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ABSTRACT 

 
Objectives: Cloud computing environments allow users to remotely access computational resources and 
data computing services online. Task scheduling requires the development of reliable and efficient methods 
for mapping tasks to resources, making it an essential component of cloud computing. Effective task 
scheduling is critical for increasing operational efficiency since it entails carefully assigning tasks to 
resources to ensure optimal performance. This accurate coordination not only increases productivity, but it 
also optimizes resource allocation. Cloud computing solutions can improve overall system performance, 
reduce processing times, and increase efficiency by enhancing job scheduling. 
Methods: This study introduced a (Henry Gas-Harris Hawks Modified-Opposition) (HGHHM) algorithm 
to enhance the Henry Gas Solubility algorithm based on two components: Harris Hawks Optimization 
(HHO) and a modified comprehensive opposition-based learning (MOBL). This proposed HGHHM 
algorithm utilized the HHO method as a local search strategy to enhance the quality of approved solutions. 
While, MOBL improves the less effective solutions by carefully calculating their opposite equivalents and 
wisely choosing the most advantageous option. This approach facilitated the enhancement of suboptimal 
solutions, leading to an overall enhancement in the efficiency of the selected techniques. 
Results: CloudSim was used to test the HGHHM algorithm on HPC2N dataset. Thus, the suggested 
HGHHM algorithm's simulated makespan and resource utilization outperformed previous algorithms, in our 
experiments, we utilized datasets of varying sizes from 500 to 4000.  
Conclusions: By using the HGHHM algorithm, this research improves cloud job scheduling efficiency and 
reliability by improving makespan and resource consumption. These findings confirm hybrid meta-heuristic 
techniques' efficacy and emphasize the need to balance exploitation and exploration to avoid local optima 
entrapment. Nevertheless, the study is limited in its scope as it does not take into account other factors such 
as energy consumption and cost.  

Keywords: Cloud Computing; Henry Gas Solubility Optimization; Harris Hawks Optimization; Task 
Scheduling. 

 
 
 
 

Acronyms 
HGHHM: Henry Gas-Harris Hawks Modified-Opposition  
HHO: Harris Hawks optimization algorithm 
HGSO: Henry gas solubility optimization algorithm 
MOBL: Modified comprehensive opposition base learning 
NP: Non-deterministic polynomial time 
OBL: Opposition-based learning 
QoS: Quality of service  
RU: Resource utilization 
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1. INTRODUCTION 

        Significant technological developments in 
recent years for data processing and storage have 
been observed due to extensive internet use. These 
advanced technologies have developed the current 
cloud computing concept, which transfers 
computational tasks and data from personal 
computers (PCs) and laptops to large-scale data 
centers [4, 12]. This innovative platform lets users 
conveniently retrieve global information online at 
any given time and location. However, the precise 
and reliable mapping of tasks allocations to 
resources is one of the primary concerns in cloud 
computing. The mapping process involves task 
scheduling, which is widely recognized as a Non-
deterministic Polynomial Time (NP)-hard issue [3, 
20]. Additionally this task scheduling concern is 
further compounded by its inherent complexity, 
dynamic characteristics, significant resource 
consumption, and unpredictability in resource 
availability [44].  
       Cloud computing requires the capability to 
manage a substantial number of concurrent users 
effectively. The quality of service (QoS) ability to 
meet all user requests efficiently and effectively is 
also crucial. Hence, an effective task scheduling 
procedure can achieve these requirements within a 
designated timeframe. The central aim of 
scheduling is to strategically assign tasks to 
appropriate resources, in order to meet particular 
criteria or objectives. The user is responsible for 
initiating the submission of tasks to the cloud 
scheduler, which is a critical element in the process. 
By utilizing a cloud-based information service, the 
system evaluates the present condition of accessible 
resources. Tasks are allocated strategically to 
various resources based on their specific needs, 
ensuring optimal and efficient use of the available 
computer infrastructure [49, 13].  Numerous studies 
investigated task scheduling algorithms to address 
cloud computing concerns in potentially 
constructing an optimal task schedule sequence, 
including particle swarm, Harris Hawks, and Crow 
algorithms [18]. 

      While heuristic strategies offer an effective 
approach to task scheduling, it's important to note 
that this method doesn't always guarantee an 
optimal solution. Therefore, meta-heuristic 
algorithms are considered the most optimal method 
for addressing complex issues, which have proved 
significantly superior to other methods. These 
methods can locate approximately optimal 
solutions within a polynomial time frame instead of 
exponential time [22, 41]. 

       Cloud computing requires efficient 
management of simultaneous users and meeting 
quality of service requirements. We are motivated 
to tackle this issue because of the persistent 
difficulties encountered by cloud computing 
systems in maximizing resource consumption, 
managing concurrent users, and meeting quality of 
service standards. Furthermore, the field of cloud 
computing technology is experiencing significant 
advancements, which in turn present novel 
prospects and complexities. This inspires us to 
examine these advancements and devise novel 
approaches that utilize emerging technology and 
enhance system efficacy. Furthermore, the 
increasing demand for cloud computing in various 
industries necessitates the development of scalable 
and efficient solutions.  
       This paper addresses these challenges by 
introducing a novel hybrid meta-heuristic 
approach, HGHHM, designed to optimize task 
scheduling in cloud computing environments. By 
enhancing resource utilization efficiency and 
reducing makespan. This approach holds 
significant importance for improving the 
performance and scalability of cloud systems, thus 
advancing the field's capability to meet the 
demands of modern computing. The suggested 
method is an integrated HGSO algorithm using the 
Harris Hawks optimization (HHO) and modified 
comprehensive opposition-based learning (MOBL) 
to increase the local search of the HGSO algorithm. 
 Consequently, the primary objective of this study 
was to propose an enhanced Henry gas solubility 
optimization (HGHHM) approach for optimizing 
cloud computing task scheduling. This approach 
aims to address multi-objective functions, 
specifically to reduce the makespan (MKS) and 
increase the resource utilization (RU). The 
following briefly describes the primary 
contributions of this paper:  

1. Modeling the Scheduling Problem: Considering 
the changing availability of cloud resources, this 
study formulates the scheduling problem as an 
optimization task.  

2. An Improved Multi-objective Scheduling Model 
is Introduced: Our novel multi-objective 
scheduling approach aims to maximize resource 
consumption and minimize makespan at the same 
time, maximizing overall system efficiency.  

3. Creation of the HGHHM Algorithm: We 
introduce the HGHHM algorithm, an enhanced 
version of the HGSO algorithm that combines the 
Harris Hawks algorithm with an altered 
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comprehensive opposition-based learning 
approach. With this improvement, the inherent 
shortcomings of conventional HGSO are 
effectively addressed, greatly enhancing the 
performance and scalability of cloud systems by 
balancing exploitation and exploration to avoid 
local optima entrapment.  

