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ABSTRACT 
 

The exponential progress in technology and the internet has resulted in an unparalleled surge in online 
engagement, where individuals openly express their viewpoints. Users provide a variety of opinions on 
politics, events, and product evaluations. User views wield substantial influence on decisions made by both 
companies and individuals. Manual procedures for identification become impracticable due to the large 
number of user opinions. Sentiment analysis techniques are employed as a resolution. Deep learning methods 
have demonstrated potential in accurately predicting polarity from internet reviews, outperforming standard 
models. Utilizing word embedding techniques in conjunction with deep learning models is crucial for 
attaining superior results in sentiment classification within the realm of natural language processing (NLP). 
Furthermore, word embedding approaches like Word2Vec and FastText are thoroughly analyzed for the 
purpose of mapping text to vectors composed of real numbers. In this study, every assessed deep learning 
model is combined with both context-independent word embedding and transformer-based embedding. The 
evaluation of the five model, each utilizing one of the five feature extraction approaches, is conducted using 
three datasets from distinct domains: IMDB, Amazon, and Yelp. The evaluation is based on multiple metrics, 
including accuracy, recall, precision, F1-score, and MCC. 

Keywords: Sentiment Analysis, Online Review, Deep Learning, Word Embedding, Transformers 
 
1. INTRODUCTION  
 

 The current development of social media is 
currently undergoing rapid and significant expansion. 
As a result, there is a significant increase in the 
continuous production of data as users share their 
opinions on various issues, such as items, themes, 
events, and breaking news [1], [2]. Social media has 
become a valuable tool for data analytics in various 
practical applications, especially when it comes to 
analyzing online evaluations. Businesses must now 
prioritize the examination of these comments 
to derive important insights related to their products 
or services. Individual viewpoints exert substantial 
impact on crucial decision-making processes. 

Over almost ten years, social media has become a 
well-established platform for individuals to openly 
share their thoughts and feelings. The expressions 
shared on social media can significantly influence 
the way specific items or businesses are perceived 
and managed online. Examining the sentiment 
patterns in consumer reviews can provide both a 
benchmark for other consumers and aid businesses 
in improving their service quality and overall 
customer satisfaction [3]. In the present day, 
individuals are no longer restricted to seeking advice 
from their acquaintances when they choose to 
purchase a consumer product. This is due to the 
abundance of user evaluations and debates available 
on public forums on the Internet. Businesses may no 
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longer need to engage in surveys, opinion polls, and 
focus groups to collect customer opinions, as there is 
an ample amount of publicly accessible information 
available. However, the process of locating and 
overseeing opinion websites on the Internet and 
extracting the information they provide continues to 
be challenging due to the widespread existence of 
many websites. Every website usually has a 
substantial amount of subjective text that might be 
challenging to understand due to lengthy blog posts 
and forum discussions. The normal human reader 
may struggle to find pertinent websites and 
effectively extract and condense the thoughts 
expressed within them. Therefore, there is a 
requirement for automated sentiment analysis 
systems. 

Sentiment analysis largely focuses on the 
examination of opinions. It pertains to the automated 
analysis of subjective comments material to 
determine the emotional tone and propensity of the 
consumer [4]. Sentiment analysis is a prominent area 
of research in Natural Language Processing (NLP) 
that focuses on determining the polarity of textual 
data. It seeks to identify whether the sentiments 
expressed in a given text are positive, negative, or 
neutral [5]. Businesses utilize sentiment analysis to 
effectively understand social media comments, 
product evaluations, and diverse textual data sources. 
The capacity to discern sentiment is significant not 
only for individual decision-makers but also for 
business and governments alike. Being able to 
accurately perceive and understand the opinions and 
attitudes of the general public towards policies, 
products, and organizations can offer substantial 
benefits to these institutions, as well as to decision 
support systems and individuals[6]. During its first 
phases, sentiment analysis often depended on 
training shallow models with meticulously crafted 
features to attain good outcomes in polarity 
determination [7].  

Text sentiment analysis is consist of three 
approaches: lexicon-based methods, machine 
learning-based methods, and deep learning-based 
methods. Lexicon-based methods assess the 
sentiment orientation of a text document by 
evaluating the meaning and sentiment conveyed by 
words and sentences using a predefined dictionary 
[8]. While effective, this approach poses a 
significant drawback in terms of the computational 
resources required to identify the sentiment 
orientation of each word in the dictionary. 
Conversely, traditional machine-learning methods 
often blend lexicon-based strategies with machine 
learning algorithms. These methods necessitate 
manual labeling, which can be time-consuming and 

resource-intensive. These labeled datasets serve as a 
training set for building classification models using 
popular supervised learning algorithms such as 
Naïve Bayes [9], Support Vector Machines (SVM) 
[10], k-nearest neighbour algorithm [11], latent 
Dirichlet allocation (LDA) [12], and random forest 
[13]. These methods often utilize linguistic features 
such as n-grams [14], part-of-speech (POS) tags, and 
lexical features. Machine learning methods offer a 
more automated and scalable approach to sentiment 
analysis in comparison to lexicon-based methods. 
While conventional machine learning models 
require human intervention to extract emotional 
features from input text, subsequent steps involve 
text vectorization and the utilization of traditional 
machine learning algorithms for sentiment 
classification [15]. However, coping with the 
exponential growth of data in social media 
repositories presents traditional algorithms with 
challenges when extracting sentiments from these 
vast datasets. Recent studies indicate that the 
utilization of deep neural networks in NLP tasks, 
such as sentiment analysis [16], language modeling 
[17], and machine translation, can substantially 
improve predictive performance.  

Deep learning is a branch of machine learning 
that uses artificial neural networks with several 
layers to gain knowledge and generate predictions. 
Deep learning techniques have been extensively 
employed in many domains including image 
recognition [18], object detection [19], 
transportation [20], network optimization [21], 
sensor networks [22][23], system security [24], etc. 
Deep learning models are particularly well-suited for 
the analysis of text data sentiment due to their ability 
to effectively capture the intricate relationships 
between words and phrases. Deep learning, in 
contrast to conventional machine learning 
techniques, necessitates substantial data support 
rather than human-engineered features. Deep 
learning-based methods autonomously extract 
features from a variety of neural network models and 
enhance their performance by learning from their 
errors [25]. Word embeddings play a crucial role in 
the implementation of deep learning models. Word 
embeddings are commonly used as a fundamental 
input representation for deep learning models across 
a diverse array of NLT tasks. They have a vital role 
as a key component in deep models, providing input 
features for language-related tasks such as sequence 
labeling and text classification. In recent years, there 
has been a significant rise in the development of 
word embedding techniques, specifically classified 
as classic and context-based word embeddings. 
Choosing the appropriate approach for sentiment 
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analysis is essential and necessitates careful 
consideration. This study conducts experiments to 
thoroughly investigate the integration of context-
independent embeddings and transformer-based 
embeddings within deep learning models, 
establishing a foundation for identifying the most 
suitable model for sentiment analysis development. 
Despite advancements in sentiment analysis 
techniques, traditional methods—such as lexicon-
based approaches and conventional machine 
learning models—struggle to capture contextual 
information and manage the exponential growth of 
data in online reviews.  

This study addresses a critical research gap: the 
need for a systematic comparison between 
traditional context-independent embeddings (e.g., 
Word2Vec and GloVe) and advanced transformer-
based models (e.g., BERT and ALBERT) within 
deep learning frameworks. By conducting this 
comparison, we aim to provide a comprehensive 
understanding of the respective strengths and 
limitations of these embeddings in capturing 
sentiment nuances across diverse online review 
datasets. 

The primary objective of this study is to explore 
and compare the effectiveness of context-
independent and transformer-based embeddings in 
sentiment classification tasks utilizing deep learning 
models. Specifically, we seek to answer the 
following research questions: 

1. How do context-independent embeddings 
perform compared to transformer-based 
embeddings in sentiment classification tasks? 

2. What impact does the choice of word 
embeddings have on model performance 
across different datasets and domains? 

3. What are the best practices for integrating 
these embeddings into deep learning models 
for optimal sentiment classification 
performance? 

Additionally, this study makes the following 
contributions: 

1. Evaluation of Embeddings: We 
systematically evaluate the performance of 
context-independent embeddings (e.g., 
Word2Vec, GloVe) and transformer-based 
embeddings (e.g., BERT, RoBERTa) using 
deep learning models for sentiment 
classification. 

2. Dataset Variability: We utilize multiple 
datasets from diverse domains to test the 
generalizability and robustness of our models. 

3. Impact of Embedding Choices: We analyze 
how different embeddings influence model 

outcomes, providing insights into their 
applicability and effectiveness in various 
contexts. 

The selection of deep learning models (e.g., CNN, 
BiLSTM) is motivated by their demonstrated 
efficacy in capturing textual features. Furthermore, 
the incorporation of transformer-based models 
addresses the limitations of traditional embeddings 
in understanding context and semantics. 

