
 Journal of Theoretical and Applied Information Technology
15th October 2024. Vol.102. No. 19

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6980

 FROM CONTEXT-INDEPENDENT EMBEDDING TO
TRANSFORMER: EXPLORING SENTIMENT

CLASSIFICATION IN ONLINE REVIEWS WITH DEEP
LEARNING APPROACHES

 KOMANG WAHYU TRISNA1 , JINJIE HUANG 2* , HESHAN LEI 3 , EDDY MUNTINA
DHARMA 4

123 School of Computer Science and Technology, Harbin University of Science and Technology, Harbin,
China

2 Key Laboratory of Advanced Manufacturing and Intelligence Technology, Harbin University of Science
and Technology, Harbin, China

14 Department of Informatic Engineering, Faculty of Information Technology and Desain, Primakara
University, Bali, Indonesia

E-mail: 1km.ayutrisna@gmail.com, 2jjhuangps@163.com (corresponding author),
3heshan961@outlook.com, 4eddy@primakara.ac.id

ID 55513 Submission Editorial Screening Conditional Acceptance Final Revision Acceptance

06-09-24 09-09-2024 23-09-2024 29-09-2024

ABSTRACT

The exponential progress in technology and the internet has resulted in an unparalleled surge in online
engagement, where individuals openly express their viewpoints. Users provide a variety of opinions on
politics, events, and product evaluations. User views wield substantial influence on decisions made by both
companies and individuals. Manual procedures for identification become impracticable due to the large
number of user opinions. Sentiment analysis techniques are employed as a resolution. Deep learning methods
have demonstrated potential in accurately predicting polarity from internet reviews, outperforming standard
models. Utilizing word embedding techniques in conjunction with deep learning models is crucial for
attaining superior results in sentiment classification within the realm of natural language processing (NLP).
Furthermore, word embedding approaches like Word2Vec and FastText are thoroughly analyzed for the
purpose of mapping text to vectors composed of real numbers. In this study, every assessed deep learning
model is combined with both context-independent word embedding and transformer-based embedding. The
evaluation of the five model, each utilizing one of the five feature extraction approaches, is conducted using
three datasets from distinct domains: IMDB, Amazon, and Yelp. The evaluation is based on multiple metrics,
including accuracy, recall, precision, F1-score, and MCC.

Keywords: Sentiment Analysis, Online Review, Deep Learning, Word Embedding, Transformers

1. INTRODUCTION

 The current development of social media is
currently undergoing rapid and significant expansion.
As a result, there is a significant increase in the
continuous production of data as users share their
opinions on various issues, such as items, themes,
events, and breaking news [1], [2]. Social media has
become a valuable tool for data analytics in various
practical applications, especially when it comes to
analyzing online evaluations. Businesses must now
prioritize the examination of these comments
to derive important insights related to their products
or services. Individual viewpoints exert substantial
impact on crucial decision-making processes.

Over almost ten years, social media has become a
well-established platform for individuals to openly
share their thoughts and feelings. The expressions
shared on social media can significantly influence
the way specific items or businesses are perceived
and managed online. Examining the sentiment
patterns in consumer reviews can provide both a
benchmark for other consumers and aid businesses
in improving their service quality and overall
customer satisfaction [3]. In the present day,
individuals are no longer restricted to seeking advice
from their acquaintances when they choose to
purchase a consumer product. This is due to the
abundance of user evaluations and debates available
on public forums on the Internet. Businesses may no

 Journal of Theoretical and Applied Information Technology
15th October 2024. Vol.102. No. 19

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6981

longer need to engage in surveys, opinion polls, and
focus groups to collect customer opinions, as there is
an ample amount of publicly accessible information
available. However, the process of locating and
overseeing opinion websites on the Internet and
extracting the information they provide continues to
be challenging due to the widespread existence of
many websites. Every website usually has a
substantial amount of subjective text that might be
challenging to understand due to lengthy blog posts
and forum discussions. The normal human reader
may struggle to find pertinent websites and
effectively extract and condense the thoughts
expressed within them. Therefore, there is a
requirement for automated sentiment analysis
systems.

Sentiment analysis largely focuses on the
examination of opinions. It pertains to the automated
analysis of subjective comments material to
determine the emotional tone and propensity of the
consumer [4]. Sentiment analysis is a prominent area
of research in Natural Language Processing (NLP)
that focuses on determining the polarity of textual
data. It seeks to identify whether the sentiments
expressed in a given text are positive, negative, or
neutral [5]. Businesses utilize sentiment analysis to
effectively understand social media comments,
product evaluations, and diverse textual data sources.
The capacity to discern sentiment is significant not
only for individual decision-makers but also for
business and governments alike. Being able to
accurately perceive and understand the opinions and
attitudes of the general public towards policies,
products, and organizations can offer substantial
benefits to these institutions, as well as to decision
support systems and individuals[6]. During its first
phases, sentiment analysis often depended on
training shallow models with meticulously crafted
features to attain good outcomes in polarity
determination [7].

Text sentiment analysis is consist of three
approaches: lexicon-based methods, machine
learning-based methods, and deep learning-based
methods. Lexicon-based methods assess the
sentiment orientation of a text document by
evaluating the meaning and sentiment conveyed by
words and sentences using a predefined dictionary
[8]. While effective, this approach poses a
significant drawback in terms of the computational
resources required to identify the sentiment
orientation of each word in the dictionary.
Conversely, traditional machine-learning methods
often blend lexicon-based strategies with machine
learning algorithms. These methods necessitate
manual labeling, which can be time-consuming and

resource-intensive. These labeled datasets serve as a
training set for building classification models using
popular supervised learning algorithms such as
Naïve Bayes [9], Support Vector Machines (SVM)
[10], k-nearest neighbour algorithm [11], latent
Dirichlet allocation (LDA) [12], and random forest
[13]. These methods often utilize linguistic features
such as n-grams [14], part-of-speech (POS) tags, and
lexical features. Machine learning methods offer a
more automated and scalable approach to sentiment
analysis in comparison to lexicon-based methods.
While conventional machine learning models
require human intervention to extract emotional
features from input text, subsequent steps involve
text vectorization and the utilization of traditional
machine learning algorithms for sentiment
classification [15]. However, coping with the
exponential growth of data in social media
repositories presents traditional algorithms with
challenges when extracting sentiments from these
vast datasets. Recent studies indicate that the
utilization of deep neural networks in NLP tasks,
such as sentiment analysis [16], language modeling
[17], and machine translation, can substantially
improve predictive performance.

Deep learning is a branch of machine learning
that uses artificial neural networks with several
layers to gain knowledge and generate predictions.
Deep learning techniques have been extensively
employed in many domains including image
recognition [18], object detection [19],
transportation [20], network optimization [21],
sensor networks [22][23], system security [24], etc.
Deep learning models are particularly well-suited for
the analysis of text data sentiment due to their ability
to effectively capture the intricate relationships
between words and phrases. Deep learning, in
contrast to conventional machine learning
techniques, necessitates substantial data support
rather than human-engineered features. Deep
learning-based methods autonomously extract
features from a variety of neural network models and
enhance their performance by learning from their
errors [25]. Word embeddings play a crucial role in
the implementation of deep learning models. Word
embeddings are commonly used as a fundamental
input representation for deep learning models across
a diverse array of NLT tasks. They have a vital role
as a key component in deep models, providing input
features for language-related tasks such as sequence
labeling and text classification. In recent years, there
has been a significant rise in the development of
word embedding techniques, specifically classified
as classic and context-based word embeddings.
Choosing the appropriate approach for sentiment

 Journal of Theoretical and Applied Information Technology
15th October 2024. Vol.102. No. 19

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6982

analysis is essential and necessitates careful
consideration. This study conducts experiments to
thoroughly investigate the integration of context-
independent embeddings and transformer-based
embeddings within deep learning models,
establishing a foundation for identifying the most
suitable model for sentiment analysis development.
Despite advancements in sentiment analysis
techniques, traditional methods—such as lexicon-
based approaches and conventional machine
learning models—struggle to capture contextual
information and manage the exponential growth of
data in online reviews.

This study addresses a critical research gap: the
need for a systematic comparison between
traditional context-independent embeddings (e.g.,
Word2Vec and GloVe) and advanced transformer-
based models (e.g., BERT and ALBERT) within
deep learning frameworks. By conducting this
comparison, we aim to provide a comprehensive
understanding of the respective strengths and
limitations of these embeddings in capturing
sentiment nuances across diverse online review
datasets.

The primary objective of this study is to explore
and compare the effectiveness of context-
independent and transformer-based embeddings in
sentiment classification tasks utilizing deep learning
models. Specifically, we seek to answer the
following research questions:

1. How do context-independent embeddings
perform compared to transformer-based
embeddings in sentiment classification tasks?

2. What impact does the choice of word
embeddings have on model performance
across different datasets and domains?

3. What are the best practices for integrating
these embeddings into deep learning models
for optimal sentiment classification
performance?

Additionally, this study makes the following
contributions:

1. Evaluation of Embeddings: We
systematically evaluate the performance of
context-independent embeddings (e.g.,
Word2Vec, GloVe) and transformer-based
embeddings (e.g., BERT, RoBERTa) using
deep learning models for sentiment
classification.

2. Dataset Variability: We utilize multiple
datasets from diverse domains to test the
generalizability and robustness of our models.

3. Impact of Embedding Choices: We analyze
how different embeddings influence model

outcomes, providing insights into their
applicability and effectiveness in various
contexts.

The selection of deep learning models (e.g., CNN,
BiLSTM) is motivated by their demonstrated
efficacy in capturing textual features. Furthermore,
the incorporation of transformer-based models
addresses the limitations of traditional embeddings
in understanding context and semantics.

The subsequent sections of this work are
structured in the following manner: Section II
outlines the significant advancements made in the
field of text sentiment analysis. Section III provides
a comprehensive explanation of our proposed model.
Section IV details the experimental procedure and
the outcomes obtained from validating our model.
Section V conclusion and future directions.

2. RELATED WORKS

 Within the domain of Natural Language
Processing (NLP), numerous investigations have
leveraged neural language models and deep learning
architectures. This section provides a concise
overview of prior research endeavors focusing on
sentiment analysis using deep learning
methodologies.

2.1 Sentiment Analysis

 Sentiment analysis is used to determine the
overall attitude of a text or review, whether it is
positive, negative, or neutral. This is done by
analyzing the dominant emotional viewpoint
expressed. In the early stages of sentiment analysis
research, supervised machine-learning techniques
were commonly used as the main classification or
clustering modules [26]. Supervised machine-
learning techniques used n-gram features and the
bag-of-words (BOW) model to represent and
categorize user-generated, sentiment-bearing texts
[27]. These characteristics are suggested as solutions
to tackle the limitations of the basic BOW model,
such as disregarding word order and syntactic
structures [28]. One major disadvantage of utilizing
n-gram features is the significant increase in the
dimensionality of the feature space. In recent studies,
researchers have extensively explored feature
selection methods to address this problem [29], [30].
Supervised methods like SVM, LDA, Naïve Bayes,
and artificial neural networks are widely used for
sentiment analysis and have shown impressive
performance[31]–[33]. In supervised methods,
sentiments of reviewers are predicted by analyzing
the labeled sentiments of existing review data [34].

 Journal of Theoretical and Applied Information Technology
15th October 2024. Vol.102. No. 19

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6983

These methods have certain limitations as they
necessitate a substantial amount of training data to
encompass all potential scenarios and have a
tendency to operate at a slower pace. In addition,
supervised learning models are often tailored to
specific domains. For instance, classifier models that
are trained on laptop reviews may not perform
optimally when applied to movie reviews [35].
To overcome these limitations, researchers have put
forth unsupervised lexicon-based methods [36]–[38].
Lexicon-based methods utilize the sentiment
orientation of words or phrases present in a review
to assess the overall sentiment score. Hence, lexicon-
based approaches depend on tallying sentiment
lexicons instead of data training, and the
effectiveness of the model can be enhanced by
expanding the lexicon dictionary with a larger
number of words. Several pre-existing dictionaries
contain terms and their corresponding costs for
sentiment analysis, including SentiWordNet [39],
MPQA subjectivity lexicon [40] and LIWC lexicon
[41]. However, lexicon-based methods are heavily
dependent on the lexicon's quality and coverage,
which can result in lower accuracy when compared
to supervised approaches [42], [43]. In addition, the
sentiment orientation of a word can differ depending
on the domain, which can limit the effectiveness of
lexicon-based methods in domains without specific
lexicons. One possible solution to this problem is to
analyze the emotional meaning of a word within its
specific context [44]. Machine learning approaches
can learn specific patterns from text, resulting in
improved classification results. However, a
limitation of these approaches is that they often rely
on extensive training datasets to achieve optimal
performance. Moreover, a classifier trained on a
specific dataset may not achieve the same level of
performance when applied to a different domain [45],
[46]. The constraints can be surpassed by deep
learning.