       The remaining sections of this work are 
structured as follows: Section 2: Motivation and 
Related Works provides a comprehensive overview 
of relevant research carried out in the field. The 
concept of the algorithm utilized for this 
investigation is summarized in section 3, 
background study. In Section 4, we outline the 
process of formulating the scheduling problem as 
an optimization task. Section 5 provides a detailed 
explanation of the key components of the HGHHM 
algorithm. In Section 6, we elucidate the temporal 
complexity of the suggested approach. Section 7: 
Experimental environment, this section offers a 
comprehensive examination and elucidation of the 
data, along with the presentation of the 
experimental findings. Section 8 represents the 
final part of our investigation, where we provide 
concluding remarks and suggest possible paths for 
future research on this topic. 
 
2. MOTIVATION AND RELATED WORKS 

  

  There are various shortcomings in the existing 
literature that allow us to develop a new task 
scheduling algorithm. As a result, this section 
focuses on the limitations of present approaches, as 
well as the types of objectives in current works: 
single and multi-objective, and how they affect job 
scheduling. 

2.1 Meta-Heuristic Scheduling Strategies in the 
Cloud 

    Despite the advancements in cloud 
computing, the challenges of efficiently scheduling 
tasks and distributing resources persist. The 
limitations of present methods often limit their 
effectiveness in meeting the evolving requirements 
of modern computer environments. The primary 
challenges faced by current task scheduling 
algorithms encompass scalability issues, extended 
makespans, and inefficient resource utilization. The 
task scheduling challenge is further complicated by 
the inability to efficiently manage several 
simultaneous users and meet various quality of 
service (QoS) requirements as we will discuss in 
the upcoming related works. These limitations 
emphasize the necessity for innovative approaches 

to address these problems and enhance the 
scalability and efficiency of cloud computing 
systems [27, 43]. 

      To begin our review, we studied a range of 
meta-heuristic approaches designed to maximize 
efficiency by striking a balance between strategies 
for exploration and exploitation. In practical, task 
scheduling studies using meta-heuristic algorithms 
were significantly investigated. For instance, Elaziz 
et al. introduced a modified Moth algorithm using 
Differential Evolution (MSDE). [2] Even though 
the study revealed that the algorithm outperformed 
other algorithms based on performance metrics, 
this approach was limited due to the high time 
complexity. 
       In another study, Attiya et al. proposed an 
annealing-based Harris Hawks optimization 
technique (HHOSA) [10]. The study indicated that 
the HHOSA approach developed significant MKS 
reduction. However the algorithm only operates on 
a single objective.  

        In addition Sa et al. provided an upgraded 
discrete symbiotic organism search method with 
meta-heuristics for the best work scheduling in a 
cloud computing environment. The experiment was 
carried out using the CloudSim simulator, and the 
simulation results showed that, especially for large 
search spaces, the performance of the suggested 
method was significant when compared to the 
benchmark technique for both the makespan and 
response time, Nevertheless, it frequently becomes 
trapped in local optima as a result of the enormous 
size of the makespan and response time values [42]. 

        Similarly Alboaneen et al. discovered an 
optimization framework for optimizing joint task 
scheduling and virtual machine (VM) placement 
[5]. The study highlighted that the simulation 
results enhanced resource utilization, reduced 
costs, shortened the MKS, and lowered the degree 
of imbalance. However the algorithm work with 
small sizes of tasks. 

        In a recent study [13] the Johnson Sequencing 
algorithm is used to schedule tasks across three 
servers in order to minimize the makespan. The 
algorithm strategically determines the optimal 
order for task execution on each server while 
accounting for job interdependencies and 
individual server processing times. Despite this, 
further investigation is required to assess the 
scalability of this algorithm. 

       Singh et al. introduced the crow–penguin 
optimizer method [46]. The multi-objective 
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formulation optimized the maximum value by 
maximizing QoS and resource utilization while 
minimizing load and MKS. However, the algorithm 
used large number of resources with small size of 
tasks. Meanwhile, Abd Elaziz and Attiya presented 
an HGSWC approach that was based on a whale 
optimization algorithm (WOA), HGSO, and 
comprehensive opposition-based learning (COBL) 
for optimal task scheduling [1]. The study 
demonstrated higher HGSWC MKS performance 
than HGSO and WOA algorithms. Despite this, the 
algorithm's convergence requires more refinement, 
therefore there is opportunity for improving the 
makspan. 

        Considering that these studies provided 
substantial evidence regarding MKS, we proposed 
and evaluated a novel HGHHM algorithm in this 
study to address the cloud task scheduling issue. 
The proposed solution was built upon the modified 
MOBL and HHO with HGSO operators. 

        Finally, [38, 39] creating a novel dynamic 
scheduling method through the manipulation of the 
cloud job schedule's gaps. The algorithm that 
regulates the gaps in the schedule of cloud jobs. The 
performance analysis demonstrates that the 
recommended method outperforms compared 
algorithms in terms of flow time, makespan time, 
and total tardiness. Nevertheless, the total delay 
rises as the number of tasks increases. 

       The cloud ecosystem consists of two primary 
entities: cloud providers and cloud clients. Prior 
studies research on work scheduling has mostly 
concentrated on incentives for either cloud users or 
providers of cloud services. Most optimization 
issues focus on a single objective, however these 
problems are typically multi-objective. In the 
cloud, Users in the cloud industry want cost-
effectiveness and high quality services, however 
the providers aim to maximize resource usage and 
profitability.  

        Therefore, in the following sections ( section 
4) , we explicitly outline the task scheduling 
problem as an optimization challenge, specifically 
considering its multi-objective nature and the 
consequential effects on both users and providers in 
the cloud industry. 

2.2 Single and Multi-Objective Functions  

        An optimization problem can be categorized 
as either a single-objective or multi-objective 
function, depending on the number of criteria 
involved. The goal of single-objective function 

optimization is to identify the best solution given a 
single criterion. However in practical situations, 
pursuing one goal could conflict with another, 
resulting in less-than-ideal outcomes. On the other 
hand, multi-criteria optimization aims to produce a 
collection of solutions that concurrently fulfill 
several conditions, providing a more thorough 
method of problem-solving [11] Multi-objective 
optimization improves decision-making processes 
by taking many objectives into account at once. 
This allows for a more sophisticated examination 
of trade-offs and the discovery of Pareto-optimal 
solutions that successfully balance conflicting 
objectives [40].This method works especially well 
in complicated systems such as cloud computing, 
where it is necessary to optimize multiple 
performance measures at the same time in order to 
get the best results. Zakaria et al, suggested a hybrid 
approach to task scheduling problems that 
combines Tabu Search (TS) and Cat Swarm 
Optimization (CSO). On the single parameter, the 
suggested algorithm (TS-CSO) performs better in 
makspan than the other algorithms, as 
demonstrated by the implementation results.  

