
 Journal of Theoretical and Applied Information Technology
30th June 2024. Vol.102. No. 12

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5021

DETECTIING REDUNDANT TEST CASES USING DEEP
LEARNING

RAGHAD J, DARABSEH1, AHMAD A, SAIFAN2

1Information System Department, Yarmouk University, Irbid, Jordan
2Information System Department, Yarmouk University, Irbid, Jordan

E-mail: 1raghaddarabseh@gmail.com, 2ahmads@yu.edu.jo

ABSTRACT

Software testing encompasses the examination of various data scenarios to assess output and observe
software behaviour. However, comprehensive testing of all software cases poses challenges due to its
intricate and complex nature. This paper is dedicated to the identification of redundant test cases through
the application of deep learning techniques.
Four distinct deep learning algorithms—Convolutional Neural Network (CNN), Deep Belief Network
(DBN), Deep Neural Network (DNN), and Long-Term Memory (LSTM)—were employed in this study.
These algorithms were applied to three datasets: Common Utils for Rapied, JSOUP, and Junit. The
outcomes affirm the effectiveness of deep learning algorithms in pinpointing redundant test cases. The
results demonstrated that the deep neural network (DNN) is able to detect repeated test cases, which
ultimately leads to fewer test cases. Compared with other algorithms of deep learning algorithms, it was
found that the deep neural network (DNN) is able to cover the test cases, and it has reached a relatively
high accuracy, with a result of 82.66%

Keywords: Test Case Reduction, Redundant Test Cases, Deep Learning, Deep Neural Network, Deep
Belief Network, Convolutional Neural Network, Long-Term Memory.

1. INTRODUCTION

Software testing is considered one of the
priorities for developers and programmers in
companies; it aims to detect faults and defects in
order to treat them. It is difficult to determine
whether the software works in all circumstances
and cases, as it is necessary to identify the cases for
testing to show the conditions in which the software
works and the conditions in which it does not work
to treat them later [1].

Software testing includes defining specific
test cases and applying them in different
environments based on certain rules, as they are
selected so that they can cover the largest number
of test cases (Test Coverage), ensuring that they
cover all system requirements, and ensuring the test
cases are not repeated [2]. A system must be tested
for errors during system testing by testing all cases
in the system to ensure its correctness. However,
testing all cases is time-consuming, costly, and
complicated [3], so it is better to build a system

with a small and effective number of test cases and
not rely on random tests [4].

Redundant test cases negatively affect the
testing process of the software, as when testing the
test cases, they are checked again as if they were
being tested for the first time, thus leading to
serious consequences in terms of time and cost in
the testing [5].

Regression testing is an important topic in
test case reduction. It is a type of software testing
that aims to ensure that modifications to the
program have not negatively affected its
functionality; such modifications can be adding a
new feature, fixing bugs, or even fixing
performance problems. After this kind of
modification, we should test the modified system in
the test cases fully or partially to ensure that the
new modifications work well [6].

In the past few years, there has been an
interest in deep learning research and its
applications. [7] Noted that deep learning is

 Journal of Theoretical and Applied Information Technology
30th June 2024. Vol.102. No. 12

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5022

considered one of the fields of machine learning, as
the computer is learning to do business and solve
problems, learning from experience and without
prior training. [8] Proved in their study that using
different types of deep learning algorithms are
very efficient in reducing the number of test
cases up to 4.6%.

There are several machine learning
algorithms were applied in reducing test cases in
the literature including: including K-nearest
Neighbors (KNN) [9], Naïve based [10], K-
means [11, 38], and dynamic domain reduction
(DDR) [12]. However, in this paper, we used
deep learning algorithms to detect whether a test
case is redundant or not. This choice was made
due to the widespread use of deep learning in
various fields and the lack of studies on how
deep learning algorithms can detect and then
reduce the number of test cases. The main
contribution of this paper is to detect redundant
test cases using deep learning algorithms. In
addition, to evaluate the results that were
reached based on accuracy, performance time,
and test coverage.

