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ABSTRACT 

With the advancement of technology, cities have progressively grown more intelligent. Smart mobility is a 
vital component of smart cities, and autonomous vehicles play a fundamental role in enabling smart mobility. 
Nevertheless, the presence of vulnerabilities in autonomous cars might have a detrimental impact on both the 
overall quality of life and the safety of individuals. Consequently, several security researchers have examined 
both offensive and defensive strategies against autonomous cars. Machine learning (ML) and deep leaning 
(DL) is used in these mobile robots to automate repetitive driving chores and make judgments based on their 
understanding of the scenario. This research presents  showcases the utilization of adversarial instances in 
connected autonomous vehicles (CAVs) to illustrate how adversarial ML  and DL techniques  are extremely 
to detect  CANs attacks. The CAVs security system was developed using a dataset acquired from standard 
research. The dataset includes five types of attacks along with normal packets. The decision tree (DT), extra 
tree, and Gated Recurrent Units (GRUs) were utilized to identify cyber CAVs threats. The empirical data 
indicate that the DT technique produced a 99% accuracy rate, while the extra  tree and GRU achieved 98% 
and 96% respectively. Technology demonstrates potential in safeguarding vital infrastructure through the 
analysis of adversary methods. With near-perfect precision, the performance of all the models constructed in 
this manner outshone that of previously used models. When it comes to in-vehicle networks (IVN) security, 
the created system is up to the task. 
Keyword: Cybersecurity, Decision Tree, Gated Recurrent Units, Autonomous Vehicle 
 
1.INTRODUCTION  
 
Contemporary automobiles have surpassed their 
conventional purpose as simple means of 
transportation, evolving into intricate electronic 
systems on wheels, equipped with powerful 
sensors, linked networks, and software-driven 
capabilities. In the last decade, automobiles have 
acquired a growing array of technical functions and 
capabilities, resulting in enhanced intelligence and 
efficiency. However, a new kind of security risk has 
emerged as a result of these technological 
advancements: cybersecurity vulnerabilities, which 
may affect vehicles.  
Automatic gearshifts, power steering, and climate 
control were just a few of the modern amenities that 
cars started to include during the middle of the 
twentieth century. Modern fuel injection and 
ignition timing controls were made possible with 
the advent of electronic control units (ECUs) in the 
1970s [1].  

This concept had a pivotal influence on enhancing 
fuel efficiency, as well as implementing safety 
measures such as seatbelts and mitigating 
pollutants. In addition, several automobiles are now 
equipped with contemporary safety technologies 
such as Anti-lock Braking Systems (ABS) and 
airbags, which have become customary, 
significantly augmenting the safety of both 
motorists and occupants[1].  

Connected autonomous vehicles (CAVs) are highly 
dependent on the data collected by sensors. 
Aberrant sensor data resulting from inaccuracies or 
cyber intrusions can lead to significant 
ramifications, such as system failures and 
disruptions in traffic flow. CAV systems are 
susceptible to several forms of internal and external 
cyberattacks [2]. 
                 Automobile cyber security refers to the 
measures taken to safeguard electronic systems, 
control units, communication networks, and user 
data from hostile assaults. Security is essential due 
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to the fact that modern cars are essentially 
computerized vehicles rather than just mechanical 
devices. If a car were to have a vulnerability, a 
hacker might readily exploit it, perhaps leading to 
unpleasant consequences To prove that it is possible 
to hack a car by deciphering its CAN network, the 
authors [4] performed an experiment on a real 
vehicle in 2010.  Examine the below instances to 
demonstrate the importance of cyber security. In 
2016, researchers discovered a method to exploit 
the Wi-Fi interface and many software flaws to 
compromise the security of the Tesla Model S 
vehicle [5]. These examples demonstrate that 
hackers are particularly interested in targeting the 
weak components of cars for hacking purposes. 

 
 
The purpose of this project is to advance the field of 
cybersecurity in autonomous cars by investigating 
and suggesting advanced ML and DL techniques. In 
order to keep the autonomous vehicle network 
reliable and secure, this project aims to establish a 
new standard for detecting and, hopefully, 
preventing assaults on autonomous automobiles.  
IDS  refers to the systematic monitoring and 

analysis of network or computer system activities in 
order to identify and thwart attempts at 
unauthorized access [5]. The method seeks to 
identify signs of prospective intrusions, such as 
attempts to circumvent security barriers or gain 
illegal access [6]. 

