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ABSTRACT 

Glaucoma is a chronic eye disease that causes vision impairment if not diagnosed and treated at earlier 
stages. Timely detection may save patients from permanent loss of vision. Physical examination of 
glaucoma by ophthalmologists contains costly, time-consuming, and skill-oriented processes. Various 
approaches are in investigational stage for identifying earlier-stage glaucoma, however, a sure diagnostic 
method remains challenging. Medical check-ups to observe the retinal area are occasionally required by 
ophthalmologists, who need a considerable number of experience and skill to appropriately interpret the 
outcomes. To overcome these issues, algorithm based on deep learning (DL) technique has been developed 
to examine imageries of optic nerve and retinal structures and to diagnose and screen glaucoma based on 
retinal input images. This article introduces a new Mayfly Optimization with Deep Learning Assisted 
Glaucoma Detection and Classification (MFODL-GDC) technique on Retinal Fundus Images. The 
MFODL-GDC technique aims to segment and categorize the retinal images for classification of Glaucoma. 
In the presented MFODL-GDC technique, bilateral filtering and CLAHE-based contrast enhancement are 
involved in image preprocessing. Besides, the MFODL-GDC technique applies Quick CapsNet model for 
optic disc (OD) and optic cup (OC) segmentation. Moreover, the MFODL-GDC technique uses 
DenseNet121 model for feature extraction and its hyperparameter tuning process can be performed by the 
use of the MFO algorithm. Furthermore, extreme learning machine (ELM) model can be exploited for the 
detection and classification process. The extensive performance validation of the MFODL-GDC technique 
is tested on benchmark datasets. The widespread comparison research stated that supremacy of MFODL-
GDC technique over current techniques. 

Keywords: Glaucoma Screening; Computer-Aided Diagnosis; Retinal Fundus Imaging; Deep Learning;      
Mayfly Optimization

1. INTRODUCTION 

 Glaucoma is an eye illness that can be 
related to the damage of retinal ganglion cells 
where their axons progressively worsen after a 
period of time that results in long-lasting vision 
loss once the disorder goes untreated [1]. The 
possibility of acquiring glaucoma can be further 
raised by other factors like family history, race, 
and age. Wide-ranging eye analysis employing 
assessment of the optic nerve head, sight field 
tests, and tonometry can be essential measures 
for identifying glaucoma [2]. However, these 

tests commonly consume long period, expensive, 
and need specialized equipment and specialists. 
Because of these limitations, there is a growing 
tendency to implement deep learning (DL) 
techniques for automatically identifying 
glaucoma utilizing fundus images [3]. Fundus 
imaging has non-invasive modality, which can 
be simply available and offers crucial data 
regarding eye and optic nerve heads, containing 
structural modifications employed in order to 
specify glaucoma existence [4]. These images 
are obtained as comprehensive information of all 
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features of the retina, comprising the color, 
shape, and size of important areas namely the 
fovea optic disc (OD), blood vessels, optic cup 
(OC), and neuroretinal rim [5].  

Recently, Artificial intelligence (AI) 
technologies have been considerably developed. 
Several researches have been carried out in 
medical field to combine AI methodology for 
real-world medical treatments [6]. Computer-
aided diagnosis (CAD) systems for identifying 
glaucoma, can be normal in medical applications 
[7]. The applications of ML and more recent 
deep learning (DL) methods have improved the 
diagnostic outcome of these automatic 
equipment for diagnosing glaucoma. Despite the 
impossibility of population screening for 
glaucoma by standard system [8], DL 
particularly convolutional neural networks 
(CNNs) are extensively employed in the domain 
of medical images as well as deliberated pattern 
identification tools, which support for 
identification of eye diseases, recommending for 
instances, various approaches and techniques to 
diagnose diseases like glaucoma and cataracts 
from digital images [9]. The application of DL is 
exhibited in analysis of diabetic retinopathy 
(DR) detection on a large scale. This 
development is due to numerous aspects namely 
the expansion of complex methods and the 
accessibility of fundus image databases for this 
research [10]. 