          However, the other goal is not optimized, 
which could have an impact on the system's total 
effectiveness [51]. In the same context Fu et al., 
proposed particle swarm optimization genetic 
hybrid algorithm to reduce makespan [21]. On the 
other hand, studies such as that of Tanha et al. adopt 
a multi-objective perspective, proposed Genetic 
with thermodynamic simulated annealing intends 
to improve schedule length ratio, speed, efficiency, 
and makespan as well. By taking into account 
multiple objectives at once, this method provides a 
more thorough optimization strategy, which 
eventually improves system performance as a 
whole [47]. Additionally Manikandan et al, 
proposed Whale optimization algorithm with bee 
algorithm to Enhanced makespan, energy 
consumption, resource utilization and computation 
cost ultimately leading to improved overall system 
performance [52]. 
        As a result, the concept of multi-objective 
optimization in scheduling in a cloud computing 
environment has become increasingly popular, 
indicating a significant advancement in handling 
the intricate and varied optimization objectives in 
cloud-based task scheduling. 
 
3. BACKGROUND STUDY 
 
        This section explores the theoretical basis for 
the algorithms used in the study. It introduces 
numerous key concepts drawn from conventional 
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algorithms, including HHO (Harris Hawks 
Optimization) and HGSO (henry gas algorithm). 
Furthermore, the section gives a brief explanation 
of the proposed MOBL.  By discussing these 
fundamental theories, the section provides the 
foundation for understanding how these algorithms 
are adapted and integrated into the proposed 
HGHHM approach to effective task scheduling in 
cloud computing. 
 

 3.1 The Concept of Harris Hawks Optimization 
Algorithm (HHO) 

 
       The HHO algorithm is an original meta-
heuristic algorithm that addresses global 
optimization problems. Generally, the HHO 
exhibits behavioral patterns similar to hawks in 
their natural habitat as they pursue and capture their 
prey. Compared to other meta-heuristic 
approaches, this algorithm performs a search 
process in two distinct phases using various 
methodologies (see Fig. 1) [24]. Approximately 
two fundamental phases are present in this 
algorithm: exploitation and exploration. The phases 
in this study involved effectively utilizing four 
robust exploitation strategies of HHO algorithm, 
which enhanced the precision and effectiveness of 
the proposed algorithm. Therefore, this strategic 
integration significantly contributed to a more 
powerful and adaptable algorithm [36]. Following 
is a brief clarification of the HHO stages: 
 Exploration 

        The algorithm now initiates the Exploration 
phase, determined by the value of the prey's escape 
energy E. If the cardinality of set E (|E|) is 1 or 
more, the algorithm will start the Exploration phase 
as clarify in the pseudo code. 
Transform from exploration to exploitation 

         Based on the prey's escape energy E, the 
HHO algorithm can switch between various 
exploitative behaviors after transitioning from 
exploration to exploitation. 
Exploitation 
        The hawks will utilize one of the four tactics 
to capture their prey, which in the algorithm context 
refers to identifying the optimal solution. It 
indicates that they will surround the target from 
various directions with varying levels of force 
based on the prey's remaining energy. The four 
strategies are (Soft besiege, Hard besiege, Soft 
besiege with progressive rapid dives, Hard besiege 
with progressive rapid dives), as mentioned in the 
pseudo code of HHO [48 , 33, 36]. 

Algorithm 1    HHO 

Algorithm input: N (population size), s_max 
(maximum iterations). 
Outputs: The position of the solution and the 
fitness value Initialize the random population Xi 
for i = 1, 2,..., N. 
Generate a starting population Xi for i = 1, 2,..., N.
Carry out the following actions till the terminal 
condition is met: 
Determine fitness values. 
Determine the optimal solution𝑿𝒃. 
Define 𝑿𝒃 as the optimal position of the rabbit. 
For each hawk Xi
update the beginning energy 𝑬𝟎 and jump strength 
J  
𝑬𝟎=2 𝒓𝟓-1,  J = 2(1 -𝒓𝟓), 𝒓𝟓 is a random variable 
Update the variable E using the following 
equation: 

𝑬 = 𝟐𝑬𝟎(𝟏 −
𝒔

𝒔𝒎𝒂𝒙

) 

 
If the absolute value of E is greater than or equal 
to 1   :              Exploration phase 
 
 Update the location variable using the following 
equation 
 
𝑿𝒊(𝒔 +  𝟏) =

ቊ 
𝑿𝒓(𝒔) −  𝒓𝟏 |  𝑿𝒓(𝒔) −  𝟐𝒓𝟐𝑿(𝒔) | .  𝑸 ≥  𝟎. 𝟓 

ቀ 𝑿𝒃(𝒔) −  𝑿𝑨𝒗𝒈 (𝒔)ቁ −  𝝎                .   𝑸 < 𝟎. 𝟓

If the absolute value of E is less than 1 do the 
next steps:              Exploitation phase 
 
 If (r ≥0.5 and |E|≥ 0.5) then             Soft besiege 
 
Update the location variable using the following 
equation 

X (s + 1) = ΔX (s) − E | J × 𝑿𝒃 (s) − X(s) | 
ΔX (s) = 𝑿𝒃 (s) − X (s). 

 
Else if (r ≥0.5 and |E|< 0.5) then         Hard besiege 

Update the location variable using next equation 

 

X (s + 1) = 𝑿𝒃 (s) − E × | ΔX (s)|. 
 
Else if (r < 0.5 and |E|≥ 0.5) then    
         Soft besiege with progressive rapid dives 
Update the location variable using next equation 

𝑿(𝒔 +  𝟏) = ቊ
𝒀𝒅  𝒊𝒇 𝑭(𝒀𝒅) < 𝑭൫𝑿(𝒔)൯.

𝒁𝒅  𝒊𝒇 𝑭(𝒁𝒅) < 𝑭൫𝑿(𝒔)൯
ቋ 

Else if (r < 0.5 and |E|< 0.5) then  
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                 Hard besiege with progressive 
rapid dives 
Update the location variable using next equation 

𝑿(𝒔 +  𝟏) = ቊ
𝒀𝒅′  𝒊𝒇 𝑭(𝒀𝒅′) < 𝑭൫𝑿(𝒔)൯.

𝒁𝒅′  𝒊𝒇 𝑭(𝒁𝒅′) < 𝑭൫𝑿(𝒔)൯
ቋ 

Return 𝐗𝐛   (best solution ) 
   End  

Figure 1: The HHO Algorithm [8, 9, 24]  

 
3.2 The Concept of Henry Gas Solubility 
Algorithm (HGSO) 
        The HGSO algorithm is commonly employed 
to simulate Henry's law [1]. This method is well-
known for its strong exploratory capabilities. The 
core structure of HGSO consists of multiple phases 
to augment its exploitation potential further (see 
Fig. 2) [17]. A Harris Hawks algorithm (known for 
its exceptional exploitation capabilities) was 
meticulously incorporated into the HGSO. This 
synergistic hybridization could significantly 
enhance the capabilities of the Henry gas 
optimization technique. 
 