Based on the research purpose, and
after finishing this research, we will be able to
answer the following two questions:

 How much it is effective of using deep
learning algorithms to detect and
reduce the redundant test cases?

 What is the appropriate deep learning
algorithm that can be used in test case
reduction?

2. BACKGROUND

 In this section, the background of the
research will be clarified, as it is divided into two
main sections: deep learning and test case
reduction.

2.1 Deep Learning
Deep learning is divided into three main

categories: unsupervised deep learning, supervised
In unsupervised deep learning networks

(generative learning), it is done by giving the
training data, but the outputs are not specific and
unknown. This is done by applying a deep learning
algorithm to present the outputs, where only the
data are given and it calculates to provide the
outputs. Hybrid deep learning resembles a mixture
of unsupervised and supervised learning; it deals
with an interactive environment and learns from its
mistakes; it is like Facebook. In Google and
YouTube, for example, if you like to read many
articles from a certain site, it will show you ads
from the site itself; if it finds the opposite, it will

not show you anything about the site, meaning that
it learns from your behavior [13].

In this paper, we discuss Convolutional Neural

Network (CNN), Deep Belief Network (DBN),
Deep Neural Network (DNN), and Long-Term
Memory (LSTM). These algorithms were chosen
due to the availability of more references and
studies for them than other algorithms.

There are many differences between the
algorithms. Table 1 shows some differences
between deep learning algorithms based on
different criteria:

2.2 Test case reduction

During the testing of the system, it is
difficult to conduct testing of all test cases since
adding a new requirement to the system requires a
new system test, and to maintain the efficiency and
quality of the system, it is necessary to check the
system. The system is usually tested using
regression testing.

The regression test is a type of testing for
the system, so that the system is tested after the

Table 1: Differences Between Deep Learning Algorithms

Criteri
a/
Algorit
hms

CNN LSTM DNN DBN Ref

Aims Ability to
detect
features
automatic
ally thus
reduces
the
number of
trainable
network
parameter
s

Predicting,
classifying,
and
processing
based on
time series
data.

Data
processin
g in
complex
and
difficult
ways,
using
mathema
tical
modeling
.

It aims at
how to
represent
features, so
that it solves
many tasks
simultaneousl
y based on
the
representation
of common
features.

[16]
[17]
[18]

Numbe
r of
Layer

Three
layers
(convoluti
onal
layers,
pooling
layers,
and fully
connected
layers)

Three layer
(gate) Input
gate, output
gate, and
forget gate.

Input
layer,
several
hidden
layers
and
output
layers).

Input layer,
several
hidden-layer
neurons, and
output layer.

[19]
[20]
[21]

Examp
les of
applica
tions

1. image
recognitio
n
2.
Extended
for NLP,
speech
processing

Anomaly
detection in
network
traffic

Real-
Time
Semantic
Segment
ation

speech
popularity
problems

[22]
[23]
[24]
[25]
[26]

 Journal of Theoretical and Applied Information Technology
30th June 2024. Vol.102. No. 12

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5023

modification, as it is confirmed that changing the
code on the program does not affect the
functionality of the system but rather works well
after making the required adjustments and
modifications, to correct existing faults and errors,
or to change one of the features in the current
system, as it is considered a criterion of confidence
for developers because it makes sure that there are
no unexpected side effects after making the
modification [10, 14].

The authors in [15] Pointed out that there
are many techniques of regression test case
reduction that are classified based on coverage,
requirement, genetic algorithms, slicing, hybrid
algorithms, fuzzy logic, greedy algorithms, and
clustering. In general, the testing process helps in
examining the appropriate software, but it is
difficult to test all cases of the system due to its
large size. It needs a lot of money and time. It is
necessary to reduce the number of test cases to the
minimum so that it covers all defects in the least
amount of time.

3. LITERATURE REVIEWS

 The following section provides a summary
of previous studies, which is divided into sections,
the deep learning and test case reduction.

3.1 Deep Learning

Deep learning has been used in many
smart technologies and applications, such as self-
driving cars, facial recognition systems, image
recognition, NLP processing, and speech
recognition. Here we focused on applications
processed using deep learning algorithms.