This manuscript concentrates on development of 
Mayfly Optimization with Deep Learning 
Assisted Glaucoma Detection and Classification 
(MFODL-GDC) technique on Retinal Fundus 
Images. The MFODL-GDC technique follows 
bilateral filtering and CLAHE-based contrast 
enhancement for image preprocessing. Also, the 
MFODL-GDC technique applies Quick CapsNet 
(QCN) model for optic disc (OD) and optic cup 
(OC) segmentation. Meanwhile, the MFODL-
GDC technique uses DenseNet121 model for 
feature extraction and its hyperparameter tuning 
process can be performed by the use of the MFO 
algorithm. Furthermore, extreme learning 
machine (ELM) model can be exploited for the 
detection and classification process. The 

extensive performance validation of the 
MFODL-GDC technique is tested on benchmark 
datasets. 

2. RELATED WORKS 

Lenka et al. [11] introduced study to develop and 
train various multi-task DL methods for 
automatic retinal image classification and 
segmentation. The multi-task architecture was 
learned for segmentation process of OD and OC 
as well as classification process for accurately 
identifying glaucoma employing both image and 
structural-based features. This multi-tasking 
architecture developed an adapted U-net model 
in that Mobile-Netv2 could be employed in 
encoder function, Graph Convolution Network 
(GCN) has been exploited in decoder function, 
and attention module (AM) was utilized for 
determining the RoI for improved feature 
extraction. Kamara et al. [12] developed a 
technique with 2 stages, first stage was the 
method without feature selection (FS) and in 
second stage, the authors implemented FS 
approaches and compared outcomes. This can be 
dependent upon superpixel method and 
supervised ML after a second phase, the authors 
execute FS to choose the highly important 
features for enhancing the effectiveness, 
decreasing data dimensionality and minimizing 
elapsed time, lastly, the authors implemented the 
support vector machine (SVM) method. 
Shyamalee and Meedeniya [13] presented a 
computational technique for dividing and 
categorizing retinal fundus imageries for 
diagnosing glaucoma. Various data 
augmentation algorithms are implemented to 
avoid overfitting whereas utilizing numerous 
data preprocessing techniques to increase the 
image quality and attain higher accurateness. The 
subdivision methods depend on the attention U-
Net with 3 different CNN models namely 
ResNet50, Inceptionv3, and VGG19. Phasuk et 
al. [14] projected an automatic glaucoma 
screening technique employing retinal fundus 
images through ensemble model for combining 
the outcomes of diverse detection models and 
these are provided as the inputs to a modest 
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artificial neural networks (ANNs) for acquiring 
the end outcomes. 
In [15], a robust DL-based CNNs model was 
designed to manage the issue. The network 
contains 6 convolutional layers with variety of 
activation functions, and pooling layers to obtain 
the theoretical and comprehensive data of the 
input images. Manikandan et al. [16] intended to 
design a CAD technique for diagnosing 
glaucoma in fundus images. In this study, the 
authors introduced an approach for automated 
outline of the OD in a retinal image by automatic 
thresholding method. The OC was divided based 
on marker-controlled automatic watershed 
conversion. The OC to disc ratio (OCDR) can be 
evaluated to demonstrate the existence of 
glaucoma. 

3. THE PROPOSED MODEL 

In this study, we have devised and proposed an 
automated glaucoma classification process, 
called technique on Retinal Fundus Images. The 
MFODL-GDC technique aims to divide and 
categorize the retinal images for Glaucoma 
identification. It comprises several stages of 
operations namely image preprocessing, QCN 
segmentation, DenseNet feature extraction, 
MFO-based hyperparameter tuning, and ELM 
classification. Figure 1 shows the entire flow of 
MFODL-GDC algorithm. 