The subsequent sections of this work are 
structured in the following manner: Section II 
outlines the significant advancements made in the 
field of text sentiment analysis. Section III provides 
a comprehensive explanation of our proposed model. 
Section IV details the experimental procedure and 
the outcomes obtained from validating our model. 
Section V conclusion and future directions. 

 
2. RELATED WORKS 

 Within the domain of Natural Language 
Processing (NLP), numerous investigations have 
leveraged neural language models and deep learning 
architectures. This section provides a concise 
overview of prior research endeavors focusing on 
sentiment analysis using deep learning 
methodologies. 
 
2.1 Sentiment Analysis 

 Sentiment analysis is used to determine the 
overall attitude of a text or review, whether it is 
positive, negative, or neutral. This is done by 
analyzing the dominant emotional viewpoint 
expressed. In the early stages of sentiment analysis 
research, supervised machine-learning techniques 
were commonly used as the main classification or 
clustering modules [26]. Supervised machine-
learning techniques used n-gram features and the 
bag-of-words (BOW) model to represent and 
categorize user-generated, sentiment-bearing texts 
[27]. These characteristics are suggested as solutions 
to tackle the limitations of the basic BOW model, 
such as disregarding word order and syntactic 
structures [28]. One major disadvantage of utilizing 
n-gram features is the significant increase in the 
dimensionality of the feature space. In recent studies, 
researchers have extensively explored feature 
selection methods to address this problem [29], [30]. 
Supervised methods like SVM, LDA, Naïve Bayes, 
and artificial neural networks are widely used for 
sentiment analysis and have shown impressive 
performance[31]–[33]. In supervised methods, 
sentiments of reviewers are predicted by analyzing 
the labeled sentiments of existing review data [34]. 
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These methods have certain limitations as they 
necessitate a substantial amount of training data to 
encompass all potential scenarios and have a 
tendency to operate at a slower pace. In addition, 
supervised learning models are often tailored to 
specific domains. For instance, classifier models that 
are trained on laptop reviews may not perform 
optimally when applied to movie reviews [35]. 
To overcome these limitations, researchers have put 
forth unsupervised lexicon-based methods [36]–[38]. 
Lexicon-based methods utilize the sentiment 
orientation of words or phrases present in a review 
to assess the overall sentiment score. Hence, lexicon-
based approaches depend on tallying sentiment 
lexicons instead of data training, and the 
effectiveness of the model can be enhanced by 
expanding the lexicon dictionary with a larger 
number of words.  Several pre-existing dictionaries 
contain terms and their corresponding costs for 
sentiment analysis, including SentiWordNet [39], 
MPQA subjectivity lexicon [40] and LIWC lexicon 
[41]. However, lexicon-based methods are heavily 
dependent on the lexicon's quality and coverage, 
which can result in lower accuracy when compared 
to supervised approaches [42], [43]. In addition, the 
sentiment orientation of a word can differ depending 
on the domain, which can limit the effectiveness of 
lexicon-based methods in domains without specific 
lexicons. One possible solution to this problem is to 
analyze the emotional meaning of a word within its 
specific context [44]. Machine learning approaches 
can learn specific patterns from text, resulting in 
improved classification results. However, a 
limitation of these approaches is that they often rely 
on extensive training datasets to achieve optimal 
performance. Moreover, a classifier trained on a 
specific dataset may not achieve the same level of 
performance when applied to a different domain [45], 
[46]. The constraints can be surpassed by deep 
learning. 

2.2 Deep Learning for Sentiment Analysis 

In recent years, deep learning has been widely 
utilized in sentiment analysis, in addition to its 
success in numerous application fields. The latest 
advancements in sentiment analysis have primarily 
concentrated on acquiring word embeddings and 
investigating different deep-learning models for 
classification and clustering purposes. The topic of 
natural language processing is closely linked to the 
use of deep learning models and word embeddings. 
Word embeddings are essential for deep learning 
models as they offer a structured representation of 
text, enabling the models to learn and generate 
accurate predictions. These embeddings are 

designed to capture not just the literal meaning of 
words, but also their contextual associations and 
resemblances. Word embeddings allow deep 
learning models to represent words as dense vectors 
of real numbers. This representation enables the 
models to analyze words and capture their semantic 
and syntactic nuances, improving their capacity to 
comprehend intricate language patterns [47]. In their 
research, Yoon et.al., [48] introduced a multi-
channel lexicon-based model that integrates 
convolutional neural networks (CNNs) with 
bidirectional LSTM (biLSTM) to perform sentiment 
categorization. The effectiveness of their model is 
dependent on the rules derived from the sentiment 
orientation of the lexicon in the given context, which 
is specific to the domain. CNNs, as advanced 
artificial neural networks, have the capability to 
discern intricate features across diverse data forms, 
encompassing images and text. They have mostly 
been utilized in computer vision applications, 
namely in tasks such as picture classification, object 
identification, and image segmentation.   

Convolutional Neural Networks (CNNs) have 
recently been utilized for text-related tasks. CNNs 
are used as local feature extractors in sentiment 
analysis applications, especially when local patterns 
like n-grams have a substantial impact on long texts. 
For instance, Kalchbrenner et al. [49] introduced a 
dynamic CNN model called DCNN for analyzing 
sentiment at the phrase level. The DCNN employs 
Dynamic K-Max pooling to capture the relationships 
between words. Johnson and Zhang [50], employed 
the BOW model in the convolutional layer and 
introduced a novel model called Seq-CNN to retain 
word information. In a recent study, Rezaeinia et al. 
[51] CNN model that utilized enhanced word 
embeddings to analyze sentiment at the document 
level. The authors of the study improved the pre-
trained Word2Vec [52] and GloVe [53] embeddings 
by incorporating lexical, positional, and syntactical 
information. These upgraded embeddings were then 
utilized in the analysis of three distinct datasets 
consisting of short texts. Additional variations of 
CNNs utilized for sentiment analysis applications 
encompass charCNN [54], CNN-multichannel [55], 
CNN-LSTM [56], Ada-CNN [57], and many more. 
Hyun et al. [58] proposed TCNN, employs the 
proximity correlation between the target word and 
neighboring words to acquire knowledge about the 
impact of the context on the target words. Although 
CNNs are highly effective at identifying patterns 
within localized temporal or spatial data, they 
frequently struggle to capture sequential 
correlations.  
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On the contrary, Recurrent Neural Networks 
(RNNs) are tailored for sequential modeling, yet 
they do not possess the capability to extract 
information concurrently. Sentiment analysis of text 
can be viewed as a challenge of sequential modeling, 
in which RNNs are frequently effective in 
sequentially assessing lengthy texts. RNNs are 
commonly employed in text sentiment analysis due 
to their inherent properties. However, conventional 
RNNs have challenges related to the amplification 
and attenuation of gradients while handling lengthy 
data sequences. Long Short-Term Memory networks 
(LSTMs) [59] were devised as a variant of deep 
neural network architecture leveraging RNNs to 
address the vanishing gradient dilemma in particular. 
Conventional RNNs are unable to effectively 
process input sequences of any length. In order to 
overcome this constraint, LSTM models include 
forget gates. LSTMs and their variations are often 
used in sentiment analysis applications because to 
their capacity to capture long-term dependencies 
[60]. For example, Xu et al. [61] introduced the 
cached LSTM model to capture both local and global 
semantic information in lengthy text. Moraes et al. 
[62] proposed the utilization of p-LSTM, a model 
that incorporates three-word embeddings instead of 
single-word embeddings, in addition to a phrase 
embedding layer. The p-LSTM model utilizes 
LSTM for sentiment classification tasks.  

In recent study, Gupta et al. [63], proposed an 
innovative multichannel LSTM model named SS-
BED for emotion detection within Twitter data. 
Their approach involves the concurrent utilization of 
GloVe [53] and Sentiment Specific Word 
Embedding (SSWE) [64] in parallel as pre-trained 
word embeddings. Subsequently, three LSTM 
modules are successively employed for each 
pathway to capture extended dependencies within 
the text. In the final step, the output consists of two 
concatenated feature vectors, which serve as the 
input to the fully connected layer. Additional LSTM 
variants employed in sentiment analysis include TD-
LSTM [65], SLSTM [66], cBLSTM [67], Tree-
LSTM [68], and Sentic LSTM [69]. Ma et al. [69] 
introduced a modified version of LSTM dubbed 
Sentic LSTM to incorporate both dominant and 
recessive aspects in phrases. This model unit 
includes a unique output gate that is specifically 
designed to combine token-level memory and 
concept-level input. Chen et al.  [70] developed an 
LSTM model for complex emotional interpretation 
of Chinese product reviews, using the mathematical 
principles of regression neural network. Wen et al. 
[71] introduced a hardware architecture for LSTM 
network employing memristor crossbars in a distinct 

study. Hu et al. [72] performed sentiment analysis on 
brief texts by creating a keyword vocabulary and 
incorporating it into the LSTM model. 