It has been noted by Li [27] that one of the
applications uses deep learning for natural language
processing. The study shows that the performance
is significantly superior to traditional techniques,
and deep learning relies on a strong mechanism for
classifying the natural language, which reflects
positively on the results. [28] Noted that another
application includes image processing in the
medical field and biometrics. The study turns out
that the use of deep learning in medical image
processing has improved more than before, as it has
achieved high accuracy in image processing results
and reduced the error rate from 10% to 20%.

The authors in [29] Conducted a study
aimed at predicting defects in projects based on
static metrics using the Deep Belief Network
(DBN) algorithm and transfer learning. The
methodology of the study relies on three steps: first,

data collection and processing; second, building a
model to improve the prediction of errors in
projects based on DBN and transfer learning; and
third, building a defect prediction model. They
collected 13 datasets from 10 open-source projects
written in the Java.

Programming language. The data set
contains 20 measures. The methodology of the
study uses the matrix as an input feature, such as
WMC, DIT, NOC, CBO, etc. After conducting the
experiment, it relied on F-measure measurement in
the confusion matrix. After that, the proposed
model was evaluated based on three settings, which
are DBN_Only, T_DBN, and T_DBN [SMOTE].
Based on F-measures, DBN_Only is 4.9%, T_DBN
is 3.6%, and T_DBN [SMOTE] is 5.1%. Therefore,
the proposed model with three settings is better
than the model of TCA/TCA+ techniques.

Another study conducted in [30] indicated
the detection of the incidence of skin cancer using
deep learning algorithms. Detecting skin cancer
depends on the image that is taken. To extract the
features in the image and distinguish whether there
is skin cancer or not, this study used artificial
neural networks (ANN), convolutional neural
networks (CNN), Kohonen self-organizing neural
networks (KNN), and the Radial Basis Function
Network (RBFN) for image classification in the
detection of melanoma. The study showed that each
of the algorithms has advantages and disadvantages
for detecting skin cancer, but the CNN algorithm
got the best results in classifying the image.

 The study in [31] aims to use deep
learning algorithms to detect malware in order to
determine the most effective algorithms for
malware detection, the study used three deep
learning algorithms: Convolutional Neural Network
(CNN), Long Short-Term Memory (LSTM), and
Deep Neural Network (DNN). The results of the
study conclude the superiority of deep learning
algorithms for malware detection, and CNN
algorithm was the best for detection, followed by
LTSM and finally DNN; the accuracy rate reached
to 96% for all algorithm, the Recall rate reached to
97%, and Precision rate reached to 97%.

3.2 Test Case Reduction

There are several techniques that help
detect repeat test cases; this section reviews some
studies on redundant test case detection.

The authors in [32] conducted a study to
use static techniques in reducing test cases. ABB
was used to detect redundancy test cases as it
provides information on whether a test case can be
deleted or combined with other test cases. An

 Journal of Theoretical and Applied Information Technology
30th June 2024. Vol.102. No. 12

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5024

experiment was conducted on a group of test cases
that reached 6246 procedures, where 4218 test
cases and 1637 test units were found. Three
measures were used to evaluate the similarity in the
test cases of the proposed ABB. It was concluded
that 7%–23% of the test cases are considered
redundant, either to be deleted or combined with
other test cases.

Later, a comparison was done between the
Tester-Assisted method and the traditional method
for detecting the redundancy of test cases; it found
that the traditional method was less efficient and
effective than the Tester-Assisted method.

Another think about conducted by [33]
used the hybrid Particle Swarm Optimization (PSO)
to select which test cases require execution, Java
was used to implement the suggested algorithm, it
gives an input, and this method returns the number
of predicted test cases, and the number of particles
needed for the test cases. The results of the study
indicated that the PSO algorithm provides the best
and most effective result to reduce the number of
test cases, it reached a rate equivalent to 50%.