3.1. Image Pre-processing 

The combination of Contrast Limited Adaptive 
Histogram Equalization (CLAHE) and bilateral 
filtering (BF) is a powerful tool for improving 
image quality and diagnostic accuracy in the 
preprocessing of fundus images, [17]. BL helps 
smooth the image and reduce noise while 
maintaining structures and important edges, 
making it very efficient for retaining crucial data 
in medical images like fundus scans. Meanwhile, 
CLAHE is used to address the issue by 
adaptively redistributing pixel intensity, thereby 
enhancing the visibility of subtle anomalies and 
features. Both approaches provide a complete 
preprocessing method which improves fundus 

images, ensuring that medical experts can make 
accurate assessments of visual health and 
identify conditions such as macular degeneration 
or diabetic retinopathy. 

3.2. Image Segmentation 

For the segmentation of OC and OD, the QCN 
model is utilized. QCN is used for performing the 
segmentation process, an extension of Capsule 
Network [18]. In this section, the structure of 
QCN is elaborated. In classical Capsule Network, 
two Conv layers that extract the input basic 
features of images are the first layers of the 
network. 8D vectors are generated by 
restructuring the second output of Conv layer. 
The term “Principal Capsule” represents 8D 
vectors. There might be multiple layers when the 
preliminary layer of capsule is generated. In the 
Conv layer of Quick-CapsNet, the kernel size of 
9 denotes the size of window or filter that moves 
over the input image for performing convolution. 
Particularly, 9x9 kernels are used for extracting 
features from the input image that is utilized as 
input to succeeding layers in the network. The 
selection of kernel size may affect the network 
performance since it defines the quantity of 
spatial information taken from the input images. 
A small kernel size captures more local features, 
whereas large size captures more global features. 

3.3. Optimal DL-based Feature Extraction 

The DenseNet121 model is used to derive 
features from the segmented fundus images. 
DenseNet-121 is a DCNN structure known for 
its strong performance and efficiency in different 
computer vision tasks, namely object detection 
and image classification [19]. It stands out from 
classical CNN by introducing a dense 
connectivity pattern, where each layer is 
interconnected to the previous layer and all 
subsequent layers. This dense connectivity 
facilitates feature reuse and encourages the 
gradient flow, which alleviates the gradient 
vanishing problems. Compared to many other 
architectures, DenseNet-121 includes four 
densely connected blocks, involving transition 
and convolutional layers, which makes it a 
parameter-effective model that accomplishes  
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Figure 1: Overall flow of MFODL-GDC algorithm 

extraordinary performance with fewer 
parameters. Its capability to extract highly 
discriminatory features from images has made it 
an invaluable tool to improve the performance of 
medical diagnoses and enable the development 
of advanced clinical decision support systems. In 
addition, its architecture encourages feature 
reuse, which is particularly beneficial while 
enhancing the robustness of diagnostic models 
and handling limited medical imaging data.  

The MFO algorithm can be used to improve the 
performance of DenseNet121 architecture. MFO 
algorithm is inspired by the social behaviors of 
mayfly (MF), particularly the mating procedure, 
which achieve a better balance between global 
development and local exploration and can 
converge rapidly [20]. In the MPPT-based MA 
algorithm, the location of every individual MF 
signifies the reference voltage in MPPT control, 
and the changing tendency of reference voltage 
represents speed. Through the algorithm 
mechanism, the MA aims at changing the 
reference voltage of PV array and comparing the 
output power of PV array before and after the 
changes to find the optimum reference voltage 
values. The population has male and female 
individual MFs. The male MF gathers in-group, 
and according to the adjacent individuals and its 
own experience, the location of every male 

individual is updated. The location of 𝑖௧௛ male 
MFs in the search space at 𝑡 time is 𝑚௜,௧, and the 

location is updated by adding 𝑣௜,௧ାଵ  velocity to 

the existing location: 

𝑚௜,௧ାଵ = 𝑚௜,௧ + 𝑣௜,௧ାଵ                                                (1) 

𝑣௜,௧ାଵ = 𝑔𝑣௜,௧ + 𝛼ଵ𝑒ିఉ௥೛
మ
൫𝑝௕௘௦௧,௜ − 𝑚௜,௧൯

+ 𝛼ଶ𝑒ିఉ௥೒
మ
൫𝑔௕௘௦௧ − 𝑚௜,௧൯                (2) 

Here the speed of 𝑖௧௛ male MF at 𝑡 time is 𝑣௜,௧ . 