Furthermore, bidirectional long short term 
memory (BiLSTM) [73] is an advancement of 
LSTM. The BiLSTM efficiently combines the 
hidden layers from both the forward and backward 
directions, allowing access to contextual information 
from both previous and subsequent elements. 
Therefore, BiLSTM outperforms LSTM in dealing 
with sequential modeling jobs. BiLSTM has been 
effectively utilized in recent applications for 
sentiment analysis tasks, resulting in significant 
accomplishments [74][75]. Another variant of RNN, 
the Gated Recurrent Unit (GRU), is frequently 
utilized for sentiment analysis tasks. GRU units 
possess a more streamlined structure, consisting 
solely of two gates: the reset gate and the update 
gate. The reset gate is responsible for selecting the 
information that needs to be discarded from the 
previous state, while the update gate regulates the 
information that should be retained from the current 
input and the prior state. GRU units do not have a 
separate memory cell like LSTM. Instead, they 
maintain a hidden state that combines both the 
previous memory and the current input information. 
GRU has fewer parameters compared to LSTM 
because it lacks the complexity of separate memory 
cells and additional gates. GRU's implementation 
can enhance computational efficiency and expedite 
training, particularly noticeable with smaller 
datasets. Due its simpler architecture, GRU often 
converge faster during training compared to LSTMs. 
This makes GRUs a popular choice when 
computational resources are limited or when training 
time is a critical factor. Yang et al. [76], introduced 
a new attention-based network called hierarchical 
attention networks (HAN) for text classification. 
Within their paradigm, they utilize two attention 
modules, one at the word level and another at the 
phrase level. The attention modules are arranged in 
a stack on top of the outputs of sequence encoders 
based on GRU.   

Zhang et al. [77] introduced a model that 
utilizes bidirectional recurrent neural networks to 
handle multiple inputs and outputs. They employed 
two distinct biGRU layers in their model to provide 
part-of-speech and sentence representations. They 
subsequently merged lexical information by utilizing 
attention on the output of the softmax activation for 
the part-of-speech representation. Additionally, they 
enhanced the model's performance by integrating the 
probability of auxiliary labels as a feature, enabling 
the capture of essential correlations between the 
output labels and the hidden layers. In Li et al. [78] 
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a sentiment classification of restaurant reviews was 
proposed using an attention-based Bi-GRU neural 
network. The proposed model combines Word2Vec, 
Bi-GRU, and attention mechanisms to achieve better 
results with fewer parameters in building a sentiment 
analysis model. The model ensured the symmetry of 
the hidden layer weight update by utilising the 
important benefit of Bi-GRU. Pan et al. [79] 
introduced the concept of sentiment analysis in 
Chinese. The text sentiment was analyzed using a 
Bi-GRU and attention mechanism model. The 
suggested model can extract profound characteristics 
of the text and integrate the sentence's context to 
acquire text attributes with more precision. In 
addition, they introduced multi-head self-attention, a 
method that decreases dependence on external 
parameters. This method involves assigning weights 
to word vectors, emphasizing text characteristics, 
and giving greater consideration to the internal 
relationships within sentences. 

Due to its lightweight nature, many researchers 
combine several deep learning methods with the 
GRU model to achieve better results. Luo [80] 
combined Latent Dirichlet Allocation (LDA) text 
representation with CNN. The LDA topic model 
trained the latent semantic space representation of 
the short text, producing a feature vector 
representation based on the topic distribution. Then, 
CNN combined with GRU is used as a classifier. 
Meanwhile, Ni et al. [81] integrated two distinct 
recurrent neural network (RNN) models, namely 
LSTM and GRU, with GloVe word embedding. The 
suggested model was implemented on the IMDB 
dataset. In addition, a hybrid approach utilizing both 
LSTM and GRU is employed for sentiment analysis 
in the field of cryptocurrencies [82]. Cheng et al. 
[83], suggested a sophisticated hybrid model that 
incorporates a multi-channel convolutional and 
bidirectional GRU with multi-head attention 
capsules. This model uses vector neurons instead of 
scalar neurons to represent text emotions and 
leverages capsules to describe text emotions. Multi-
head attention is capable of encoding 
interdependencies among words, identifying 
sentiment terms in text, and employing CNN and 
Bidirectional Gated Recurrent Unit Network (Bi-
GRU) to extract local characteristics and global 
semantic aspects of the text, respectively. This study 
aims to assess and identify the most appropriate deep 
learning models, specifically CNN, LSTM, BiLSTM, 
GRU, and BiGRU, for sentiment analysis. 

2.3 Word Embedding 

Deep learning models rely heavily on word 
embeddings as a source of input information for 

language tasks like text classification and sequence 
labeling. For this objective, a significant number of 
word embedding techniques have been presented in 
the last ten years, mostly divided into context-
dependent and context-independent embeddings 
[84]. Word embedding is a language modeling 
technique used to associate words with numerical 
vectors, effectively representing words or phrases in 
multi-dimensional vector spaces. These word 
embeddings can be created through diverse 
techniques such as neural networks, co-occurrence 
matrices, probabilistic models, and more. Context-
independent and context-dependent word 
embeddings are the two primary categories of word 
embeddings that have been created. Context-
independent techniques, sometimes referred to as 
"classic" word embeddings, use co-occurrence 
matrix factorization or shallow neural networks to 
learn representation [85]. The learned 
representations are typified by being distinct and 
unique for every word, regardless of the word's 
context. For this reason, these embeddings are 
usually provided as downloaded files and pre-trained 
on generic text corpora. They can be used straight 
away to set the embedding weights for language 
tasks that come after. Among the notable examples 
are word2vec [52], GloVe [53] and FastText [86]. 
Context-dependent approaches, in contrast to 
context-independent ones, learn distinct embeddings 
for the same word based on the context in which it is 
used. For example, a term with several meanings like 
"bank" could have different embeddings depending 
on whether it's used about a river or something 
financial. There are two primary groups into which 
context-dependent word embedding learning 
techniques have mostly developed. Approaches 
based on RNNs, such as CoVe [87], Flair [88] and 
ELMo [89] make up one group.  

On the other hand, it has been shown that recently 
created Transformer-based models [90], including 
Bert [91] and Albert [92], may effectively learn 
contextualized word representations. A word can be 
transformed into a vector that condenses its syntactic 
and semantic components using word embeddings. 
Thus, word embeddings are considered optimal 
feature representations for neural network models in 
later NLP applications, including machine 
translation including machine translation [87], 
sequence learning [88], text classification [93]–[96], 
etc. Word embeddings are frequently used in 
sentiment analysis to transform words into low-
dimensional vectors that computers can process. 
Transformer-based embedding and context-
independent word embedding will be the main topics 
of this study. We will assess these word embeddings 
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and see how deep learning models are applied to 
them. 

 
3. METHODS 

This section introduces context-independent 
embedding and transformer-based embedding 
models, along with their configurations. It also 
discusses the various deep-learning configurations 
employed in this work. The comprehensive 
evaluation model is depicted in Figure 1, while 
Figure 2 provides in-depth details regarding the 
model. The research methodology involves the 
following steps: 
1. Data Collection and Preprocessing: We 

collected datasets IMDB, Amazon, and Yelp 
dataset, including data cleaning, tokenization, 
and text normalization. 

2. Model Selection and Training: We 
implemented multiple deep learning 
architectures (CNN, BiLSTM, BiGRU) with 
context-independent and transformer-based 
embeddings. Hyperparameters such as learning 
rate, batch size, and dropout rate were 
optimized using a grid search. 

3. Evaluation Metrics: Models were evaluated 
using standard metrics such as accuracy, 
precision, recall, and F1-score. 

 

 
Figure 1. Proposed Model 

 
Figure 2. Proposed Model in Details 

3.1 Text Preprocessing 

Data preparation is a crucial aspect of natural 
language processing projects, as algorithms lack an 
inherent understanding of text. We must transform 
the language into numerical representations that 
algorithms can understand. Online evaluations 
frequently consist of textual content that can include 
extraneous data such as special characters, symbols, 
hyperlinks, and so on. Regular expressions are used 
to eliminate the disruptive noise in the information. 
As part of the preprocessing stage, all the reviews are 
divided into individual words, a process known as 
tokenization. Subsequently, redundant words are 
removed to create a distinct representation for each 
word. In this study, we convert all the sentences into 
lowercase to ensure that words are treated 
consistently, regardless of their original case. Since 
each word will be processed individually, it is 
necessary to carry out a separation process for each 
word. In addition, stopword removal is used to 
reduce noise by removing words that do not carry 
significant meaning, allowing the model to focus on 
words that are more informative and contextually 
relevant. After stopword removal, we join the 
remaining words back into a single text string with 
spaces separating them. The overall text 
preprocessing process is illustrated in Figure 3. 
Examples of a text review before and after the 
preprocessing process can be seen in Table 1. 
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Figure 3. Pre-processing framework 