According to [1] the purpose of this study
was to identify and refactor the source code to
reduce the redundancy in the development of
software test cases by using code on Android
applications, this method helps to make changes in
the source code by improving the quality and
reducing the redundancy in the building of the test
cases by making it easier to read the source code. In
this study, the application was Alogcat (Android)
and DART (Eclipse) was implemented as an add-on
tool that helps reduce the number of test cases.
According to the study, DART reduces the number
of test cases by 28% as it can cover 5 of the test
cases.

Measurement of the redundancy Score in
test cases, since the test cases are implemented
using the same instructions with the same line of
code and require high time and cost to implement, a
test case matching approach was proposed by [34],
the study was conducted on a test set of duplicate
test cases, it was performed on two Java programs
(student grades and quadratic function). The test
case matching approach measured the redundancy
score on both test groups, and the detection of the
redundant test cases was 37% and 67%
respectively.

The authors in [35] Indicated in their study
that aimed to mutation-based fault localization
(MBFL) using Contribution-based Test Case
Reduction Strategy (CBTCR), due to the high cost
when implementing a large mutation, (CBTCR)
value of each test case is measured and it selected

based on the value. Depending on Top-N and MAP
metrics, CBTCR was is best than MBFL such as
FTMES and IETCR. In addition CBTCR reduce
cost by 85.43%.

4. RESEARCH METHODOLOGY

This section provides an overflow of the
phases used to implement our approach. It is used
to detect whether the test case is a redundant or not
and then reduce test cases using deep learning
algorithms. Below, each phase will be explained in
details. Figure 1 represents the approach followed
to detect the redundancy of test cases using deep
learning algorithms.

The details of this process will be
discussed in the next section.

4.1 Research Plan

Phase1: Collect the source code with test case
and derivation metrics

This phase consists of several parts:
collecting the Java open-source codes that have test
cases, identify the metrics of test cases that
represent the features, and the extract the values of
the metrics from the test cases. The approach starts
with collecting a set of under-tested open-source
code written in Java programming language. After
that, the codes were run on the Eclipse tool, which
is an integrated development environment (IDE), to

Figure 1: Research Methodology.

 Journal of Theoretical and Applied Information Technology
30th June 2024. Vol.102. No. 12

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5025

make sure they were working correctly. We
selected applications that already have test cases.
Moreover, Junit is used to automatically generate a
set of test cases for any given input class.

This process used to increase the number of test
cases and to make sure that we have redundant test
cases. After that, we identified the metrics that
represents the feature for test cases.

Table 2 contains a description of the metrics
used to build the dataset [36].

Table 2: Dataset Metrics

Matrix Name Matrix Description

Test Case Number of classes and method
names

Class Label Retrieve the status of test cases
whether it is redundancy or not

Coverage The Percentage of test cases
covered
Covered

Covered
Instruction

The number of code Instruction
executed and covered

Missed
Instructions

The number of code Instruction
that not executed and covered

Total
Instructions

The number of codes executed and
non- executed

BRANCH

The number of Branch statement
in each method that Coverage

CALL The number of total call
expression for each method

CALLED The number of methods that called
Whether it is override or overload.

CALLEDt The number of methods that called
Whether it is override or overload by
time.

Executable statements
(EXEC)

The number of Executable statements
for each method

Line Of Code (LOC) The number of Lines of Code for each
method

CAUGHT The total number of exception class in
each method are caught it.

Halsted Difficulty (D) The level of difficulty for
understanding a method

Halsted Effort (E) The level of effort for understanding a
method

Halsted Length (N) The number of operator and operands
in each method

Number of Type
parameter(NTP)

The total number of types of
parameters for every method

STAT The total statement for every method

THROWS The number of exception class it
declares in "throws" clause

Halsted Volume (V) Size of the method, it is defined as
N*log(n).

v(g) Cyclomatic complexity, it is the
number of operations the method will
perform, and the time spent

 Journal of Theoretical and Applied Information Technology
30th June 2024. Vol.102. No. 12

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5026

The features have been optimized in the three
datasets, and they deal with common features in the
dataset as their number was optimized to 20
features, including: coverage, covered instruction,
missed instructions, total instructions, batch, call,
called, calledt, executable statements (EXEC), line
of code (LOC), caution, halsted difficulty (D),
halsted effort (E), halsted length (N), number of
parameters (NP), number of type parameters
(NTP), stats, throws, halsted volume (V), and v(g).