Algorithm 2   HGSO 

Create a population (𝑖=1, 2,...,) with 𝑁 
individuals, Define the number of gas types as 
𝑖,𝐻𝑗,𝑃𝑖,𝑗,𝐶𝑗,𝑙1,𝑙2, and 𝑙3. 
Partition the population of agents into distinct 
groups (clusters) based on their Henry's constant 
value (𝐻𝑗), which is consistent throughout each 
group. 
Assess each cluster j. 
Obtain the optimal gas 𝑋𝑖 within each cluster, as 
well as the most effective search agent 𝑋𝑏𝑒𝑠𝑡. 
While (stopping criteria not met (i.e.  s < 
𝑀𝑎𝑥𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛)) 
         For each search agent: Update the location 
of the individual search agent.    

Xij(s + 1) = Xij(s) + Fg × r × η× (𝐗𝐢𝐛 (s) − 
Xij(s)) + Fg × r × α× (Sij(s) × 𝐗𝐢𝐛 (s) − Xij(s)) 

         End for  
Update the Henry's coefficients for each type of 
gas. 
 

Hj (s + 1) = Hj (s) × exp ( - Cj × (1/ T (s) − 1 
/Tᶿ)),     T (s)= exp(−s Ú iters) 

 
 
 

Provide the updated solubility values for each gas  
           Sij(s) = K × Hj (s + 1) × Pij(s) 
 
Rank and choose the number of agents with the 
worst performance: 
 

Nw = N × r × (𝐜𝟐−𝐜𝟏) +𝐜𝟏,  𝐜𝟏 = 0.1, and 𝐜𝟐 = 
0.2 

Adjust the position of the most ineffective 
agents. 
 
Gij = 𝐆𝐢𝐣

𝐦𝐢𝐧 + r × ( 𝐆𝐢𝐣
𝐦𝐚𝐱 − 𝐆𝐢𝐣

𝐦𝐢𝐧) ,      i = 1, 2,… , 
Nw 

 
Revise the optimal gas 𝑋𝑖,𝑏𝑒𝑠𝑡, and the optimal 
search agent 𝑋𝑏𝑒𝑠𝑡 
End while  
s=s+1 
Return 𝑋𝑏𝑒𝑠𝑡 
 
Figure 1: The HGSO Algorithm [1, 21] 

 
3.3 Modified Comprehensive Opposition Base 
Learning (MOBL) 
 
         Meta-heuristic algorithms have effectively 
incorporated the underlying opposition-based 
learning (OBL) concept into several schemes to 
enhance performance. 
  
Definition: Assume that x is a real number in the 
range [a, b]. Hence, the definition of the opposite 
number 𝑿ഥ is given as follows [15, 45].  
 
𝑋ത = a + b – x                                                    (1) 
 
         Comprehensive opposition-based learning 
(COBL) is an expanded version of the conventional 
OBL approach, which enables the meta-heuristic 
algorithm to achieve convergence toward optimal 
solutions. The primary objective of COBL is to 
transform the given solution 𝑋௜ to one of its 
opposing solutions [1, 14]. This study updated the 
COBL by shifting the solution 𝑋௜ to the extended 
opposition (𝑋ത𝒆𝒐 ).  When the existing solutions were 
contrasted with their opposing solutions, the 
modified comprehensive opposition-based learning 
(MOBL) technique attempted to determine the 
optimum solutions [10]. The opposite solution 𝑋ത𝑗 
of 𝑋௝ is calculated as follows:  
 
𝑋തj =  𝑈𝐵௝  +  𝐿𝐵௝  −  𝑋௝ , where 𝑗 =

1, 2..                                                                           (2) 
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Where 𝑈𝐵 and 𝐿𝐵 are upper and lower values. 
Therefore, the MOBL is expressed using the 
following equations: 
 
Xഥ୨

ୣ୭=

 ቊ
Xഥj + (UB୨ − Xഥj)х rnd X୧ > (LB୨ + UB୨)/2

(LB୨ + ൫Xഥj − LB୨൯х rnd X୧ < (LB୨ + UB୨)/2
          

(3) 
 
Where j = 1, 2 … DIM. Lastly, The optimal or near-
optimal solutions were chosen from the collection 
of existing solutions Xi and their opposing 
solutions Xഥ୧. 
 
 
4. PROBLEM FORMULATION  
 
          Our empirical findings highlight the 
enormous difficulty associated with task 
scheduling in cloud computing systems, where the 
goal is to effectively distribute many jobs among 
available computing resources to optimize different 
goals as makespan, cost, and energy consumption 
[43]. Formally defining the task scheduling 
problem is often accomplished by conceiving the 
cloud system (CS) as consisting of a number of 
physical machines (PMs), referred to as Npm, each 
of which hosts a group of virtual machines (VMs), 
referred to as NVM. The computing power, 
memory size, storage capacity, and network 
bandwidth of each virtual machine (VM) define it. 
Let us consider a task having the following 
properties, indexed as lth = 1, 2, 3..., NT, where NT 
is the total number of tasks assigned to virtual 
machines (VMs): [Snl, T_lenl, Etl, Prl] = T 
(1).Where T_lenl is the task's length (measured in 
millions of instructions) and Snl is the l-task's serial 
number. The lth task's priority is indicated by Prl. 
The estimated time to complete the lth Task is Etl. 
The following equation provides the ETC matrix for 
NT tasks and NVM virtual machines. 

 
ETC୧୨

= ൦

ETCଵ͵ଵ      ETCଵ͵ଶ      …     ETCଵ,୴୫ୱ

ETCଶ͵ଵ      ETCଶ͵ଶ     …     ETCଶ,୴୫ୱ

…             …             …           … 
ETC୬,ଵ    ETC୬,ଶ          …  ETC୬,୴୫ୱ  

൪         (4) 

 

Where the element 𝑬𝑻𝑪𝒊͵𝒋 represents the 

estimated time Et for lth task on the jth VM, and 

it is defined as: 

ETC𝒊𝒋 =
୘_ ௟௘௡௟೔

ெூ௉ௌೕ
                                             (5) 

 
Where 𝑀𝐼𝑃𝑆௝ denotes the processing capacity of 
the jth VM.  

 
        Thus, the mapping of a set of tasks from a 
given tasks onto a set of virtual machine in this 
study in a way that optimizes both the 
task scheduling's resource consumption and 
makespan at the same time. The following equation 
(8) illustrate how this topic is stated as a multi-
objective optimization problem with the goals of 
maximizing resource usage and minimizing service 
time.  
 The makespan (MKS) can be expressed as shown 
in Equation (6). 

 
MKS = max

୨∈ଵ͵ ଶ ͵   ୴୫ୱ
∑ ETC୧͵୨

୬
୧ୀଵ                           (6) 

 
The RU can be calculated by Eq. (7):  

 Resource Utilization =
∑ ୘୴୫୧ొ

౟సభ

୫ୟ୩ୣୱ୮ୟ୬∗୒
               (7) 

 
Tvmi represents the length of time consumed by the 
VMi to complete all jobs, while N stands for the 
total number of resources [26, 27]. 