2.2 Deep Learning for Sentiment Analysis

In recent years, deep learning has been widely
utilized in sentiment analysis, in addition to its
success in numerous application fields. The latest
advancements in sentiment analysis have primarily
concentrated on acquiring word embeddings and
investigating different deep-learning models for
classification and clustering purposes. The topic of
natural language processing is closely linked to the
use of deep learning models and word embeddings.
Word embeddings are essential for deep learning
models as they offer a structured representation of
text, enabling the models to learn and generate
accurate predictions. These embeddings are

designed to capture not just the literal meaning of
words, but also their contextual associations and
resemblances. Word embeddings allow deep
learning models to represent words as dense vectors
of real numbers. This representation enables the
models to analyze words and capture their semantic
and syntactic nuances, improving their capacity to
comprehend intricate language patterns [47]. In their
research, Yoon et.al., [48] introduced a multi-
channel lexicon-based model that integrates
convolutional neural networks (CNNs) with
bidirectional LSTM (biLSTM) to perform sentiment
categorization. The effectiveness of their model is
dependent on the rules derived from the sentiment
orientation of the lexicon in the given context, which
is specific to the domain. CNNs, as advanced
artificial neural networks, have the capability to
discern intricate features across diverse data forms,
encompassing images and text. They have mostly
been utilized in computer vision applications,
namely in tasks such as picture classification, object
identification, and image segmentation.

Convolutional Neural Networks (CNNs) have
recently been utilized for text-related tasks. CNNs
are used as local feature extractors in sentiment
analysis applications, especially when local patterns
like n-grams have a substantial impact on long texts.
For instance, Kalchbrenner et al. [49] introduced a
dynamic CNN model called DCNN for analyzing
sentiment at the phrase level. The DCNN employs
Dynamic K-Max pooling to capture the relationships
between words. Johnson and Zhang [50], employed
the BOW model in the convolutional layer and
introduced a novel model called Seq-CNN to retain
word information. In a recent study, Rezaeinia et al.
[51] CNN model that utilized enhanced word
embeddings to analyze sentiment at the document
level. The authors of the study improved the pre-
trained Word2Vec [52] and GloVe [53] embeddings
by incorporating lexical, positional, and syntactical
information. These upgraded embeddings were then
utilized in the analysis of three distinct datasets
consisting of short texts. Additional variations of
CNNs utilized for sentiment analysis applications
encompass charCNN [54], CNN-multichannel [55],
CNN-LSTM [56], Ada-CNN [57], and many more.
Hyun et al. [58] proposed TCNN, employs the
proximity correlation between the target word and
neighboring words to acquire knowledge about the
impact of the context on the target words. Although
CNNs are highly effective at identifying patterns
within localized temporal or spatial data, they
frequently struggle to capture sequential
correlations.

 Journal of Theoretical and Applied Information Technology
15th October 2024. Vol.102. No. 19

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6984

On the contrary, Recurrent Neural Networks
(RNNs) are tailored for sequential modeling, yet
they do not possess the capability to extract
information concurrently. Sentiment analysis of text
can be viewed as a challenge of sequential modeling,
in which RNNs are frequently effective in
sequentially assessing lengthy texts. RNNs are
commonly employed in text sentiment analysis due
to their inherent properties. However, conventional
RNNs have challenges related to the amplification
and attenuation of gradients while handling lengthy
data sequences. Long Short-Term Memory networks
(LSTMs) [59] were devised as a variant of deep
neural network architecture leveraging RNNs to
address the vanishing gradient dilemma in particular.
Conventional RNNs are unable to effectively
process input sequences of any length. In order to
overcome this constraint, LSTM models include
forget gates. LSTMs and their variations are often
used in sentiment analysis applications because to
their capacity to capture long-term dependencies
[60]. For example, Xu et al. [61] introduced the
cached LSTM model to capture both local and global
semantic information in lengthy text. Moraes et al.
[62] proposed the utilization of p-LSTM, a model
that incorporates three-word embeddings instead of
single-word embeddings, in addition to a phrase
embedding layer. The p-LSTM model utilizes
LSTM for sentiment classification tasks.

In recent study, Gupta et al. [63], proposed an
innovative multichannel LSTM model named SS-
BED for emotion detection within Twitter data.
Their approach involves the concurrent utilization of
GloVe [53] and Sentiment Specific Word
Embedding (SSWE) [64] in parallel as pre-trained
word embeddings. Subsequently, three LSTM
modules are successively employed for each
pathway to capture extended dependencies within
the text. In the final step, the output consists of two
concatenated feature vectors, which serve as the
input to the fully connected layer. Additional LSTM
variants employed in sentiment analysis include TD-
LSTM [65], SLSTM [66], cBLSTM [67], Tree-
LSTM [68], and Sentic LSTM [69]. Ma et al. [69]
introduced a modified version of LSTM dubbed
Sentic LSTM to incorporate both dominant and
recessive aspects in phrases. This model unit
includes a unique output gate that is specifically
designed to combine token-level memory and
concept-level input. Chen et al. [70] developed an
LSTM model for complex emotional interpretation
of Chinese product reviews, using the mathematical
principles of regression neural network. Wen et al.
[71] introduced a hardware architecture for LSTM
network employing memristor crossbars in a distinct

study. Hu et al. [72] performed sentiment analysis on
brief texts by creating a keyword vocabulary and
incorporating it into the LSTM model.

Furthermore, bidirectional long short term
memory (BiLSTM) [73] is an advancement of
LSTM. The BiLSTM efficiently combines the
hidden layers from both the forward and backward
directions, allowing access to contextual information
from both previous and subsequent elements.
Therefore, BiLSTM outperforms LSTM in dealing
with sequential modeling jobs. BiLSTM has been
effectively utilized in recent applications for
sentiment analysis tasks, resulting in significant
accomplishments [74][75]. Another variant of RNN,
the Gated Recurrent Unit (GRU), is frequently
utilized for sentiment analysis tasks. GRU units
possess a more streamlined structure, consisting
solely of two gates: the reset gate and the update
gate. The reset gate is responsible for selecting the
information that needs to be discarded from the
previous state, while the update gate regulates the
information that should be retained from the current
input and the prior state. GRU units do not have a
separate memory cell like LSTM. Instead, they
maintain a hidden state that combines both the
previous memory and the current input information.
GRU has fewer parameters compared to LSTM
because it lacks the complexity of separate memory
cells and additional gates. GRU's implementation
can enhance computational efficiency and expedite
training, particularly noticeable with smaller
datasets. Due its simpler architecture, GRU often
converge faster during training compared to LSTMs.
This makes GRUs a popular choice when
computational resources are limited or when training
time is a critical factor. Yang et al. [76], introduced
a new attention-based network called hierarchical
attention networks (HAN) for text classification.
Within their paradigm, they utilize two attention
modules, one at the word level and another at the
phrase level. The attention modules are arranged in
a stack on top of the outputs of sequence encoders
based on GRU.

Zhang et al. [77] introduced a model that
utilizes bidirectional recurrent neural networks to
handle multiple inputs and outputs. They employed
two distinct biGRU layers in their model to provide
part-of-speech and sentence representations. They
subsequently merged lexical information by utilizing
attention on the output of the softmax activation for
the part-of-speech representation. Additionally, they
enhanced the model's performance by integrating the
probability of auxiliary labels as a feature, enabling
the capture of essential correlations between the
output labels and the hidden layers. In Li et al. [78]

 Journal of Theoretical and Applied Information Technology
15th October 2024. Vol.102. No. 19

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6985

a sentiment classification of restaurant reviews was
proposed using an attention-based Bi-GRU neural
network. The proposed model combines Word2Vec,
Bi-GRU, and attention mechanisms to achieve better
results with fewer parameters in building a sentiment
analysis model. The model ensured the symmetry of
the hidden layer weight update by utilising the
important benefit of Bi-GRU. Pan et al. [79]
introduced the concept of sentiment analysis in
Chinese. The text sentiment was analyzed using a
Bi-GRU and attention mechanism model. The
suggested model can extract profound characteristics
of the text and integrate the sentence's context to
acquire text attributes with more precision. In
addition, they introduced multi-head self-attention, a
method that decreases dependence on external
parameters. This method involves assigning weights
to word vectors, emphasizing text characteristics,
and giving greater consideration to the internal
relationships within sentences.

Due to its lightweight nature, many researchers
combine several deep learning methods with the
GRU model to achieve better results. Luo [80]
combined Latent Dirichlet Allocation (LDA) text
representation with CNN. The LDA topic model
trained the latent semantic space representation of
the short text, producing a feature vector
representation based on the topic distribution. Then,
CNN combined with GRU is used as a classifier.
Meanwhile, Ni et al. [81] integrated two distinct
recurrent neural network (RNN) models, namely
LSTM and GRU, with GloVe word embedding. The
suggested model was implemented on the IMDB
dataset. In addition, a hybrid approach utilizing both
LSTM and GRU is employed for sentiment analysis
in the field of cryptocurrencies [82]. Cheng et al.
[83], suggested a sophisticated hybrid model that
incorporates a multi-channel convolutional and
bidirectional GRU with multi-head attention
capsules. This model uses vector neurons instead of
scalar neurons to represent text emotions and
leverages capsules to describe text emotions. Multi-
head attention is capable of encoding
interdependencies among words, identifying
sentiment terms in text, and employing CNN and
Bidirectional Gated Recurrent Unit Network (Bi-
GRU) to extract local characteristics and global
semantic aspects of the text, respectively. This study
aims to assess and identify the most appropriate deep
learning models, specifically CNN, LSTM, BiLSTM,
GRU, and BiGRU, for sentiment analysis.

2.3 Word Embedding

Deep learning models rely heavily on word
embeddings as a source of input information for

language tasks like text classification and sequence
labeling. For this objective, a significant number of
word embedding techniques have been presented in
the last ten years, mostly divided into context-
dependent and context-independent embeddings
[84]. Word embedding is a language modeling
technique used to associate words with numerical
vectors, effectively representing words or phrases in
multi-dimensional vector spaces. These word
embeddings can be created through diverse
techniques such as neural networks, co-occurrence
matrices, probabilistic models, and more. Context-
independent and context-dependent word
embeddings are the two primary categories of word
embeddings that have been created. Context-
independent techniques, sometimes referred to as
"classic" word embeddings, use co-occurrence
matrix factorization or shallow neural networks to
learn representation [85]. The learned
representations are typified by being distinct and
unique for every word, regardless of the word's
context. For this reason, these embeddings are
usually provided as downloaded files and pre-trained
on generic text corpora. They can be used straight
away to set the embedding weights for language
tasks that come after. Among the notable examples
are word2vec [52], GloVe [53] and FastText [86].
Context-dependent approaches, in contrast to
context-independent ones, learn distinct embeddings
for the same word based on the context in which it is
used. For example, a term with several meanings like
"bank" could have different embeddings depending
on whether it's used about a river or something
financial. There are two primary groups into which
context-dependent word embedding learning
techniques have mostly developed. Approaches
based on RNNs, such as CoVe [87], Flair [88] and
ELMo [89] make up one group.