The gravity coefficient is  𝑔 . The positive 
attraction constant exploited for scaling the input 
of cognitive and social components are  𝛼ଵ  and 
𝛼ଶ, correspondingly. The past optimum reference 

voltage of 𝑖௧௛ male MF is 𝑝௕௘௦௧,௜ . The Cartesian 

distance between 𝑚௜  and 𝑔௕௘௦௧  is 𝑟௚ . The global 

optimum reference voltage amongst male MFs 
is 𝑔௕௘௦௧ . The fixed visibility coefficient is 𝛽. The 
Cartesian distance between 𝑚௜  and 𝑝௕௘௦௧,௜  is 𝑟௣ . 

The optimum individuals in the group continue 
to implement its up‐and‐down moving. 
Therefore, the optimal male MF continuously 
changes its velocity as follows: 

𝑣௜,௧ାଵ = 𝑣௜,௧ + 𝑑𝑟                                                           (3) 

In Eq. (3), the nuptial dance coefficient is 𝑑 and 
a randomly generated integer within [‐1, 1] is 𝑟. 
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Female MFs move towards male MFs to 
reproduce. The location of 𝑖௧௛  female MF at 𝑡 

time is  𝑓௜,௧ , then the 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑓௜,௧ାଵ  of the 𝑖௧௛ 

female MF at 𝑡 + 1 time is 

𝑓௜,௧ାଵ = 𝑓௜,௧ + 𝑣௜,௧ାଵ                                                     (4) 

The speed of female MF relies on the behaviors 
of male MF. Consider that the study aims to 
increase the output power, and then the velocity 
𝑣௜,௧ାଵ of 𝑖௧௛ female MF is updated as follows: 

𝑣௜,௧ାଵ

= ቊ
𝑔𝑣௜,௧ + 𝛼ଶ𝑒ିఉ௥೘೑

మ

൫𝑚௜,௧ − 𝑓௜,௧൯   𝑃൫𝑓௜,௧൯ < 𝑃൫𝑚௜,௧൯

𝑔𝑣௜,௧ + 𝜆𝑟                   𝑃(𝑓௜,௧) ≥ 𝑃൫𝑚௜,௧൯
       (5) 

In Eq. (5), the random walking coefficient is 𝜆. 
The Cartesian distance between 𝑚௜ and 𝑓௜  is 𝑟௠௙ . 

The output power of MF is 𝑃 . The male 
individuals will move at random fashion when 
the female is not attracted to the male. 

The mating process between both MFs is given 
in the following: one parent is nominated from 
the male population, and another from female 
population. Both off-springs are made from these 
parents and it is described by Eq. (6), 

ቊ
𝑚௢௙௙௦௣௥௜௡௚ଵ = 𝐿𝑚 + (1 − 𝐿)𝑓

𝑚௢௙௙௦௣௥௜௡௚ଶ = 𝐿𝑓 + (1 − 𝐿) 𝑚
                      (6) 

Now  𝐿  is a randomly generated number in 
[0,1] ,  𝑚  refers to the male parent, and 𝑓 
indicates the female parent. 

The MFO method derives a fitness function to 
obtain high efficiency of classification. It 
determines a positive integer to characterize the 
best outcome of the candidate solution. The 
decline of classifier error rate is assumed as the 
fitness function.    

𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑥௜) = 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟𝐸𝑟𝑟𝑜𝑟𝑅𝑎𝑡𝑒(𝑥௜) 

=
𝑁𝑜. 𝑜𝑓 𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑜. 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
∗ 100                          (7) 

 

3.4. ELM-based Classification 

At the final stage, the ELM model can be used 
for classification process. ELM is applied for 
single‐hidden layer feedforward neural network 
(SLFN) where hidden layer (HL) need not be 
neuron [21]. As long as activation function of the 
neuron is non-linear piecewise continuous, the 
hidden node in ELM is generated randomly, 
unlike other NNs with backpropagation (BP). 
The weights between the output and the hidden 
layers have analytical solutions and are evaluated 
by the following formula. There exist two stages 
in training of ELM: feature mapping and output 
weight. ELM feature map: Assume input dataset 
𝑥 ∈ ℝ஽ , the output of ELM for generalized 
SLFN is 