Table 1. Example of pre-processing Process on Text 
Review 

Class Review After pre-
processing 

Positive Petter Mattei's "Love in 
the Time of Money" is 
a visually stunning film 
to watch. Mr. Mattei 
offers us a vivid 
portrait about human 
relations. This is a 
movie that seems to be 
telling us what money, 
power and success do 
to people in the 
different situations we 
encounter.  

petter mattei love 
time money visually 
stunning film watch 
mr mattei offers us 
vivid portrait human 
relations movie 
seems telling us 
money power success 
people different 
situations encounter  

Negative Bad plot, bad dialogue, 
bad acting, idiotic 
directing, the annoying 
porn groove soundtrack 
that ran continually 
over the overacted 
script, and a crappy 
copy of the VHS 
cannot be redeemed by 
consuming liquor.  

bad plot bad dialogue 
bad acting idiotic 
directing annoying 
porn groove 
soundtrack ran 
continually overacted 
script crappy copy 
vhs cannot redeemed 
consuming liquor  

 

3.2 Embedding Layer 

Word embeddings are a method of representing 
words in a vector space by grouping words that have 
similar meanings. Every word is allocated to a vector 
and subsequently acquired by a process resembling 
that of neural networks. The system acquires 
knowledge and selects a vector from a pre-
established set of words. The size of the words can 
be determined by specifying it as a hyperparameter. 
This section will explain the embedding models that 
will be utilized in the assessment process, 
specifically fastText, word2vec, gloVe, bert, and 
Albert. 

3.2.1 fastText 

FastText is an open-source library 
developed by Facebook's AI Research (FAIR) team. 
It is specifically built to handle the representation 
and categorization of textual data. It is tailored to 
efficiently handle large volumes of text data, 
providing features for tasks such as text 
classification, word representation, and computation 
of text similarity. FastText utilizes word 
embeddings, which involve dense vector 
representations of words within a continuous vector 
space. These embeddings excel at capturing both 
semantic and syntactic relationships among words, 
leveraging the distributional characteristics of words 
within a given corpus. FastText is a viable and 
efficient method for creating word embeddings from 
text documents. In this method, each word is 
represented by breaking it into several character n-
grams [97]. FastText considers the inherent 
semantics of words, making it a suitable word 
embedding approach for languages with complex 
morphology and infrequent words. Its primary goal 
is to incorporate the internal structure of words 
rather than solely learning word representations. The 
uses of fastText can be seen in Figure 4. 

 

Figure 4. The Uses of fastText 

FastText utilizes a sliding window approach to 
process the input text. This is accomplished through 
the process of learning either the main word based 
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on the context around it, which is called Continuous 
Bag of Words (CBOW), or by learning all the 
surrounding words based on a central word, which is 
known as Skipgram. The learning process can be 
understood as a sequence of modifications to a 
neural network composed of two layers of weights 
and three layers of neurons. In this configuration, the 
two outside layers are associated with a neuron for 
each word in the lexicon, while the middle layer 
consists of neurons that match the dimensions in the 
embedding space. FastText can learn vectors for 
character n-grams, which are sub-components of 
words. This is a feature that word2vec does not have. 
This guarantees that words such as 'love,' 'loved,' and 
'beloved' will possess comparable vector 
representations, regardless of their occurrence in 
distinct contexts. This feature significantly improves 
the learning process, especially for languages that 
have a wide range of inflectional variants [98] .  
The FastText model utilized in this study employs 
300-dimensional word vectors. This implies that 
each word in the vocabulary is depicted as a vector 
in a 300-dimensional space. These word vectors 
encapsulate semantic details about words and their 
associations with other words in a continuous vector 
space, rendering them valuable for diverse natural 
language processing tasks. The fastText embedding 
layer in our model takes sequences of word indices 
as input. This layer generates a word embedding 
matrix of shape (vocabulary_size + 1, 
embedding_dim), where an additional row is added 
for out-of-vocabulary words. For each word index in 
the input sentence, the fastText embedding layer 
looks up the corresponding dense vector from the 
embedding matrix. This dense vector represents the 
embedding for that word. The output of the 
embedding layer for a sequence is a 3D tensor of 
shape (batch_size, input_length, output_dim), where 
each word in the input sequence is mapped to its 
corresponding dense vector in the output. These 
dense vectors serve as input to the next layer. We set 
the `trainable` parameter to 'false', indicating that the 
pre-trained fastText embeddings will not be updated 
during training. For further details, refer to Table 2, 
which outlines the fastText parameters used in this 
study. 

Table 2. fastText Parameters Used in The Proposed 
Model 

Parameter Value 
input_dim IMDB: 90704 

Amazon: 59914 
Yelp: 214392 

output_dim 300 
weights IDMB: (90704,300) 

Amazon: (59914,300) 
Yelp: (214392,300) 

input_length 300 
trainable false 

 
3.2.2 Word2Vec 

Word2Vec is a neural network architecture 
consisting of two layers, commonly used for token 
vectorization. Developed by Mikolov et al. [99], 
Word2Vec is a widely adopted technique for 
learning word embeddings from text data. It operates 
as an unsupervised method, efficiently extracting 
semantic relationships between words by analyzing 
their co-occurrence patterns within a given text 
corpus. This architecture comprises two models: the 
CBOW model and the skip-gram model. Together, 
they form a class of models within the Word2Vec 
framework [100]. In the CBOW model, the target 
word is determined using the context of each word 
as input, whereas in the skip-gram model, the 
context word is predicted based on the target word 
[101]. The skip-gram model demonstrates robust 
performance even with a small amount of data and 
can yield promising results in representing rare 
words [101]. On the other hand, the CBOW model is 
known for its swiftness and proficiency in 
representing commonly occurring words. The 
architecture of CBOW and skip-gram model can be 
seen in Figure 5. 

 

 
Figure 5. Word2Vec CBOW and skip-gram architecture 

[99] 

Suppose we have a series of training words 
𝑤ଵ, 𝑤ଶ, … , 𝑤் with length of sequence is 𝑇, the skip-
gram model's objective is determined by equation (1) 
[99]: 

 
argmaxఏ 

1

𝑇
෍  

்

௧ୀଵ

෍  

ି஼ஸ௝ஸ஼,௝ஷ଴

log 𝑃ఏ൫𝑤௧ା௝/𝑤௧൯ 
(1) 

Where 𝐶  represent the size of training context, 
𝑃൫𝑤௧ା௝/𝑤௧൯ represent a neural network with a set of 
parameters denoted by 𝜃. In this model we used pre-
trained word2vec model provided by Google News 
dataset. This model is typically pre-trained on a large 
corpus of Google News articles and is known for its 
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high-quality word embeddings. The word2vec 
model that we use here is 300-dimensional word 
embeddings. The fasttext parameters used in this 
study can be seen in Table 3. Unlike the parameters 
in fastText, here we make the values for input_dim 
and weight in each dataset the same. 

Table 3. Word2vec parameters used in the model 

Parameter Value 
input_dim 10000  
output_dim 300 
weights (10000,300)  
input_length 300 
trainable false 

 
3.2.3 Glove 

GloVe, also known as Global Vectors, is a 
word representation technique that has been created 
using an unsupervised learning method. Its purpose 
is to generate word embeddings by analyzing the co-
occurrence matrix of words in a given corpus. GloVe 
can be regarded as an expansion of Word2Vec, 
specifically created to proficiently acquire word 
embeddings from textual sources. The model 
integrates the Word2Vec model's learning based on 
local context with global matrix factorization. When 
calculating the error function in the model, the 
probability ratios of words are also included. Words 
that exhibit a strong correlation in the text document 
and are prone to co-occur are deemed more 
significant than other words in the process of 
acquiring knowledge. GloVe is a tool that transforms 
text into word vectors, which are able to measure the 
distance between words [16]. The model can be 
characterized as a global log-bilinear regression 
model, and its goal function is represented by 
Equation (2) [53]: 

 𝐽 = ෍ න൫𝑋௜௝൯൫𝑤௜
்𝜔௝ + 𝑏௜ + 𝑏௝ − log 𝑋௜௝൯

௏

௜,௝
 (2) 

Where 𝑉  denotes the vocabulary size, 𝑤 ∈ 𝑅ௗ 
represent word vectors, 𝑋  denote co-occurrence 
matrix, and 𝑋௜௝ denotes the number of times word 𝑗 

occurs in the context of word 𝑖 . ∫൫𝑋௜௝൯  denotes a 
weighting function and 𝑏௜ , 𝑏௝  are bias parameters 
[53]. In this study we use 100-dimensional space 
with the 6 billion tokens. Details parameter of Glove 
embedding can be seen in Table 4. 