On the other hand, it has been shown that recently
created Transformer-based models [90], including
Bert [91] and Albert [92], may effectively learn
contextualized word representations. A word can be
transformed into a vector that condenses its syntactic
and semantic components using word embeddings.
Thus, word embeddings are considered optimal
feature representations for neural network models in
later NLP applications, including machine
translation including machine translation [87],
sequence learning [88], text classification [93]–[96],
etc. Word embeddings are frequently used in
sentiment analysis to transform words into low-
dimensional vectors that computers can process.
Transformer-based embedding and context-
independent word embedding will be the main topics
of this study. We will assess these word embeddings

 Journal of Theoretical and Applied Information Technology
15th October 2024. Vol.102. No. 19

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6986

and see how deep learning models are applied to
them.

3. METHODS

This section introduces context-independent
embedding and transformer-based embedding
models, along with their configurations. It also
discusses the various deep-learning configurations
employed in this work. The comprehensive
evaluation model is depicted in Figure 1, while
Figure 2 provides in-depth details regarding the
model. The research methodology involves the
following steps:
1. Data Collection and Preprocessing: We

collected datasets IMDB, Amazon, and Yelp
dataset, including data cleaning, tokenization,
and text normalization.

2. Model Selection and Training: We
implemented multiple deep learning
architectures (CNN, BiLSTM, BiGRU) with
context-independent and transformer-based
embeddings. Hyperparameters such as learning
rate, batch size, and dropout rate were
optimized using a grid search.

3. Evaluation Metrics: Models were evaluated
using standard metrics such as accuracy,
precision, recall, and F1-score.

Figure 1. Proposed Model

Figure 2. Proposed Model in Details

3.1 Text Preprocessing

Data preparation is a crucial aspect of natural
language processing projects, as algorithms lack an
inherent understanding of text. We must transform
the language into numerical representations that
algorithms can understand. Online evaluations
frequently consist of textual content that can include
extraneous data such as special characters, symbols,
hyperlinks, and so on. Regular expressions are used
to eliminate the disruptive noise in the information.
As part of the preprocessing stage, all the reviews are
divided into individual words, a process known as
tokenization. Subsequently, redundant words are
removed to create a distinct representation for each
word. In this study, we convert all the sentences into
lowercase to ensure that words are treated
consistently, regardless of their original case. Since
each word will be processed individually, it is
necessary to carry out a separation process for each
word. In addition, stopword removal is used to
reduce noise by removing words that do not carry
significant meaning, allowing the model to focus on
words that are more informative and contextually
relevant. After stopword removal, we join the
remaining words back into a single text string with
spaces separating them. The overall text
preprocessing process is illustrated in Figure 3.
Examples of a text review before and after the
preprocessing process can be seen in Table 1.

 Journal of Theoretical and Applied Information Technology
15th October 2024. Vol.102. No. 19

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6987

Figure 3. Pre-processing framework

Table 1. Example of pre-processing Process on Text
Review

Class Review After pre-
processing

Positive Petter Mattei's "Love in
the Time of Money" is
a visually stunning film
to watch. Mr. Mattei
offers us a vivid
portrait about human
relations. This is a
movie that seems to be
telling us what money,
power and success do
to people in the
different situations we
encounter.

petter mattei love
time money visually
stunning film watch
mr mattei offers us
vivid portrait human
relations movie
seems telling us
money power success
people different
situations encounter

Negative Bad plot, bad dialogue,
bad acting, idiotic
directing, the annoying
porn groove soundtrack
that ran continually
over the overacted
script, and a crappy
copy of the VHS
cannot be redeemed by
consuming liquor.

bad plot bad dialogue
bad acting idiotic
directing annoying
porn groove
soundtrack ran
continually overacted
script crappy copy
vhs cannot redeemed
consuming liquor

3.2 Embedding Layer

Word embeddings are a method of representing
words in a vector space by grouping words that have
similar meanings. Every word is allocated to a vector
and subsequently acquired by a process resembling
that of neural networks. The system acquires
knowledge and selects a vector from a pre-
established set of words. The size of the words can
be determined by specifying it as a hyperparameter.
This section will explain the embedding models that
will be utilized in the assessment process,
specifically fastText, word2vec, gloVe, bert, and
Albert.

3.2.1 fastText

FastText is an open-source library
developed by Facebook's AI Research (FAIR) team.
It is specifically built to handle the representation
and categorization of textual data. It is tailored to
efficiently handle large volumes of text data,
providing features for tasks such as text
classification, word representation, and computation
of text similarity. FastText utilizes word
embeddings, which involve dense vector
representations of words within a continuous vector
space. These embeddings excel at capturing both
semantic and syntactic relationships among words,
leveraging the distributional characteristics of words
within a given corpus. FastText is a viable and
efficient method for creating word embeddings from
text documents. In this method, each word is
represented by breaking it into several character n-
grams [97]. FastText considers the inherent
semantics of words, making it a suitable word
embedding approach for languages with complex
morphology and infrequent words. Its primary goal
is to incorporate the internal structure of words
rather than solely learning word representations. The
uses of fastText can be seen in Figure 4.

Figure 4. The Uses of fastText

FastText utilizes a sliding window approach to
process the input text. This is accomplished through
the process of learning either the main word based

 Journal of Theoretical and Applied Information Technology
15th October 2024. Vol.102. No. 19

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6988

on the context around it, which is called Continuous
Bag of Words (CBOW), or by learning all the
surrounding words based on a central word, which is
known as Skipgram. The learning process can be
understood as a sequence of modifications to a
neural network composed of two layers of weights
and three layers of neurons. In this configuration, the
two outside layers are associated with a neuron for
each word in the lexicon, while the middle layer
consists of neurons that match the dimensions in the
embedding space. FastText can learn vectors for
character n-grams, which are sub-components of
words. This is a feature that word2vec does not have.
This guarantees that words such as 'love,' 'loved,' and
'beloved' will possess comparable vector
representations, regardless of their occurrence in
distinct contexts. This feature significantly improves
the learning process, especially for languages that
have a wide range of inflectional variants [98] .
The FastText model utilized in this study employs
300-dimensional word vectors. This implies that
each word in the vocabulary is depicted as a vector
in a 300-dimensional space. These word vectors
encapsulate semantic details about words and their
associations with other words in a continuous vector
space, rendering them valuable for diverse natural
language processing tasks. The fastText embedding
layer in our model takes sequences of word indices
as input. This layer generates a word embedding
matrix of shape (vocabulary_size + 1,
embedding_dim), where an additional row is added
for out-of-vocabulary words. For each word index in
the input sentence, the fastText embedding layer
looks up the corresponding dense vector from the
embedding matrix. This dense vector represents the
embedding for that word. The output of the
embedding layer for a sequence is a 3D tensor of
shape (batch_size, input_length, output_dim), where
each word in the input sequence is mapped to its
corresponding dense vector in the output. These
dense vectors serve as input to the next layer. We set
the `trainable` parameter to 'false', indicating that the
pre-trained fastText embeddings will not be updated
during training. For further details, refer to Table 2,
which outlines the fastText parameters used in this
study.

Table 2. fastText Parameters Used in The Proposed
Model

Parameter Value
input_dim IMDB: 90704

Amazon: 59914
Yelp: 214392

output_dim 300
weights IDMB: (90704,300)

Amazon: (59914,300)
Yelp: (214392,300)

input_length 300
trainable false

3.2.2 Word2Vec

Word2Vec is a neural network architecture
consisting of two layers, commonly used for token
vectorization. Developed by Mikolov et al. [99],
Word2Vec is a widely adopted technique for
learning word embeddings from text data. It operates
as an unsupervised method, efficiently extracting
semantic relationships between words by analyzing
their co-occurrence patterns within a given text
corpus. This architecture comprises two models: the
CBOW model and the skip-gram model. Together,
they form a class of models within the Word2Vec
framework [100]. In the CBOW model, the target
word is determined using the context of each word
as input, whereas in the skip-gram model, the
context word is predicted based on the target word
[101]. The skip-gram model demonstrates robust
performance even with a small amount of data and
can yield promising results in representing rare
words [101]. On the other hand, the CBOW model is
known for its swiftness and proficiency in
representing commonly occurring words. The
architecture of CBOW and skip-gram model can be
seen in Figure 5.

Figure 5. Word2Vec CBOW and skip-gram architecture

[99]

Suppose we have a series of training words
𝑤ଵ, 𝑤ଶ, … , 𝑤் with length of sequence is 𝑇, the skip-
gram model's objective is determined by equation (1)
[99]:

argmaxఏ

1

𝑇
෍  

்

௧ୀଵ

෍  

ି஼ஸ௝ஸ஼,௝ஷ଴

log 𝑃ఏ൫𝑤௧ା௝/𝑤௧൯
(1)

Where 𝐶 represent the size of training context,
𝑃൫𝑤௧ା௝/𝑤௧൯ represent a neural network with a set of
parameters denoted by 𝜃. In this model we used pre-
trained word2vec model provided by Google News
dataset. This model is typically pre-trained on a large
corpus of Google News articles and is known for its

 Journal of Theoretical and Applied Information Technology
15th October 2024. Vol.102. No. 19

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6989

high-quality word embeddings. The word2vec
model that we use here is 300-dimensional word
embeddings. The fasttext parameters used in this
study can be seen in Table 3. Unlike the parameters
in fastText, here we make the values for input_dim
and weight in each dataset the same.

Table 3. Word2vec parameters used in the model

Parameter Value
input_dim 10000
output_dim 300
weights (10000,300)
input_length 300
trainable false

3.2.3 Glove

GloVe, also known as Global Vectors, is a
word representation technique that has been created
using an unsupervised learning method. Its purpose
is to generate word embeddings by analyzing the co-
occurrence matrix of words in a given corpus. GloVe
can be regarded as an expansion of Word2Vec,
specifically created to proficiently acquire word
embeddings from textual sources. The model
integrates the Word2Vec model's learning based on
local context with global matrix factorization. When
calculating the error function in the model, the
probability ratios of words are also included. Words
that exhibit a strong correlation in the text document
and are prone to co-occur are deemed more
significant than other words in the process of
acquiring knowledge. GloVe is a tool that transforms
text into word vectors, which are able to measure the
distance between words [16]. The model can be
characterized as a global log-bilinear regression
model, and its goal function is represented by
Equation (2) [53]:

 𝐽 = ෍ න൫𝑋௜௝൯൫𝑤௜
்𝜔௝ + 𝑏௜ + 𝑏௝ − log 𝑋௜௝൯

௏

௜,௝
 (2)

Where 𝑉 denotes the vocabulary size, 𝑤 ∈ 𝑅ௗ
represent word vectors, 𝑋 denote co-occurrence
matrix, and 𝑋௜௝ denotes the number of times word 𝑗

occurs in the context of word 𝑖 . ∫൫𝑋௜௝൯ denotes a
weighting function and 𝑏௜ , 𝑏௝ are bias parameters
[53]. In this study we use 100-dimensional space
with the 6 billion tokens. Details parameter of Glove
embedding can be seen in Table 4.

Table 4. Glove parameters used in the model

Parameter Value
input_dim IMDB: 112281

Amazon: 59914
Yelp: 214392

output_dim 100
weights IMDB: (112281, 100)

Amazon: (59914, 100)

Yelp: (214392, 100)
input_length 300
trainable false

3.2.4 Bert

In 2019, Devlin et al. [91] employed the
transformer architecture to create an innovative
language representation model called BERT
(Bidirectional Encoder Representations from
Transformers). This model ushered in a new era in
NLP, demonstrating exceptional performance on a
wide range of NLP tasks. Bert utilizes the
unsupervised learning method to pre-train deep
bidirectional representations from extensive
unlabeled text collections, employing two novel pre-
training objectives: masked language model (MLM)
and next sentence prediction (NSP). BERT
addresses the constraint of prior language models
that only include one-way representations of words
in a phrase. The model constructs a bidirectional
masked language model that predicts words
randomly masked in the phrase, hence enhancing the
contextual information of the words. BERT comes
in two variants: BERT-base, comprising 12 encoder
layers, a hidden size of 768, 12 multi-head attention
heads, and 110 million parameters; and BERT-large,
featuring 24 encoder layers, a hidden size of 1024,
16 multi-head attention heads, and 340 million
parameters. Both of these models have undergone
training using data from English Wikipedia and
BookCorpus. This study employed Bert-base to
analyze deep learning models utilizing transformer-
based approaches.