Consequently, our goal is minimizing MKS and 
maximize resource utilization, the fitness function 
is formalized as follows: 
 
𝐹𝑣 =  𝑀𝑖𝑛 𝑀𝐾𝑆     &    𝐹𝑣 =  𝑚𝑎𝑥 𝑅𝑈      (8) 

 
5. THE PROPOSED ALGORITHM 

        The suggested HGHHM method successfully 
utilized the capabilities of the HHO to eliminate 
task scheduling constraints. By acting as local 
operators, these HHO operators significantly 
improved HGSO's performance. Therefore, this 
methodology serves to effectively mitigate the 
drawbacks associated with each distinct meta-
heuristic approach. The HHO algorithm was 
chosen because the integration of its four 
exploitation tactics improves our algorithm's 
flexibility and efficacy, aligning closely with our 
goals through balanced exploration and 
exploitation, hierarchical adaptability, and 
parallelism. While selecting HGSO for its strong 
exploration capabilities.  
          The combination of HHO's balanced 
exploration and exploitation with HGSO's excellent 
exploration capabilities preventing it from getting 
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stuck in local optima which offers a superior 
algorithm that excels at exhaustively exploring the 
solution space, which is vital to our project's 
success.  
          The initial set of N integer solutions X in the 
proposed HGHHM algorithm acquired a size n, 
representing the number of tasks. Each solution 
contained values confined to the range [1, vms] 
(vms = virtual machines). The fitness value is then 
computed to determine the quality of each solution 
using equation (8). 
         The optimal Xb value was identified while the 
effectiveness of solution X was increased by 
combining HGSO and HHO. Depending on the 
probability of the fitness value, the ith solution was 
modified using the HGSO and HHO operators and 
then using MOBL to enhance the worst solutions. 
This update process proceeded until the necessary 
conditions for termination were fulfilled.  
          The subsequent sections provide a more 
comprehensive analysis of the stages involved in 
the proposed HGHHM algorithm. Fig. 3 illustrates 
the steps of our new algorithm and Fig. 4 displays 
the structure of the cloud scheduling technique 
presented, which is based on a modified HGSO. 

  
5.1 First Stage 

        The representation stage: the proposed 
HGHHM algorithm produces solutions (𝑋𝑖, i= 1, 2, 
3... N) as follows:  
 
𝑋ത𝑖𝑗 = 𝑓𝑙𝑜𝑜𝑟 (൫𝐿𝐵𝑖𝑗 +  𝛼 ∗ (𝑈𝐵𝑖𝑗 − 𝐿𝐵𝑖𝑗)൯, 𝛼 ∈

 [0, 1] , 𝑗 = 1,2, . , 𝑣𝑚                 (9) 
 
         Following the task scheduling description, the 
lesser limit 𝐿𝐵 was assigned to 1 while the 
maximum limit 𝑈𝐵 was fixed to VMs from 
Equation (9). The real values in this scenario were 
converted to integers using the floor function. This 
conversion process was also employed to obtain the 
integer for Xi. 
 
5.2 Second Stage  
 
  The update stage: the computation of the 
fitness value (𝐹𝑣) was initially performed for each 
potential solution X. Therefore, the optimal 
solution Xb was determined. The probability of 
each solution is then measured based on its fitness 
values as follows: 
  

𝑃𝑟𝑖 =
ி௩௜

∑ ி௩௜ಿ
೔సభ

                                         (10) 

Depending on the value of 𝑃𝑟𝑖, the solution 𝑋𝑖 is 
updated using either the HHO or HGSO operators 
as follows: 
 
𝑋𝑖(𝑠 + 1) =

൜
𝑈𝑠𝑖𝑛𝑔 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟𝑠 𝑜𝑓 𝐻𝐻𝑂    𝑖𝑓 𝑃𝑟𝑖 ≥  𝑟௣௥

𝑈𝑠𝑖𝑛𝑔 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟𝑠 𝑜𝑓 𝐻𝐺𝑆𝑂   𝑖𝑓 𝑃𝑟𝑖 <  𝑟௣௥
ൠ (11) 

 
Where 𝑟𝑝𝑟 is a random number ∈ [0, 1]. Depending 
on 𝑃𝑟𝑖, the 𝑟𝑝𝑟 value is adjusted as follows: 
 

          𝑟௣௥ = 𝐿𝑝𝑟 + 𝑟𝑛𝑑 ∗ (𝑈𝑝𝑟 − 𝐿𝑝𝑟)        (12) 

 

Where 𝑈𝑝𝑟 and 𝐿𝑝𝑟 are the highest and lowest Pr 
values, respectively. The subsequent step involves 
determining the worst 𝑁𝑤 solutions as follows: 

𝑁𝑤 = 𝑁 ×  𝑟 × (𝑐ଶ − 𝑐ଵ) + 𝑐ଵ ,𝑐ଵ =  0.1 and 𝑐ଶ  =  0.2                                                
(13) 

5.3 Third Stage  

       Subsequently, the MOBL was used by shifting 
the solution X to the extended opposition (𝑋ത௘௢ ). 
Consequently, the reflected OBL was formed using 
Equation (1). The most optimal solutions were then 
selected from the collection of existing solutions X 
and their opposing Xഥ.  
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         Lastly, the termination requirements were 
verified. If these requirements were met, the 
proposed HGHHM algorithm was stopped, and Xb 
was returned. Otherwise, the updating stage was 
repeated. Fig. 5 depicts the suggested system model 
for the HGHHM strategy, which executes a 
scheduling procedure that enhances both makespan 
time and resource utilization. 

Proposed HGHHM Algorithm 

Initialize: value of N, which represents the 
number of solutions, values of n, smax, and 
m, which respectively represent how 
many tasks and the total number of 
iterations, and the number of machines. 
 
1. Assign starting values to the parameters 
of HGHHM. 
2. Generate a random integer solution (X) 
consisting of N*n elements.  
3. Set i=1 
4. Reiterate 
5. Calculate the fitness value (Fv) of Xi, 
where i ranges from 1 to N, as given in 
equation (8). 
6. Ascertain the optimal resolution Xb 
7. For I :1 to N  
8. Calculate the probability Pri using 
equation (10) and 𝒓𝒑𝒓 using equation (12). 