𝑓(𝑥) = ෍ 𝛽௜

௅

௜ୀଵ

ℎ௜(𝑥) = ℎ(𝑥)𝛽,                                     (8) 

Here the output vector of the HL is ℎ(𝑥) =

[ℎଵ(𝑥), ⋯ , ℎ௅(𝑥)]  and the output weights 
between the output layer ( 𝑚  nodes) and the 
hidden layer (𝐿 nodes) are 𝛽 = [𝛽ଵ, ⋯ , 𝛽௅]். The 
process of getting ℎ  is named ELM feature 
mapping that map input dataset from ℝ஽  to the 
feature space ℝ௅ . In real-time application, ℎ  is 
defined by Eq. (9)  

ℎ௜(𝑥) = 𝑔(𝑎௜ , 𝑏௜ , 𝑥), 𝑎௜ ∈ ℝ஽, 𝑏௜ ∈ ℝ,                        (9) 

Now activation function satisfying ELM 
universal approximation ability theorem is 
𝑔(𝑎; 𝑏, 𝑥) . Indeed, any non-linear piecewise 
continuous functions are utilized as ℎ activation 
function. The parameter ℎ is generated at random 
according to the continuous likelihood 
distribution. Figure 2 depicts the infrastructure of 
ELM. 

ELM output weight: Assume a training sample 
set (𝑥௜ , 𝑡௜)௜ୀଵ

௡  with 𝑡௜ = [0, ⋯ , 0, 1௝ , 0, ⋯ , 0௠]் 

the class indicator of 𝑥௜, ELM aim is to reduce 
the training error and the Frobenius norm of 
output weight: 

min
ఉ,క

𝜔

2
෍ ‖

↑௟

௜ୀଵ

𝜉‖ଶ
ଶ +

1

2
‖𝛽‖ி

ଶ ,   𝑠. 𝑡. 𝛽ℎ(𝑥௜) = 𝑡௜ − 𝜉௜ ,   ∀

∈ 1,2, … , 𝑛,                                                                    (10) 
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In Eq. (10), the training errors of the 𝑖௧௛ samples 
are 𝜉௜ , the number of samples is 𝑛 , and a 
regularization parameter which trade-offs the 
norm of output weight and training error is 𝜔 . 
The Frobenius norm is ‖∙‖ி

ଶ . 

The optimization problem is effectively resolved. 
Particularly, according to the Woodbury identity 
the optimum 𝛽  is systematically attained as 
follows:  

 

 

Figure 2: ELM structure  

𝛽⋆

=

⎩
⎪
⎨

⎪
⎧

൬𝐻்𝐻 +
𝐼௅

𝜔
൰

ିଵ

𝐻்𝑇 𝑖𝑓 𝐿 ≤ k

𝐻் ൬𝐻𝐻் +
𝐼୬

𝜔
൰

ିଵ

𝑇 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                 (11) 

In Eq. (11), 𝐼௡ and 𝐼௅  are identity matrices and H 
is the output matrix of HL (randomized matrix). 

𝐻 = ൥
ℎ(𝑥ଵ)
  ⋮
ℎ(𝑥୬)

൩

= ൥
ℎଵ(𝑥ଵ) … ℎ௅(𝑥ଵ)
  ⋮ ⋱ ⋮
ℎଵ(𝑥୬) … ℎ௅(𝑥୬)

൩                                         (12) 

4. PERFORMANCE VALIDATION 

In this study, the glaucoma detection results of 
the MFODL-GDC technique is simulated using 

DRISHTI-GS1 dataset [22] and ACRIMA 
dataset [23]. The DRISHTI-GS1 Dataset 
includes 101 samples whereas the ACRIMA 
dataset comprises 705 samples as defined in 
Tables 1 and 2. Figure 3 depicts the sample of 
glaucoma and normal images. Figure 4 
represents the visualization of original images, 
OD, and CD. 

