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ABSTRACT 
 

Speech emotion recognition (SER) is a specialized form of audio classification that aims to identify and 
classify emotional states expressed from spoken language or speech signals. In this study, the main objective 
is to propose an accurate audio classification model for the SER. This study primarily focuses on two key 
issues: the insufficient training data within each available dataset and the imbalanced distribution of data, 
both of which contribute to overfitting and negatively impact the accuracy of the audio classification model. 
Henceforth, we present the SMOTE-2DCNN, which is a combination of the Synthetic Minority 
Oversampling Technique (SMOTE) with a 2-Dimensional Convolutional Neural Network (2DCNN), 
designed to effectively address imbalanced data distributions and achieve accurate emotion classification. 
Our proposed SMOTE-2DCNN demonstrates outstanding performance with a UA rate of 81% and a WA 
rate of 80%. This represents a substantial enhancement, achieving approximately 15% higher accuracy 
compared to the leading state-of-the-art method. 
Keywords: Speech Emotion Recognition, Audio Classification, Deep Learning, SMOTE, Imbalanced Data 

1. INTRODUCTION  
 

Verbal communication is naturally the most 
effective and efficient way of normal human 
interaction. This fact has led many researchers to 
believe that using speech signals to interact between 
humans and computers is a rapid and efficient 
method. As a result, Speech Emotion Recognition 
(SER) has played a significant role in the field of 
Human-Computer Interaction (HCI) as it is 
necessary for a computer to understand human 
emotions in interacting. For more than two decades, 
SER has become mostly advantageous for many 
applications that need interaction between human 
and computer such as calling centre conversation, 
online tutoring, medical analysis and many more [1], 
[2]. 
 

The main goal of SER is to automatically 
detect a speaker's emotional state from the tone of 
their voice. In other words, SER can be defined as a 

series of methods that analyse and classify speech 
signals to determine emotions that are hidden within 
them. As a part of audio classification, SER focuses 
specifically on classifying emotional states or 
sentiments expressed in speech. It typically involves 
the extraction of various acoustic features, such as 
pitch, intensity, and spectral characteristics, as well 
as linguistic features like word choice and prosody 
(intonation, rhythm, and tempo). Early approaches 
emphasized manually extracting features and using 
standard methods like Gaussian Mixture Models 
(GMM), Dynamic Time Warping (DTW), and 
Hidden Markov Models (HMM) [3]. In the deep 
learning era, methods like Convolutional Neural 
Network (CNN) and Recurrent Neural Network 
(RNN) have been widely implemented and achieved 
great performance.  

 
The emergence of the deep learning model 

has filled the limitation of traditional handcrafted 
methods in extracting the high-level features from 
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multi modalities including audio which is indeed the 
primary modality in SER [4]. One of the advantages 
of deep learning is that, it is able to search for the 
best features to use for the purpose of recognition 
and classification. [5], [6]. Despite many researchers 
in the field having succeeded in improving the 
accuracy of classification by combining multiple 
architectures of deep learning such as CNN and 
RNN, the confusion and misclassification of 
emotional category is still occurring (Poria et al., 
2016; Xu et al., 2020). This is mainly due to the fact 
that these methods are prone to overfitting and 
require a large amount of training data Therefore, a 
high-quality of annotated emotional speech database 
is a necessary to get a successful classification and 
for the SER to work accurately [10]. 

 
However, the main problem encountered in 

the SER field is the lack of labelled training data in 
each available dataset, which is especially necessary 
for effectively implementing deep learning 
techniques [11]. In addition, imbalance in data 
distribution such as uneven number of classes is also 
one of the contributing factors. With such a limited 
and unbalanced number of data, these issues have 
become crucial as the imbalance class would 
dramatically skew the performance of the classifier 
thus leading to the difficulty of achieving good 
results in classification. This consequence happened 
as it could exhibit bias towards the majority class and 
ignore the minority class altogether. As a result, the 
deep learning model will be overfit and the optimal 
result might not be achieved for the classification 
[12]. 

In this study, our main objective is to 
propose an accurate classification model to 
recognize emotion from humans’ speech. This study 
primarily focusses on two key issues which are the 
insufficient training labelled data and the 
imbalanced data distribution. We exclude other 
modalities involved in SER such as text and facial 
expression and concentrate solely on audio 
classification as audio is the primary modality 
involved in SER. We introduce the SMOTE-
2DCNN model which includes the Synthetic 
Minority Oversampling Technique (SMOTE) 
method with 2-Dimensional Convolutional Neural 
Network (2DCNN). Our proposed model was 
designed with two key modules which are imbalance 
handling and classification. By implementing 
SMOTE method, the main duty of the imbalance 
handling module is to resample the training dataset 
in order to reduce the bias brought on by the 
insufficient training labelled data and the 
imbalanced data distribution from the original 

dataset. Finally, in the classification module, we 
integrate 2DCNN into our development model. 

The motivation behind incorporating 
SMOTE and 2DCNN in our research for enhancing 
audio classification in the context of speech emotion 
recognition is rooted in addressing the challenges 
posed by insufficient training labelled data and the 
imbalanced data distribution for SER. SMOTE is an 
oversampling technique used to balance the 
distribution of classes in a dataset by creating new 
synthetic data for the minority class. It creates 
synthetic samples by interpolating between existing 
instances of the minority class. As the synthetic 
samples are created based on the characteristics of 
the minority class, this helps to preserve the 
information present in the original dataset. Other 
oversampling methods, despite increasing sample 
volume, have the disadvantage of not providing any 
additional information or variance to the learning 
model. As a result, they may not be as effective in 
preserving the diversity of the minority class [13]. In 
addition, SMOTE balances class distributions well, 
avoiding overfitting and bias in models. Its 
algorithm-agnostic nature makes it compatible with 
a wide range of machine learning algorithms. 
SMOTE is also good at handling sparse, disjointed 
areas of the minority class in feature space. 