If Pri ≥ 𝒓𝒑𝒓 𝐭𝐡𝐞𝐧 
9. Update Xi using the Exploitation of HHO as 
in algorithm 1 
10. Else 
11. Update Xi using the Exploration of HSGO 
as in algorithm 2 
12. End if       13. End for 
13. Determine the worst solution using (13) 
14. Update the position of the worst agents 
using MOBL as in Eq (3) 
15. Update the current iteration (s=s+1) 
16. Until s > s max         18.Return  Xb 

Figure 3: The Pseudo Code of the Proposed Cloud 
Scheduling Algorithm 

   

 6. COMPLEXITY TIME OF HGHHM 
ALGORITHM 

       The temporal complexity of HGSO is 𝑂( 
𝑡×𝑛×𝑑)×𝑂(obj), where t is the maximum number of 
iterations, n is the number of populations, d tells us 
how dimensional the solution space is, and obj is 
the objective 
function's 

computational complexity. Building on this basis, 
comparable features are shown by the temporal 
complexity analysis of the suggested HGHHM 

Determine the worst solution 

Update 
Xi using 
operators 
of HHO 

Update 
Xi using 
operators 
of HGSO 

Update the worst solution by 
MOBL 

Return the best solution  

If s < s max 

End 

Input value of parameters of HGHHM 

Set a random integer population  

Compute objective functions 

Find the best solution 𝑋௕ 

Compute the probability 𝑃𝑟𝑖 and 
𝑟௣௥ 

If 𝑃𝑟𝑖 
>  𝑟௣௥ 

Start 

Figure 4: The structure of the Proposed Algorithm 

Yes No  
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algorithm. Figure 4 and the HGHHM pseudo-code 
indicate that this algorithm's time complexity can 
be written as (t×𝑛×𝑑)×𝑂(obj) [1, 21]. 

        Every agent in the HGHHM iteration is 
required to select a position update strategy using 
the given algorithmic equations. The process by 
which the algorithm explores and exploits the 
solution space depends on these update 
mechanisms. HGHHM's temporal complexity 
remains (𝑡×𝑛×𝑑)×𝑂(obj), as the position update 
techniques are similar to those in HGSO. 
HGHHM's complexity enables effective handling 
of large-scale optimization problems, balancing the 
need for full search capabilities with practical 
computing restrictions. 
 
7. EXPERIMENTAL ENVIRONMENT  
       The experimental design, simulation tool, 
dataset, and the performance metric used in this 
study are presented in this section.  
 
7.1 Platform for Simulating Cloud Computing 
       The University of Melbourne, Australia, 
developed CloudSim, a collection of simulation 
toolsets for cloud computing that operates on 
discrete events [7, 23]. This platform emulates 
various diverse cloud computing resources, users, 
and scheduling approaches. The CloudSim 
facilitated the developing and evaluating 
scheduling algorithms through the simulation and 
modelling of several variables in parallel 
programming tools. These programs included 
brokers and intermediaries for clients, applications, 
assets, and resources. The CloudSim is also an 
extendable simulation framework, which the 
primary steps in the simulation are as follows [32, 
37].  
7.1.1. Simulation initialization: Before the 
CloudSim simulation, the CloudSim object 
required the CloudSim.init(...) function as the 
initial setup [35]. 
7.1.2. Create cloud computing tasks and 
resources: The simulation process should include 
generating task entities. Initially, a cloud task list 
was produced. Subsequently, the operation task 
was added to the task list [30]. Table 1 tabulates the 
experimental parameter configurations for the 
simulation [10]. 
 

Table 1.Experimental Parameter Configurations For The 
Simulation 

 
 
7.2 The Datasets 
 
       The efficiency of the proposed HGHHM 
algorithm was examined in the test experiments 
using a real dataset. These tasks were regarded as 
independent and non-preemptive. The workload 
traces from HPC2N were used in this study [1].  
The workloads are accessible through the URL 
(http://www.cs.huji.ac.il/labs/parallel/workload/) 
or 
(https://github.com/fernandodeperto/swf/blob/mast
er/HPC2N-2002-2.1-cln.swf.gz).  
Approximately 30 cycles were performed 
independently in each experiment for each 
approach, which improved the accuracy of outcome 
predictions. Subsequently, the outcomes were 
computed as an average across these iterations. 
Table 2 lists the parameters for the proposed 
algorithm and various meta-heuristics examined in 
this study .These parameters of HGSWC and 
HGHHM were chosen according to previous 
studies [1,10]. Moreover, HGHHM factors were 
employed during the implementation phase, 
changes were carried out, and the results were 
noticed. The parameters utilized in the proposed 
algorithm were chosen based on the resulting 

Cloud 
entity 

Variable Value 

User “Number of users” 50–100 
Datacenter “Number of data 

centers” 
1 

Host “Number of hosts 
Capacity for storing 
data’’ 

2 

 Storage 1 T 
 RAM 16 GB 
 Bandwidth 10 Gb/s 
 Architecture X86 
 Type of policy Time shared 

VM No. of VMs 25 
 MIPS 5000 
 Size 10 GB 
 RAM 0.5 GB 
 VMM Xen 
 Number of central 

processing units 
(CPUs)  

1 

 Type of policy Time shared 
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outputs, as well as informed by previous research 
works. 
 

Table 2.Setting parameters for the compared algorithm 

Algorith
m 

HGSO HHO HGSWC HGHHM 
 

Paramet
er 

a = 2 
b = 1 

l= 5E−2 

E0 [−1, 1] a = 2, b = 1
ᵅ = 1 , ᵝ = 1, 

l=5E−2 

a = 1 
b = 1 

l=5E-2 
 

 
 
7.3 Metrics for Assessing Performance 
 
       This subsection elucidates the performance of 
the algorithm by employing specific metrics that 
are utilized to evaluate and compare the proposed 
HGHHM algorithm. Similar task scheduling 
approaches in other existing studies accompanied 
the process. 
 
MKS: The MKS is a frequently employed metric 
for evaluating the effectiveness of scheduling 
strategies and regulations [25].This metric exhibits 
the completion time of the most recent task. Hence, 
a short MKS indicates an effective task allocation 
to VMs. This study aimed to reduce MKS, which 
the fitness function was formalized in Equation (4) 
as follows: 
 

     𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑣𝑎𝑙𝑢𝑒 (𝐴𝑣𝑔ி): 
ଵ

ேೝ
∑ 𝐹௕

௜ேೝ
௜ୀଵ          (14) 

    𝑊𝑜𝑟𝑠𝑡 𝑣𝑎𝑙𝑢𝑒 (𝑊𝑟𝑠𝑡ி) ∶ 𝑀𝑎𝑥
ଵஸ௜ஸேೝ

𝐹௕
௜             (15) 

     𝐵𝑒𝑠𝑡 𝑣𝑎𝑙𝑢𝑒 (𝐵𝑠𝑡ி): 𝑀𝑖𝑛
ଵஸ௜ஸேೝ

𝐹௕
௜                   (16) 

 
where 𝐹௕

௜  and 𝑁௥  are the optimal fitness values of 
the ith run and the entire number of runs, 
respectively [19]. 
 

Resource Utilization (RU): describes the efficient 
use of resources that are available to achieve the 
desired outcomes. As in equation (7)  

The Rate of Performance Improvement (PIR): 
The PIR was defined in Alkaam et al.'s study as a 
quantitative metric that assesses how much a given 
methodology outperforms existing scheduling 
methods from other studies [6]. Therefore, PIR is 
formulated as follows: 
 

             𝑃𝐼𝑅 =  
௓ௗି௓ௗ

௓ௗᇱ
∗ 100                         (17) 

 

where Zd′ and Zd are the fitness values of the 
suggested approach and the contrasting values from 
the previous studies, respectively [10, 31].    
 