Due to their large attack surfaces, self-driving cars 
are becoming more susceptible to cyberattacks that 
aim to compromise either their internal or external 
networks as they grow more advanced and linked. 
The extensive use of computers and communication 
networks makes autonomous cars an easy target for 
cybercriminals [7]. There are vulnerabilities in 
these systems that might be used by hackers to gain 
unauthorized access, steal data, or even take over 
the car [8]. These attacks might lead to accidents, 
deaths, and significant property damage. Figure 1 
provides a comprehensive summary of an IDS 
designed specifically for autonomous cars. The text 
emphasizes essential features, such as the ability to 
filter and detect in real-time. It has the capability to 
identify and counteract both sensor-based and 
communication-based assaults, a crucial aspect in 
ensuring the security of autonomous cars.  
 

 

 
 
                                                            Figure 1. IDS In Autonomous Cars  
 
 
The CAN bus is a protocol that enables reliable and 
prioritized communication between  ECUs in 

vehicles and other devices. All devices in the 
network get messages or "frames" without the need 
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for a host computer. The CAN is backed by a 
comprehensive collection of global standards 
outlined in ISO 11898. Figure 2 shows the structure 
of CAN bus. 

 
 

 
  
 

 
Figure 2. CAN Bus  [9] 

 
With the help of potential attack messages and 
cybersecurity measures, the suggested method aims 
to address the information security issues with 
CAVs. To successfully handle cyber threats to IVN 
communication, an  ML and DL framework is a 
potential option. Given the extensive usage of 
CAVs in several countries and their incorporation 
into daily social activities, effective intrusion 
detection from in-vehicle networks' congestion is 
vital. 
 
2.BACKGROUND OF STUDY 
 

IDS developed for use in autonomous vehicles are 
the subject of much recent academic study, which 
is summarized below. Researchers looked at 
potential weak spots in both private and public 
networks in their research. A signature-based IDS 
and an anomaly-based IDS are combined in their 
suggested multi-tiered hybrid architecture. Attacks 
on car networks, both old and new, will be spotted 
by this system.  

To identify irregularities in automobile networks, a 
new IDS for CAN was suggested in reference [10]. 
One may learn about the intrusion patterns and 
behaviors that are intrinsic to a system by studying 
the statistical features of attacks. Experiments 
proved that the proposed method can accurately and 

consistently identify denial-of-service (DoS) 
attacks, even fuzzy ones, with a negligible amount 
of false positives. It has been shown that the overall 
inaccuracy lowers for various window widths as the 
occurrence of assaults rises. Based on the findings, 
the suggested IDS is a better fit for in-vehicle 
networks as it successfully lowers the rate of 
misclassification. The experimental results show 
that the proposed IDS can successfully distinguish 
between valid and malicious data in CAN-BUS 
systems. With a recall rate of 99.64% and an F1-
score of 99.56%, the IDS accomplished its goal. In 
order to identify an attack on the ECU, the 
suggested IDS compares the window vectors with 
predefined normality values. Nevertheless, if the 
infected ECU initiates an attack before returning 
normal numbers, anomaly diagnostics might 
provide false findings.  The adaptive neuro-fuzzy 
inference system (ANFIS) and convolutional neural 
networks (CNNs) were used in the development of 
a very effective intelligent IDS in [11]. At the 
moment, methods mostly target known attacks in 
the context of vehicular ad hoc networks 
(VANETs). Intelligent intrusion IDS and soft-
computing techniques alleviate the limitation. 
Modules called IDS are part of the suggested 
solution; they can detect both known and unknown 
threats, even ones that haven't been found yet. 
While the module uses ANFIS classification to find 
known malicious assaults, the UIDS module uses 
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deep learning to find unknown threats in the 
VANET. According to the attack detection rate 
(ADR) research, 98.5% of harmful assaults, 99.7% 
of port scan attacks, 93.9% of brute force attacks, 
and 98.9% of botnet attacks were all effectively 
discovered. Without deep learning and 
sophisticated key management, the IDS's 
performance on the VANET was subpar.  