Phase2: Build the dataset
Data preparation is one of the basic operations

of preparing data and preparing it for work, as it
includes data processing, cleansing, validation,
transformation and making it suitable for use and
analysis of results. The data were collected from
three datasets (Common Utils For Rapied dataset,
JSOUP dataset, and junit dataset), each dataset
extracted from different Open-Sources.

Therefore, it has different characteristics and
domain from the other, as each dataset has a set of
different metrics from the other so we selected 20
features because it the common in three datasets.
After selecting the metrics, the dataset had missing
values so it has been removed, and the necessary
values that have the effect of reducing test cases
were calculated using the Understand tool edition
6.1 to calculate the value of metrics to use it.

To build the datasets, we used the understand
tool Edition 6.1 to measure the metrics for each test
case in the dataset. This tool is an integrated
development environment (IDE). It is able to
analyze and understand the source code by
calculating the selected metrics (Understand, 2024).
In this paper deals with three datasets that have
different features and instances.

The first dataset is called Common Utils the
Rapied dataset which contains a low number of test
cases; the number of test cases is 437. The scorned
dataset is JSOUP dataset which contains 665 test
cases. A third dataset has been added, which is the
junit dataset. It contains a high number of test
cases, 1269 test cases. Thus, the test cases in the
datasets were applied using deep learning
algorithms to detect the redundancy of test cases.
The three collected datasets are different in terms of
the number of lines in code for each test case, the
number of coverages, the number of covered
instructions, the number of total instructions, and
the number of calls. Table 3 contains information
about these datasets.

Phase 3: Apply deep learning algorithms
Through the use of deep learning algorithms,

the original test cases were reduced to the smallest

set of test cases that covered the source code. In this
phase, four deep learning algorithms were applied,
including the convolutional neural network (CNN),
deep belief network (DBN), deep neural network
(DNN), and long short-term memory (LSTM).

While previewing test cases datasets, there are
several redundant test cases in it. For the purpose of
reducing time spent, cost, and effort, the number of
test cases should be reduced.

The CNN, DBN, DNN, and LSTM algorithms
are applied to the three datasets. For example, apply
the CNN algorithm to the Common Utils for
Rapied dataset (D1), the JSOUP dataset (D2), the
junit dataset (D3), and so on for the rest of the
algorithms. These algorithms are used to detect and
identify which test case in the datasets is redundant
with another test case. In this paper, these
algorithms will identify redundant test cases based
on a set of features (metrics) of test cases in the
source code.

Each algorithm has different settings, but in
general, what distinguishes deep learning is the
hidden layer, as it performs mathematical
calculations and transactions within each algorithm,
so it is necessary to choose the number of hidden
layers carefully. The number of hidden layers is
associated with the percentage of accuracy, as many
experiments were conducted to carefully choose the
number of hidden layers to increase the percentage
of accuracy. The experiment was carried out on a

Table 3: Dataset Description

Matrix Name

Common
Utils For
Rapied

JSOUP

Junit

Number of
Test Case

437

665

1269

Number of
coverage

73 44 124

Number of
covered
Instruction

115 10 29

Number of
missed
instruction

48 31 48

Number of
total
instruction

129 50 153

Number of
call

61 4 359

 Journal of Theoretical and Applied Information Technology
30th June 2024. Vol.102. No. 12

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5027

number of hidden layers at 1, 3, 5, 8, based on the
highest accuracy we obtained when the number of
hidden layers equals three.

When applying deep learning algorithms, it is
necessary to define epochs, which represent the
hyper parameter that describes how many times the
algorithm must repeat a training dataset
(Papadomanolaki et al., 2016). After one epoch, the
internal model parameters have been updated for
each sample in the training dataset. Each epoch is
made up of one or more batches (Papadomanolaki
et al., 2016). In this paper, we applied the deep
learning algorithm with 3000 epochs, which means
the model will be updated 3000 times in one epoch,
and the batch size is 300 batches at a time. The
primary reason we use the sigmoid function is that
it exists between 0 and 1. Therefore, it's specifically
used for models in which we should predict the
opportunity as an output. Since the opportunity for
something exists simplest between the varieties of 0
and 1, sigmoid is the proper choice.