 
Apart from that, the use of 2DCNN is 

motivated by the simplicity of the 2DCNN 
architecture which enhances to the efficacy of our 
approach. Unlike traditional methods that may 
require complex feature engineering, 2DCNNs 
operate directly on spectrogram representations of 
audio, capturing both spectral and temporal features 
simultaneously. This simplicity not only simplifies 
the model development process but also facilitates 
better performance, as the network automatically 
learns hierarchical features required for recognizing 
nuanced emotional patterns in speech. The 2DCNN's 
ability to exploit local patterns and hierarchical 
representations in the spectrogram contributes to its 
effectiveness in audio classification tasks, making it 
a powerful yet straightforward tool for enhancing 
speech emotion recognition[14]. Therefore, by 
synergistically incorporating SMOTE and 2DCNN, 
we hope to provide a robust and effective solution 
for improving the accuracy and reliability of speech 
emotion recognition systems in real-world 
applications 
 

Our main contribution lies in addressing 
aforementioned issues which are the insufficient 
training labelled data and the imbalanced data 
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distribution, ultimately leading to a significant 
improvement in classification accuracy and 
mitigating the risk of overfitting. We believe that the 
proposed model must meet these two essential 
criteria in order to develop an accurate and effective 
audio classification for SER: (1) a simple 
classification model with effective imbalance class 
handling module, (2) a model with a compatible 
classifier and imbalance class handler. In this study, 
our proposed SMOTE-2DCNN model has 
successfully met both of the above criteria. 

 
The remaining sections of this paper are 

organized as follows. Section 2 summarizes the 
related works done by previous researchers in the 
same area. Section 3 presents the detailed 
explanation of the methodology of our proposed 
method. Section 4 describes the evaluation of the 
[15] presents the result of the evaluation the 
proposed SMOTE-2DCNN method. Finally, Section 
6 presents the discussion and conclusion, involving 
the limitation and future works of this study.  

2. RELATED WORK 

A wide range of classifiers for SER have 
been examined by researchers to improve and 
achieve better accuracy. In the traditional machine 
learning approach for SER, standard classifiers like 
GMM, HMM, ANN and K-NN were implemented 
after the extraction of features from the speech signal 
[2]. Since 2013, the use of DL methods for emotion 
recognition has gradually risen [16]. These days, the 
majority of SER models proposed by researchers 
employed DL methods and have achieved higher 
outcomes in terms of average accuracy and 
computational cost [11] [14]. 

According to the trend from year to year, 
the majority of the researchers have implemented 
CNN, followed by LSTM, and RNN DL approaches. 
In 2014, studies from [19], [20] implemented CNN 
with spectrograms in their work. The RNN classifier 
also has been employed by [21] in 2015 and 
achieved 81% of accuracy on the RECOLA 
database. The Deep Belief Network (DBN) classifier 
evaluated on the CASEC database produced the best 
accuracy of 94.60% in 2017 by [22] and the 
following year, [23] have achieved 92.71% of 
accuracy using DCNN on EMODB datasets. In 
2020, the EMODB dataset was once again used by 
[24] with CNN and achieved 95% of accuracy. Each 
year, SER sees a rise in the use of hybrid approaches 
for example research from [25] in 2019 implement 
2DCNN + LSTM with extracted features from 

spectrograms using EMODB and IEMOCAP dataset 
with 95.89% and 89.16% of accuracy, respectively. 

The impact of environmental noise on deep 
learning models in audio classification for SER 
systems can be crucial which can potentially lead to 
the loss of fine-grained information [15]. Getting 
access to a large and well-annotated dataset is one of 
the significant obstacles in the development of an 
effective audio recognition system. Insufficient 
audio data makes deep neural network training very 
challenging because large amounts of training data 
are necessary for effective training and evaluation of 
audio systems[17]. Furthermore, a lack of data can 
lead to an imbalanced dataset as certain classes or 
categories may be underrepresented or insufficiently 
sampled, resulting in a skewed distribution that 
limits the model's ability to learn patterns from 
minority classes [18] .This imbalance can jeopardize 
the model's performance, leading to biased 
predictions and reduced accuracy for the minority 
classes. 

The data level approach [26] , the cost 
sensitive approach [27], and the algorithm level 
approach [28] are the three main strategies that are 
generally used to address the class imbalance 
problem. The most common paradigm for managing 
imbalanced data is the data level approach. By 
applying data pre-processing prior to classification, 
data level algorithms, also known as over-sampling 
are typically used to increase the number of minority 
class samples [29]. On the other hand, under-
sampling occurs when certain samples from the 
majority class are left out of the data [30]. One of the 
main advantages of the data level approach is its 
generality which allows it to be used with any 
classifier [31]. 
 

Many efforts have been made in the past to 
handle imbalanced data more effectively. A well-
known Naïve Bayes classifier is primarily used in 
the under-sampling technique suggested in the 
study[32]. An innovative three-dimensional 
framework consisting of a discriminator, generator, 
and classifier in addition to decision boundary 
regularization was implemented in study [33]. 
Training a generator in conjunction with a classifier 
is the most noteworthy element of the suggested 
approach. In order to gradually remove samples 
from the majority class of imbalanced data, Xie et al. 
[34] proposed a novel under sampling technique that 
makes use of consecutive density peaks. Three 
distinct approaches, primarily based on genetic 
algorithms that automatically determine sample 
ratios for oversampling, under sampling, and hybrid 
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sampling techniques, were proposed in the study 
[35]. Two novel density-based techniques, density-
based under sampling (DB_US) and density-based 
hybrid sampling (DB_HS), were used in the study 
[36] to completely eliminate the overlap between the 
majority class and the minority class in an 
unbalanced dataset and produce a balanced and 
normalized class distribution. 
 

In this study, we primarily explore the 
Synthetic Minority Over-sampling Technique 
SMOTE method because of its popularity and 
competitive performance. SMOTE was created by 
[37] and is one of the most widely used over-
sampling techniques. Using linear interpolation 
between a minority class point, the SMOTE method 
creates synthetic data. SMOTE is an effective over-
sampling technique that has been extensively used in 
a number of previous studies. A novel oversampling 
algorithm based on the widely used SMOTE method 
was proposed by [38] for deep learning models. The 
study [39] used a novel hybrid method called 
CDSMOTE, which uses class decomposition and 
oversampling on the minority class samples to 
reduce the domination of the majority class samples. 
As a result of maintaining the majority class 
samples, this suggested method produces more 
balanced data than general under sampling 
algorithms. A new development of SMOTE was 
proposed in the research study [40] by combining it 
with the Kalman filter to filter out noisy samples 
from the resulting dataset that simultaneously 
includes the original data and the synthetically added 
samples. In order to address the noise issue, the study 
[40] used a novel oversampling algorithm called IR-
SMOTE. The noise in minority class clusters is 
removed by sorting the majority class samples and 
using the k-means clustering algorithm. The number 
of synthetic samples is then suitably assigned to each 
cluster using the kernel density estimation method. 