In [12], the authors presented a novel IDS that 
integrates deep learning, thresholding, and error 
reconstruction methods. They trained and tested a 
wide variety of neural network topologies and then 
compared their results. Four distinct assault types 
were used to evaluate the proposed anomaly 
detection system: fuzzy, RPM spoofing, gear 
spoofing, and denial of service (DoS). Accuracy, 
recall, and F1-scores were the metrics used for 
evaluation. Pretty much every time we tested the 
deep learning-based model, we got a performance 
level over 99.90%. As far as prediction times go, it 
performed well, with a scant 128.73 ms forecast 
time.  Using a hybrid model that included gradient 
descent momentum and adaptive gain, Zhang et al. 
[13] developed a system to identify CAN bus 
intrusions and categorize the messages linked to 
these attacks. In order to detect intrusions and keep 
an eye on the CAN bus message frames, Liang et al. 
[14] used a system that was based on deep neural 
networks. In order to train the deep learning model, 
the deep-belief network function was used. With a 
98% success rate, the proposed approach is clearly 
cutting it. The CAN bus IDS was developed by 
Hoppe et al. [15] to analyze data packets sent across 

a network and spot novel trends. After that, they 
checked the IDS system for preexisting patterns that 
matched these ones. Their method achieved a 
remarkable degree of accuracy when compared to 
the conventional methodology. One method that 
Taylor and colleagues [16] suggested for detecting 
CAN bus assaults is an LSTM model. To build a 
distributed anomaly classification system, Wang et 
al. [17] Used  hierarchical temporal memory 
method. The results of the empirical study shows 
that able to  detect attacks. Potential CAN bus 
intrusions have been predicted using a variety of 
ML and DL methods. The deep neural network 
[18,19], CNNs [20], and ANNs used to build 
adversarial attacks [21] are all examples of such 
systems. 

3.METHDOLOGY  
  

With the fast development of self-driving cars, 
several firms have encountered difficulties in 
safeguarding the CAV system against attacks, 
leading to a range of problems on the road. Several 
research have examined methods to ensure the 
security of systems, but there is a deficiency in the 
algorithm required to achieve optimal performance. 
For this work, we employed new methodologies 
based on ML and DL approaches  on actual datasets 
of connected and autonomous vehicles (CAVs). 
Figure 3 depicts the suggested framework for 
identifying and thwarting attacks on a connected 
and autonomous vehicle (CAV) network. 

 

                                                              Figure 3. Proposed System  
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 3.1 Dataset  
The CAV dataset was compiled using authentic 
CAN traffic data, which encompasses spoofing, 
flood, and replaying attacks, as well as benign 
packets. The dataset was created by constructing a 
Controller Area Network (CAN) traffic On-Board 
Diagnostics (OBD-II) port using a genuine 
Connected and Autonomous Vehicle (CAV). The 
injected messages included several forms of attack 
messages. The Open Car Testbed and Network 
Experiments (OCTANE) utilized the CAN packet 
generator. The incursions occurred at regular 
intervals of 3 to 5 seconds, and the CAV traffic 
lasted for a duration of 30 to 40 minutes. Table 1 
displays the occurrence of an injection attack on 
CAN traffic.  
 
                Table 1. Attacks of dataset  

Flooding_attack 3,665,771 

Fuzzing_attack 4,443,142 

Normal 4,621,702 

Spoofing 
(gear)_attack 

3,838,860 

 
3.3 Preprocessing approach  
The categorical variables were translated and then 
the maximum-minimum normalization procedures 
were applied to eliminate any potential overlap in 
the training process resulting from manipulating 
huge datasets. As part of the normalization 
procedure, we applied scaling to the dataset using a 
range of 0 to 1. This was done to ensure that all 
values are within a consistent range. 
 

𝑧௡ =
௫ି௫೘೔೙

௫೘ೌೣషೣ೘೔೙

 
(1) 

 
The variable 𝑥௠௜௡  represents the smallest value in 
the dataset. The variable  𝑥௠௔௫ represents the 
highest value in the dataset.  
 
 
3.4 algorithms 
 
3.4.1 Decision tree 
When it comes to supervised learning algorithms, 
decision trees are your best bet for solving 
classification and regression issues. Following a 
flowchart-like layout, the algorithm builds a 
hierarchical structure where each internal node 
stands for a property test, each branch for a potential 
result of the test, and every leaf node (terminal 
node) has a class label. Starting with the maximum 
tree depth or the minimum number of samples 

needed to split a node, the building procedure 
repeatedly divides the training data into subsets 
using attribute values until a stopping criteria is 
fulfilled.  

Using metrics like entropy or Gini impurity, the 
Decision Tree algorithm selects the best 
characteristic to partition the data for training. 
These measures provide a numerical representation 
of the subsets' level of impureness or 
unpredictability. Finding the attribute that 
minimises impurity after the split or maximizes 
information gain is the goal. 
 