3.2.5 Albert

Albert, which stands for “A Lite Bert”, was
made available in open source version by Google in
2020, developed by Lan et al [92]. Albert is a
groundbreaking advancement in NLP architecture.
By implementing innovative techniques such as
parameter sharing across layers and factorized
embedding parameterization, Albert drastically
reduce the number of parameters compared to
traditional transformer models while maintaining
competitive performance. This reduction in
parameters leads to improve memory efficiency and
faster training times, making Albert ideal large-scale
NLP tasks. Despite its compact size, Albert
demonstrates remarkable effectiveness in various
language understanding tasks, including language
translation, text summarization, sentiment analysis,
and question answering. Its efficiency and scalability
mark a significant step forward in NLP research,
promising more resource-efficient and scalable
models for real-word applications.

 Journal of Theoretical and Applied Information Technology
15th October 2024. Vol.102. No. 19

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6990

3.3 Deep Learning Model

3.3.1 Convolutional Neural Network (CNN)

CNNs are deep learning models specifically
created to identify intricate patterns and
characteristics inside datasets. They excel in
extracting features from image and text data. CNNs
have been widely used in computer vision
applications, particularly in areas such as picture
classification, object identification, and image
segmentation. CNNs are deep learning algorithms
primarily designed for processing images and
videos. They take images as inputs, extract and learn
features, and classify them based on these learned
features. Recently, CNNs have also been adapted for
text analysis, demonstrating versatility across
different types of data. The CNN model typically
operates in two steps: feature extraction and
classification. Throughout the feature extraction
process, a multitude of filters and layers are
employed on input images to glean detailed
information and features. Once this phase is
complete, the extracted features are passed to the
classification stage, where the images are
categorized based on the target variable of the
problem.

A standard CNN architecture consists of an
input layer, an output layer, and hidden layers. The
hidden layers typically comprise convolutional
layers, where feature maps are generated from the
input data through convolution operations, along
with pooling layers and fully connected layers.
Activation functions, such as ReLU, are used in
conjunction with these feature maps to introduce
non-linearity into the architecture. This enhances the
network's ability to model complex relationships in
the data. In the pooling layers, the outputs from
clusters of neurons are combined. This process
reduces the spatial dimensionality of the feature
maps, which helps improve the model's resistance to
overfitting. Maximum pooling is commonly
employed in these layers. The integration and
processing of features extracted by preceding layers
are pivotal tasks performed by the fully connected
layers, culminating in the generation of the
architecture's final output.

The CNN model utilized in this research
comprises four layers, as depicted in Figure 5. Firstly,
the convolution layer processes the output from the
embedding layer. Specifically, the input to the
convolution layer is a 3D tensor, and the output
retains the same shape. However, the dimensions of
the output may vary depending on the number of

filters and other parameters employed. The
parameters for the CNN layer are detailed in Table 5.

Table 5. CNN parameters

Parameter Value
Filters 128
Kernel_size 5
Activation Relu
Pooling type Max pooling layer
Pool size 5

The second layer is the pooling layer, specifically

utilizing the Max Pooling technique. Max pooling is
a common approach employed in CNNs for feature
reduction and spatial hierarchies. It operates by
down-sampling the output of the preceding Conv1D
layer, thereby decreasing the spatial dimensions of
the input data while preserving essential features. In
essence, it extracts the most salient information from
the feature maps. We set the size of the pooling
window to 5, indicating that for every region of 5
consecutive elements in the input, the max pooling
layer preserves only the maximum value. Max
pooling is a straightforward operation: for each
region of elements defined by the pool size, it selects
the maximum value from that region and forwards it
to the next layer. Suppose for the simple sentence
“Came here for dinner and had a fantastic
experience”. Each word in this sentence represented
using word vectors, and each word vector has a
dimension of 5. Here are the word vectors: “Came”:
[0.2, 0.5, 0.3, 0.1, 0.7], “here”: [0.7, 0.4, 0.2, 0.9,
0.6], “for”: [0.4, 0.7, 0.1, 0.3, 0.2], “dinner”: [0.9,
0.5, 0.1, 0.4, 0.2], “and”: [0.3, 0.5, 0.1, 0.7, 0.2],
“had”: [0.1, 0.4, 0.6, 0.2, 0.7], “a”: [0.2, 0.6, 0.1, 0.3,
0.8], “fantastic”: [0.5, 0.1, 0.3, 0.4, 0.2], “experience”
[0.6, 0.1, 0.2, 0.4, 0.3]. The max pooling operation
setting with a filter size of 5. The filter, in this case,
is a window of size 5 words that slides through the
sentence. The filter starts at the beginning of the
sentence: “Came here for dinner and”: value [0.9,
0.7, 0.3, 0.9, 0.7] then move to the window one to
the right “here for dinner and had”: value [0.7, 0.7,
0.6, 0.9, 0.7] continue moving the window with “for
dinner and had a”: value [0.9, 0.7, 0.6, 0.7, 0.8]. It is
continued until the end of the sentence. Now,
maximum values collected from each position of the
filter then slid it through the sentence. These
maximum values are representative of the most
important features within the filter’s window. In this
example, the extracted maximum values form a new
sequence: [0.9, 0.7, 0.6, 0.9, 0.8]. This new sequence
is a reduced-dimensional representation of the
original text, capturing the most important
information from the sentence. This sequence can
use as input to further layers in neural network for

 Journal of Theoretical and Applied Information Technology
15th October 2024. Vol.102. No. 19

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6991

text classification. In practice, multiple filters can
use with different window sizes to capture a range of
features from the text, and the output of each filter is
concatenated or combined before passing it through
fully connected layers for classification. This allows
the model to learn different levels of information
from the text, from individual words to longer
phrases or patterns. Max pooling helps in reducing
the spatial dimensions of the data, reducing the
number of parameters in the network and mitigating
overfitting. It also helps in making the network
translation-invariant, meaning it can recognize
features in different parts of the input sequence
regardless of their exact position. By retaining the
maximum values, max pooling retains the most
important features while discarding less significant
details.

Following the pooling layer, the output is next
transmitted to the flattened layer. The Flatten layer
is a layer that is mostly utilized to transform the 2D
or 3D data from the previous layer into a 1D vector.
It preserves the number of elements in the data while
converting it from a multidimensional form to a one-
dimensional form. The Flatten layer is used to
transform the output from the preceding layer, which
could have several dimensions, into a single-
dimensional vector. The final layer in our CNN
model is the dense layer, which is also referred to as
the completely linked layer or the output layer. Each
neuron in this layer is intricately linked to every
neuron in the preceding layer. The number of
neurons in the layer dictates the configuration of the
output from this layer. For our specific scenario, we
have configured the dense layer to consist of only
one neuron, and the chosen activation function is
sigmoid. Hence, the resulting form of the dense layer
is (batch_size, 1). The final one-dimensional output
signifies the model's forecast for each input in the
batch, with a numerical value ranging from 0 to 1 as
a result of the sigmoid activation function. When the
number is near 0, the model forecasts that the input
has a negative sentiment, whereas a value close to 1
signifies a positive sentiment prediction. The
structure of our suggested CNN model is depicted in
Figure 6.

Figure 6. Architecture of CNN Model

3.3.2 Long Short-Term Memory (LSTM)

RNNs are frequently successful at
analyzing sequences of data, particularly for
problems involving lengthy text sequences. LSTM
networks are a specific sort of deep neural network
architecture that is built upon RNNs. Unlike
traditional RNNs, which face difficulties in
processing input sequences of any length because of
the vanishing gradient problem, LSTM networks are
explicitly intended to tackle this challenge. LSTMs
utilize specialized units known as cells, which
consist of devices like forget gates to keep or delete
information as time progresses selectively. The gates,
which consist of the input gate, output gate, and
forget gate, control the movement of information
within the LSTM cell. The input gate regulates the
influx of fresh data into the cell, the forget gate
decides which information to eliminate from the
cell's memory, and the output gate manages the
transmission of information from the cell's memory
to the output. In addition, LSTM models facilitate
the propagation of error signals over extended
sequences by ensuring a consistent and steady flow
of gradients throughout time. Sequential data models
are capable of capturing long-term dependencies,
which makes them very suitable for tasks such as
sentiment analysis of text.

 Journal of Theoretical and Applied Information Technology
15th October 2024. Vol.102. No. 19

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6992

The gates in LSTM networks are
responsible for determining whether information
should be preserved and when it should be retrieved.
LSTMs are a specific variant of RNNs that are
specifically developed to tackle the issue of the
vanishing or exploding gradient problem that is
commonly faced by conventional RNNs. Like other
types of RNNs, LSTM models generate output by
considering input from the current time step as well
as the output from the previous time step. An LSTM
unit comprises a memory cell 𝑐௧ , which retains its
state during any period, and three non-linear gates:
an input gate 𝑖௧, a forget gate 𝑓௧, an output gate 𝑜௧.
The calculation formula is as follows, where 𝜎
represents sigmoid function and ⨀ symbolizes dot
multiplication. These gates are specifically intended
to control the flow of information into and out of the
memory cell. The LSTM transition has been
implemented using the equations provided below
[102]:

The 𝑖௧ is the input gate:

 𝑖௧ = 𝜎(𝑊௜𝑥௧ + 𝑈௜ℎ௧ିଵ + 𝑏௜) (3)

The 𝑓௧ is the forget gate:
 𝑓௧ = 𝜎൫𝑊௙𝑥௧ + 𝑈௙ℎ௧ିଵ + 𝑏௙൯ (4)

The 𝑜௧ is the output gate:

 𝑜௧ = 𝜎(𝑊௢𝑥௧ + 𝑈௢ℎ௧ିଵ + 𝑏௢) (5)

The symbol 𝑐̃௧ represents the current condition of
the candidate memory cell at the current time step.
The function tanh refers to the tangent hyperbolic
function:

 𝑐̃௧ = tanh(𝑊௖𝑥௧ + 𝑈௖ℎ௧ିଵ + 𝑏௖) (6)

The 𝑐௧ represents the current time state value

stored in a memory cell, with the values of 𝑓௧ and 𝑖௧
ranging from 0 to 1. The computation of 𝑖௧ ⊙ 𝐶መ௧
determines the specific new information that is
stored in 𝑐௧ from the candidate unit 𝑐̃௧ . The
computation of 𝑓௧ ⊙ 𝑐௧ିଵ determines which
information is preserved and which is disregarded in
the preceding memories 𝑐௧ିଵ [103].

 𝑐௧ = 𝑖௧ ⊙ 𝐶መ௧ + 𝑓௧ ⊙ 𝑐௧ିଵ (7)

ℎ௧ is the hidden layer state at time 𝑡 :

 ℎ௧ = 𝑜௧ ⊙ tanh(𝑐௧) (8)

The input vector to the LSTM unit is denoted as 𝑥௧
the weight matrices are represented by 𝑊, and the
bias vector parameters are represented by 𝑏.

3.3.3 Bidirectional LSTM (bi-LSTM)

The LSTM primarily considers the historical
information in a sequence, which can sometimes be
insufficient. Gaining access to future information,
just as it accesses past information, could
significantly enhance performance in sequence-
based tasks. A Bi-LSTM consists of a forward
LSTM layer, which captures historical information,
and a backward LSTM layer, which captures future
information. Both layers are connected to the same
output layer [103]. The key advantage of this
architecture is that it provides a comprehensive view
of the sequence context by integrating both past and
future information. Let’s consider the input of time
𝑡 is the word embedding 𝑥௧, at time 𝑡 − 1, the output

of the forward hidden unit is ℎ⃖ሬ௧ିଵ, then the output of
the hidden unit at time 𝑡 is equal as follow:

 ℎ⃖ሬ௧ = 𝐿(𝑥௧, ℎሬ⃗ ௧ିଵ, 𝑐௧ିଵ) (9)

 ℎሬ⃗ ௧ = 𝐿(𝑥௧ , ℎ⃖ሬ௧ିଵ, 𝑐௧ିଵ) (10)

Where 𝐿 denotes the hidden layer operation of the.
LSTM hidden layer. The forward output vector is
ℎሬ⃗ ௧ ∈ 𝑅ଵ௫ு and the backward output vector is ℎ⃖ሬ௧ ∈
 𝑅ଵ௫ு , and they should be combined to obtain the
text feature.