 
The aforementioned SMOTE pitfalls have 

one drawback of being sensitive to the classifier 
selection. Since SMOTE generates synthetic 
examples to balance class distribution, its 
effectiveness is influenced by the classifier's ability 
to handle these newly created instances. Certain 
classifiers may not be well-suited to accommodate 
the synthetic samples, potentially impacting overall 
classification performance. 

3. METHODOLOGY 
 

The implementation of SMOTE-2DCNN is 
illustrated in Figure 1. We implemented an 

experimental research design in this study. The 
research unfolds through systematic steps: (1) 
Preprocessing involves data cleaning and feature 
extraction from audio signals, (2) Application of 
SMOTE to augment the minority class instances, (3) 
Construction of the 2DCNN model architecture 
tailored for speech emotion recognition, (4) Training 
the model using the augmented dataset, and (5) 
Evaluation and validation using appropriate metrics 
to assess the model's performance.  

 
The first step involves preprocessing the 

audio data to select the best form of input set features 
to fit in with the model. In order to handle 
imbalanced data distribution, the SMOTE has been 
employed to generate synthetic samples to augment 
minority class instances. Subsequently, the 
augmented dataset is fed into the customized 
2DCNN model architecture, which is designed for 
more robust emotion recognition. The experimental 
design will include training and evaluating the 
SMOTE-2DCNN model on the augmented dataset, 
comparing its performance with baseline models, 
and conducting statistical analyses to validate the 
effectiveness of the proposed approach in mitigating 
overfitting and enhancing the accuracy of audio 
classification for speech emotion classification.  
 

 

Figure 1: Illustration of SMOTE-2DCNN Implementation 

 
3.1 Audio Pre-Processing 
 

This section describes in detail on audio 
data pre-processing which is a crucial step before 
training and testing the model. The main challenge 
of this part is to find the top-notch features of audio 
data that are appropriate for the emotion recognition 
task. We implement a deep learning approach for the 
development of our classification model. For that 
reason, we choses to incorporate the unstructured 
audio representation of MFCC features. This MFCC 
feature has the ability to extract the patterns on its 
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own since the feature extraction process is done 
automatically before it will then be fed directly into 
the deep learning-based model.  

However, the MFCC feature vector only 
describes the power spectral envelope of a single 
frame, but speech appears to have information in the 
dynamics such as the trajectories of the MFCC 
coefficients over time. Consequently, we have 
included delta (differential) and delta-delta 
(acceleration) features as feature inputs in this study. 
The purpose of using delta and delta-delta 
coefficients is based on the idea that better speech 
recognition requires an understanding on how the 
coefficients change over time. The recognition 
performance was shown to be significantly 
improved by calculating the MFCC trajectories and 
appending them to the original feature vector. 

 
 

3.2 SMOTE-2DCNN Detailed Description 
 

This section describes in detail on our 
proposed SMOTE-2DCNN model for audio 
classification of SER. The SMOTE-2DCNN is 
designed with two key modules which are imbalance 
handling and classification. The main duty of the 
imbalance handling module is to resample the 
training dataset in order to reduce the bias brought 
on by the imbalance in the original dataset to the 
experimental results. For that, we proposed to 
incorporate the SMOTE method into our model 
development in order to carry out the task 
effectively. Finally, in the classification module, we 
integrate 2DCNN into our development model. 

 
A 2DCNN is a type of neural network that 

is used to process data in two-dimensional arrays 
such as images and data with height and width. The 
network applies a series of filters to the input which 
is also known as kernels or weights. Each filter is a 
small 2D array with a height and width that are often 
smaller than the input like 3 X 3 or 5 X 5 in size. 

 
3.2.1 Imbalance Handling Module with SMOTE 
 
 In order to generate new synthetic data, 
SMOTE employs the k-nearest neighbor technique. 
The deep insight of the SMOTE algorithm works in 
three steps. The first step starts by setting a minority 
class with set Aminor. For each x ∈ Aminor, the k-nearest 
neighbors of x are determined by calculating the 
Euclidean distance between x and each other element 
in set Aminor. The second step involves the 
construction of set A1 by selecting N samples (i.e., 
x1, x2,...xN) at random from each x ∈ Aminor's k-nearest 

neighbours. The third step which is the final step, the 
following formula was used to generate a new 
synthetic example:  

For each xk ∈ A1 (k=1,2, 3,…N), 

𝑥ᇱ = 𝑥 + 𝑟𝑎𝑛𝑑(0,1) ∗ |𝑥 − 𝑥௞|              

       (1) 

Each of the aforementioned steps should be repeated 
until both the minority and majority classes are 
distributed equally. 
 
3.2.2 Classification Module With 2DCNN 

 
In this study, the 2DCNN will receive the 

2-dimensional input involving time and features of 
MFCC, Delta and Delta-Delta. The convolution 
process of all the inputs can be expressed by this 
formula equation: 

𝑦 = 𝑥 ∗ ℎ(𝑛ଵ, 𝑛ଶ) = ෍ ෍ 𝑥(𝑘ଵ, 𝑘ଶ)ℎ(𝑛ଵ − 𝑘ଵ, 𝑛ଶ − 𝑘ଶ)

ஶ

௞ଶୀஶ

ஶ

௞ଵୀஶ

 

     (2) 

where, h (k1, k2) represents the filter and x(k1, k2) 
indicates the input vector of this convolutional layer. 
The filter h(k1, k2) is first turned into h(-k1, -k2)  and 
translated by n1 and n2 which causes the filter h(k1, 
k2) to eventually become filter h(n1 – k1 ,n2 - k2). This 
is what the negative sign in the filter h(n1 – k1 ,n2 - k2) 
means. Finally, multiply the input x(k1, k2) with the 
result to obtain the value y(n1, n2). 
 

