads 
is added to enhance efficiency. The results show that the approach is feasible and has a potential application 
in secure data retrieval systems, because it improves the searching performance while maintaining the 
security and privacy of data. 

Keywords: String matching, Encryption, Parallel search, Security, Hash tables, Index-Based searching. 
 
1. INTRODUCTION  
 

We live in a world of big data, and there is 
a particularly press need for real-time secured data 
processing in fields like finance, healthcare, 
education, etc. Cloud computing is used to solve the 
problem of storing massive amounts of data and 
accessing it efficiently , however, data is stored on 
remote servers, introducing the problem of security 
and privacy of stored data. If the data stored on 
remote servers is not protected in a proper way, it 
will become vulnerable to unauthorized access.   

 
One solution for preserving the privacy of 

remotely stored data is to encrypt the data before 
uploading it to the remote server. When we need to 
search the encrypted data, traditional searching 
algorithms will decrypt the stored data before 
searching it, making the data at risk of unauthorized 
access. So, to maintain its security, we need a way to 
search the data without decrypting it. 

 
There are many solutions for searching 

encrypted data while maintaining its privacy, some 
of these methods will be discussed in Section 2. One 
of these methods is using Search Index Structures [9, 
10, 11]. 

 

In Search Index Structures, indexes can be 
used for retrieving and searching the data efficiently 
and securely. Using this technique, we have two 
parts of storage; the data itself and the search index 
that contains the search keys. Traditional data 
securing methods have focused on encrypting the 
stored data to protect it, this will leave the index 
under danger of potential security attacks. To 
eliminate such attacks, both the stored data and the 
search index need to be encrypted.  

 
In this paper, we introduce a solution that is 

based on search index structures. In our solution, a 
hash table is used as search index, the values in the 
hash table are encrypted, the keys used for searching 
are also encrypted yielding a more robust and secure 
search.   
 

The efficiency of search is also considered 
in our solution, searching encrypted data can be time 
consuming especially when the data set is large, and 
to reduce the search time we use parallel searching. 
By distributing the searching load, multiple patterns 
can be searched simultaneously by using multi-
threading, which will significantly speed up the 
searching process 

Advanced Encryption Standard (AES) is 
considered a secured standard for encryption. In our 



 Journal of Theoretical and Applied Information Technology 
15th October 2024. Vol.102. No. 19 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
7217 

 

implementation, we used the BouncyCastle Library 
in Java with AES for encryption, together with 
multi-threading in Java, which results in an 
application where searching can be efficient and 
secure at the same time.  
 

In summary, we presented a method for 
enhancing the security of searching encrypted data 
by using encrypted hash tables as a search index, the 
efficiency of search in increased by using multi-
threading to search multiple patterns and we have 
experimentally evaluated our work to show its 
effectiveness. 
 

The rest of this paper is organized as 
follows: related work is discussed in section 2, our 
technique including implementation of hash table 
encryption and parallel search is presented in section 
3, experimental results and discussion are presented 
in section 4 and in section 5 we present the 
conclusion and potential future developments on our 
work. 

2. RELATED WORK 

 The work in the field of searching 
encrypted data has presented many solutions to 
search the data securely and efficiently, in this 
section we present some of these key solutions to 
make a context for our work. 

 
2.1. Homomorphic Encryption 

 In homomorphic encryption, the search is 
done directly on encrypted data and the result of 
search is also encrypted, when the result is 
decrypted, it will give the same output as if the 
search was done on the original data without 
encryption. A full homomorphic encryption FHE is 
presented in [1]. The limitation of this solution is its 
high overhead making it inappropriate for real-time 
systems. Enhancements on FHE have been presented 
in [2, 3]. 
 
2.2. Searchable Symmetric Encryption 

Searchable Symmetric Encryption SSE is 
appropriate for cloud computing, it allows the search 
to be done on files while they stay encrypted. [4, 5] 
have presented secured and efficient search based on 
SSE. However, it is not always scalable for large 
datasets. 
 
2.3. Oblivious RAM  

Oblivious RAM (ORAM) methodology is 
based on hiding access patterns to encrypted data, in 

this way unauthorized access cannot be done to these 
patterns, eliminating the possibility of inferring any 
information about the data [6]. The limitation is also 
the associated computational overhead. The work in 
[7, 8] addresses this limitation by presenting 
solutions to reduce the latency and overhead to make 
these protocols more practical. 
 