The activation function is differentiable, that
means the slope will be discovered of the sigmoid
curve at any point; it is monotonic, but the
function’s by-product is not. The logistic sigmoid-
for the activation function- can motivate a neural
network to get caught up in the training time. The
softmax function is a more generalized logistic
activation function that is used for multiclass
classification. Finally, the sigmoid function curve
seems like an S-shape.

This phase is very important because the results
obtained will be used in the next phase. It shows the
ability of deep learning algorithms to detect
redundancy in test cases. Thus, after applying the
deep learning algorithms to the three datasets, the
number of reduced test cases per dataset is shown.
When applying DL algorithms, we must divide the
datasets into training and testing data. The common
Utils for Rapied dataset uses 68% for training and
32% for testing (297 instances for training and 140
instances for testing). The JSOUP dataset uses 45%
for testing and 55% for training (300 instances for
testing and 365 instances for training). junit dataset,
using 23% for testing and 77% for training (292
instances for testing and 977 instances for training).

Phase 4: Reduce the test case dataset
Building the proposed approach model in the

Knime tool is the most important step in reducing
the number of tests because all subsequent
operations on the test case depend on the model.
Once the model is completed the efficiency of the
test cases generated by the model increases.

The proposed approach model is generated to
create reduced test cases. The difficulty of creating
test cases depends on the size of the program, as it

is difficult to create test cases for complex systems
such as neural networks without automation. If the
dataset is very large, this usually means that the
number of test cases is very large, or even infinite.
However, as the quality of the system improves, it
needs to identify good test cases to help the
evaluators find as many defects as possible in the
system at a suitable cost [37].

This phase shows the number of test cases after
applying deep learning algorithms. We show the
datasets after removing the redundant test cases, as
a dataset will be obtained for each algorithm. For
example, after applying the CNN algorithm to the
three datasets, new datasets will be obtained, which
are the reduced D1 dataset using CNN, the reduced
D2 dataset using CNN, and the reduced D3 dataset
using CNN. Thus, these algorithms are ready to be
compared to determine which algorithm is more
effective in detecting redundant test cases.

Phase 5: Evaluate the test cases
In the evaluation phase, the results obtained are

collected to ensure that they have achieved the
objectives that were identified or not, and
evaluation is considered essential to ensuring the
effectiveness and efficiency of the proposed
approach.

In this phase, the reduced datasets using deep
learning algorithms are evaluated to determine
which algorithm is best suited for detecting
redundant test cases. There are several techniques
that are used to evaluate the performance of results,
such as accuracy, error rate, complexity, time, and
test coverage.

Performance measures techniques:
Accuracy: This is the ratio of the number of

accurate predictions out of all the predictions; it is
given as a percentage. In general, the number of
samples to be matched is divided by the number of
all samples; the higher the number, the better the
classifier. In this paper, the accuracy values are
posted from 0 to 1, and then they are converted into
a percentage value from 1 to 100.

(1)

Complexity time: It expresses the amount of

time a system, code, or algorithm takes to run. That
is the time required to process and get results within
a given number of inputs. There are different types
of complexity time used, such as linear time,
constant time, and polynomial time.

Test coverage: this is a specific type of
systematic and sequential test in which each line of
code is evaluated individually. As a type of

 Journal of Theoretical and Applied Information Technology
30th June 2024. Vol.102. No. 12

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5028

software testing, test coverage is done in the
category of technical testing methods rather than
as part of an overall strategy of code.

Phase 6: Analysis the result
In the last stage, the accuracy, complexity,

time, and coverage for each deep learning
algorithm in detecting the redundancy of test
cases will be calculated.