3.3.4 Gated Recurrent Units (GRU)

Gated Recurrent Units (GRUs) are a kind of
RNNs that demonstrate comparable empirical
outcomes to LSTM networks, but with a simpler
structure. A standard GRU design comprises of two
gates: the reset gate and the update gate. This
architectural design incorporates a reduced number
of parameters. In the GRU architecture, transitions
are carried out based on the equations given below
[102]:

The 𝑧௧ is the update gate:
 𝑧௧ = 𝜎(𝑊௭𝑥௧ + 𝑈௭ℎ௧ିଵ + 𝑏௭) (11)

The 𝑟௧is the reset gate:

 𝑟௧ = 𝜎(𝑊௥𝑥௧ + 𝑈௥ℎ௧ିଵ + 𝑏௥) (12)

The ℎ෠௧ is the current memory content:

 ℎ෠௧ = tanh(𝑊௛𝑥௧ + 𝑟௧ ⊙ 𝑈௛ℎ௧ିଵ + 𝑏௛) (13)

 Journal of Theoretical and Applied Information Technology
15th October 2024. Vol.102. No. 19

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6993

The ℎ௧ is the output gate:
 ℎ௧ = (1 − 𝑧௧) ⊙ ℎ௧ିଵ + 𝑧௧ ⊙ ℎ෠௧ (14)

Where 𝑥௧ denotes the input vector, ℎ௧ denotes the
output vector, 𝑟௧ corresponds to the reset gate vector,
𝑧௧ corresponds to the update gate vector and 𝑊, 𝑈,
and 𝑏 corresponds to parameter matrices and vector.

3.3.5 Bidirectional Gated Recurrent Units (bi-
GRU)

Models that possess a bi-directional structure are
capable of acquiring knowledge from both preceding
and succeeding data while analyzing present data.
The bi-GRU model is characterized by the states of
two GRUs, each functioning unidirectionally in
opposite directions [104]. One GRU progresses in a
forward direction, commencing from the initial point
of the data sequence, while the other GRU
progresses in a backward direction. This
configuration enables the integration of information
from both preceding and subsequent periods to
impact the present conditions [105]. The bi-GRU is
defined in the following manner:

 ℎሬ⃗ ௧ = 𝐺𝑅𝑈௙௪ௗ൫𝑥௧ , ℎሬ⃗ ௧ିଵ൯ (15)

 ℎ⃖ሬ௧ = 𝐺𝑅𝑈௕௪ௗ(𝑥௧ , ℎ⃖ሬ௧ିଵ) (16)

 ℎ௧ = ℎሬ⃗ ௧⨁ℎ⃖ሬ௧ (17)

Where ℎሬ⃗ ௧ is the state of the forward GRU, ℎ⃖ሬ௧ is the
state of the backward GRU, ⨁ indicates the
operation of concatenating two vectors. The
architecture RNN model (LSTM, bi-LSTM, GRU,
bi-GRU) that we use in this study can be seen in
Figure 7. We set the dimensions for all RNN models
to be the same, namely 64.

Figure 7. Architecture of RNN Model

4. METHODS

4.1 Dataset

We conduct experiments on various online review
datasets to study the impact of word embeddings
across different datasets. We have selected three
benchmark classification datasets that vary in
average sample length. Statistics from the datasets
used in this study can be found in Table 6.

Table 6. Dataset Statistics
Dataset Positive Negative Total
IMDB 25000 25000 50000
Amazon 20229 19771 40000
Yelp 299000 299000 598000

4.1.1 IMDB Dataset

The IMDb dataset contains 50,000 movie
reviews for text analytics [106]. Reviews are
classified as positive or negative based on the IMDb
rating system, making it a benchmark dataset for
sentiment classification. This large dataset features
full-length reviews, and the task involves
determining whether the movie reviews are positive
or negative. The data includes two columns: the
review column and the sentiment column. The
review column contains the online reviews, while the
sentiment column indicates the polarity of these
reviews based on their content. In this dataset, we
convert the polarity in the sentiment column into a
binary class; specifically, we change 'positive' to 1
and 'negative' to 0. This conversion facilitates the
processing of the data into our proposed model. We
divided the 50,000 entries into 40,000 for training
and 10,000 for testing. From the 40,000 training
entries, we allocated 20%, or 8,000 entries, for
validation. The IMDb dataset we used is balanced,
with an equal number of positive and negative
classes.

4.1.2 Amazon Dataset

Amazon is an American multinational
technology company with business interests that
include e-commerce. In its e-commerce operations,
Amazon purchases and stores inventory, handling
everything from shipping and pricing to customer
service and returns. It is one of the largest e-
commerce platforms, renowned for its vast number
of customer reviews. In this study, we chose to use
Amazon customer product reviews. The total dataset
consists of 40,000 entries, divided into 36,000 for
training and 4,000 for testing. We allocated 20% of
the training data, or 7,200 entries, for validation
purposes. The Amazon dataset we used in this study

 Journal of Theoretical and Applied Information Technology
15th October 2024. Vol.102. No. 19

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6994

is unbalanced, with an unequal number of positive
and negative reviews.

4.1.2 Yelp Dataset

The Yelp review dataset comprises binary
sentiment classification data. For this study, we
utilize a collection of 560,000 highly polar Yelp
reviews for training, with an additional 38,000
reserved for testing. This dataset is sourced from the
Yelp Dataset Challenge 2015 data and is based on
the dataset constructed by Zhang et al. [107]. The
construction categorizes reviews with 1 or 2 stars as
negative and those with 3 or 4 stars as positive. Each
polarity includes 280,000 training samples and
19,000 testing samples, randomly selected. Overall,
there are 560,000 training samples and 38,000
testing samples. The negative polarity is labeled as
class 0, while the positive polarity is labeled as class
1. To create a validation dataset, 20% of the training
data, or 112,000 entries, is set aside.

4.2 Performance Matrix

The model evaluation criteria utilized in this work
are accuracy, precision, recall, F1 score, and the
Matthews Correlation Coefficient (MCC), which
align with the metrics adopted in other studies. The
computation parameters are specified as follows:

1) TP: stand for True Positive is the
number of comments that classify
favorable merchandise remarks as
positive.

2) FP: stand for False Positive is the
number of comments that incorrectly
label unfavorable product feedback as
positive.

3) TN: stand for True Negative refers to the
count of negative comments that have
been correctly categorized as negative
comments.

4) FN: stand for False Negative is the
number of comments that classify
positive ratings of products as negative.

5) Accuracy refers to the proportion of
comments that have been accurately
predicted out of the total number of
comments.

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

(18)

6) Precision refers to the proportion of

accurately anticipated positive remarks
out of all the expected positive
comments.

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

(19)

7) Recall refers to the proportion of

positive comments that were accurately
anticipated out of all the comments in
the actual class.

𝑟𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁

(20)

8) F1 score refers to the arithmetic mean of

precision and recall, where precision is
the ratio of true positive predictions to
the sum of true positive and false
positive predictions, and recall is the
ratio of true positive predictions to the
sum of true positive and false negative
predictions.

𝐹1 =

2 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

(21)

9) MCC refers to the correlation coefficient

measuring the relationship between the
observed and expected binary
categorization.

 𝑀𝐶𝐶

=
𝑇𝑃 ∗ 𝑇𝑁 − 𝐹𝑃 ∗ 𝐹𝑁

ඥ(𝑇𝑃 + 𝐹𝑃)(𝐹𝑁 + 𝑇𝑁)(𝐹𝑃 + 𝑇𝑁)(𝑇𝑃 + 𝐹𝑁)

(22)

4.2 Result Analysis and Discussion

In the initial phase, we conducted various
experiments to identify the most effective model for
predicting sentiment polarity in online reviews.
These experiments involved comparing the
efficiency of different feature engineering methods,
including FastText, Glove, word2vec, Bert, and
Albert. The algorithms employed in our experiments
encompassed CNN, LSTM, bi-LSTM, GRU, and bi-
GRU. The first experiment focused on the IMDB
dataset, which is balanced dataset. The outcomes for
the IMDB dataset in context-independent
embedding are detailed in Table 7. Upon a
comprehensive analysis, it is evident that, for each
feature engineering model, the bi-GRU model
consistently demonstrated the best performance.
Specifically, for fastText, word2vec, and Glove, the
Matthews Correlation Coefficient (MCC) results
were 74.77%, 77.4%, and 74.54%, respectively.
The outcomes vary when examined from the
perspective of each deep learning model.
Specifically, for the CNN model, optimal
performance, at 73.22%, is achieved when paired
with fastText. In the case of the bi-LSTM model, the

 Journal of Theoretical and Applied Information Technology
15th October 2024. Vol.102. No. 19

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6995

best performance, reaching 73.21%, is observed with
the Glove embedding. Meanwhile, for the LSTM,
GRU, and bi-GRU models, the highest performance
is consistently attained when utilizing the word2vec
feature engineering model, yielding respective
results of 74.73%, 76.22%, and 77.4%. Upon an
overall analysis of the experimental results, the
word2vec and bi-GRU models exhibit the best
performance, both achieving an MCC value of
77.4%.

Meanwhile, in experiments utilizing
transformers as embedding layers, it is evident that
both Bert and Albert in IMDB dataset achieve their
highest performance when integrated with the GRU
model, yielding MCC values of 74.81% and 74.79%
for Bert and Albert, respectively. Comparing Bert
and Albert's performance on the GRU model, the
differences observed are not particularly significant;
in fact, both exhibit identical F1 Scores. The
comprehensive performance results for Bert and
Albert are presented in Table 9. However, when
considering the overall performance, the most
favorable outcomes were achieved with the
word2vec and biGRU models.

The second experiment was conducted on the
Amazon dataset, characterized by its unbalanced
dataset. The experimental results for the Amazon
dataset are outlined in Table 8. Notably, across the
three feature engineering approaches, the optimal
performance is consistently achieved when
employing the bi-GRU model, with MCC values of
71.69%, 74.48%, and 72.4%, respectively. This
trend extends to the deep learning models as well,
where all five models exhibit their best performance
when utilizing the word2vec feature engineering.
Upon a comprehensive comparison of the results, the
highest performance is observed when word2vec is
paired with bi-GRU, attaining an MCC value of
74.48%. These results are similar to the results
obtained in the IMDB dataset.

In the experiment utilizing transformers for the
Amazon dataset, unlike the previous dataset, Bert
achieved its highest performance of 87.13% when
combined with GRU. In contrast, Albert achieved its
highest performance of 87.1% when combined with
the BiGRU model. The comprehensive performance
results for Bert and Albert are presented in Table 10.

Let's now turn our attention to the third dataset,
namely the Yelp dataset. Unlike the previous
datasets, Yelp is balanced but boasts a larger dataset
size. The experimental results for the Yelp dataset
using context-independent embedding can be seen in
Table 11. Notably, performance varies across feature
engineering models. For the fastText model, optimal
performance is achieved when paired with the GRU

model, reaching 87.55%. Conversely, word2vec and
Glove exhibit their best performance when
combined with bi-LSTM, attaining values of 88.55%
and 86.99%, respectively. From the perspective of
deep learning models, all five models obtained the
best performance when utilizing word2vec. In
contrast to the trends observed in the previous
datasets, where word2vec paired with bi-GRU
yielded the best performance, the Yelp dataset
achieves its best performance with word2vec and bi-
LSTM models, reaching an MCC score of 88.55%.

From Table 12. we can see that the performance
obtained by employing transformers on the Yelp
dataset indicates that Bert and Albert achieve their
optimal results when paired with GRU, with MCC
values of 89.28% and 88.68% respectively. Upon
examination, Bert outperforms Albert.

5. CONCLUSION AND FUTURE WORK

This paper aimed to evaluate different deep
learning models and different feature engineering
models to predict the sentiment polarity of textual
online review of three different datasets with
different domain and different amount of data. Five
different variations of feature extraction model we
used, fastText, word2vec, Glove, Bert, and Albert
then compared concerning five deep learning
methods: CNN, LSTM, bi-LSTM, GRU, and bi-
GRU. Word embedding plays a crucial role in text
classification by transforming text into vectorized
numerical representations which allows us to use it
as an input to the machine learning algorithm.