Each convolutional layer is followed by the 
addition of an activation function to enhance the 
model's interpretation ability and non-linearity. We 
selected the rectified linear unit (ReLU) as the 
activation function in order to avoid the vanishing 
gradient issue. The ReLU function can be seen in the 
following equation: 

 
𝑓(𝑥) = {𝑥, 0,     𝑥 > 0  𝑜𝑟 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒              

             (3) 
 

Each convolution block ends with the addition of a 
max-pooling layer. By obtaining the maximum value 
of the input vector within the predetermined range, 
the max-pooling layer eliminates redundant 
information from the input vector and extracts 
significant features. In our case, we applied a 2 x 2 
max pooling filter and left the stride length at its 
default value of 2, which is equal to the max pooling 
filter size. We also included batch normalization 
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between the layers to normalize the inputs of the 
layers in order to speed up and stabilize the network 
training. Batch Normalization can be calculated by 
applying the following mathematical formulas: 
 

𝜇஻ ←  
ଵ

ଷ
∑ 𝑥௜

௠
௜ୀଵ                       

     (4) 
 

𝜎஻ 
ଶ ←

1

𝑚
 ෍(𝑥௜ −  𝜇஻)ଶ

௜ୀଵ

௠

  

                    (5) 
 
where the mean and variance of batch data input are 
represented by µB and σ2

B. Each dimension of input 
is then separately normalized with the 
implementation of following formula equation: 
For x = (x1…. xd ), 
 

𝑥ො௜  ←   
𝑥௜  −  𝜇஻

ඥ𝜎஻
ଶ +  𝜀

 

     (6) 
 
For numerical stability, a tiny constant ε is added to 
the denominator in order to avoid the occurrence of 
dividing by value 0. By scaling and shifting the 
regularized value data X̂i, it allows the batch 
normalization to reinstate the power of the network. 
This process can be expressed by the following 
formula equation: 

𝑦௜  ←  𝛾𝑥ො௜ +  𝛽 
                  (7) 
 
where Ɣ and β are the parameters that later will be 
learned during the optimization process. 
 

As the network gets deeper, a flatten layer 
is applied to combine all layers into one single layer, 
transform each dimensional array into a single 
lengthy continuous linear vector and provide them as 
inputs to the subsequent fully connected layers, also 
known as dense layers. A couple of fully connected 
layers have been added to wrap up the classification 
model. By multiplying the input vector by the 
weights matrix and then adding the bias vector, the 
fully connected layers are in charge of creating a 
linear transformation to the input vector. The 
product is then subjected to a non-linear 
transformation using the non-linear activation 
function f which is ReLU. The process is repeated 
for each fully connected layer and the calculation of 
this process can be expressed by the following 
equation: 

𝑦 = 𝑓(𝑊𝑥 +  𝑏) 
 

                  (8) 
 
where, x is input vector, W is weight vector, b is bias 
and f is activation function. 
 

We included a dropout layer as the 
regularization technique to prevent overfitting of the 
model. Following the fully connected layers, the last 
layer employs the softmax activation function in 
order to determine the probability that the input 
belongs to a particular class. Below is the softmax 
activation function equation: 

𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (𝑧)௜  =  
𝑒௭೔

∑ 𝑒௭ೕே
௝ୀଵ

 

                  (9) 
 

Apart from that, we employ categorical 
cross-entropy as loss function for training model in 
which can be expressed by the following equation: 

 

𝐿𝑜𝑠𝑠 =  
−1

𝑁
 ෍ ෍ 𝑦௜,௝ logଶ൫𝑦ො௜,௝൯

஼

௝ୀଵ

ே

௜ୀଵ

 

     (10) 
 
where, N denotes number of samples, C is the 
number of classes. yi is the one-hot encoded vector 
representing the true class label of the input sample 
in the form of 0s 1s and yˆi,j is a vector representing 
the predicted probabilities for each class. 
 
 
3.3 SMOTE-2DCNN Model Architecture 
 

This section describes in detail about the 
SMOTE-2DCNN model architecture. Following is 
the architecture of our SMOTE-2DCNN network: 

● CONV 1: The input size of the first 
convolutional layer is 16 x 8 x 1. This layer 
implements 64 kernels with spatial size of 
3 x 3. The activation function used is the 
Leaky Rectified Linear Unit (ReLU) with 
the padding type “same”. Followed by a 2 
x 2 stride step max-pooling function with 
Batch Normalization. 

● CONV 2: The second layer implements 64 
kernels with spatial size of 3 x 3. The 
activation function used is the Leaky 
Rectified Linear Unit (ReLU) with the 
padding type “same”. Followed by a 2 x 2 
stride step max-pooling function with 
Batch Normalization. 
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● CONV 3: The third layer implements 64 
kernels with spatial size of 3 x 3. The 
activation function used is the Leaky 
Rectified Linear Unit (ReLU) with the 
padding type “same”. Followed by a 2 x 2 
stride step max-pooling function. 

● DENSE 1: The first dense layer sets 64 
units with the implementation of Leaky 
Rectified Linear Unit (ReLU) as the 
activation function. This layer uses the 
kernel regularizer and bias regularizer that 
applies the L2 regularization penalty with 
the default value used is l2=0.01. This layer 
also includes the dropout with the rate of 
0.5.  

● DENSE 2: The last dense layer sets 4 units 
with the implementation of Softmax as the 
activation function. 

Figure 2 presents the proposed 2DCNN model 
architectures. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Proposed SMOTE-2DCNN Model 
Architectures 

 
3.4 SMOTE-2DCNN Model Algorithm 
 

The proposed SMOTE-2DCNN model set 
of steps is outlined in Algorithm 1. Let D be the set 
of data, where: D = {(x1, y1), …, (xA, yA)}. Here, (xA, 
yA), represents the feature set and label of audio data 
A. For x ∈ Aminor, we determine the k-nearest 
neighbour of x and using Equation 1, we generate the 
synthetic samples A1, to balance the class 
distribution. We then split the dataset into training 
and testing sets with an 80:20 ratio. 

 
Next, we build our 2DCNN model. We 

define the model architecture, add convolutional 
layers, max pooling layers, flatten the output, y of the 
convolutional layers, add dense layers and apply 

softmax activation function appropriate to the 
classification task. We compile the model with 
appropriate loss and optimizer and train the network 
using backpropagation and gradient descent on a 
training set of labelled data. All the hyperparameters 
optimization involved are described in Section 4.4.2. 
Lastly, we evaluate the performance of the model on 
the testing set and the predicted class will be the final 
output. Algorithm 1 presents the algorithm for 
SMOTE-2DCNN. 
 

4.0 EVALUATIONS AND RESULTS 

In this section, the evaluation procedure for 
the SMOTE-2DCNN model and its outcome are 
thoroughly discussed. We used the audio IEMOCAP 
dataset to evaluate our proposed SMOTE-2DCNN 
[41]. To maintain consistency with previous 
research, we specifically selected the emotions of 
angry, happy, sad, and neutral from among all the 
categorical emotion labels that were annotated in the 
IEMOCAP dataset. We first defined the 80:20 using 
the “train_test_split()” function to split the dataset 
for training and testing model. In this instance, 80% 
of the dataset is designated as the training dataset, 
and 20% as the test dataset. We implemented 
stratified k-fold cross-validation by setting the 
stratify parameter to ensure that the distribution of  
 

Algorithm 1: SMOTE-2DCNN Model 
Input: D       = {(x1, y1), …, (xA, yA)} 

Aminor = Minority class instances,  
k        = Number of nearest 
            neighbors to use,  
N       = Number of synthetic 
            samples to generate 

Output: A1       = Synthetic minority class   
             samples 
FinalOutputTest  
           = Label class predicted on 
              the provided testing 
              sample, Test 
accM1 = Percentage accuracy of 
            M1 fusion model M1   
            represent model 1 which is 
            the proposed           
            SMOTE_2DCNN. 