2.4. Secure Index Structures 

A lot of work have been presented based on 
secure Index Structures. A secure sequential scan 
technique is proposed in [9], this technique is not 
very efficient when the data set is large. Bloom 
filters are used to build indexes as presented in [10], 
but this solution can give false results affecting the 
accuracy of the search. A B+ Tree index is presented 
in [11] for fast and efficient search over encrypted 
data. 
 
2.5. Encrypted Trie Structures 

Encrypted Trie Structures have been 
presented in [12], and shown to be efficient for 
queries on encrypted data. In [13], dynamic data is 
handled efficiently by schemes based on Trie 
Structures. Efficiency can be compromised in these 
techniques because they depend on complex 
encryption and decryption operations. 
 

Based on these foundations, we present a 
secure method for searching in encrypted data, by 
using hash table based index and encrypting both the 
values stored in the hash table index and the keys 
used for searching, which will result in a secure 
search mechanism. To insure performance is 
maintained with security, parallel search using 
multi-threading is used in our solution to handle the 
search of multiple patterns at the same time. The 
presented solution combines security with efficiency 
and simplicity, resulting in a suitable technique that 
can be easily adapted by real world applications. 
 
3. METHODOLOGY OF WORK 

 
3.1. Technique of Multi-Threaded Secure Search 

The technique presented in this paper relies 
on two main components: secure hash table and 
multi-threaded search. The encrypted data itself is 
stored in a separate file, the search is done using the 
keys in the hash table, and then the retrieved value 
from the index is used to directly access the 
encrypted data in the file. The search is done in    



 Journal of Theoretical and Applied Information Technology 
15th October 2024. Vol.102. No. 19 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
7218 

 

parallel using multiple threads to enhance 
performance of the search. 

 

Figure 1:  Activity Diagram for Multi-Threaded Secure 
Search 

 
The technique of searching is done in three steps:  
1. Construction of the secure hash index: in 
this step, the hash table is built, where each key is a 
hash value that represents encrypted data or some 
identifier, and each value is a pointer that points to 
the location of the corresponding data that is in 
encrypted form in the encrypted data file.  Both the 
key and the value records in the hash table are 
encrypted. 
2. Search Query: When we want to search a 
term, it is hashed to get a value in the secure hash 
table, the returned value will give us a pointer to the 
encrypted data in the data file. 
3. Encrypted data Retrieval and Decryption: 
using the pointer that we got in step 2, we can access 
the data file to retrieve the required data in encrypted 
form. The retrieved data is then decrypted to get its 
original form which we can use as needed. 

Using parallel processing, multi-threaded 
search can be done, we can run multiple threads that 

preform steps 2 and 3 for different terms 
simultaneously. Activity diagram for the presented 
method is shown in Figure 1. 

3.2. Secure Hash Table Class Implementation 
The hash table contains the search keys 

and the values. In this implementation, (AES) is 
used to encrypt the keys and the values. The hash 
table and the encrypted data are stored in different 
files. The keys and values in the secure hash table 
are based on the encrypted data in the data file, the 
values stored in the hash index are the locations of 
the encrypted data in the data file.  

The main components of the Secure Hash 
Table class are shown in Figure 2. 
 
 
3.3. Multi-Threaded Search Class 
Implementation 

In this implementation, we aim to 
improve the efficiency of the search by applying it 
using multiple threads, in this way separate 
multiple search operations can by multiple threads 
simultaneously which shall decrease the overall 
search time. 

The main components of the Parallel 
Search class are presented in Figure 3. 

 
3.4. Implementation Steps 

The following steps explain the sequence in 
which the secure hash search is done based on the 
SecureHashTable and ParallelSearch classes. 

 
A. Initialize Components:Create instances of 

SecureHashTable and ParallelSearch. 
B. Store Data: 

 Use putV() to add data to the hash 
table. 

C. Save and Load Data: 
 Use saveToFile() to save 

encrypted data. 
 Use readFromFile() to load 

encrypted data. 
D. Perform Searches: 

 Use SearchMultiple(keys) to 
search for multiple patterns in 
parallel. 

  



 Journal of Theoretical and Applied Information Technology 
15th October 2024. Vol.102. No. 19 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
7219 

 

 
Figure 2:  Secure Hash Table Class 

 

Figure 3: Parallel Search Class 
 
4. EXPERIMENTAL RESULTS AND 
ANALYSIS 
 
4.1. Implementation Environment 

The hardware environment for our 
implementation is a computer with 16GB of RAM 
and an Intel core i7 processor. The software we used 
is Java and for encryption we used BouncyCastle 
library. We generate random data set with 100,000 
elements in our experiments.  
 