The first dataset is the IMDB dataset which
is a balanced dataset. The best performance obtained
when using the context-independent embedding
approach is when using word2vec and bi-GRU,
namely with an MCC value of 77.4%. Meanwhile,
when using transformers, the best performance was
obtained when using Bert and GRU with an MCC
value of 74.81%. For the second dataset, namely the
Amazon dataset, just like the IMDB dataset, the best
performance was obtained when using the word2vec
and bi-GRU models, namely 74.48%. Meanwhile,
for the transformer-based model, the best
performance was obtained when using the Bert and
GRU models, namely with an MCC value of 87.13%.
For the third dataset, namely Yelp, the word2vec and
bi-LSTM models demonstrated the best performance,
achieving an impressive 88.55%. Meanwhile, for the
transformer-based model, the best performance was
obtained when using the Bert and GRU models,
namely with an MCC value of 89.28%.

Based on the comprehensive results, it can
be asserted that feature extraction based on context-

 Journal of Theoretical and Applied Information Technology
15th October 2024. Vol.102. No. 19

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6996

independent embedding yielding the best
performance in sentiment classification is word2vec.
Word2vec consistently excels for both balanced and
unbalanced datasets. Regarding the optimal deep
learning model, it is evident that bi-GRU
outperforms others for the IMDB and Amazon
datasets, while bi-LSTM proves superior for the
larger Yelp dataset. Meanwhile, for transformer-
based embedding, the three datasets have the same
results, namely getting the best performance using
Bert and GRU. Overall, when analyzed from the
perspective of word embeddings, Bert demonstrates
superiority on the Amazon and Yelp datasets,
whereas word2vec outperforms Bert on the IMDB
dataset. Based on our preliminary analysis, this
variance may be attributed to the distinct nature of
the test data within the IMDB dataset compared to
the other two datasets.

In summary, word2vec and Bert emerges as the
preferred feature extraction model for addressing
sentiment classification tasks, bi-GRU and GRU
deep learning model stands out as superior among
the tested models. Notably, Glove consistently
yields the lowest performance across all model
schemes and datasets. This research serves as a
foundation for future research. The results obtained
require additional processing, including a
hyperparameter tuning process such as the length of
the input sentence and the number of iterations of the
model on the performance of the model to analyze
performance patterns for each model scheme.
Furthermore, research and experiments need to be
carried out on Albert, which is smaller and lighter
than Bert, in order to create a lighter and faster model.
Apart from that, there will be a process of using more
than one type of embedding for the deep learning
model to obtain even better performance.

REFERENCES:
[1] P. Chauhan, N. Sharma, and G. Sikka, “The

emergence of social media data and sentiment
analysis in election prediction,” J. Ambient
Intell. Humaniz. Comput., vol. 12, no. 2, pp.
2601–2627, 2021.

[2] R. K. Behera, M. Jena, S. K. Rath, and S.
Misra, “Co-LSTM: Convolutional LSTM
model for sentiment analysis in social big
data,” Inf. Process. Manag., vol. 58, no. 1, p.
102435, 2021.

[3] L. Yang, Y. Li, J. Wang, and R. S. Sherratt,
“Sentiment Analysis for E-Commerce Product
Reviews in Chinese Based on Sentiment
Lexicon and Deep Learning,” IEEE Access,
vol. 8, pp. 23522–23530, 2020.

[4] D. Zeng, Y. Dai, F. Li, J. Wang, and A. K.
Sangaiah, “Aspect based sentiment analysis by
a linguistically regularized CNN with gated
mechanism,” J. Intell. Fuzzy Syst., vol. 36, no.
5, pp. 3971–3980, 2019.

[5] K. W. Trisna and H. J. Jie, “Deep Learning
Approach for Aspect-Based Sentiment
Classification: A Comparative Review,” Appl.
Artif. Intell., vol. 36, no. 1, 2022.

[6] A. Onan, “Sentiment analysis on product
reviews based on weighted word embeddings
and deep neural networks,” Concurr. Comput.
Pract. Exp., vol. 33, no. 23, pp. 1–12, 2021.

[7] I. Chaturvedi, E. Ragusa, P. Gastaldo, R.
Zunino, and E. Cambria, “Bayesian network
based extreme learning machine for
subjectivity detection,” J. Franklin Inst., vol.
355, no. 4, pp. 1780–1797, 2018.

[8] W. Medhat, A. Hassan, and H. Korashy,
“Sentiment analysis algorithms and
applications: A survey,” Ain Shams Eng. J.,
vol. 5, no. 4, pp. 1093–1113, 2014.

[9] H. Gao, X. Zeng, and C. Yao, “Application of
improved distributed naive Bayesian
algorithms in text classification,” J.
Supercomput., vol. 75, no. 9, pp. 5831–5847,
2019.

[10] S. Dey, S. Wasif, D. S. Tonmoy, S. Sultana, J.
Sarkar, and M. Dey, “A Comparative Study of
Support Vector Machine and Naive Bayes
Classifier for Sentiment Analysis on Amazon
Product Reviews,” 2020 Int. Conf. Contemp.
Comput. Appl. IC3A 2020, pp. 217–220, 2020.

[11] K. Shah, H. Patel, D. Sanghvi, and M. Shah,
“A Comparative Analysis of Logistic
Regression, Random Forest and KNN Models
for the Text Classification,” Augment. Hum.
Res., vol. 5, no. 1, 2020.

[12] I. C. Chang, T. K. Yu, Y. J. Chang, and T. Y.
Yu, “Applying text mining, clustering analysis,
and latent dirichlet allocation techniques for
topic classification of environmental education
journals,” Sustain., vol. 13, no. 19, 2021.

[13] Z. Islam, J. Liu, J. Li, L. Liu, and W. Kang, “A
Semantics Aware Random Forest for Text
Classification,” CIKM 2019 - Proc. 2019 ACM
Int. Conf. Inf. Knowl. Manag., pp. 1061–1070,
2019.

[14] T. Georgieva-Trifonova and M. Duraku,
“Research on N-grams feature selection
methods for text classification,” IOP Conf. Ser.
Mater. Sci. Eng., vol. 1031, no. 1, 2021.

[15] L. Wang, X. kang Wang, J. juan Peng, and J.

 Journal of Theoretical and Applied Information Technology
15th October 2024. Vol.102. No. 19

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6997

qiang Wang, “The differences in hotel
selection among various types of travellers: A
comparative analysis with a useful bounded
rationality behavioural decision support
model,” Tour. Manag., vol. 76, no. October
2018, p. 103961, 2020.

[16] L. Dang, C. Wang, H. Han, and Y. E. Hou, “A
Hybrid BiLSTM-ATT Model for Improved
Accuracy Sentiment Analysis,” Proc. - 24th
IEEE Int. Conf. High Perform. Comput.
Commun. 8th IEEE Int. Conf. Data Sci. Syst.
20th IEEE Int. Conf. Smart City 8th IEEE Int.
Conf. Dep, pp. 2182–2188, 2022.

[17] R. M. Samant, M. R. Bachute, S. Gite, and K.
Kotecha, “Framework for Deep Learning-
Based Language Models Using Multi-Task
Learning in Natural Language Understanding:
A Systematic Literature Review and Future
Directions,” IEEE Access, vol. 10, pp. 17078–
17097, 2022.

[18] J. Xiong, D. Yu, S. Liu, L. Shu, X. Wang, and
Z. Liu, “A review of plant phenotypic image
recognition technology based on deep
learning,” Electron., vol. 10, no. 1, pp. 1–19,
2021.

[19] H. Fujiyoshi, T. Hirakawa, and T. Yamashita,
“Deep learning-based image recognition for
autonomous driving,” IATSS Res., vol. 43, no.
4, pp. 244–252, 2019.

[20] J. Wang, R. Chen, and Z. He, “Traffic speed
prediction for urban transportation network: A
path based deep learning approach,” Transp.
Res. Part C Emerg. Technol., vol. 100, no.
January, pp. 372–385, 2019.

[21] Y. Tu, Y. Lin, J. Wang, and J. U. Kim, “Semi-
supervised learning with generative
adversarial networks on digital signal
modulation classification,” Comput. Mater.
Contin., vol. 55, no. 2, pp. 243–254, 2018.

[22] G. Lăzăroiu, M. Andronie, M. Iatagan, M.
Geamănu, R. Ștefănescu, and I. Dijmărescu,
“Deep Learning-Assisted Smart Process
Planning, Robotic Wireless Sensor Networks,
and Geospatial Big Data Management
Algorithms in the Internet of Manufacturing
Things,” ISPRS Int. J. Geo-Information, vol.
11, no. 5, 2022.

[23] M. Premkumar and T. V. P. Sundararajan,
“DLDM: Deep learning-based defense
mechanism for denial of service attacks in
wireless sensor networks,” Microprocess.
Microsyst., vol. 79, no. September, p. 103278,
2020.

[24] M. Sun, I. Konstantelos, and G. Strbac, “A

Deep Learning-Based Feature Extraction
Framework for System Security Assessment,”
IEEE Trans. Smart Grid, vol. 10, no. 5, pp.
5007–5020, 2018.

[25] D. Zeng, Y. Dai, F. Li, R. S. Sherratt, and J.
Wang, “Adversarial learning for distant
supervised relation extraction,” Comput.
Mater. Contin., vol. 55, no. 1, pp. 121–136,
2018.

[26] U. A. Chauhan, M. T. Afzal, A. Shahid, M.
Abdar, M. E. Basiri, and X. Zhou, “A
comprehensive analysis of adverb types for
mining user sentiments on amazon product
reviews,” World Wide Web, vol. 23, no. 3, pp.
1811–1829, 2020.

[27] B. Liu and L. Zhang, A Survey of Opinion
Mining and Sentiment Analysis. Mining Text
Data Springer, 2012.

[28] W. Zhao, H. Peng, S. Eger, E. Cambria, and M.
Yang, “Towards scalable and reliable capsule
networks for challenging NLP applications,”
ACL 2019 - 57th Annu. Meet. Assoc. Comput.
Linguist. Proc. Conf., pp. 1549–1559, 2020.

[29] A. Duric and F. Song, “Feature selection for
sentiment analysis based on content and syntax
models,” Decis. Support Syst., vol. 53, no. 4,
pp. 704–711, 2012.

[30] A. Abbasi, S. France, Z. Zhang, and H. Chen,
“Selecting attributes for sentiment
classification using feature relation networks,”
IEEE Trans. Knowl. Data Eng., vol. 23, no. 3,
pp. 447–462, 2011.

[31] S. Poria, I. Chaturvedi, E. Cambria, and F.
Bisio, “Sentic LDA: Improving on LDA with
semantic similarity for aspect-based sentiment
analysis,” Proc. Int. Jt. Conf. Neural Networks,
vol. 2016-Octob, pp. 4465–4473, 2016.

[32] I. Chaturvedi, Y. S. Ong, I. W. Tsang, R. E.
Welsch, and E. Cambria, “Learning word
dependencies in text by means of a deep
recurrent belief network,” Knowledge-Based
Syst., vol. 108, pp. 144–154, 2016.

[33] M. Ehsan Basiri and A. Kabiri, “Words are
important: Improving sentiment analysis in the
Persian language by lexicon refining,” ACM
Trans. Asian Low-Resource Lang. Inf.
Process., vol. 17, no. 4, 2018.

[34] A. Srivastava, V. Singh, and G. S. Drall,
“Sentiment Analysis of Twitter Data,” Int. J.
Healthc. Inf. Syst. Informatics, vol. 14, no. 2,
pp. 1–16, 2019.

[35] S. J. Jolly and G. W. Gramenz, “Customizing
a Norm‐Referenced Achievement Test to

 Journal of Theoretical and Applied Information Technology
15th October 2024. Vol.102. No. 19

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6998

Achieve Curricular Validity: A Case Study,”
Educ. Meas. Issues Pract., vol. 3, no. 3, pp. 16–
18, 1984.

[36] K. Machová, M. Mikula, X. Gao, and M.
Mach, “Lexicon-based sentiment analysis
using particle swarm optimization,” Electron.,
vol. 9, no. 8, pp. 1–22, 2020.