 
8. RESULTS AND DISCUSSION  
 
       This subsection thoroughly examines the 
suggested HGHHM algorithm's performance 
evaluation and analysis, providing insight into how 
effective it is in terms of makespan (MKS) and 
Resource usage (RU). An evaluation in comparison 
to the many current algorithms (HHO and HGSO) 
using HPC2N dataset with size 500 to 2500, this 
comparison offers important information about the 
algorithm's capabilities. Furthermore, we evaluated 
simulated HGSWC algorithm with our algorithm 
using dataset size from 500 to 4000, whereas the 
baseline algorithm was tested on datasets ranging 
from 500 to 2500 in the base paper [1]. This 
allowed us to assess the scalability of our proposed 
technique by gradually expanding the dataset size. 
As the dataset size grew, our approach consistently 
outperformed the baseline algorithm in key 
performance parameters which are makespan and 
resource usage.  

         This higher performance highlights our 
algorithm's scalability, demonstrating its capacity 
to effectively manage larger-scale task scheduling 
instances. Moreover, the baseline algorithm's 
average performance highlights the benefits of our 
technique in tackling scaling issues. These results 
indicate the robustness and scalability of our 
suggested method in real-world cloud computing 
environments. The outcomes show that the 
algorithms' hybridization successfully balanced 
their exploitation and exploration capacities in the 
proposed algorithm, preventing it from being 
trapped in local optima. 

         In our analysis, we used p-values, which were 
consistently below the alpha level of 0.05, derived 
from the studies by [28, 50, 29]. Additionally, the 
minimum and maximum values for the datasets 
were derived using methods outlined by [1, 10, 16, 
34]. 
       Figures 6 and 7 demonstrate the convergence 
curves of HGSWC and the proposed HGHHM 
algorithm for MKS with 500 and 4000 instances 
respectively. The convergence curves show that the 
suggested HGHHM approach outperforms 
HGSWC in terms of convergence accuracy. The 
increased diversity of ecosystems allows the 
HGHHM to avoid entrapment in local optima, 
which increases the exploitation ability of the 
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HGHHM method and adds to higher convergence 
accuracy.  
        Similarly, Figures 8 and 9 elegantly depicts 
the convergence curves for both proposed and 
simulated algorithms with the same dataset sizes to 
clarify RU. This benchmark shows how the 
proposed HGHHM algorithm efficiently allocates 
resources for balance and optimality.  
 
         Table 3 shows the optimal makespan values 
achieved by the benchmark algorithms (HHO, 
HGSO, and HGSWC) with mention to statistics 
(min, max, mean) values in comparison to the 
proposed HGHHM method with varying dataset 
sizes (500, 1000, 1500, 2000, and 2500). The 
results clearly demonstrate that the HGHHM 
algorithm exhibits superior performance compared 
to the other algorithms in terms of makespan. The 
outstanding results of the HGHHM algorithm are 
due to its successful integration of exploitation and 
exploration capabilities. This integration enables 
more efficient task scheduling and superior overall 
optimization. The HGHHM algorithm improves 
operational efficiency and offers a more 
dependable solution for cloud job scheduling 
difficulties by obtaining reduced makespan values.  
 
          Figure 10 depicts the optimal makespan 
values achieved by the benchmark algorithms 
(HHO, HGSO, and HGSWC) in comparison to the 
proposed HGHHM method with varying dataset 
sizes (500, 1000, 1500, 2000, and 2500). The 
results clarify that the HGHHM algorithm exhibits 
superior performance compared to the other 
algorithms in terms of makespan.  
The findings of a t-test with two samples are 
presented in tables 4 and 5.  

        The purpose of the test was to determine if 
there were significant variations in the makespans 
and resource utilization obtained with the HGHHM 
and HGSWC while utilizing the same stopping 
criterion for all task instances. The p-value must be 
smaller than the predetermined significance level of 
alpha, which is set at 0.5. The tables demonstrate 
that P-values for practically all of the datasets were 
lower than this alpha value, indicating a 
considerable enhancement in the suggested 
HGHHM strategy compared to the HGSWC 
strategy. Thus, it can be concluded that HGHHM 
outperforms HGSWC in performance as the search 
space increases. Tables 4 and 5 present the results 
for the HGHHM and HGSWC algorithms using 
larger datasets. Additionally, Table 7 provides the 
p-values for comparisons with other algorithms [1, 
10], the p-values < .00001, the result is significant 

at p < .05.  If the p-value < 0.05, the null hypothesis 
is rejected, indicating a significant difference 
between the groups. While if the p-value > 0.05, the 
null hypothesis fail to rejected, suggesting no 
significant difference between the groups. Hence, 
the null hypothesis is rejected. 

          Furthermore, the proposed against the 
simulated HGSWC algorithm, the RU 
effectiveness of the HGHHM algorithm was 
thoroughly assessed in a range of scenarios and a 
certain number of iterations. The comparison data 
is summarized in Tables 6, which shows that the 
suggested HGHHM algorithm achieved a higher 
average of resource usage than the compared 
algorithms. This important discovery highlights the 
algorithm's outstanding performance under various 
testing scenarios, leading to increase the use of the 
resources. 

        Table 8 and Fig 11 display the percentage 
improvements for (MKS and RU), summarizing the 
simulation findings. The results clearly and 
definitively show that the HGHHM algorithm 
performs nearly optimally and is superior to 
benchmark scheduling alternatives. The findings 
emphasize the algorithm's skillful distribution of 
resources and substantial decrease in makespan 
(MKS), hence enhancing the overall efficiency of 
cloud computing systems. The HGHHM algorithm 
has shown considerable improvements in 
performance, surpassing the benchmark algorithms 
and showcasing its potential effectiveness in 
addressing the intricate challenges of cloud job 
scheduling. 
 
         To sum up, the suggested HGHHM algorithm 
is stronger and more effective than previous 
algorithms because it can consistently produce 
lower makespan values with optimizing resource 
use, as shown by the t-test, p-values, and PIR. For 
this reasons, the HGHHM algorithm represents a 
significant development in cloud computing, 
providing enhanced task scheduling capabilities 
that can efficiently manage a range of workloads. 

  
9. CONCLUSION AND FUTURE DIRECTION 

       This study successfully presented a novel 
HGHHM algorithm to address the shortcomings of 
a recently established meta-heuristic algorithms [1, 
10]. The suggested method applied the HHO 
method as a local search technique to strengthen the 
capabilities of HGSO while increasing the quality 
of generated solutions. A modified MOBL version 
was also utilized for the least ideal solutions, which 



 Journal of Theoretical and Applied Information Technology 
15th August 2024. Vol.102. No. 15 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
5885 

 

efficiently allocated the tasks to the computing 
resources of the cloud. This hybridization of the 
algorithms successfully balance the exploitation 
and exploration skills, preventing it from being 
trapped in local optima. Considering that the HHO, 
HGSO, and simulated HGSWC algorithms 
validated the proposed HGHHM algorithm, the 
HGHHM outperformed benchmark algorithms for 
all test functions. This outcome highlighted that 
when tackling the cloud task scheduling issue, the 
proposed HGHHM algorithm was more efficient 
than the different algorithms while providing near-
optimal results.  