4.2. Performance metrics 
The following metrics were recorded in our 

experiments: 
 Number of Threads: The number of threads 

used in the search operaions. 
 Number of elements: The size of the 

dataset. 
 Search Time (ns): The average time needed 

by search operations. 
 Encryption Time (ns): The time needed to 

encrypt the dataset. 
 Decryption Time (ns): The time needed to 

decrypt the dataset. 
 Memory Usage (MB): The average 

memory consumption by threads in 
megabytes. 

 Search Time Speedup: Search time needed 
by one thread / Search time needed by 
multiple threads.  
 

4.3. Experimental results of multi-threaded 
search on encrypted hash table 

When we run the tests, we started the search 
with one thread and then increased the number of 
threads one thread at a time. We did the same with 
the dataset, where we started with a dataset with 
10,000 entries in the first test, increasing it till we 
reached 100,000 entries and recording the average 
search time, encryption time, decryption time and 
memory usage in each test. The results of our tests 
are presented in Table 1. 

 
Based on Table 1, we can compute the 

speedup that we gain by distributing the search load 
on multiple threads, Table 2 contains the search time 
needed by multiple threads when searching in 
encrypted dataset of 10,000 entries together with the 
calculated speedup. 

 
The effect of increasing the number of 

threads to handle the search operation on a fixed size 
data set of 10,000 entries is shown in Figure 4. 
 

The Search time is also affected by the 
dataset size, the relationship between the parallel 
search time and varying dataset size is depicted in 
Figure 5. 



 Journal of Theoretical and Applied Information Technology 
15th October 2024. Vol.102. No. 19 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
7220 

 

 
Table 1: Results of Parallel Search on Encrypted Data Using Secure Hash Table 
 

Number of 
Threads 

Number of 
Entries 

Average 
Search Time 
(Seconds) 

Encryption 
Time 
(Seconds) 

Decryption 
Time 
(Seconds) 

Memory 
Usage (MB) 

1 10,000 1.50 0.113 0.113 50 
1 50,000 7.70 0.59 0.59 50 
1 100,000 15.6 1.34 1.34 50 
2 10,000 0.79 0.062 0.062 55 
2 50,000 3.75 0.314 0.314 55 
2 100,000 7.80 0.641 0.641 55 
3 10,000 0.63 0.051 0.051 57 
3 50,000 3.10 0.257 0.257 57 
3 100,000 6.80 0.592 0.592 57 
4 10,000 0.47 0.042 0.042 60 
4 50,000 2.48 0.224 0.224 60 
4 100,000 4.92 0.466 0.466 60 
5 10,000 0.41 0.041 0.041 62 
5 50,000 2.12 0.21 0.21 62 
5 100,000 4.35 0.453 0.453 62 
6 10,000 0.37 0.038 0.038 65 
6 50,000 1.82 0.159 0.159 65 
6 100,000 3.83 0.389 0.389 65 
7 10,000 0.31 0.031 0.031 68 
7 50,000 1.63 0.156 0.156 68 
7 100,000 3.18 0.354 0.354 68 
8 10,000 0.26 0.026 0.026 70 
8 50,000 1.37 0.144 0.144 70 
8 100,000 2.93 0.294 0.294 70 

 

Table 2: Speedup of Multi-Threaded Search 
 

Number 
of threads 

Average Search Time 
(s) Speedup 

1 1.5 1 
2 0.79 1.898734 
3 0.63 2.380952 
4 0.47 3.191489 
5 0.41 3.658537 
6 0.37 4.054054 
7 0.31 4.83871 
8 0.26 5.769231 

 

 
The usage of memory during search 

operation is affected by the number of threads, in 
Figure 6. The relationship between number of 
threads and used memory is presented. 
 
We noticed that the encryption time and decryption 
time are nearly the same, both times are affected by 
the number of threads and the dataset size, the 
relationship between the encryption time with 
number of threads and data set size is shown in 
Figure 7.



 Journal of Theoretical and Applied Information Technology 
15th October 2024. Vol.102. No. 19 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
7221 

 

 
 

Figure 4: Average Parallel Search Time for 10,000 
Entries 

 
The speedup gained by using multi-

threaded search is depicted in Figure 8. 
 
4.4. Analysis of Experimental Results 

Using a secure hash table for searching 
encrypted data was successful and gave correct 
search results in all tests, so it is a sound and accurate 
way of searching. Searching using this algorithm 
will maintain the security and privacy of the 
encrypted data. 
 