Table 1: Details on DRISHTI-GS1 Dataset 

DRISHTI-GS1 Dataset 

Class No. of Samples 

Glaucoma 70 

Normal 31 

Total Samples 101 

 
 

Table 2: Details on ACRIMA Dataset 

ACRIMA Dataset 

Class No. of Samples 

Glaucoma 396 

Normal 309 

Total Samples 705 

 

Figure 5 exhibits the classifier analysis of the 
MFODL-GDC technique with test DRISHTI-
GS1 database. Figures. 5a-5b shows the 
confusion matrices given by the MFODL-GDC 
system at 70:30 of TR Phase/TS Phase. The 
outcome denotes that the MFODL-GDC 
methodology could be suitably recognized and 
classified with normal and Glaucoma 
classes. Moreover, Figure 5c represents the PR 
analysis of the MFODL-GDC system. The 
simulation value shows that the MFODL-GDC 
technique gets excellent PR performance with 
each class. Besides, Figure 5d displayed the 
ROC analysis of the MFODL-GDC 
methodology. This outcome illustrated that the 
MFODL-GDC methodology leads to effectual 
outcomes with higher ROC values with various 
classes. 
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Figure 3: a) Glaucoma Images b) Normal Images 

 

Figure 4: a) Original Image b) Optic Disc c) Cup Disc 

 

Figure 5:  DRISHTI-GS1 dataset (a-b) Confusion Matrix (c-d) PR-curve and ROC-curve 

In Table 3, the glaucoma detection results of the 
MFODL-GDC technique on the DRISHTI-GS1 
database is reported. The obtained outcome 
highlighted that the MFODL-GDC system 
appropriately recognized the glaucoma and 
normal samples. With 70% of TR Phase, the 
MFODL-GDC system attains average 𝑎𝑐𝑐𝑢௬  of 

97.14%, 𝑝𝑟𝑒𝑐௡  of 96.69%, 𝑠𝑒𝑛𝑠௬  of 96.69%, 

𝑠𝑝𝑒𝑐௬  of 96.69%, and 𝐹௦௖௢௥௘  of 96.69%. 

Furthermore, with 30% of TS Phase, the 
MFODL-GDC methodology achieves an average 
𝑎𝑐𝑐𝑢௬  of 87.10%, 𝑝𝑟𝑒𝑐௡  of 83.86%, 𝑠𝑒𝑛𝑠௬  of 

87.63%, 𝑠𝑝𝑒𝑐௬ of 87.63%, and 𝐹௦௖௢௥௘ of 85.24% 

respectively. 

Table 3: Glaucoma detection analysis of MFODL-GDC approach with DRISHTI-GS1 Dataset  
Classes  𝐴𝑐𝑐𝑢௬ 𝑃𝑟𝑒𝑐௡ 𝑆𝑒𝑛𝑠௬  𝑆𝑝𝑒𝑐௬ 𝐹௦௖௢௥௘ 
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TR Phase (70%) 

Glaucoma 97.14 97.92 97.92 95.45 97.92 

Normal 97.14 95.45 95.45 97.92 95.45 

Average 97.14 96.69 96.69 96.69 96.69 

TS Phase (30%) 

Glaucoma 87.10 95.00 86.36 88.89 90.48 
Normal 87.10 72.73 88.89 86.36 80.00 

Average 87.10 83.86 87.63 87.63 85.24 

 

Table 4 and Figure 6 illustrate an overall 
comparative glaucoma detection result of the 
MFODL-GDC technique on the DRISHTI-GS1 
Dataset [24, 25]. The achieved outcome 
highlighted that the KNN, RF, and SVM 
algorithms get worse detection rate. Along with 
that, the DBN and DBN-EHO models have 
reported slightly increased classification results. 
However, the MFODL-GDC system 
demonstrates superior performance with 
maximum 𝑎𝑐𝑐𝑢௬ , 𝑠𝑒𝑛𝑠௬ , and 𝑠𝑝𝑒𝑐௬  of 97.14%, 

96.69%, and 96.69%, respectively. 