1) Split D into training and testing 

2) for each sample x in 
    Aminor: 

Compute the k- nearest neighbors 
of x in Aminor, excluding x itself. 

Conv2
D 

MaxPooling2
D 

Flatten Dens
e 

BatchNormalization 

Dropout 
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3) for k = 1 to N 
 
 
 
 
 
 

a) Choose a random neighbor xk 

    from the k nearest neighbors of 
    x. 
b) Generate a new synthetic 
    sample x’ by following the 
    Equation 1. 
c) Add the new synthetic sample 
    x’ sample to Synthetic minority 
    class samples, A1 
d) Return A1 

4) Define 2DCNN Model architecture 

5) Initialize weights and biases randomly 

6) Set hyperparameters; learning_rate, num_epochs, 
    batch_size, optimizer 

7) Train model: 
for epoch= 1 to 
num_epochs 
 

 
a) Loop over batches of data 
b) Get batch of input data and 
   corresponding labels 
c)Following Equation 2, 3, 4, 5, 6,   
   7, 8, 9, 10 perform forward pass 
d) End for 
 

8) Perform backward 
pass: 
for layer in reversed 
layers (starting from 
last layer moving 
backwards) 

 
a) Compute gradients of output    
    w.r.t. input 
b) Compute gradients of loss  
    w.r.t. layer weights and bias 
c) Update layer weights and bias 
    using gradients and optimizer 
d) Update gradients with respect   
    to output of previous layer 
e) End for 
 

9) Compute the output of proposed SMOTE-2DCNN model 
    using testing data Ti, i = 1…nc (nc represents number of 
    class which in this case = 4) to get the predicted label 
    class, FinalOutputTest  

10) Calculate the metrics such as accuracy, precision, recall,  
      and F1 score 

11) Get the final percentage accuracy of proposed SMOTE- 
     2DCNN model, accM1 

12) End 

 
target classes are consistent across folds, which 
helps to reduce bias and improve the accuracy of our 
model. Table 1 shows the details of the dataset 
division after splitting. 

 
Table 1: Details of Dataset Division (Audio) 

IEMOCAP (Audio) 
(Involving 4 label class; angry, happy, sad, and 

neutral) 
Number of Samples for Training  5465 
Number of Samples for Testing  1367 

 

4.1 Evaluation Performance Measure 
 

The performance of the model will be 
measured based on accuracy, precision, recall, F1- 
score, and confusion matrix. Accuracy has been 

extensively accepted as a benchmark for assessing 
the effectiveness of emotion recognition systems 
based on audio speech. In addition, Precision, Recall 
and F1- score has been also widely used to evaluate 
performance with respect to how reliable the model 
is in classifying an uneven class distribution. We 
therefore compute and compare the accuracy, 
precision, recall, and F1-Score to evaluate the 
performance of our proposed model and to fairly 
compare it with several current state-of-the-art audio 
speech emotion recognition models using the same 
above-mentioned measures.  

 
4.2 Hyperparameter Optimization for SMOTE- 
       2DCNN 
 

Prior to conducting any experiment, the 
optimum hyperparameters used in our proposed 
SMOTE-2DCNN is necessary to be identified in 
advance. The process of hyperparameter tuning in 
SMOTE-2DCNN is crucial that can significantly 
impact the performance of the model. Therefore, the 
aim of hyperparameter tuning is to identify the best 
set of hyperparameters that will maximize the 
model's accuracy on the testing set.  

 
Theoretical analysis and mathematical 

equations are insufficient for determining the ideal 
hyperparameter settings, which vary depending on 
the specific environment and cannot be 
predetermined. Consequently, even when utilizing 
the same algorithm, the actual performance may 
differ across different cases. To address this 
challenge, the optimal hyperparameter settings for 
our proposed SMOTE-2DCNN are determined 
through a trial-and-error approach. 

 
We consider multiple essential 

hyperparameters when tuning our proposed 
SMOTE-2DCNN. Table 2 summarizes the best 
tuned hyperparameter values for our proposed 
SMOTE-2DCNN model 

 
Table 2: Hyperparameters Tuning Value (SMOTE-

2DCNN) 
Used Hyperparameter Values 

Number of Epochs 100 
Batch Size 64 
Learning Rate 0.01 
Kernel 3 
Dropout Rate 0.5 
Optimizer Adam 
Regularized kernel regularizer = L2 

(0.01) 
bias regularizer = L2 
(0.01) 
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4.3 Experimental Set Up 
 

In this section, we have developed a 
thorough experimental set up consisting of three 
experimental designs to assess the efficacy of our 
proposed SMOTE-2DCNN model. 

 
The first experimental design involves 

training our designed 2DCNN model with two 
different sets of feature input. The first feature input 
set, we calculate the MFCC, Delta, Delta-Delta 
features and take the mean of them in order to reduce 
the size of features. Meanwhile, in the second feature 
input set, we consider the entire arrays of MFCC, 
Delta, Delta-Delta features without taking the mean 
only.  

 
The second experimental design involves 

comparing the performance of our designed 2DCNN 
with and without SMOTE approach. We train our 
2DCNN model with the best outcome from the 
previous experiment as our input feature set and 
make a comparison between the two results. 

 
The third experimental design involves 

comparing the performance of our proposed 
SMOTE-2DCNN method with other state-of-the-art 
methods in the audio classification model for 
emotion recognition. The state-of-the-art methods 
involved have also been trained using the same 
dataset from IEMOCAP audio data. 

 
5.0 RESULT  
 

This section presents the experiment results 
and findings of our proposed SMOTE-2DCNN on 
the aforementioned sets experimental design. 

 
 

5.1 Experiment 1: Comparison Between Two 
Feature Input Sets 

 
We conducted the first experiment to verify the 

best form of input set feature. By comparing 
different forms of input feature sets will contribute 
more performance improvement to our proposed 
model.  
 