Table 4. Glove parameters used in the model 

Parameter Value 
input_dim IMDB: 112281 

Amazon: 59914 
Yelp: 214392 

output_dim 100 
weights IMDB: (112281, 100)  

Amazon: (59914, 100) 

Yelp: (214392, 100) 
input_length 300 
trainable false 

 
3.2.4 Bert 

In 2019, Devlin et al. [91] employed the 
transformer architecture to create an innovative 
language representation model called BERT 
(Bidirectional Encoder Representations from 
Transformers). This model ushered in a new era in 
NLP, demonstrating exceptional performance on a 
wide range of NLP tasks. Bert utilizes the 
unsupervised learning method to pre-train deep 
bidirectional representations from extensive 
unlabeled text collections, employing two novel pre-
training objectives: masked language model (MLM) 
and next sentence prediction (NSP). BERT 
addresses the constraint of prior language models 
that only include one-way representations of words 
in a phrase. The model constructs a bidirectional 
masked language model that predicts words 
randomly masked in the phrase, hence enhancing the 
contextual information of the words. BERT comes 
in two variants: BERT-base, comprising 12 encoder 
layers, a hidden size of 768, 12 multi-head attention 
heads, and 110 million parameters; and BERT-large, 
featuring 24 encoder layers, a hidden size of 1024, 
16 multi-head attention heads, and 340 million 
parameters. Both of these models have undergone 
training using data from English Wikipedia and 
BookCorpus. This study employed Bert-base to 
analyze deep learning models utilizing transformer-
based approaches. 

3.2.5 Albert 

Albert, which stands for “A Lite Bert”, was 
made available in open source version by Google in 
2020, developed by Lan et al [92]. Albert is a 
groundbreaking advancement in NLP architecture. 
By implementing innovative techniques such as 
parameter sharing across layers and factorized 
embedding parameterization, Albert drastically 
reduce the number of parameters compared to 
traditional transformer models while maintaining 
competitive performance. This reduction in 
parameters leads to improve memory efficiency and 
faster training times, making Albert ideal large-scale 
NLP tasks. Despite its compact size, Albert 
demonstrates remarkable effectiveness in various 
language understanding tasks, including language 
translation, text summarization, sentiment analysis, 
and question answering. Its efficiency and scalability 
mark a significant step forward in NLP research, 
promising more resource-efficient and scalable 
models for real-word applications. 
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3.3 Deep Learning Model 

3.3.1 Convolutional Neural Network (CNN) 

CNNs are deep learning models specifically 
created to identify intricate patterns and 
characteristics inside datasets. They excel in 
extracting features from image and text data. CNNs 
have been widely used in computer vision 
applications, particularly in areas such as picture 
classification, object identification, and image 
segmentation. CNNs are deep learning algorithms 
primarily designed for processing images and 
videos. They take images as inputs, extract and learn 
features, and classify them based on these learned 
features. Recently, CNNs have also been adapted for 
text analysis, demonstrating versatility across 
different types of data. The CNN model typically 
operates in two steps: feature extraction and 
classification. Throughout the feature extraction 
process, a multitude of filters and layers are 
employed on input images to glean detailed 
information and features. Once this phase is 
complete, the extracted features are passed to the 
classification stage, where the images are 
categorized based on the target variable of the 
problem. 

A standard CNN architecture consists of an 
input layer, an output layer, and hidden layers. The 
hidden layers typically comprise convolutional 
layers, where feature maps are generated from the 
input data through convolution operations, along 
with pooling layers and fully connected layers. 
Activation functions, such as ReLU, are used in 
conjunction with these feature maps to introduce 
non-linearity into the architecture. This enhances the 
network's ability to model complex relationships in 
the data. In the pooling layers, the outputs from 
clusters of neurons are combined. This process 
reduces the spatial dimensionality of the feature 
maps, which helps improve the model's resistance to 
overfitting. Maximum pooling is commonly 
employed in these layers. The integration and 
processing of features extracted by preceding layers 
are pivotal tasks performed by the fully connected 
layers, culminating in the generation of the 
architecture's final output. 

The CNN model utilized in this research 
comprises four layers, as depicted in Figure 5. Firstly, 
the convolution layer processes the output from the 
embedding layer. Specifically, the input to the 
convolution layer is a 3D tensor, and the output 
retains the same shape. However, the dimensions of 
the output may vary depending on the number of 

filters and other parameters employed. The 
parameters for the CNN layer are detailed in Table 5. 

 
Table 5. CNN parameters 

Parameter Value 
Filters 128 
Kernel_size 5 
Activation Relu 
Pooling type Max pooling layer 
Pool size 5 

 
The second layer is the pooling layer, specifically 

utilizing the Max Pooling technique. Max pooling is 
a common approach employed in CNNs for feature 
reduction and spatial hierarchies. It operates by 
down-sampling the output of the preceding Conv1D 
layer, thereby decreasing the spatial dimensions of 
the input data while preserving essential features. In 
essence, it extracts the most salient information from 
the feature maps. We set the size of the pooling 
window to 5, indicating that for every region of 5 
consecutive elements in the input, the max pooling 
layer preserves only the maximum value. Max 
pooling is a straightforward operation: for each 
region of elements defined by the pool size, it selects 
the maximum value from that region and forwards it 
to the next layer. Suppose for the simple sentence 
“Came here for dinner and had a fantastic 
experience”. Each word in this sentence represented 
using word vectors, and each word vector has a 
dimension of 5. Here are the word vectors: “Came”: 
[0.2, 0.5, 0.3, 0.1, 0.7], “here”: [0.7, 0.4, 0.2, 0.9, 
0.6], “for”: [0.4, 0.7, 0.1, 0.3, 0.2], “dinner”: [0.9, 
0.5, 0.1, 0.4, 0.2], “and”: [0.3, 0.5, 0.1, 0.7, 0.2], 
“had”: [0.1, 0.4, 0.6, 0.2, 0.7], “a”: [0.2, 0.6, 0.1, 0.3, 
0.8], “fantastic”: [0.5, 0.1, 0.3, 0.4, 0.2], “experience” 
[0.6, 0.1, 0.2, 0.4, 0.3]. The max pooling operation 
setting with a filter size of 5. The filter, in this case, 
is a window of size 5 words that slides through the 
sentence. The filter starts at the beginning of the 
sentence: “Came here for dinner and”: value [0.9, 
0.7, 0.3, 0.9, 0.7] then move to the window one to 
the right “here for dinner and had”: value [0.7, 0.7, 
0.6, 0.9, 0.7] continue moving the window with “for 
dinner and had a”: value [0.9, 0.7, 0.6, 0.7, 0.8]. It is 
continued until the end of the sentence. Now, 
maximum values collected from each position of the 
filter then slid it through the sentence. These 
maximum values are representative of the most 
important features within the filter’s window. In this 
example, the extracted maximum values form a new 
sequence: [0.9, 0.7, 0.6, 0.9, 0.8]. This new sequence 
is a reduced-dimensional representation of the 
original text, capturing the most important 
information from the sentence. This sequence can 
use as input to further layers in neural network for 
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text classification. In practice, multiple filters can 
use with different window sizes to capture a range of 
features from the text, and the output of each filter is 
concatenated or combined before passing it through 
fully connected layers for classification. This allows 
the model to learn different levels of information 
from the text, from individual words to longer 
phrases or patterns. Max pooling helps in reducing 
the spatial dimensions of the data, reducing the 
number of parameters in the network and mitigating 
overfitting. It also helps in making the network 
translation-invariant, meaning it can recognize 
features in different parts of the input sequence 
regardless of their exact position. By retaining the 
maximum values, max pooling retains the most 
important features while discarding less significant 
details. 

Following the pooling layer, the output is next 
transmitted to the flattened layer. The Flatten layer 
is a layer that is mostly utilized to transform the 2D 
or 3D data from the previous layer into a 1D vector. 
It preserves the number of elements in the data while 
converting it from a multidimensional form to a one-
dimensional form. The Flatten layer is used to 
transform the output from the preceding layer, which 
could have several dimensions, into a single-
dimensional vector. The final layer in our CNN 
model is the dense layer, which is also referred to as 
the completely linked layer or the output layer. Each 
neuron in this layer is intricately linked to every 
neuron in the preceding layer. The number of 
neurons in the layer dictates the configuration of the 
output from this layer. For our specific scenario, we 
have configured the dense layer to consist of only 
one neuron, and the chosen activation function is 
sigmoid. Hence, the resulting form of the dense layer 
is (batch_size, 1). The final one-dimensional output 
signifies the model's forecast for each input in the 
batch, with a numerical value ranging from 0 to 1 as 
a result of the sigmoid activation function. When the 
number is near 0, the model forecasts that the input 
has a negative sentiment, whereas a value close to 1 
signifies a positive sentiment prediction. The 
structure of our suggested CNN model is depicted in 
Figure 6. 