 
𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = (𝑆) = ∑ 𝑝௜

஼
௜ୀଵ  𝑙𝑜𝑔ଶ 𝑝௜        (2) 

𝑒𝑛𝑡𝑟𝑜𝑝𝑦 (𝑆 |𝐵) = ∑
|௦೔|

|ௌ೔|

௝
௝ୀଵ  𝑒𝑛𝑡𝑟𝑜𝑝𝑦 (𝑆௜)     (3) 

Gain (𝑆 |𝐵) = 𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝑆) − 𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝑆 |𝐵)     
(4) 

 
Where can I find a training dataset that includes 
both attack and normal classes?  𝑃௜represents the 
probability of a simple event indicating class C.  
𝑆௜: represents the samples of subsets of a class in 
the feature set B.  

A decision tree is a hierarchical structure like a 
flowchart with core nodes representing features, 
branches representing rules, and leaf nodes 
representing algorithm results. The flexible 
supervised machine learning method may be used 
for classification and regression. This algorithm is 
powerful. Random Forest also uses this method to 
train on different subsets of training data, making it 
one of the most powerful machine learning 
algorithms. 
 
 
3.4.2 Extra tree approach  
An ensemble learning technique, the Extra Trees 
Classifier classifies using the results of multiple 
uncorrelated decision trees in a "forest". Its main 
difference from a Random Forest Classifier is how 
it builds decision trees within the forest. The Extra 
Trees Forest builds every Decision Tree from the 
original training sample. Every tree receives a 
random sample of k feature-set features at each test 
node. Each decision tree then chooses the best 
feature to partition the data using a mathematical 
criteria, generally the Gini Index. The random 
selection of features creates numerous uncorrelated 
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decision trees. The forest structure is formed and 
the normalized total decrease in the mathematical 
criterion used to separate the feature (Gini Index if 
utilized) is computed for each feature to choose 
features. This value is called "Gini". Characteristic 
significance. 
 
3.4.3 Gated Recurrent Unit (GRU) 
 
The GRU is an RNN design that can replace LSTM 
networks, simplifying things. Like LSTM, GRU 
can process sequential text, audio, and time-series 
data. GRU works by selectively changing the 
network's hidden state at each time step via gating. 
Gate systems may regulate network data entry and 
exit. The GRU has two typical gates: reset and 
update. The reset gate chooses how much to ignore 
the prior concealed state, while the update gate 
controls how much the current input changes it. 
From the updated hidden state, the GRU calculates 
output. The GRU's design is shown Figure 4. 

  
These two gates together govern network data flow. 

The update gate determines how much past data to 
process. The reset gate decides how much data to 
delete. The equations below summarize a GRU. 
 

 
𝜇௧ = 𝜎(𝑉ఓ𝑥௧ + 𝑊ఓ𝑜௧ିଵ + 𝑏ఓ)  

 (5) 

𝑟௧ = 𝜎(𝑉௥𝑥௧ + 𝑊௥𝑜௧ିଵ + 𝑏ఓ)  
 (6) 

𝑖௧ = 𝑡𝑎𝑛ℎ(𝑉௢𝑥௧ + 𝑊௢(𝑟௧ ⊙  𝑜௧ିଵ) + 𝑏଴) (7) 

𝑜௧ = 𝜎(𝜇௧ ⊙  𝑜௧ିଵ (1 − 𝜇௧)  ⊙  𝑖௧)  (8) 

 

The variables in the equation are defined as 
follows: 𝑥௧ represents the input, 𝑜௧ represents the 
output, 𝜇௧ represents the output of the update gate, 
𝑟௧ represents the output of the reset gate, and the 
⊙ symbol indicates the Hadamard product. The 
parameters or weight matrices are denoted by V, 
W, and b. 

Figure 4. GRU Model 

 
 
3.5 Evaluation metrics  
Assessing the performance of ML and DL models 
is crucial for gauging the effectiveness of the 
models. There are several metrics used to quantify 
performance, including as accuracy, sensitivity, 

precision, recall, F1 score, ROC curve, and 
confusion matrix. The evaluation measures provide 
an alternative perspective on the model's 
advantages and disadvantages. 
 

             𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
்௉ା்ே

ி௉ାிேା்௉ା்
 ×

100                                                           ( 9)                    
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          𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×  𝑅𝑒𝑐𝑎𝑙𝑙 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙 
 x100%                       (10) 

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

=   
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +  𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 
𝑥100%           11) 

 
𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦

=
𝑇𝑟𝑢𝑒  𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
𝑥100%                   (12) 

 
4. EXPERIMENTAL RESULTS  

This section presents the findings from 
different investigations investigating the 
effectiveness of machine learning and deep learning 
techniques in detecting cyberattacks in networks of 
connected and autonomous vehicles (CAVs). We 
specifically look at how well the Decision Tree, 
Extra Tree, and GRU approaches perform in 
identifying malicious activity in CAV 
communication networks. A dataset consisting of 
network traffic logs gathered from simulated CAV 
settings is used in these investigations. Our goal is 
to evaluate each method's accuracy in identifying 

different kinds of assaults, such as replay attacks, 
flooding, fuzzing, and spoofing. We use important 
metrics including precision, recall, and F1-score to 
assess each approach's robustness and accuracy. 

4.1 Decision Tree Classification Results 
 
This subsection introduces the Decision Tree 
classification report which are presented in table 
2below demonstrates strong predicting across a 
variety of attack types on the Connected 
Autonomous Vehicle (CAV) network. With 
excellent precision and recall scores for "Flooding" 
and "Spoofing" attacks, the model identifies these 
threats correctly. 

Table 2: Testing Classification Report Of The Decision Tree Model.. 

Attack Type Precision Recall F1-score Support Accuracy 
Flooding 100 100 100 7727  

 
99 

Fuzzing 97 94 95 4525 
Normal 99 100 99 146721 
Replay 72           46      0.556      2114 

Spoofing 100  1.00       1.00        191 
 
However, its performance is slightly inferior for 
"fuzzing" and "replay" attacks, which have lower 
precision and recall values. Despite these variances, 
the Decision Tree model has an overall accuracy of 
99%, demonstrating its usefulness in detecting 
cyber risks in the CAV environment. 
 
4.2 Extra Tree classification Results 

Similar to the Decision Tree model, the Extra Trees 
classification report provides strong performance 
across several attack types within the CAV network. 

The model has good precision and recall scores for 
"Flooding" and "Spoofing" attacks, showing that it 
can reliably recognize these threats. However, its 
performance is slightly poorer for "Fuzzing" and 
"Replay" attacks, which have lower precision and 
recall values. Despite these variations, the Extra 
Trees model retains an overall accuracy of 99%, 
demonstrating its efficacy in detecting cyber threats 
in the CAV environment. Table 3summarizes the 
testing classification results of the Extra Trees 
model. 

Table 3: Testing Classification Report Of The Extra Trees Model 

Attack Type Precision Recall F1-score Support Accuracy 
Flooding 100 100 100 7727  

 
99 

Fuzzing 98 94 96 4525 
Normal 99 100 99 146721 
Replay 73 47 57 2114 

Spoofing 100 100 100 191 
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4.3 GRU classification Results 

The GRU model classification report presented in 
table 4 shows that the model performance varies 
depending on the type of attack. The model 
performs noticeably worse for "Fuzzing," "Replay," 
and "Spoofing" attacks than it does for "Flooding" 
attacks, when it achieves flawless precision and 
recall. Notably, the "Fuzzing" attack precision and 

recall scores indicate that the model has difficulty 
correctly identifying occurrences of this attack type. 
In a similar vein, the model's recall and precision 
levels for "Replay" and "Spoofing" assaults are 
below par. The GRU model's total accuracy of 96% 
is maintained in spite of these difficulties, 
highlighting its capacity to identify cyberthreats in 
the CAV environment. 

Table 4: Testing Classification Report Of The GRU Model 

Attack Type Precision Recall F1-score Support Accuracy 
Flooding 100 100 100 7727  

 
99 

Fuzzing 000 000 000 4525 
Normal 96 100 98 146721 
Replay 96 003 005 2114 

Spoofing 000 000 000 191 
 

These reports provide insights into the 
performance of each model in detecting 
cyberattacks within the CAV network, enabling 
stakeholders to make informed decisions regarding 

security measures and system improvements.  
Figure 5 displays  the performance of GRU model. 