First of all, the deep learning algorithms that
were used will be compared, including CNN,
DBN, DNN, and LSTM, to determine which
algorithms are best in terms of accuracy, so the
higher the percentage, the better the results.

Based on terms of complexity and time,
depend on the low percentage. That is, the lower
percentage for executing the code is the better
algorithm than other algorithms. Based on terms
of test coverage, depend on the high percentage.
That is, with the highest percentage of covered
test cases, it is the better algorithm than other
algorithms.

4.2 Discussion the result

We applied a deep learning algorithm to the
KNIME tool to detect the redundancy of test
cases. We evaluated the algorithms based on three
techniques: accuracy, test coverage, and
performance time, which will be summarized in
detail below.

4.2.1: Accuracy
Accuracy is expressed as the number of times

the classifier's answer was correct. The accuracy
scale was used in our paper because it is one of the
most widespread criteria, and most studies depend
on the accuracy criterion to measure the results that
have been reached [38].

Table 4 summarizes the accuracy rate of each
algorithm in the three datasets for redundancy
detection of test cases.

As noted in Table 4, shown is the accuracy

statistic for CNN, DBN, DNN, and LSTM on three
data sets (Common Utils for Rapied, JSOUP, and
Junit).

Based on the Common Utils for Rapid dataset,
the most accurate is 83.57% in the DNN algorithm,

with 117 correct classifications out of 140
instances, while the lowest percentage of accuracy
is 78.57% based on the LSTM algorithms.

As for the JSOUP dataset, the CNN and DNN
algorithms each had the same value of accuracy,
which equaled 83.33%; while the lowest percentage
of accuracy is 76% based on LSTM algorithms.

 In the Junit dataset, the accuracy rate reached
80.47% in the CNN algorithm, where the number
of correct classifieds reached 192 out of 292, while
the lowest percentage of accuracy was 69.86%
based on the LSTM algorithms.

4.2.2: Test Coverage
Test coverage is one of the methods used to test

the source code of software. We used the test
coverage to find out whether removing redundant
test cases affects the coverage rate of the source
code or not. By using Eclipse for Java code
coverage, we depended on the EclEmma feature.

Table 4: Dataset description

Data
set

Algorith
m

Accuracy

of
classif
y

Correct

Wrong

Commo
n Utils
For
Rapied

CNN 79.286% 140 111 29

DBN 81.42% 140 114 26

DNN 83.57% 140 117 23

LSTM 78.57% 140 110 30

JSOUP

CNN 83.33% 300 250 50

DBN 82.66% 300 248 52

DNN 83.33% 300 250 50

LSTM 76% 300 228 72

Junit

CNN 80.47% 292 235 57

DBN 78.08% 292 228 64

DNN 76.71% 292 224 68

LSTM 69.86% 292 204 88

 Journal of Theoretical and Applied Information Technology
30th June 2024. Vol.102. No. 12

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5029

As shown in Table 5, the percentage of the

coverage for CNN was 37.5% before test case
reduction, but after the test case reduction, it was
33.7%. It took 3.26 seconds less than before
coverage, so it covered 442 test cases out of the
2371 test cases. As for the DBN algorithm, the
percentage test coverage before reduction is 1.5%,
but after covering 442 test cases out of 2371, it got
a 0.9% percentage.

After test coverage, it takes 3.601 seconds to
perform. We also note that the DNN and LSTM
algorithms kept the percentage of test coverage
before and after reduction unchanged since the
DNN is 22.6% and the LSTM is 66.3%, as the time
for DNN before and after reduction was 2.0
seconds and for LSTM before and after reduction
was 2.3 seconds.

1.2. Performance time

The performance time it expresses for the time
taken to execute the deep learning algorithms
shows the execution time for each block in all
datasets (Common Utils for Rapied, JSOUP, and
Junit). Tables 6 summarize the results for
performance time for each algorithm in the Knime
tool.