 
Figure 6. Architecture of CNN Model 

3.3.2 Long Short-Term Memory (LSTM) 

RNNs are frequently successful at 
analyzing sequences of data, particularly for 
problems involving lengthy text sequences. LSTM 
networks are a specific sort of deep neural network 
architecture that is built upon RNNs. Unlike 
traditional RNNs, which face difficulties in 
processing input sequences of any length because of 
the vanishing gradient problem, LSTM networks are 
explicitly intended to tackle this challenge. LSTMs 
utilize specialized units known as cells, which 
consist of devices like forget gates to keep or delete 
information as time progresses selectively. The gates, 
which consist of the input gate, output gate, and 
forget gate, control the movement of information 
within the LSTM cell. The input gate regulates the 
influx of fresh data into the cell, the forget gate 
decides which information to eliminate from the 
cell's memory, and the output gate manages the 
transmission of information from the cell's memory 
to the output. In addition, LSTM models facilitate 
the propagation of error signals over extended 
sequences by ensuring a consistent and steady flow 
of gradients throughout time. Sequential data models 
are capable of capturing long-term dependencies, 
which makes them very suitable for tasks such as 
sentiment analysis of text. 
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The gates in LSTM networks are 
responsible for determining whether information 
should be preserved and when it should be retrieved. 
LSTMs are a specific variant of RNNs that are 
specifically developed to tackle the issue of the 
vanishing or exploding gradient problem that is 
commonly faced by conventional RNNs. Like other 
types of RNNs, LSTM models generate output by 
considering input from the current time step as well 
as the output from the previous time step. An LSTM 
unit comprises a memory cell 𝑐௧ , which retains its 
state during any period, and three non-linear gates: 
an input gate 𝑖௧, a forget gate 𝑓௧, an output gate 𝑜௧. 
The calculation formula is as follows, where 𝜎 
represents sigmoid function and ⨀ symbolizes dot 
multiplication. These gates are specifically intended 
to control the flow of information into and out of the 
memory cell. The LSTM transition has been 
implemented using the equations provided below 
[102]: 

The 𝑖௧ is the input gate: 

 𝑖௧ = 𝜎(𝑊௜𝑥௧ + 𝑈௜ℎ௧ିଵ + 𝑏௜) (3) 

 

The 𝑓௧ is the forget gate: 
 𝑓௧ = 𝜎൫𝑊௙𝑥௧ + 𝑈௙ℎ௧ିଵ + 𝑏௙൯ (4) 

 

The 𝑜௧ is the output gate: 

 𝑜௧ = 𝜎(𝑊௢𝑥௧ + 𝑈௢ℎ௧ିଵ + 𝑏௢) (5) 

 

The symbol 𝑐̃௧ represents the current condition of 
the candidate memory cell at the current time step. 
The function tanh refers to the tangent hyperbolic 
function: 

 

 𝑐̃௧ = tanh(𝑊௖𝑥௧ + 𝑈௖ℎ௧ିଵ + 𝑏௖) (6) 
 
The 𝑐௧  represents the current time state value 

stored in a memory cell, with the values of 𝑓௧ and 𝑖௧ 
ranging from 0 to 1. The computation of 𝑖௧ ⊙ 𝐶መ௧ 
determines the specific new information that is 
stored in 𝑐௧  from the candidate unit 𝑐̃௧ . The 
computation of 𝑓௧ ⊙ 𝑐௧ିଵ  determines which 
information is preserved and which is disregarded in 
the preceding memories 𝑐௧ିଵ [103]. 

 

 𝑐௧ = 𝑖௧ ⊙ 𝐶መ௧ + 𝑓௧ ⊙ 𝑐௧ିଵ (7) 
 
ℎ௧ is the hidden layer state at time 𝑡 : 

 ℎ௧ = 𝑜௧ ⊙ tanh(𝑐௧) (8) 

The input vector to the LSTM unit is denoted as 𝑥௧ 
the weight matrices are represented by 𝑊, and the 
bias vector parameters are represented by 𝑏. 

3.3.3 Bidirectional LSTM (bi-LSTM) 

The LSTM primarily considers the historical 
information in a sequence, which can sometimes be 
insufficient. Gaining access to future information, 
just as it accesses past information, could 
significantly enhance performance in sequence-
based tasks. A Bi-LSTM consists of a forward 
LSTM layer, which captures historical information, 
and a backward LSTM layer, which captures future 
information. Both layers are connected to the same 
output layer [103]. The key advantage of this 
architecture is that it provides a comprehensive view 
of the sequence context by integrating both past and 
future information. Let’s consider the input of time 
𝑡 is the word embedding 𝑥௧, at time 𝑡 − 1, the output 

of the forward hidden unit is ℎ⃖ሬ௧ିଵ, then the output of 
the hidden unit at time 𝑡 is equal as follow:  

 

 ℎ⃖ሬ௧ = 𝐿(𝑥௧, ℎሬ⃗ ௧ିଵ, 𝑐௧ିଵ) (9) 

   

 ℎሬ⃗ ௧ =  𝐿(𝑥௧ , ℎ⃖ሬ௧ିଵ, 𝑐௧ିଵ) (10) 

 
Where 𝐿 denotes the hidden layer operation of the. 
LSTM hidden layer. The forward output vector is 
ℎሬ⃗ ௧  ∈  𝑅ଵ௫ு  and the backward output vector is ℎ⃖ሬ௧ ∈
 𝑅ଵ௫ு  , and they should be combined to obtain the 
text feature. 

3.3.4 Gated Recurrent Units (GRU) 

Gated Recurrent Units (GRUs) are a kind of 
RNNs that demonstrate comparable empirical 
outcomes to LSTM networks, but with a simpler 
structure. A standard GRU design comprises of two 
gates: the reset gate and the update gate. This 
architectural design incorporates a reduced number 
of parameters. In the GRU architecture, transitions 
are carried out based on the equations given below 
[102]: 

The 𝑧௧ is the update gate: 
 𝑧௧ =  𝜎(𝑊௭𝑥௧ + 𝑈௭ℎ௧ିଵ + 𝑏௭) (11) 

 
The 𝑟௧is the reset gate: 

 𝑟௧ = 𝜎(𝑊௥𝑥௧ + 𝑈௥ℎ௧ିଵ + 𝑏௥) (12) 

 
The ℎ෠௧  is the current memory content: 

 ℎ෠௧ = tanh(𝑊௛𝑥௧ + 𝑟௧ ⊙ 𝑈௛ℎ௧ିଵ +  𝑏௛) (13) 
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The ℎ௧  is the output gate: 
 ℎ௧ = (1 − 𝑧௧) ⊙ ℎ௧ିଵ + 𝑧௧ ⊙ ℎ෠௧ (14) 

      
Where 𝑥௧  denotes the input vector, ℎ௧  denotes the 
output vector, 𝑟௧ corresponds to the reset gate vector, 
𝑧௧ corresponds to the update gate vector and 𝑊, 𝑈, 
and 𝑏 corresponds to parameter matrices and vector. 

3.3.5 Bidirectional Gated Recurrent Units (bi-
GRU) 

Models that possess a bi-directional structure are 
capable of acquiring knowledge from both preceding 
and succeeding data while analyzing present data. 
The bi-GRU model is characterized by the states of 
two GRUs, each functioning unidirectionally in 
opposite directions [104]. One GRU progresses in a 
forward direction, commencing from the initial point 
of the data sequence, while the other GRU 
progresses in a backward direction. This 
configuration enables the integration of information 
from both preceding and subsequent periods to 
impact the present conditions [105]. The bi-GRU is 
defined in the following manner: 

 
 ℎሬ⃗ ௧ = 𝐺𝑅𝑈௙௪ௗ൫𝑥௧ , ℎሬ⃗ ௧ିଵ൯ (15) 

   
 ℎ⃖ሬ௧ = 𝐺𝑅𝑈௕௪ௗ(𝑥௧ , ℎ⃖ሬ௧ିଵ) (16) 

   
 ℎ௧ = ℎሬ⃗ ௧⨁ℎ⃖ሬ௧ (17) 

   
Where ℎሬ⃗ ௧ is the state of the forward GRU, ℎ⃖ሬ௧ is the 
state of the backward GRU, ⨁  indicates the 
operation of concatenating two vectors. The 
architecture RNN model (LSTM, bi-LSTM, GRU, 
bi-GRU) that we use in this study can be seen in 
Figure 7. We set the dimensions for all RNN models 
to be the same, namely 64. 
 

 
Figure 7. Architecture of RNN Model 

4. METHODS 

4.1 Dataset 

We conduct experiments on various online review 
datasets to study the impact of word embeddings 
across different datasets. We have selected three 
benchmark classification datasets that vary in 
average sample length. Statistics from the datasets 
used in this study can be found in Table 6. 