          In addition, our proposed HGHHM 
algorithm exhibits promising scalability 
characteristics. As we expanded the dataset size, 
HGHHM's scalability became evident. As the 
algorithm continued to function effectively and 
efficiently in handling instances of larger-scale task 
scheduling. The HGHHM algorithm's practical 
relevance and agility in tackling changing issues in 
cloud computing systems are further highlighted by 
these scalability findings. 
 

          Therefore, the proposed HGHHM algorithm 
was ideal and possessed a shorter MKS and higher 
RU for all the test conditions. However, one of our 
work's limitations is that it does not take into 
account other objectives such as energy usage and 
cost. Furthermore, testing the suggested technique 
in real-world cloud environments with dynamic 
workloads could provide more information about 
its practical applicability.  

          Future research is necessary since the 
number of activities is increasing and the data 
environment is getting more complex. The most 
important aspect is that artificial intelligence (AI) is 
developing at a rapid pace to increase search 
intelligence. Therefore, AI should be used to 
improve the suggested method while also 
enhancing other objective functions such as 
throughput, efficiency, and load balancing. Finally, 
extending the algorithm's application to other 
fields, such as edge computing and IOT, could be 
valuable. 
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Figure 6: The convergence curves with 500 instances of 
tasks. 
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Table 3: comparison of makespan for the HGHHM algorithm and compared (HHO and HGSO) algorithms. 

Instances 
 

Measure HHO HGSO HGHHM 

500 Min/Best 
Max/Worst 
Mean/Avg. 

5572.43 
6935.65  
6116.11 

21934.34 
45687.86 
33385.90 

3123.7668 
5825.0994 
4151.0541 

1000 Min/Best 
Max/Worst 
Mean/Avg. 

12253.81 
14824.45 
13591.03  

41325.23 
124985.89 
86629.71 

8669.9292 
13837.2814 
10862.9093 

1500 Min/Best 
Max/Worst 
Mean/Avg. 

19732.12 
23411.63 
21383.15 

99027.29 
257541.14 
177520.92 

15479.7548 
22676.8434 
17847.4402 

2000 Min/Best 
Max/Worst 
Mean/Avg. 

28076.55 
35356.93 
30552.34 

132057.90 
437714.51 
255899.54 

22311.0126 
30165.8898 
25746.0362 

2500 Min/Best 
Max/Worst 
Mean/Avg. 

36228.46 
44466.31 
39698.23 

159871.20 
554332.77 
367746.20 

35593.44 
43318.5486 
36789.3450 
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Figure 8: The convergence curves with 500 instances of tasks. Figure 9: The convergence curves with 500 instances of tasks. 
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         Table 4. Comparison of best MKS values obtained by HGHHM and HGSWC for HPC2N workload 

Instances 
 

HGSWC HGHHM T-test p-value and hypothesis 

500 5843.56 3123.7668 -7.25722 The result is significant at  
p < .05 
 
If the p-value < 0.05,  
The null hypothesis is rejected, 
indicating a significant 
difference between the groups. 
 
If the p-value > 0.05,  
The null hypothesis fail to 
rejected, suggesting no 
significant difference between 
the groups. 
 
For that, the our null hypothesis 
𝑯𝟎 is rejected 
 
 

1000 12498.23 8669.9292 -6.94502 

1500 20151.27 15479.7548 -7.64343 

2000 29316.27 22311.0126 -7.44 

2500 81222.6368 35593.44 -11.82 

3000 89068.2896 45428.0338 -9.398874 

4000 164763.6 68148.461 -7.588634 

 

 

 

Figure 10: Comparison of best MKS values for the benchmarks algorithm with proposed HGHHM algorithm  
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Table 5. Comparison of best RU values obtained by HGHHM and HGSWC for HPC2N workload 

Instances 
 

HGSWC HGHHM T-test p-value and hypothesis 

500 0.559934 0.823476 17.09534 The result is significant at  
p < .05 
 
If the p-value < 0.05,  
The null hypothesis is rejected, 
indicating a significant difference 
between the groups. 
 
If the p-value > 0.05,  
The null hypothesis fail to rejected, 
suggesting no significant difference 
between the groups. 
 
For that, the our null hypothesis 𝑯𝟎 is 
rejected 
 

1000 0.516571 0.782442 22.377468 

1500 0.384578 0.799621 29.212048 

2000 0.419005 0.843817 29.117433 

2500 0.524741 0.868942 29.330736. 

3000 0.558811 0.853322 29.092466 

4000 0.410727 0.892281 34.17829. 

 

  

 Table 6. Comparison of RU Obtained by HGHHM and HGSWC for HPC2N Workload 

   Proposed algorithm HGHHM 
 

500 1000 1500 2000 2500 3000 4000 

BEST 0.8234763 0.7824422 0.7996212 0.8438166 0.868942 0.8533222 0.8922811 

WORST 0.4478971 0.5306938 0.6303068 0.6815652 0.709755 0.7092268 0.7533871 

AVG 0.6101444 0.6889814 0.7309229 0.7791990 0.78442 0.7847194 0.8069406 

  Simulated algorithm HGSWC 

 500 1000 1500 2000 2500 3000 4000 

BEST 0.5599343 0.5165711 0.3845777 0.4190054 0.524741 0.5588106 0.4107270 

WORST 0.0711222 0.0768226 0.0645975 0.0684602 0.093425 0.0807665 0.0705065 

AVG. 0.2355435 0.2690702 0.1959118 0.2438856 0.215867 0.2255931 0.2279506 
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Table 7. Detail Findings of Wilcoxon Signed Test in Term of MKS 

Detail   HHO HGSO HGSWC 

p-value 

The result is significant at  

p < .05 

conclusion 

.02535  

 

  

Reject 𝐻଴ 

.025015 

 

 

Reject 𝐻଴ 

 < .00001 

 

 

Reject 𝐻଴ 
 

 
Table 8.The PIR (%) For The HPC2N Workload over Benchmark Algorithms 

 

Size of tasks OVER HGSWC 

PIR% improvement MKS PIR% improvement RU 

500 87.06774142 32.00360423 

1000 44.15607915 33.97964322 

1500 30.17822479 51.90496498 

2000 31.39820467 50.3440912 

2500 120.7776104 39.61150457 

3000 96.06459305 34.51346619 

4000 141.771564 53.96887303 

 
 

Figure 11: The Improvement of the Proposed HGHHM Algorithm over HGSWC algorithm for MKS & RU 
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