Table 3: Comparison of Different Form of Input Feature 

Set 
Input Feature Set Accuracy (%) 

Mean of MFCC, Delta, Delta-
Delta 

70 

Entire Arrays of MFCC, 
Delta, Delta-Delta 

75 

Table 3 shows the experiment results on a 
comparison of different input feature sets. Based on 
the result, by using the entire arrays of MFCC, Delta, 
Delta-Delta, the 2DCNN model achieves higher 
accuracy with 75% accuracy, which outperforms the 
result of using the mean of MFCC, Delta, Delta-
Delta with 70% accuracy.  

 
 

5.2 Experiment 2: Comparison Between with 
        SMOTE and without SMOTE 
 

The input feature set of entire arrays of 
MFCC, Delta, Delta-Delta was picked for the final 
experiment with our SMOTE-2DCNN model 
because of the higher accuracy result achieved in the 
previous experiment. 

 
To show the robustness of our proposed 

method, we compared the result of our designed 
2DCNN with SMOTE and without SMOTE. Table 
4 shows the percentage accuracy of our designed 
2DCNN with and without SMOTE. Figure 3 
illustrates the accuracy per epoch and loss per epoch 
of our designed 2DCNN with SMOTE and Figure 4 
illustrates the accuracy per epoch and loss per epoch 
of the 2DCNN model without SMOTE. 
 

Table 4: Percentage Accuracy of 2DCNN with and 
without SMOTE 

Method Accuracy (%) 
With SMOTE 80 

Without SMOTE 75 
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Figure 3: Accuracy Per Epoch and Loss Per Epoch of 

2DCNN with SMOTE 

 
Figure 4: Accuracy Per Epoch and Loss Per Epoch of 

2DCNN without SMOTE 

 
 As illustrated in Figure 5, our proposed 
SMOTE-2DCNN achieves 80% of accuracy with 
loss = 1.3. This accuracy is 5% significantly higher 
than the accuracy achieved by 2DCNN model 
without including the SMOTE method. Moreover, 
based on the confusion matrix illustrated in Figure 8, 
our model also achieves high True Positive Rate in 

most of the emotions such as angry, happy, sad with 
their corresponding TPR = 82%, 90%, 85%, whereas 
the model performs slightly less effectively on 
neutral emotion with TPR = 71%.  
 

 
 

Figure 5 : Confusion Matrix of SMOTE-2DCNN 

 Table 5 shows the result of precision, recall 
and F1 score of each emotion label; angry, 
happiness, sadness and neutral. Among all, happy 
emotion scores highest precision with 89%. Same 
goes for recall and F1-scores, happy emotion scores 
the highest with 91% and 90%, respectively. 
 

Table 5: Precision, Recall and F1-Score of SMOTE-
2DCNN 

Emotion Precision 
(%) 

Recall 
(%) 

F1-Score 
(%) 

Angry 78 83 81 

Happy 89 91 90 

Sad 82 89 85 
Neutral 72 61 66 

 
 
5.3 Experiment 3: Comparison with State-of- 

The- Art 
 

Table 6 and Figure 6 present the 
comparison of percentage accuracy with the 
graphical representation for state-of-the-art methods 
and our proposed SMOTE-2DCNN in audio 
classification model for emotion recognition. We 
considered the un-weighted accuracy (UA) and 
weighted accuracy (WA) in the record of the 
percentage accuracy results in order to make it 
consistent with the prior studies of the state-of-the-
art methods. As presented in Table 6, our proposed 
SMOTE-2DCNN yields the highest percentage of 
UA and WA of 81% and 80%, respectively. It shows 
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a significant improvement in approximately 15% of 
the accuracy achieved by method that performed the 
best result among other state-of-the-art.  
 

Table 6: Comparison SMOTE-2DCNN with State-Of-
The-Art 

Method UA (%) WA (%) 
BiLSTM +Attn [42] 51.2 55.6 
BLSTM + SelfAttn 
[43] 

76.8 76.6 

LSTM + Attn          
[44] 

57.4 63.4 

CNN + LSTM       [45] 59.4 68.0 
2TransformerEncoder 
[46] 

57.1 63.6 

SMOTE-2DCNN 81.0 80.0 

 

 
Figure 6: Percentage Accuracy of State-of-The-Art and 

Proposed SMOTE-2DCNN 

 
 
6.0  DISCUSSION AND CONCLUSION 
 

Our proposed SMOTE-2DCNN achieves 
significantly better performance compared to typical 
2DCNN and several current state-of-the-art audio 
speech emotion recognition models (refer Table 6). 
The reason of this outstanding achievement is 
because of several factors which are discussed 
below: 

 
i. Simple Model with Effective Imbalance 

Class Handling Module: Our SMOTE-
2DCNN implement Synthetic Minority 
Oversampling Technique method in order 
to handle imbalance class issue in 
IEMOCAP dataset. Unlike typical random 
oversampling technique, the SMOTE 
algorithm creates artificial samples based 
on the feature space similarities rather than 
using data space similarities between actual 
minority samples. Additionally, SMOTE 

uses k-nearest neighbors to choose which 
synthetic samples to generate thus helps to 
ensure that the synthetic samples are 
similar to the current minority class 
samples. This approach effectively assists 
in improving the overfitting issue imposed 
by typical random oversampling thus, 
enhance classification accuracy and 
reduces bias toward majority classes. 

 
ii. Compatibility on the Classifier and 

Imbalance Class Handler: Our SMOTE-
2DCNN is composed of two key modules: 
Imbalance Handling Module with SMOTE 
and Classification Module with 2DCNN. 
The combination of both modules is 
appropriate and compatible when it is 
capable in handling extreme imbalance 
class distribution and being robust to small 
variance sample size of data. Besides that, 
SMOTE is a reliable imbalance class 
handler which is suitable for enhancing a 
deep learning classifier of 2DCNN model, 
deployed specifically for emotion 
recognition tasks. The effectiveness of this 
combination lies not only in the successful 
handling of imbalanced data but also in the 
synergy between SMOTE and the 
classifier. The compatibility between 
SMOTE and 2DCNN is paramount for 
achieving optimal results. In other word, 
the 2DCNN model benefits from the 
enhanced representation of minority class 
instances provided by SMOTE, resulting in 
improved classification accuracy and 
robustness. 

 
In conclusion, our proposed SMOTE-2DCNN 
model has proven to be a valuable strategy for 
addressing both the issues of insufficient and 
imbalanced data distribution in the context of audio 
classification, specifically in the domain of SER. 
Furthermore, it is crucial to acknowledge that the 
efficacy of SMOTE hinges on the classifier's 
adaptability to the synthetic instances added into the 
training set. As highlighted earlier, certain classifiers 
may encounter difficulties in accommodating these 
artificially generated instances, potentially leading 
to suboptimal performance in classification tasks.  
Therefore, the choice of a classifier plays a pivotal 
role in determining the overall success of the 
SMOTE implementation.  
 