Using only one thread for searching will 
always have the highest search time in all 
experiments since it represents the sequential 
version of the algorithm, this can be used in certain 
cases, such as if we have only one pattern to search 
for or if we have a single core processor, which is 
not applicable in most cases.  
 

When reading and analyzing the 
experimental results we notice that using multiple 
threads for searching multiple patterns in parallel is 
a gain, it has a good effect on reducing the overall 
search time and encryption/decryption time and thus 
speeding up search operations. In Figure 4. We see 
that the search time decreases when increasing the 
number of search thread, the time reduction is not 
constant because we will have communication and 
overhead time due to thread management process as 
the number of threads increase, but in general, using 
multithreaded search will speed up the search 
operation.  

 
In Figure 5. The relationship between 

multiple threads and search time is also shown, but 
in this time, taking varying dataset size into 
consideration, it is also clear and expected that the 
search time will increase as the dataset size 
increases, and again, using multiple threads for 
searching will make searching faster in all given 
dataset sizes, so we conclude that using multi- 
threaded search will improve and enhance the 
efficiency of searching. 
 

Figure 7. Presents the relationship between 
encryption time and varying number of threads with 
varying dataset size, encryption and decryption 
times are crucial in our application since all 
operations deal with encrypted hash table index and 
encrypted data. It is clear in Figure 4. that using 
multi-threaded search has a great impact on reducing 
encryption time and so speeding up searching of 
encrypted data. 
 

Using multiple threads for searching will 
clearly reduce search time, but on the other hand, as 
the number of threads increase, memory 
requirements will increase, so we must consider that 
when using this approach. Figure 6. Shows the 
results of scaling up number of threads on memory 
requirements. 
 
 

 
 

Figure 5: Average Parallel Search Time for Varying 
Number of Threads and Varying Dataset Size 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 5 10

N
um

be
r o

f t
hr

ea
ds

Average Search Time (s)

Average Search Time (s)

0

5

10

15

20

1 2 3 4 5 6 7 8

Av
er

ah
e 

Se
ar

ch
 T

im
e 

(s
)

Number Of Threads

Average Search Time for 
Varying Number Of Threads 

and Varying Dataset Size

10,000 entries data set

50,000 entries dataset

100,000 entries dataset



 Journal of Theoretical and Applied Information Technology 
15th October 2024. Vol.102. No. 19 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
7222 

 

 
 

 
 
Figure 6: Memory Usage for Varying Number of Threads 
 

 
 

Figure 7: Encryption Time for Varying Number of 
Threads and Varying Dataset Size 

 

Referring to Figure 8. We can see that using 
multi-threaded search has a great impact on the 
performance and efficiency of the search, a direct 
relationship is present between the number of 
threads for searching with the speedup gained, the 
more threads that we use for searching, the less 
search time will be consumed and a more speedup 
will be gained. Taking into consideration that we are 
limited by the number of cores in the processor, in 
case that the number of threads starts to be higher 
than the number of cores, search time will start to 
increase and speedup will start to decrease. 
 

Similar analysis of speedup can be done 
regarding to encryption and decryption time. As 
discussed earlier in this section, it is clear in Figure 
7. that the encryption time decreases as the  number 
of used threads increase, which clearly implies that 
speedup will also be gained here by using multiple 
threads in this process. 

 

 
 

Figure 8:  Speedup of Multi-Threaded Search 
 

When comparing these results to other 
secure index structures such as the B+ tree index 
presented in [11], we find a number of distinctions. 
In our work, the focus on hash table index combined 
with parallel environment led to a rapid search times 
making an advantage in scenarios where we need to 
search for multiple patterns. On the other hand, the 
B+ Tree index is designed for efficient range queries 
and dynamic updates, so it is suitable in applications 
with larger datasets and more diverse queries. Both 
works aim to balance efficiency with security in 
encrypted data search. 

 

0

10

20

30

40

50

60

70

80

0 5 10

M
em

or
y 

U
sa

ge
 (M

B)

Number of Threads

Memory Usage for Varying 
Number of Threads

0

0.5

1

1.5

2

2.5

1 2 3 4 5 6 7 8

En
cr

yp
tio

n 
Ti

m
e 

(s
)

Number Of Threads

Encryption Time for Varying 
Number of Threads and 

Varying Dataset Size

100,000 Entries Dataset

50,000 Entries Dataset

10,000 Entries Dataset

0

2

4

6

8

1 2 3 4 5 6 7 8

Number of Threads

Speedup of Multi-Threaded 
Search

Average Search Time (s) Speedup



 Journal of Theoretical and Applied Information Technology 
15th October 2024. Vol.102. No. 19 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
7223 

 

As a results we can say that using of secure 
hash table index is a success in searching encrypted 
data, and using of multi-threaded search will 
enhance the performance of the search, yet adding 
more memory requirements. 
 