Table 6. Dataset Statistics 
Dataset Positive Negative Total 
IMDB 25000 25000 50000 
Amazon 20229 19771 40000 
Yelp 299000 299000 598000 

 

4.1.1 IMDB Dataset 

The IMDb dataset contains 50,000 movie 
reviews for text analytics [106]. Reviews are 
classified as positive or negative based on the IMDb 
rating system, making it a benchmark dataset for 
sentiment classification. This large dataset features 
full-length reviews, and the task involves 
determining whether the movie reviews are positive 
or negative. The data includes two columns: the 
review column and the sentiment column. The 
review column contains the online reviews, while the 
sentiment column indicates the polarity of these 
reviews based on their content. In this dataset, we 
convert the polarity in the sentiment column into a 
binary class; specifically, we change 'positive' to 1 
and 'negative' to 0. This conversion facilitates the 
processing of the data into our proposed model. We 
divided the 50,000 entries into 40,000 for training 
and 10,000 for testing. From the 40,000 training 
entries, we allocated 20%, or 8,000 entries, for 
validation. The IMDb dataset we used is balanced, 
with an equal number of positive and negative 
classes. 

4.1.2 Amazon Dataset 

Amazon is an American multinational 
technology company with business interests that 
include e-commerce. In its e-commerce operations, 
Amazon purchases and stores inventory, handling 
everything from shipping and pricing to customer 
service and returns. It is one of the largest e-
commerce platforms, renowned for its vast number 
of customer reviews. In this study, we chose to use 
Amazon customer product reviews. The total dataset 
consists of 40,000 entries, divided into 36,000 for 
training and 4,000 for testing. We allocated 20% of 
the training data, or 7,200 entries, for validation 
purposes. The Amazon dataset we used in this study 
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is unbalanced, with an unequal number of positive 
and negative reviews. 
 
4.1.2 Yelp Dataset 

The Yelp review dataset comprises binary 
sentiment classification data. For this study, we 
utilize a collection of 560,000 highly polar Yelp 
reviews for training, with an additional 38,000 
reserved for testing. This dataset is sourced from the 
Yelp Dataset Challenge 2015 data and is based on 
the dataset constructed by Zhang et al. [107]. The 
construction categorizes reviews with 1 or 2 stars as 
negative and those with 3 or 4 stars as positive. Each 
polarity includes 280,000 training samples and 
19,000 testing samples, randomly selected. Overall, 
there are 560,000 training samples and 38,000 
testing samples. The negative polarity is labeled as 
class 0, while the positive polarity is labeled as class 
1. To create a validation dataset, 20% of the training 
data, or 112,000 entries, is set aside. 

4.2 Performance Matrix 

The model evaluation criteria utilized in this work 
are accuracy, precision, recall, F1 score, and the 
Matthews Correlation Coefficient (MCC), which 
align with the metrics adopted in other studies. The 
computation parameters are specified as follows: 

1) TP: stand for True Positive is the 
number of comments that classify 
favorable merchandise remarks as 
positive. 

2) FP: stand for False Positive is the 
number of comments that incorrectly 
label unfavorable product feedback as 
positive. 

3) TN: stand for True Negative refers to the 
count of negative comments that have 
been correctly categorized as negative 
comments. 

4) FN: stand for False Negative is the 
number of comments that classify 
positive ratings of products as negative. 

5) Accuracy refers to the proportion of 
comments that have been accurately 
predicted out of the total number of 
comments. 
 

 
𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

(18) 

 
6) Precision refers to the proportion of 

accurately anticipated positive remarks 
out of all the expected positive 
comments. 

 
 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(19) 

 
7) Recall refers to the proportion of 

positive comments that were accurately 
anticipated out of all the comments in 
the actual class. 

 
𝑟𝑒𝑐𝑎𝑙𝑙 =  

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(20) 

 
8) F1 score refers to the arithmetic mean of 

precision and recall, where precision is 
the ratio of true positive predictions to 
the sum of true positive and false 
positive predictions, and recall is the 
ratio of true positive predictions to the 
sum of true positive and false negative 
predictions. 
 

 
𝐹1 =

2 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

(21) 

 
9) MCC refers to the correlation coefficient 

measuring the relationship between the 
observed and expected binary 
categorization. 
 

 𝑀𝐶𝐶

=
𝑇𝑃 ∗ 𝑇𝑁 − 𝐹𝑃 ∗ 𝐹𝑁

ඥ(𝑇𝑃 + 𝐹𝑃)(𝐹𝑁 + 𝑇𝑁)(𝐹𝑃 + 𝑇𝑁)(𝑇𝑃 + 𝐹𝑁)
 

(22) 

 
4.2 Result Analysis and Discussion 

In the initial phase, we conducted various 
experiments to identify the most effective model for 
predicting sentiment polarity in online reviews. 
These experiments involved comparing the 
efficiency of different feature engineering methods, 
including FastText, Glove, word2vec, Bert, and 
Albert. The algorithms employed in our experiments 
encompassed CNN, LSTM, bi-LSTM, GRU, and bi-
GRU. The first experiment focused on the IMDB 
dataset, which is balanced dataset. The outcomes for 
the IMDB dataset in context-independent 
embedding are detailed in Table 7. Upon a 
comprehensive analysis, it is evident that, for each 
feature engineering model, the bi-GRU model 
consistently demonstrated the best performance. 
Specifically, for fastText, word2vec, and Glove, the 
Matthews Correlation Coefficient (MCC) results 
were 74.77%, 77.4%, and 74.54%, respectively. 
The outcomes vary when examined from the 
perspective of each deep learning model. 
Specifically, for the CNN model, optimal 
performance, at 73.22%, is achieved when paired 
with fastText. In the case of the bi-LSTM model, the 
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best performance, reaching 73.21%, is observed with 
the Glove embedding. Meanwhile, for the LSTM, 
GRU, and bi-GRU models, the highest performance 
is consistently attained when utilizing the word2vec 
feature engineering model, yielding respective 
results of 74.73%, 76.22%, and 77.4%. Upon an 
overall analysis of the experimental results, the 
word2vec and bi-GRU models exhibit the best 
performance, both achieving an MCC value of 
77.4%. 

Meanwhile, in experiments utilizing 
transformers as embedding layers, it is evident that 
both Bert and Albert in IMDB dataset achieve their 
highest performance when integrated with the GRU 
model, yielding MCC values of 74.81% and 74.79% 
for Bert and Albert, respectively. Comparing Bert 
and Albert's performance on the GRU model, the 
differences observed are not particularly significant; 
in fact, both exhibit identical F1 Scores. The 
comprehensive performance results for Bert and 
Albert are presented in Table 9. However, when 
considering the overall performance, the most 
favorable outcomes were achieved with the 
word2vec and biGRU models. 

The second experiment was conducted on the 
Amazon dataset, characterized by its unbalanced 
dataset. The experimental results for the Amazon 
dataset are outlined in Table 8. Notably, across the 
three feature engineering approaches, the optimal 
performance is consistently achieved when 
employing the bi-GRU model, with MCC values of 
71.69%, 74.48%, and 72.4%, respectively. This 
trend extends to the deep learning models as well, 
where all five models exhibit their best performance 
when utilizing the word2vec feature engineering. 
Upon a comprehensive comparison of the results, the 
highest performance is observed when word2vec is 
paired with bi-GRU, attaining an MCC value of 
74.48%. These results are similar to the results 
obtained in the IMDB dataset. 

In the experiment utilizing transformers for the 
Amazon dataset, unlike the previous dataset, Bert 
achieved its highest performance of 87.13% when 
combined with GRU. In contrast, Albert achieved its 
highest performance of 87.1% when combined with 
the BiGRU model. The comprehensive performance 
results for Bert and Albert are presented in Table 10. 

Let's now turn our attention to the third dataset, 
namely the Yelp dataset. Unlike the previous 
datasets, Yelp is balanced but boasts a larger dataset 
size. The experimental results for the Yelp dataset 
using context-independent embedding can be seen in 
Table 11. Notably, performance varies across feature 
engineering models. For the fastText model, optimal 
performance is achieved when paired with the GRU 

model, reaching 87.55%. Conversely, word2vec and 
Glove exhibit their best performance when 
combined with bi-LSTM, attaining values of 88.55% 
and 86.99%, respectively. From the perspective of 
deep learning models, all five models obtained the 
best performance when utilizing word2vec. In 
contrast to the trends observed in the previous 
datasets, where word2vec paired with bi-GRU 
yielded the best performance, the Yelp dataset 
achieves its best performance with word2vec and bi-
LSTM models, reaching an MCC score of 88.55%. 

From Table 12. we can see that the performance 
obtained by employing transformers on the Yelp 
dataset indicates that Bert and Albert achieve their 
optimal results when paired with GRU, with MCC 
values of 89.28% and 88.68% respectively. Upon 
examination, Bert outperforms Albert. 
 

5. CONCLUSION AND FUTURE WORK 

This paper aimed to evaluate different deep 
learning models and different feature engineering 
models to predict the sentiment polarity of textual 
online review of three different datasets with 
different domain and different amount of data. Five 
different variations of feature extraction model we 
used, fastText, word2vec, Glove, Bert, and Albert 
then compared concerning five deep learning 
methods: CNN, LSTM, bi-LSTM, GRU, and bi-
GRU. Word embedding plays a crucial role in text 
classification by transforming text into vectorized 
numerical representations which allows us to use it 
as an input to the machine learning algorithm.  