Table 4 Comparison analysis of MFODL-GDC 
approach with other models DRISHTI-GS1 Dataset 

DRISHTI-GS1 Dataset 

Classifier 𝐴𝑐𝑐𝑢௬ 𝑆𝑒𝑛𝑠௬  𝑆𝑝𝑒𝑐௬  

KNN 
Algorithm 95.34 90.47 93.08 

RF Model 94.50 91.34 92.33 

SVM Model 95.86 96.07 96.07 

DBN Model 96.23 95.56 96.02 

DBN–EHO 96.95 95.56 95.44 
MFODL-

GDC 
97.14 96.69 96.69 

 

Figure 7 shows the classifier analysis of the 
MFODL-GDC system with test ACRIMA 
database. Figures 7a-7b shows the confusion 
matrix offered by the MFODL-GDC technique at 
70:30 of TR Phase/TS Phase. 

 

 

 

Figure 6: Comparison analysis of the MFODL-GDC 
approach on the DRISHTI-GS1 database  

The outcome exhibits that the MFODL-GDC 
methodology could be properly recognized and 
classified with normal and Glaucoma 
classes. Additionally, Figure 7c exhibits the PR 
analysis of the MFODL-GDC system. This figure 
represents that the MFODL-GDC method obtains 
greater PR performance with each class. Also, 
Figure 7d presented the ROC analysis of the 
MFODL-GDC methodology. This outcome 
represented that the MFODL-GDC algorithm 
leads to effectual outcomes with higher ROC 
values with various classes. 
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Figure 7: ACRIMA dataset (a-b) Confusion Matrix (c-d) PR-curve and ROC-curve 

 
Table 5: Glaucoma detection analysis of MFODL-GDC approach with ACRIMA Database 

Class  𝐴𝑐𝑐𝑢௬ 𝑃𝑟𝑒𝑐௡ 𝑆𝑒𝑛𝑠௬ 𝑆𝑝𝑒𝑐௬ 𝐹௦௖௢௥௘ 
TR Phase (70%) 

Glaucoma 96.35 94.16 99.64 92.20 96.82 
Normal 96.35 99.50 92.20 99.64 95.71 
Average 96.35 96.83 95.92 95.92 96.27 

TS Phase (30%) 
Glaucoma 98.11 96.80 100.00 95.60 98.37 

Normal 98.11 100.00 95.60 100.00 97.75 
Average 98.11 98.40 97.80 97.80 98.06 

 
In Table 5, the glaucoma detection analysis of 
the MFODL-GDC method with the ACRIMA 
dataset can be computed. The obtained outcome 
pointed out that the MFODL-GDC system 
appropriately recognized the glaucoma and 
normal samples. According to 70% of TR Phase, 
the MFODL-GDC methodology achieves 
average 𝑎𝑐𝑐𝑢௬  of 96.35%, 𝑝𝑟𝑒𝑐௡  of 96.83%, 

𝑠𝑒𝑛𝑠௬  of 95.92%, 𝑠𝑝𝑒𝑐௬  of 95.92%, and 𝐹௦௖௢௥௘ 

of 96.27%. Also, based on 30% of TS Phase, the 
MFODL-GDC system gets average 𝑎𝑐𝑐𝑢௬  of 

98.11%, 𝑝𝑟𝑒𝑐௡  of 98.40%, 𝑠𝑒𝑛𝑠௬  of 97.80%, 

𝑠𝑝𝑒𝑐௬  of 97.80%, and 𝐹௦௖௢௥௘  of 98.06% 

respectively. 
 