In this case, the implementation of 2DCNN is 
inherently capable of leveraging the augmented 

51.2
76.8

57.4 59.4 57.1
81
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dataset. Indeed, adapting to the synthetic instance 
and generalizing well to unseen data is essential for 
achieving heightened accuracy in speech emotion 
recognition. By addressing data imbalance and 
compatibility issues, researchers can pave the way 
for more effective and accurate models in audio 
classification tasks.  
 
Our future work will focus on combining SMOTE 
with other techniques for data augmentation and 
ensemble learning. Hybrid models that leverage the 
strengths of multiple techniques could be a 
promising direction as the strategy may provide 
improved generalization and resilience to class 
imbalance. 
 
 
ACKNOWLEDGEMENT 
 

This paper is part of a research funded by 
the Universiti Putra Malaysia Grant (GP-IPS), under 
Project Vote Number: 9682000   
 
 
REFERENCES: 

[1] B. W. Schuller, “Speech emotion 
recognition: Two decades in a nutshell, 
benchmarks, and ongoing trends,” Commun 
ACM, vol. 61, no. 5, pp. 90–99, 2018. 

[2] M. El Ayadi, M. S. Kamel, and F. Karray, 
“Survey on speech emotion recognition: 
Features, classification schemes, and 
databases,” Pattern Recognit, vol. 44, no. 3, 
pp. 572–587, 2011. 

[3] S. Karpagavalli and E. Chandra, “A review 
on automatic speech recognition 
architecture and approaches,” International 
Journal of Signal Processing, Image 
Processing and Pattern Recognition, vol. 9, 
no. 4, pp. 393–404, 2016. 

[4] S. Poria, E. Cambria, and A. Gelbukh, 
“Deep convolutional neural network textual 
features and multiple kernel learning for 
utterance-level multimodal sentiment 
analysis,” in Proceedings of the 2015 
conference on empirical methods in natural 
language processing, 2015, pp. 2539–2544. 

[5] P. Tzirakis, J. Zhang, and B. W. Schuller, 
“End-to-end speech emotion recognition 
using deep neural networks,” in 2018 IEEE 
international conference on acoustics, 
speech and signal processing (ICASSP), 
IEEE, 2018, pp. 5089–5093. 

[6] T. Zhang, W. Zheng, Z. Cui, Y. Zong, and 
Y. Li, “Spatial–temporal recurrent neural 
network for emotion recognition,” IEEE 
Trans Cybern, vol. 49, no. 3, pp. 839–847, 
2018. 

[7] S. Poria, I. Chaturvedi, E. Cambria, and A. 
Hussain, “Convolutional MKL based 
multimodal emotion recognition and 
sentiment analysis,” in 2016 IEEE 16th 
international conference on data mining 
(ICDM), IEEE, 2016, pp. 439–448. 

[8] G. Xu, W. Li, and J. Liu, “A social emotion 
classification approach using multi-model 
fusion,” Future Generation Computer 
Systems, vol. 102, pp. 347–356, 2020. 

[9] R. Kosti, J. Alvarez, A. Recasens, and A. 
Lapedriza, “Context based emotion 
recognition using emotic dataset,” IEEE 
Trans Pattern Anal Mach Intell, 2019. 

[10] D. Ververidis and C. Kotropoulos, 
“Emotional speech recognition: Resources, 
features, and methods,” Speech Commun, 
vol. 48, no. 9, pp. 1162–1181, 2006. 

[11] J. Boigne, B. Liyanage, and T. Östrem, 
“Recognizing more emotions with less data 
using self-supervised transfer learning,” 
arXiv preprint arXiv:2011.05585, 2020. 

[12] K. Ghosh, C. Bellinger, R. Corizzo, P. 
Branco, B. Krawczyk, and N. Japkowicz, 
“The class imbalance problem in deep 
learning,” Mach Learn, pp. 1–57, 2022. 

[13] R. Dubey, J. Zhou, Y. Wang, P. M. 
Thompson, J. Ye, and A. D. N. Initiative, 
“Analysis of sampling techniques for 
imbalanced data: An n= 648 ADNI study,” 
Neuroimage, vol. 87, pp. 220–241, 2014. 

[14] H.-C. Chu, Y.-L. Zhang, and H.-C. Chiang, 
“A CNN Sound Classification Mechanism 
Using Data Augmentation,” Sensors, vol. 
23, no. 15, p. 6972, 2023. 

[15] J. Meyer, L. Dentel, and F. Meunier, 
“Speech recognition in natural background 
noise,” PLoS One, vol. 8, no. 11, p. e79279, 
2013. 

[16] Y. B. Singh and S. Goel, “A systematic 
literature review of speech emotion 
recognition approaches,” Neurocomputing, 
vol. 492, pp. 245–263, 2022. 

[17] E. Tsalera, A. Papadakis, and M. 
Samarakou, “Comparison of pre-trained 
CNNs for audio classification using transfer 
learning,” Journal of Sensor and Actuator 
Networks, vol. 10, no. 4, p. 72, 2021. 

[18] O. O. Abayomi-Alli, R. Damaševičius, A. 
Qazi, M. Adedoyin-Olowe, and S. Misra, 



 Journal of Theoretical and Applied Information Technology 
15th July 2024. Vol.102. No. 13 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
5091 

 

“Data augmentation and deep learning 
methods in sound classification: A 
systematic review,” Electronics (Basel), vol. 
11, no. 22, p. 3795, 2022. 

[19] Z. Huang, M. Dong, Q. Mao, and Y. Zhan, 
“Speech emotion recognition using CNN,” 
in Proceedings of the 22nd ACM 
international conference on Multimedia, 
2014, pp. 801–804. 

[20] Q. Mao, M. Dong, Z. Huang, and Y. Zhan, 
“Learning salient features for speech 
emotion recognition using convolutional 
neural networks,” IEEE Trans Multimedia, 
vol. 16, no. 8, pp. 2203–2213, 2014. 

[21] S. Chen and Q. Jin, “Multi-modal 
dimensional emotion recognition using 
recurrent neural networks,” in Proceedings 
of the 5th International Workshop on 
Audio/Visual Emotion Challenge, 2015, pp. 
49–56. 