The first dataset is the IMDB dataset which 
is a balanced dataset. The best performance obtained 
when using the context-independent embedding 
approach is when using word2vec and bi-GRU, 
namely with an MCC value of 77.4%. Meanwhile, 
when using transformers, the best performance was 
obtained when using Bert and GRU with an MCC 
value of 74.81%. For the second dataset, namely the 
Amazon dataset, just like the IMDB dataset, the best 
performance was obtained when using the word2vec 
and bi-GRU models, namely 74.48%. Meanwhile, 
for the transformer-based model, the best 
performance was obtained when using the Bert and 
GRU models, namely with an MCC value of 87.13%. 
For the third dataset, namely Yelp, the word2vec and 
bi-LSTM models demonstrated the best performance, 
achieving an impressive 88.55%. Meanwhile, for the 
transformer-based model, the best performance was 
obtained when using the Bert and GRU models, 
namely with an MCC value of 89.28%. 

Based on the comprehensive results, it can 
be asserted that feature extraction based on context-
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independent embedding yielding the best 
performance in sentiment classification is word2vec. 
Word2vec consistently excels for both balanced and 
unbalanced datasets. Regarding the optimal deep 
learning model, it is evident that bi-GRU 
outperforms others for the IMDB and Amazon 
datasets, while bi-LSTM proves superior for the 
larger Yelp dataset. Meanwhile, for transformer-
based embedding, the three datasets have the same 
results, namely getting the best performance using 
Bert and GRU. Overall, when analyzed from the 
perspective of word embeddings, Bert demonstrates 
superiority on the Amazon and Yelp datasets, 
whereas word2vec outperforms Bert on the IMDB 
dataset. Based on our preliminary analysis, this 
variance may be attributed to the distinct nature of 
the test data within the IMDB dataset compared to 
the other two datasets. 

In summary, word2vec and Bert emerges as the 
preferred feature extraction model for addressing 
sentiment classification tasks, bi-GRU and GRU 
deep learning model stands out as superior among 
the tested models. Notably, Glove consistently 
yields the lowest performance across all model 
schemes and datasets. This research serves as a 
foundation for future research. The results obtained 
require additional processing, including a 
hyperparameter tuning process such as the length of 
the input sentence and the number of iterations of the 
model on the performance of the model to analyze 
performance patterns for each model scheme. 
Furthermore, research and experiments need to be 
carried out on Albert, which is smaller and lighter 
than Bert, in order to create a lighter and faster model. 
Apart from that, there will be a process of using more 
than one type of embedding for the deep learning 
model to obtain even better performance. 
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Table 7. Results of IMDB Dataset using context-independent embedding 

Model Accuracy  Precision  Recall   F1  MCC  
FastText + CNN 86,61 86,22 87,4 86,8 73,22 
FastText + LSTM 85,8 86,45 85,18 85,81 71,61 
FastText + biLSTM 86,02 87,79 83,93 85,82 72,12 
FastText + GRU 86,39 83,11 91,61 87,15 73,15 
FastText + biGRU 87,38 88,13 86,62 87,37 74,77 
word2vec + CNN 86,51 85,96 87,52 86,73 73,03 
word2vec + LSTM 87,34 86,01 89,42 87,68 74,73 
word2vec + biLSTM 86,12 84,78 88,31 86,51 72,29 
word2vec + GRU 87,98 91,37 84,08 87,58 76,22 
word2vec + biGRU 88,7 88,9 88,65 88,77 77,4 
Glove + CNN 84,32 84,52 84,32 84,42 68,64 
Glove + LSTM 85,19 80,28 93,61 86,43 71,35 
Glove + biLSTM 86,58 88 84,96 86,45 73,21 
Glove + GRU 85,9 81,27 93,59 87 72,62 
Glove + biGRU 87,18 84,78 90,87 87,72 74,54 

 
Table 8. Results of IMDB dataset using transformers 

Model Accuracy  Precision  Recall  F1  MCC  
Bert + CNN 87,11 84,36 91,35 87,71 74,47 
Bert + LSTM 86,7 83,63 91,5 87,4 73,71 
Bert + biLSTM 87,36 86,87 88,25 87,55 74,72 
Bert + GRU 87,4 86,68 88,61 87,63 74,81 
Bert + biGRU 87,2 87,88 86,52 87,2 74,41 
albert +CNN 86,14 83,23 90,8 86,85 72,56 
albert + LSTM 87,08 87,86 86,29 87,06 74,17 
albert + biLSTM 87,03 86,51 87,97 87,24 74,07 
albert + GRU 87,39 86,65 88,63 87,63 74,79 
albert + biGRU 87,09 87,89 86,27 87,07 74,19 

 
Table 9. Results of Amazon dataset using context-independent embedding 

Model Accuracy  Precision  Recall  F1 MCC 
FastText + CNN 85,15 88,39 81,75 84,94 70,55 
FastText + LSTM 84,95 86,26 83,26 85 69,97 
FastText + biLSTM 85,52 84,74 87,51 86,1 71,05 
FastText + GRU 85,4 82 91,61 86,54 71,21 
FastText + biGRU 85,8 84,01 89,26 86,56 71,69 
word2vec + CNN 86,67 88,2 83,16 85,61 71,5 
word2vec + LSTM 86,95 86,69 88,04 87,36 73,88 
word2vec + biLSTM 85,65 90,68 80,23 85,14 71,87 
word2vec + GRU 85,97 81,03 94,83 87,38 72,94 
word2vec + biGRU 87,2 85,43 90,43 87,86 74,48 
Glove + CNN 82,45 81,52 85,02 83,23 64,9 
Glove + LSTM 85 87,21 82,87 84,98 70,11 
Glove + biLSTM 84,55 89,29 79,36 84,03 69,62 
Glove + GRU 85,97 85,73 87,12 86,24 71,93 
Glove + biGRU 86,2 86,93 85,99 86,46 72,4 

 
Table 10. Results of Amazon Dataset using transformers 

Model Accuracy Precision Recall  F1 MCC 
Bert + CNN 92,67 89,55 97,02 93,14 85,63 
Bert + LSTM 92,73 91,1 95,12 93,05 85,51 
Bert + biLSTM 91,2 94,31 92,29 93,3 86,43 
Bert + GRU 93,5 92,33 95,22 93,75 87,13 
Bert + biGRU 93,37 92,56 94,69 93,61 86,76 
albert +CNN 92,68 94,43 91,07 92,72 85,41 
albert + LSTM 93,35 92,88 94,24 93,56 86,7 
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albert + biLSTM 92,43 89,36 96,73 92,9 85,12 
albert + GRU 93,08 90,72 96,34 93,44 86,29 
albert + biGRU 93,55 94,05 93,31 93,68 87,1 

 
Table 11. Results of Yelp Dataset using context-independent embedding 

Model Accuracy  Precision Recall F1  MCC  
FastText + CNN 91,83 90,66 93,28 91,95 83,7 
FastText + LSTM 93,59 94,04 93,08 93,56 87,19 
FastText + biLSTM 93,28 91,46 95,48 93,43 86,65 
FastText + GRU 93,77 93,54 94,05 93,79 87,55 
FastText + biGRU 93,37 95,12 91,43 93,24 86,8 
word2vec + CNN 92,3 92,91 91,59 92,25 84,61 
word2vec + LSTM 94,13 93,37 95,02 94,19 88,28 
word2vec + biLSTM 94,27 95,07 93,38 94,22 88,55 
word2vec + GRU 94,22 95,11 93,24 94,17 88,46 
word2vec + biGRU 93,97 92,84 95,29 94,05 87,98 
Glove + CNN 91 91,56 90,32 90,94 82 
Glove + LSTM 93,43 94,5 92,22 93,35 86,88 
Glove + biLSTM 93,49 93,66 93,31 93,48 86,99 
Glove + GRU 93,2 91,61 95,11 93,33 86,46 
Glove + biGRU 92,94 91,01 95,31 93,11 85,99 

 
Table 12. Results of Yelp Dataset using transformers 

Model Accuracy  Precision Recall F1  MCC  
Bert + CNN 94,06 93,11 95,18 94,13 88,15 
Bert + LSTM 94,48 95,68 93,17 94,41 88,99 
Bert + biLSTM 94,58 94,55 94,62 94,58 89,16 
Bert + GRU 94,64 94,88 94,38 94,63 89,28 
Bert + biGRU 94,59 95,26 93,86 94,55 89,2 
albert +CNN 93,66 96,22 90,89 93,48 87,45 
albert + LSTM 94,13 93,63 94,7 94,16 88,26 
albert + biLSTM 94,17 93,99 94,38 94,18 88,35 
albert + GRU 94,34 95,08 93,51 94,29 88,68 
albert + biGRU 94,33 93,98 94,73 94,35 88,66 

 