[37] F. Wunderlich and D. Memmert, “Innovative
approaches in sports science-Lexicon-based
sentiment analysis as a tool to analyze sports-
related twitter communication,” Appl. Sci., vol.
10, no. 2, 2020.

[38] S. Taj, B. B. Shaikh, and A. Fatemah Meghji,
“Sentiment analysis of news articles: A lexicon
based approach,” 2019 2nd Int. Conf. Comput.
Math. Eng. Technol. iCoMET 2019, pp. 1–5,
2019.

[39] S. Baccianella, A. Esuli, and F. Sebastiani,
“SENTIWORDNET 3.0: An enhanced lexical
resource for sentiment analysis and opinion
mining,” Proc. 7th Int. Conf. Lang. Resour.
Eval. Lr. 2010, vol. 0, pp. 2200–2204, 2010.

[40] T. Wilson, J. Wiebe, and P. Hoffmann,
“Recognizing contextual polarity in phrase-
level sentiment analysis,” HLT/EMNLP 2005 -
Hum. Lang. Technol. Conf. Conf. Empir.
Methods Nat. Lang. Process. Proc. Conf., no.
October, pp. 347–354, 2005.

[41] J. W. Pennebaker, M. R. Mehl, and K. G.
Niederhoffer, “Psychological Aspects of
Natural Language Use: Our Words, Our
Selves,” Annu. Rev. Psychol., vol. 54, pp. 547–
577, 2003.

[42] M. E. Basiri and A. Kabiri, “HOMPer: A new
hybrid system for opinion mining in the
Persian language,” J. Inf. Sci., vol. 46, no. 1,
pp. 101–117, 2020.

[43] F. Amiri, S. Scerri, and M. H. Khodashahi,
“Lexicon-based sentiment analysis for Persian
text,” Int. Conf. Recent Adv. Nat. Lang.
Process. RANLP, vol. 2015-Janua, pp. 9–16,
2015.

[44] E. Cambria, “An introduction to concept-level
sentiment analysis,” Lect. Notes Comput. Sci.
(including Subser. Lect. Notes Artif. Intell.
Lect. Notes Bioinformatics), vol. 8266 LNAI,
no. PART 2, pp. 478–483, 2013.

[45] B. Agarwal and N. Mittal, Prominent Feature
Extraction for Sentiment Analysis. 2016.

[46] G. Yoo and J. Nam, “A hybrid approach to
sentiment analysis enhanced by sentiment
lexicons and polarity shifting devices,” 13th
Work. Asian Lang. Resour., pp. 21–28, 2018.

[47] S. Jameel, Z. Bouraoui, and S. Schockaert,
“Unsupervised learning of distributional
relation vectors,” ACL 2018 - 56th Annu. Meet.
Assoc. Comput. Linguist. Proc. Conf. (Long
Pap., vol. 1, pp. 23–33, 2018.

[48] J. Yoon and H. Kim, “Multi-channel lexicon
integrated CNN-BILSTM models for
sentiment analysis,” Proc. 29th Conf. Comput.
Linguist. Speech Process. ROCLING 2017, pp.
244–253, 2017.

[49] N. Kalchbrenner, E. Grefenstette, and P.
Blunsom, “A convolutional neural network for
modelling sentences,” 52nd Annu. Meet.
Assoc. Comput. Linguist. ACL 2014 - Proc.
Conf., vol. 1, pp. 655–665, 2014.

[50] R. Johnson and T. Zhang, “Effective use of
word order for text categorization with
convolutional neural networks,” NAACL HLT
2015 - 2015 Conf. North Am. Chapter Assoc.
Comput. Linguist. Hum. Lang. Technol. Proc.
Conf., no. 2011, pp. 103–112, 2015.

[51] S. M. Rezaeinia, R. Rahmani, A. Ghodsi, and
H. Veisi, “Sentiment analysis based on
improved pre-trained word embeddings,”
Expert Syst. Appl., vol. 117, pp. 139–147,
2019.

[52] T. Demeester, T. Rocktäschel, and S. Riedel,
“Distributed Representations of Words and
Phrases and their Compositionality,” Adv.
Neural Inf. Process. Syst., pp. 3111–3119,
2013.

[53] J. Pennington, R. Socher, and C. D. Manning,
“GloVe : Global Vectors for Word
Representation,” EMNLP, pp. 1532–1543,
2014.

[54] C. Dos Santos and M. Gatti, “Deep
Convolutional Neural Networks for Sentiment
Analysis of Short Texts,” Proc. Cool. 2014,
25th Int. Conf. Comput. Lingustics Tech. Pap.,
pp. 69–78, 2014.

[55] Y. Kim, “Convolutional Neural Networks for
Sentence Classification,” arXiv Prepr.
arXiv1408.5882, 2014.

[56] J. Wang, L. C. Yu, K. R. Lai, and X. Zhang,
“Dimensional sentiment analysis using a
regional CNN-LSTM model,” 54th Annu.
Meet. Assoc. Comput. Linguist. ACL 2016 -
Short Pap., pp. 225–230, 2016.

[57] H. Zhao, Z. Lu, and P. Poupart, “Self-adaptive
hierarchical sentence model,” IJCAI Int. Jt.
Conf. Artif. Intell., vol. 2015-Janua, pp. 4069–
4076, 2015.

[58] D. Hyun, C. Park, M. C. Yang, I. Song, J. T.

 Journal of Theoretical and Applied Information Technology
15th October 2024. Vol.102. No. 19

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6999

Lee, and H. Yu, “Target-aware convolutional
neural network for target-level sentiment
analysis,” Inf. Sci. (Ny)., vol. 491, pp. 166–178,
2019.

[59] S. Hochreiter, “Long Short-Term Memory,”
Neural Comput., vol. 1780, pp. 1735–1780,
1997.

[60] Y. Mehta, N. Majumder, A. Gelbukh, and E.
Cambria, “Recent trends in deep learning
based personality detection,” Artif. Intell. Rev.,
vol. 53, no. 4, pp. 2313–2339, 2020.

[61] J. Xu, D. Chen, X. Qiu, and X. Huang, “Cached
Long Short-Term Memory Neural Networks
for Document-Level Sentiment
Classification,” Arvix Prepr., no.
arXiv:1610.04989, 2016.

[62] R. Moraes, J. F. Valiati, and W. P. Gavião
Neto, “Document-level sentiment
classification: An empirical comparison
between SVM and ANN,” Expert Syst. Appl.,
vol. 40, no. 2, pp. 621–633, 2013.

[63] A. Chatterjee, U. Gupta, M. K. Chinnakotla, R.
Srikanth, M. Galley, and P. Agrawal,
“Understanding Emotions in Text Using Deep
Learning and Big Data,” Comput. Human
Behav., vol. 93, no. April 2018, pp. 309–317,
2019.

[64] D. Tang, F. Wei, N. Yang, M. Zhou, T. Liu,
and B. Qin, “Learning Sentiment-Specific
Word Embedding,” Acl, pp. 1555–1565, 2014.

[65] D. Tang, B. Qin, X. Feng, and T. Liu,
“Effective LSTMs for target-dependent
sentiment classification,” COLING 2016 - 26th
Int. Conf. Comput. Linguist. Proc. COLING
2016 Tech. Pap., pp. 3298–3307, 2016.

[66] X. Zhu, P. Sobhani, and H. Guo, “Long short-
term memory over recursive structures,” 32nd
Int. Conf. Mach. Learn. ICML 2015, vol. 2, pp.
1604–1612, 2015.

[67] A. E. D. Mousa and B. Schuller, “Contextual
bidirectional long short-term memory
recurrent neural network language models: A
generative approach to sentiment analysis,”
15th Conf. Eur. Chapter Assoc. Comput.
Linguist. EACL 2017 - Proc. Conf., vol. 2, pp.
1023–1032, 2017.

[68] K. S. Tai, R. Socher, and C. D. Manning,
“Improved semantic representations from tree-
structured long short-Term memory
networks,” ACL-IJCNLP 2015 - 53rd Annu.
Meet. Assoc. Comput. Linguist. 7th Int. Jt.
Conf. Nat. Lang. Process. Asian Fed. Nat.
Lang. Process. Proc. Conf., vol. 1, pp. 1556–
1566, 2015.

[69] Y. Ma, H. Peng, T. Khan, and E. Cambria,
“Sentic LSTM : a Hybrid Network for
Targeted Aspect-Based Sentiment Analysis,”
Congnitive Comput., vol. 10, pp. 639–650,
2018.

[70] H. Chen, S. Li, P. Wu, N. Yi, S. Li, and X.
Huang, “Fine-grained sentiment analysis of
Chinese reviews using LSTM network,” J.
Eng. Sci. Technol. Rev., vol. 11, no. 1, pp. 174–
179, 2018.

[71] S. Wen et al., “Memristive LSTM Network for
Sentiment Analysis,” IEEE Trans. Syst. Man,
Cybern. Syst., vol. 51, no. 3, pp. 1794–1804,
2021.

[72] F. Hu, L. Li, Z. L. Zhang, J. Y. Wang, and X.
F. Xu, “Emphasizing Essential Words for
Sentiment Classification Based on Recurrent
Neural Networks,” J. Comput. Sci. Technol.,
vol. 32, no. 4, pp. 785–795, 2017.

[73] A. Graves and J. Schmidhuber, “Framewise
phoneme classification with bidirectional
LSTM and other neural network
architectures,” Neural Networks, vol. 18, no.
5–6, pp. 602–610, 2005.

[74] T. Chen, R. Xu, Y. He, and X. Wang,
“Improving sentiment analysis via sentence
type classification using BiLSTM-CRF and
CNN,” Expert Syst. Appl., vol. 72, pp. 221–
230, 2017.

[75] X. Niu, Y. Hou, and P. Wang, “Bi-Directional
LSTM with Quantum Attention Mechanism
for Sentence Modeling,” Lect. Notes Comput.
Sci. (including Subser. Lect. Notes Artif. Intell.
Lect. Notes Bioinformatics), vol. 10635 LNCS,
pp. 178–188, 2017.

[76] Z. Yang, D. Yang, D. Chris, X. He, A. Smola,
and E. Hovey, “Hierarchical attention
networks for document classification,” ArXiv,
pp. 1480–1489, 2016.

[77] L. Zhang, Y. Zhou, X. Duan, and R. Chen, “A
Hierarchical multi-input and output Bi-GRU
Model for Sentiment Analysis on Customer
Reviews,” IOP Conf. Ser. Mater. Sci. Eng.,
vol. 322, no. 6, 2018.

[78] L. Li, L. Yang, and Y. Zeng, “Improving
Sentiment Classification of Restaurant
Reviews with Attention-Based Bi-GRU
Neural Network,” Symmetry (Basel)., 2021.

[79] Y. Pan and M. Liang, “Chinese Text Sentiment
Analysis Based on BI-GRU and Self-
attention,” Proc. 2020 IEEE 4th Inf. Technol.
Networking, Electron. Autom. Control Conf.
ITNEC 2020, no. Itnec, pp. 1983–1988, 2020.

 Journal of Theoretical and Applied Information Technology
15th October 2024. Vol.102. No. 19

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7000

[80] L. xia Luo, “Network text sentiment analysis
method combining LDA text representation
and GRU-CNN,” Pers. Ubiquitous Comput.,
vol. 23, no. 3–4, pp. 405–412, 2019.

[81] R. Ni and H. Cao, “Sentiment Analysis based
on GloVe and LSTM-GRU,” Chinese Control
Conf. CCC, vol. 2020-July, pp. 7492–7497,
2020.

[82] N. Aslam, F. Rustam, E. Lee, P. B.
Washington, and I. Ashraf, “Sentiment
Analysis and Emotion Detection on
Cryptocurrency Related Tweets Using
Ensemble LSTM-GRU Model,” IEEE Access,
vol. 10, pp. 39313–39324, 2022.

[83] Y. Cheng et al., “Sentiment Analysis Using
Multi-Head Attention Capsules with Multi-
Channel CNN and Bidirectional GRU,” IEEE
Access, vol. 9, pp. 60383–60395, 2021.