[22] W. Zhang et al., “Deep learning and SVM‐
based emotion recognition from Chinese 
speech for smart affective services,” Softw 
Pract Exp, vol. 47, no. 8, pp. 1127–1138, 
2017. 

[23] J. Zhao, X. Mao, and L. Chen, “Learning 
deep features to recognise speech emotion 
using merged deep CNN,” IET Signal 
Processing, vol. 12, no. 6, pp. 713–721, 
2018. 

[24] T. Anvarjon, Mustaqeem, and S. Kwon, 
“Deep-net: A lightweight CNN-based 
speech emotion recognition system using 
deep frequency features,” Sensors, vol. 20, 
no. 18, p. 5212, 2020. 

[25] J. Zhao, X. Mao, and L. Chen, “Speech 
emotion recognition using deep 1D & 2D 
CNN LSTM networks,” Biomed Signal 
Process Control, vol. 47, pp. 312–323, 
2019. 

[26] A. Guzmán-Ponce, J. S. Sánchez, R. M. 
Valdovinos, and J. R. Marcial-Romero, 
“DBIG-US: A two-stage under-sampling 
algorithm to face the class imbalance 
problem,” Expert Syst Appl, vol. 168, p. 
114301, 2021. 

[27] D. Devi, S. K. Biswas, and B. Purkayastha, 
“Correlation-based oversampling aided cost 
sensitive ensemble learning technique for 
treatment of class imbalance,” Journal of 
Experimental & Theoretical Artificial 
Intelligence, vol. 34, no. 1, pp. 143–174, 
2022. 

[28] M. A. Ganaie, M. Tanveer, and A. D. N. 
Initiative, “Fuzzy least squares projection 

twin support vector machines for class 
imbalance learning,” Appl Soft Comput, vol. 
113, p. 107933, 2021. 

[29] M. Koziarski, C. Bellinger, and M. 
Woźniak, “RB-CCR: Radial-Based 
Combined Cleaning and Resampling 
algorithm for imbalanced data 
classification,” Mach Learn, vol. 110, pp. 
3059–3093, 2021. 

[30] V. K. Chennuru and S. R. Timmappareddy, 
“Simulated annealing based undersampling 
(SAUS): A hybrid multi-objective 
optimization method to tackle class 
imbalance,” Applied Intelligence, vol. 52, 
no. 2, pp. 2092–2110, 2022. 

[31] D. Elreedy, A. F. Atiya, and F. Kamalov, “A 
theoretical distribution analysis of synthetic 
minority oversampling technique (SMOTE) 
for imbalanced learning,” Mach Learn, pp. 
1–21, 2023. 

[32] C. K. Aridas, S. Karlos, V. G. Kanas, N. 
Fazakis, and S. B. Kotsiantis, “Uncertainty 
based under-sampling for learning naive 
bayes classifiers under imbalanced data 
sets,” IEEE Access, vol. 8, pp. 2122–2133, 
2019. 

[33] H.-S. Choi, D. Jung, S. Kim, and S. Yoon, 
“Imbalanced data classification via 
cooperative interaction between classifier 
and generator,” IEEE Trans Neural Netw 
Learn Syst, vol. 33, no. 8, pp. 3343–3356, 
2021. 

[34] X. Xie, H. Liu, S. Zeng, L. Lin, and W. Li, 
“A novel progressively undersampling 
method based on the density peaks sequence 
for imbalanced data,” Knowl Based Syst, 
vol. 213, p. 106689, 2021. 

[35] M. Zheng et al., “An automatic sampling 
ratio detection method based on genetic 
algorithm for imbalanced data 
classification,” Knowl Based Syst, vol. 216, 
p. 106800, 2021. 

[36] S. Mayabadi and H. Saadatfar, “Two 
density-based sampling approaches for 
imbalanced and overlapping data,” Knowl 
Based Syst, vol. 241, p. 108217, 2022. 

[37] N. V Chawla, K. W. Bowyer, L. O. Hall, and 
W. P. Kegelmeyer, “SMOTE: synthetic 
minority over-sampling technique,” Journal 
of artificial intelligence research, vol. 16, 
pp. 321–357, 2002. 

[38] D. Dablain, B. Krawczyk, and N. V Chawla, 
“DeepSMOTE: Fusing deep learning and 
SMOTE for imbalanced data,” IEEE Trans 
Neural Netw Learn Syst, 2022. 



 Journal of Theoretical and Applied Information Technology 
15th July 2024. Vol.102. No. 13 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
5092 

 

[39] E. Elyan, C. F. Moreno-Garcia, and C. 
Jayne, “CDSMOTE: class decomposition 
and synthetic minority class oversampling 
technique for imbalanced-data 
classification,” Neural Comput Appl, vol. 
33, pp. 2839–2851, 2021. 

[40] G. S. Thejas, Y. Hariprasad, S. S. Iyengar, 
N. R. Sunitha, P. Badrinath, and S. 
Chennupati, “An extension of Synthetic 
Minority Oversampling Technique based on 
Kalman filter for imbalanced datasets,” 
Machine Learning with Applications, vol. 8, 
p. 100267, 2022. 

[41] C. Busso et al., “IEMOCAP: Interactive 
emotional dyadic motion capture database,” 
Lang Resour Eval, vol. 42, pp. 335–359, 
2008. 

[42] S. Tripathi, S. Tripathi, and H. Beigi, 
“MULTI-MODAL EMOTION 
RECOGNITION ON IEMOCAP WITH 
NEURAL NETWORKS.,” arXiv preprint 
arXiv:1804.05788. 

[43] J. Santoso, T. Yamada, K. Ishizuka, T. 
Hashimoto, and S. Makino, “Speech 
Emotion Recognition Based on Self-
Attention Weight Correction for Acoustic 
and Text Features,” IEEE Access, vol. 10, 
pp. 115732–115743, 2022. 

[44] H. Xu, H. Zhang, K. Han, Y. Wang, Y. Peng, 
and X. Li, “Learning alignment for 
multimodal emotion recognition from 
speech,” arXiv preprint arXiv:1909.05645, 
2019. 

[45] A. Satt, S. Rozenberg, and R. Hoory, 
“Efficient emotion recognition from speech 
using deep learning on spectrograms.,” in 
Interspeech, 2017, pp. 1089–1093. 

[46] J. Zhang, L. Xing, Z. Tan, H. Wang, and K. 
Wang, “Multi-head attention fusion 
networks for multi-modal speech emotion 
recognition,” Comput Ind Eng, vol. 168, p. 
108078, 2022. 

 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