5. CONCLUSION 

In this work, a method for fast and secure 
string matching on encrypted data based on 
encrypted hash table index and multi-threading for 
search operations is developed. The presented 
approach maintains the confidentiality of data by 
encrypting both the keys and the values in the hash 
table while providing an efficient search 
performance by using of parallel search. Data 
protection is strengthened by integration of 
symmetric encryption, while fast access of encrypted 
data is achieved by using a hash table. The using of 
parallel search will reduce search times, ensuring the 
effectiveness of parallel processing when dealing 
with large datasets. The presented experimental 
results showed that our method has a good scaling 
with increased number of threads and datasets sizes, 
though the method has a trade-off with overhead 
times and memory usage.  

 
The proposed approach provides security 

and efficiency, making it applicable for systems that 
needs both of these factors, such as private search 
engines and cloud computing. Further work may 
focus on real-world environment testing of this 
approach and optimizing the index data structure. 
Overall, this study makes a contribution on secure 
data searching techniques and gives a framework for 
searching encrypted data effectively.  

REFERENCES 

[1] C. Gentry, "Fully homomorphic encryption 
using ideal lattices," in Proceedings of the 41st 
Annual ACM Symposium on Theory of 
Computing, pp. 169-178, 2009. 

[2] N. P. Smart and F. Vercauteren, "Fully 
homomorphic SIMD operations," Designs, 
Codes and Cryptography, vol. 71, no. 1, pp. 57-
81, 2014. 

[3] C. Gentry and S. Halevi, "Implementing 
Gentry’s fully-homomorphic encryption 
scheme," in Advances in Cryptology – 
EUROCRYPT, pp. 1-29, 2011. 

[4] R. Curtmola, J. Garay, S. Kamara, and R. 
Ostrovsky, "Searchable symmetric encryption: 
Improved definitions and efficient 
constructions," Journal of Computer Security, 
vol. 19, no. 5, pp. 895-934, 2011. 

[5] D. Cash, J. Jaeger, S. Jarecki, C. Jutla, H. 
Krawczyk, M. Rosu, and M. Steiner, "Dynamic 
searchable encryption in very-large databases: 
Data structures and implementation," in NDSS, 
pp. 1-32, 2014. 

[6] O. Goldreich and R. Ostrovsky, "Software 
protection and simulation on oblivious RAMs," 
Journal of the ACM (JACM), vol. 43, no. 3, pp. 
431-473, 1996. 

[7] E. Stefanov, E. Shi, and D. Song, "Path ORAM: 
An extremely simple oblivious RAM protocol," 
in Proceedings of the 2013 ACM SIGSAC 
Conference on Computer & Communications 
Security, pp. 299-310, 2013. 

[8] Z. Ren, J. Yu, Y. Zhang, and C. Wang, 
"Designated-cloud path ORAM: Efficient 
outsourcing of RAM with scalability 
bottleneck," in Proceedings of the 2017 ACM 
SIGSAC Conference on Computer and 
Communications Security, pp. 957-973, 2017. 

[9] D. X. Song, D. Wagner, and A. Perrig, 
"Practical techniques for searches on encrypted 
data," in Proceedings of the 2000 IEEE 
Symposium on Security and Privacy, pp. 44-55, 
2000. 

[10] Y. Chang and M. Mitzenmacher, "Privacy 
preserving keyword searches on remote 
encrypted data," in International Conference on 
Applied Cryptography and Network Security, 
pp. 442-456, 2005. 

[11] Z.-F. Wang, A.-G. Tang, and W. Wang, “Fast 
Query Over Encrypted Data Based on B+ Tree,” 
2009 International Conference on Apperceiving 
Computing and Intelligence Analysis, pp. 1-6, 
2009. 

[12] H. Hu, J. Xu, C. Ren, and B. Choi, "Processing 
private queries over untrusted data cloud 
through privacy homomorphism," in 
Proceedings of the 27th International 
Conference on Data Engineering, pp. 663-674, 
2011. 

[13] S. Kamara, C. Papamanthou, and T. Roeder, 
"Dynamic searchable symmetric encryption," in 
Proceedings of the 2012 ACM Conference on 
Computer and Communications Security, pp. 
965-976, 2012. 