[84] C. Wang, P. Nulty, and D. Lillis, “A
Comparative Study on Word Embeddings in
Deep Learning for Text Classification,” ACM
Int. Conf. Proceeding Ser., pp. 37–46, 2020.

[85] L. Zhang, S. Wang, and B. Liu, “Deep learning
for sentiment analysis: A survey,” Wiley
Interdiscip. Rev. Data Min. Knowl. Discov.,
vol. 8, no. 4, pp. 1–25, 2018.

[86] P. Bojanowski, E. Grave, A. Joulin, and T.
Mikolov, “Enriching Word Vectors with
Subword Information,” Trans. Assoc. Comput.
Linguist., vol. 5, pp. 135–146, 2017.

[87] B. McCann, J. Bradbury, C. Xiong, and R.
Socher, “Learned in Translation:
Contextualized Word Vectors,” in 31st
Conference on Neural Information Processing
Systems (NIPS 2017), 2017, pp. 6294–6305.

[88] A. Akbik, D. Blythe, and R. Vollgraf,
“Contextual string embeddings for sequence
labeling,” COLING 2018 - 27th Int. Conf.
Comput. Linguist. Proc., pp. 1638–1649, 2018.

[89] M. E. Peters et al., “Deep contextualized word
representations,” NAACL HLT 2018 - 2018
Conf. North Am. Chapter Assoc. Comput.
Linguist. Hum. Lang. Technol. - Proc. Conf.,
vol. 1, pp. 2227–2237, 2018.

[90] A. Vaswani et al., “Attention is all you need,”
Adv. Neural Inf. Process. Syst., vol. 2017-
Decem, no. Nips, pp. 5999–6009, 2017.

[91] M. C. Kenton, L. Kristina, and J. Devlin,
“BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding,”
arXiv:1810.04805, 2019.

[92] Z. Lan, M. Chen, S. Goodman, K. Gimpel, P.
Sharma, and R. Soricut, “Albert: a Lite Bert for

Self-Supervised Learning of Language
Representations,” 8th Int. Conf. Learn.
Represent. ICLR 2020, pp. 1–17, 2020.

[93] W. Huang et al., “Hierarchical Multi-label
Text Classification: An Attention-based
Recurrent Network Approach,” in The 28th
ACM International Conference on Information
and Knowledge Management (CIKM ’19),
2019, pp. 1051–1060.

[94] X. Zhang, J. Zhao, and Y. Lecun, “Character-
level convolutional networks for text
classification,” Adv. Neural Inf. Process. Syst.,
vol. 2015-Janua, pp. 649–657, 2015.

[95] C. Zhou, C. Sun, Z. Liu, and F. C. M. Lau, “A
C-LSTM Neural Network for Text
Classification,” arXiv Prepr.
arXiv1511.08630, 2015.

[96] P. Zhou, Z. Qi, S. Zheng, J. Xu, H. Bao, and B.
Xu, “Text classification improved by
integrating bidirectional LSTM with two-
dimensional max pooling,” COLING 2016 -
26th Int. Conf. Comput. Linguist. Proc.
COLING 2016 Tech. Pap., vol. 2, no. 1, pp.
3485–3495, 2016.

[97] A. Joulin, E. Grave, P. Bojanowski, M. Douze,
H. Jégou, and T. Mikolov, “FastText.zip:
Compressing text classification models,” pp.
1–13, 2016.

[98] I. Santos, N. Nedjah, and L. De Macedo
Mourelle, “Sentiment analysis using
convolutional neural network with fasttext
embeddings,” 2017 IEEE Lat. Am. Conf.
Comput. Intell. LA-CCI 2017 - Proc., vol.
2018-Janua, pp. 2–6, 2017.

[99] T. Mikolov, K. Chen, G. Corrado, and J. Dean,
“Efficient estimation of word representations
in vector space,” 1st Int. Conf. Learn.
Represent. ICLR 2013 - Work. Track Proc., pp.
1–12, 2013.

[100] P. X. V. Nguyen, T. T. T. Hong, K. Van
Nguyen, and N. L. T. Nguyen, “Deep Learning
versus Traditional Classifiers on Vietnamese
Students’ Feedback Corpus,” NICS 2018 -
Proc. 2018 5th NAFOSTED Conf. Inf. Comput.
Sci., pp. 75–80, 2019.

[101] A. Onan, “Mining opinions from instructor
evaluation reviews: A deep learning
approach,” Comput. Appl. Eng. Educ., vol. 28,
no. 1, pp. 117–138, 2020.

[102] L. M. Rojas-Barahona, “Deep learning for
sentiment analysis,” Lang. Linguist. Compass,
vol. 10, no. 12, pp. 701–719, 2016.

[103] F. Long, K. Zhou, and W. Ou, “Sentiment

 Journal of Theoretical and Applied Information Technology
15th October 2024. Vol.102. No. 19

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7001

analysis of text based on bidirectional LSTM
with multi-head attention,” IEEE Access, vol.
7, pp. 141960–141969, 2019.

[104] C. Xiong, S. Merity, and R. Socher, “Dynamic
memory networks for visual and textual
question answering,” 33rd Int. Conf. Mach.
Learn. ICML 2016, vol. 5, no. 2015, pp. 3574–
3583, 2016.

[105] X. Liu, Y. Wang, X. Wang, H. Xu, C. Li, and
X. Xin, “Bi-directional gated recurrent unit
neural network based nonlinear equalizer for
coherent optical communication system,” Opt.
Express, vol. 29, no. 4, p. 5923, 2021.

[106] A. L. Maas, R. E. Daly, P. T. Pham, D. Huang,
A. Y. Ng, and C. Potts, “Learning word vectors
for sentiment analysis,” ACL-HLT 2011 - Proc.
49th Annu. Meet. Assoc. Comput. Linguist.
Hum. Lang. Technol., vol. 1, pp. 142–150,
2011.

[107] X. Zhang, J. Zhao, and Y. LeCun, “Character-
level Convolutional Networks for Text
Classification,” Adv. Neural Inf. Process. Syst.,
pp. 649–657, 2015.

 Journal of Theoretical and Applied Information Technology
15th October 2024. Vol.102. No. 19

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7002

Table 7. Results of IMDB Dataset using context-independent embedding

Model Accuracy Precision Recall F1 MCC
FastText + CNN 86,61 86,22 87,4 86,8 73,22
FastText + LSTM 85,8 86,45 85,18 85,81 71,61
FastText + biLSTM 86,02 87,79 83,93 85,82 72,12
FastText + GRU 86,39 83,11 91,61 87,15 73,15
FastText + biGRU 87,38 88,13 86,62 87,37 74,77
word2vec + CNN 86,51 85,96 87,52 86,73 73,03
word2vec + LSTM 87,34 86,01 89,42 87,68 74,73
word2vec + biLSTM 86,12 84,78 88,31 86,51 72,29
word2vec + GRU 87,98 91,37 84,08 87,58 76,22
word2vec + biGRU 88,7 88,9 88,65 88,77 77,4
Glove + CNN 84,32 84,52 84,32 84,42 68,64
Glove + LSTM 85,19 80,28 93,61 86,43 71,35
Glove + biLSTM 86,58 88 84,96 86,45 73,21
Glove + GRU 85,9 81,27 93,59 87 72,62
Glove + biGRU 87,18 84,78 90,87 87,72 74,54

Table 8. Results of IMDB dataset using transformers

Model Accuracy Precision Recall F1 MCC
Bert + CNN 87,11 84,36 91,35 87,71 74,47
Bert + LSTM 86,7 83,63 91,5 87,4 73,71
Bert + biLSTM 87,36 86,87 88,25 87,55 74,72
Bert + GRU 87,4 86,68 88,61 87,63 74,81
Bert + biGRU 87,2 87,88 86,52 87,2 74,41
albert +CNN 86,14 83,23 90,8 86,85 72,56
albert + LSTM 87,08 87,86 86,29 87,06 74,17
albert + biLSTM 87,03 86,51 87,97 87,24 74,07
albert + GRU 87,39 86,65 88,63 87,63 74,79
albert + biGRU 87,09 87,89 86,27 87,07 74,19

Table 9. Results of Amazon dataset using context-independent embedding

Model Accuracy Precision Recall F1 MCC
FastText + CNN 85,15 88,39 81,75 84,94 70,55
FastText + LSTM 84,95 86,26 83,26 85 69,97
FastText + biLSTM 85,52 84,74 87,51 86,1 71,05
FastText + GRU 85,4 82 91,61 86,54 71,21
FastText + biGRU 85,8 84,01 89,26 86,56 71,69
word2vec + CNN 86,67 88,2 83,16 85,61 71,5
word2vec + LSTM 86,95 86,69 88,04 87,36 73,88
word2vec + biLSTM 85,65 90,68 80,23 85,14 71,87
word2vec + GRU 85,97 81,03 94,83 87,38 72,94
word2vec + biGRU 87,2 85,43 90,43 87,86 74,48
Glove + CNN 82,45 81,52 85,02 83,23 64,9
Glove + LSTM 85 87,21 82,87 84,98 70,11
Glove + biLSTM 84,55 89,29 79,36 84,03 69,62
Glove + GRU 85,97 85,73 87,12 86,24 71,93
Glove + biGRU 86,2 86,93 85,99 86,46 72,4

Table 10. Results of Amazon Dataset using transformers

Model Accuracy Precision Recall F1 MCC
Bert + CNN 92,67 89,55 97,02 93,14 85,63
Bert + LSTM 92,73 91,1 95,12 93,05 85,51
Bert + biLSTM 91,2 94,31 92,29 93,3 86,43
Bert + GRU 93,5 92,33 95,22 93,75 87,13
Bert + biGRU 93,37 92,56 94,69 93,61 86,76
albert +CNN 92,68 94,43 91,07 92,72 85,41
albert + LSTM 93,35 92,88 94,24 93,56 86,7

 Journal of Theoretical and Applied Information Technology
15th October 2024. Vol.102. No. 19

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7003

albert + biLSTM 92,43 89,36 96,73 92,9 85,12
albert + GRU 93,08 90,72 96,34 93,44 86,29
albert + biGRU 93,55 94,05 93,31 93,68 87,1

Table 11. Results of Yelp Dataset using context-independent embedding

Model Accuracy Precision Recall F1 MCC
FastText + CNN 91,83 90,66 93,28 91,95 83,7
FastText + LSTM 93,59 94,04 93,08 93,56 87,19
FastText + biLSTM 93,28 91,46 95,48 93,43 86,65
FastText + GRU 93,77 93,54 94,05 93,79 87,55
FastText + biGRU 93,37 95,12 91,43 93,24 86,8
word2vec + CNN 92,3 92,91 91,59 92,25 84,61
word2vec + LSTM 94,13 93,37 95,02 94,19 88,28
word2vec + biLSTM 94,27 95,07 93,38 94,22 88,55
word2vec + GRU 94,22 95,11 93,24 94,17 88,46
word2vec + biGRU 93,97 92,84 95,29 94,05 87,98
Glove + CNN 91 91,56 90,32 90,94 82
Glove + LSTM 93,43 94,5 92,22 93,35 86,88
Glove + biLSTM 93,49 93,66 93,31 93,48 86,99
Glove + GRU 93,2 91,61 95,11 93,33 86,46
Glove + biGRU 92,94 91,01 95,31 93,11 85,99

Table 12. Results of Yelp Dataset using transformers

Model Accuracy Precision Recall F1 MCC
Bert + CNN 94,06 93,11 95,18 94,13 88,15
Bert + LSTM 94,48 95,68 93,17 94,41 88,99
Bert + biLSTM 94,58 94,55 94,62 94,58 89,16
Bert + GRU 94,64 94,88 94,38 94,63 89,28
Bert + biGRU 94,59 95,26 93,86 94,55 89,2
albert +CNN 93,66 96,22 90,89 93,48 87,45
albert + LSTM 94,13 93,63 94,7 94,16 88,26
albert + biLSTM 94,17 93,99 94,38 94,18 88,35
albert + GRU 94,34 95,08 93,51 94,29 88,68
albert + biGRU 94,33 93,98 94,73 94,35 88,66