 

 

 

Figure 5. Accuracy Of GRU Model 

 

 

5. RESULTS DISCUSSION  

The subsection gives discussion of the results 
obtained from the different experiments employing 
Decision Tree, Extra Trees, and GRU (Gated 
Recurrent Unit) models for detecting cyberattacks 

in connected and autonomous vehicle (CAV) 
networks provide valuable insights into the 
performance of these algorithms. 
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Starting with Decision Tree, the classification 
report reveals high accuracy levels across most 
attack categories, with precision, recall, and F1-
score metrics consistently exceeding 0.90. This 
indicates that Decision Tree effectively 
distinguishes between different types of 
cyberattacks in CAV networks, demonstrating its 
capability to detect attacks such as flooding, 
fuzzing, replay, and spoofing with minimal false 
positives and negatives. However, the model's 
performance, especially in terms of recall for the 
"Replay" attack category, appears to be slightly 
lower compared to other categories. 

Similarly, the Extra Trees classifier exhibits robust 
performance, achieving high precision, recall, and 
F1-score values across all attack categories. With 
accuracy levels consistently exceeding 0.99, Extra 
Trees effectively identifies various cyber threats in 
CAV networks, including flooding, fuzzing, replay, 
and spoofing. The model's ability to maintain 
perfect precision and recall for the "Flooding" and 
"Spoofing" attack categories further underscores its 
reliability in accurately classifying attack messages 
without false positives or negatives. 

In contrast, the findings of the GRU model paint a 
different picture. Specifically, the "Fuzzing" and 

"Replay" attack categories show much poorer 
precision, recall, and F1-score values. This implies 
that, possibly as a result of its recurrent nature and 
the difficulties involved in processing sequential 
data, GRU may find it difficult to generalize 
effectively to specific kinds of intrusions in CAV 
networks. Although the model's accuracy of 0.96 
suggests that it still performs rather well overall, it 
doesn't seem to be very good at precisely 
identifying particular assault types.  

The decision tree and extra tree classifiers perform 
well overall in identifying cyber threats in CAV 
networks, proving that they can correctly categorize 
attack messages with a high degree of recall and 
precision. However, in contrast to ensemble 
learning techniques like Decision Tree and Extra 
Trees, the GRU model performs poorly in 
recognizing specific attack types, even when it 
attains a moderate level of accuracy. To increase the 
GRU architecture's effectiveness in managing the 
complexity of a real-world CAV cybersecurity 
scenario, more optimization and fine-tuning may be 
required.  Figure 6 displays ROC performance of 
GRU model. 

 

 

Figure 6. ROC Of GRU Model 

Table 5 presents the comparative categorization 
performance between the proposed system and 
current models. The suggested framework achieved 

a 99% accuracy rate, surpassing all existing 
methods for identifying Intrusion Detection 
methods (IDS) on vehicle networks. 
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Table 5.  Comparison  Between The Our Results And Existing Systems 

 

    References, authors  Approach  Acuuarcy  Dataset  

Zhu [22] LSTM 80% CAN dataset  

Avatefipour [23] ML 90% CAN dataset 

Yang [24] NN-LSTM 90% CAN dataset 

Aldhyani  [25] CCN-LSTM 97% CAN dataset 

Our proposed  Proposed system 99% CAN dataset 

 

 

 

                   

 

                                                           Figure 7. Performance Our CAN -IDS  System  

 

6. CONCLUSION  

Autonomous vehicles function using intricate 
computerized systems that are susceptible to cyber 
assaults. These systems govern all aspects of the 
vehicle's operation, including its velocity, steering, 
braking, and acceleration. If these systems are 
infiltrated or breached, the repercussions might be 
disastrous. A cybercriminal may remotely seize 
control of an autonomous vehicle and deliberately 
induce a collision or deviate from its intended path. 

Consequently, this paper set out to develop, build, 
and test an artificial intelligence approaches  for 
anomaly detection system for driverless vehicles.  
The  system  was developed based on  ML and GRU 
models, we provide an intrusion detection system 
(IDS) capable of detecting CAN bus abnormalities 
in intra-vehicular networks. An extensive analysis 
of the CAN bus's weaknesses, the field's need for 
AIDS, the various types of attacks that CAN buses 
are susceptible to, and the consequences of these 
attacks on vehicles and their drivers were all 
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covered in this study. A 99% success rate was 
attained by the suggested CAN-IDS system that 
used a decision tree technique. 
The suggested solutions demonstrated the 
capability to efficiently identify abnormal packets 
for the purpose of protecting the CAN bus. They 
may also be applied to the development of different 
security systems integrated into the complicated 
network infrastructures of autonomous vehicles to 
provide secure data processing. In the near future, 
our system will further develop with the assistance 
of advanced artificial intelligence. 
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