Table 6 and Figure 8 represents an overall 
comparison glaucoma detection analysis of the 
MFODL-GDC algorithm with the ACRIMA 
database. The attained outcome shows that the 
KNN, RF, and SVM methodologies gets poorer 
detection rate. Then, the DBN and DBN-EHO  

 
models attains moderately increased 
classification outcomes. But, the MFODL-GDC 
system indicates excellent performance with 
greater 𝑎𝑐𝑐𝑢௬ , 𝑠𝑒𝑛𝑠௬ , and 𝑠𝑝𝑒𝑐௬  of 97.14%, 

96.69%, and 96.69%, correspondingly. 
 
Table 6: Comparison analysis of the MFODL-GDC 
approach with other models on ACRIMA database 

ACRIMA Dataset 

Classifier 𝐴𝑐𝑐𝑢௬ 𝑆𝑒𝑛𝑠௬  𝑆𝑝𝑒𝑐௬ 

SVM Model 97.06 96.64 96.12 

DBN 
Algorithm 

97.26 97.16 97.06 

DBN–EHO 97.34 97.10 97.20 

MFODL-GDC 98.11 97.80 97.80 
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Figure 8: Comparison analysis of the MFODL-GDC approach on ACRIMA database  

 
 

Thus, the MFODL-GDC technique can be 
employed for accurate glaucoma detection 
process. 
Various approaches to automated glaucoma 
detection using retinal fundus images have been 
explored. Lenka et al. [11] presented a multi-task 
deep learning model, achieving segmentation 
and classification tasks with MobileNetv2 and 
GCN. Kamara et al. [12] utilized feature 
selection techniques, combining superpixel 
methods and SVM in a two-stage process. 
Shyamalee and Meedeniya [13] applied attention 
U-Net with CNN models for image subdivision 
and preprocessing. Phasuk et al. [14] proposed 
an ensemble model for glaucoma screening, 
employing ANNs for final classification. 
In comparison, the MFODL-GDC technique 
surpasses traditional and advanced models on the 
DRISHTI-GS1 dataset, as shown in Table 3. It 
achieved high accuracy, precision, sensitivity, 
and specificity during both training and testing 
phases. Notably, during the TR phase, MFODL-
GDC attains an average accuracy of 97.14% and 
during the TS phase, it maintains strong 
performance with an average accuracy of 
87.10%. Additionally, Table 4 and Figure 6 
demonstrate the superiority of MFODL-GDC 
over other models, with maximum accuracy, 

sensitivity, and specificity of 97.14%, 96.69%, 
and 96.69%, respectively. 
Further validation on diverse datasets and 
clinical settings is crucial for practical 
implementation. Overall, while the MFODL-
GDC technique represents a significant 
advancement, addressing challenges related to 
data quality and interpretability is essential for 
its broader adoption in clinical practice. 
 
5. CONCLUSION  

In this study, we have devised and developed an 
automated glaucoma detection process, named 
technique on Retinal Fundus Images. The 
MFODL-GDC technique aims to segment and 
classify the retinal fundus images for the 
identification of Glaucoma. It comprises several 
stages of operations namely image 
preprocessing, QCN segmentation, DenseNet 
feature extraction, MFO-based hyperparameter 
tuning, and ELM classification. Moreover, the 
MFODL-GDC technique uses DenseNet121 
model for feature extraction and its 
hyperparameter tuning process can be performed 
by the use of the MFO algorithm. Finally, the 
ELM model can be exploited for the detection 
and classification process. The extensive 
performance validation of the MFODL-GDC 
technique is tested on benchmark dataset. The 
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widespread comparison study stated the 
supremacy of the MFODL-GDC technique over 
recent approaches.  

Some of the strengths of this work includes 
innovative approach integrating multiple stages, 
comprehensive methodology utilizing advanced 
techniques like DenseNet121 and MFO-based 
hyperparameter tuning, extensive performance 
validation on benchmark datasets, and 
comparative analysis demonstrating superiority 
over existing methods. This work also embraces 
few weaknesses including dependency on quality 
and quantity of datasets, complexity and 
computational cost, interpretability issues with 
Deep Learning models, need for thorough 
evaluation of MFO algorithm's efficacy, and 
clarification on the diversity of validation 
datasets. Overall, this research work profoundly 
overwhelms in predicting retinal fundus images 
with optimal performance.   
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