 Table 6: Performance time

Algorithm Time

CNN 242 milliseconds

DBN 636 milliseconds

DNN 169 milliseconds

LSTM 194 milliseconds

Table 6 shows the performance time for

deep learning algorithms; the results are distinct
amongst different algorithms. The lowest
percentage for performance time was DNN, as it
reached a value equivalent to 169 milliseconds.
It was followed by the LSTM algorithms, which
took 194 milliseconds. After that, the CNN
algorithm took 242 milliseconds, but the most time-
consuming algorithm is DBN, which is equivalent
to 636 milliseconds.

2. Threat To Validity

The paper presents a case study involving three
deep learning algorithms applied on three test cases
dataset. The purpose of the case study is to affirm
the effectiveness of deep learning algorithms in
pinpointing redundant test cases. Both the deep
learning algorithms and the selected test cases
dataset bear some properties which may affect the
validity of the results and the usability of the
approach. We only choose three deep learning
algorithms which are not enough for drawing
general conclusion about the ability of deep

Table 5: Summary of test Coverage

Dataset

Algorithm

Test coverage before reduction

Test coverage after reduction

Number of instances Percent
age

Time in
second

Number of instances Percent
age

Time in
Second

D1 D2 D3 Total D1 D2 D3 Total

CNN 437 665 1269 2371 37.5% 3.63s 73 87 262 442 33.7% 3.26s

DBN 437 665 1269 2371 1.5% 3.851s 73 87 262 442 0.9% 3.601s

DNN 437 665 1269 2371 22.6% 2.0s 73 87 262 442 22.6% 2.0s

LSTM 437 665 1269 2371 66.3% 2.3s 73 87 262 442 66.3% 2.3s

 Journal of Theoretical and Applied Information Technology
30th June 2024. Vol.102. No. 12

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5030

learning algorithms to reduce the number of test
cases. The small size of datasets utilized in this
study poses a significant threat to validity,
potentially compromising the generalizability and
reliability of the findings. With limited data points,
the risk of sampling bias increases, leading to
skewed results that may not accurately represent the
broader population or phenomena under
investigation.

3. CONCLUSION

The software testing process plays a crucial role
in providing transparent insights into the quality of
software and the potential risks of failure for future
users. This is significant because the early
identification and resolution of software errors
contribute to saving time and money during the
testing phase.

Conducting exhaustive software testing is often
challenging, leading to the selection of a subset of
test cases to ensure comprehensive coverage
without redundancy. Detecting redundant test cases
poses its own challenges, and various techniques,
tools, and algorithms, including those based on
deep learning are employed for this purpose.

This paper focuses on leveraging deep learning
algorithms to identify redundancy in test cases.
Four deep learning algorithms—Convolutional
Neural Network (CNN), Deep Neural Network
(DNN), Deep Belief Network (DBN), and Long
Short-Term Memory (LSTM)—have been chosen
due to the abundance of references and studies
supporting their effectiveness.

The application of these deep learning
algorithms involves three datasets: Common Utils
for Rapied, JSOUP, and Junit. The datasets are
meticulously prepared, with class labels classified
manually to facilitate integration with the KNIME
tool.

The data is divided into testing and training sets,
and each algorithm is applied to the three datasets
using the KNIME tool. The comparison of results is
based on three criteria: accuracy, test coverage, and
performance time.

The paper yielded notable results, with accuracy
being a key focus. The DNN algorithm proved most
accurate for the Common Utils for Rapied dataset,
achieving 83.57%. For the JSOUP dataset, both
CNN and DNN algorithms demonstrated an
identical accuracy of 83.33%. In the case of the
Junit dataset, the CNN algorithm achieved an
accuracy rate of 80.47%.

Examining test coverage revealed interesting
findings. The CNN algorithm exhibited test

coverage of 37.5% before test reduction, which
decreased to 33.7% after reduction. The DBN
algorithm, on the other hand, started with 1.5% test
coverage before reduction and reached 0.9% after
reduction, taking 3.601 seconds to complete.
Meanwhile, the DNN and LSTM algorithms
maintained constant test coverage percentages
before and after reduction—22.6% for DNN and
66.3% for LSTM.
Considering performance time, the DNN algorithm
emerged as the most efficient, boasting the lowest
percentage at 169 milliseconds.

4. REFERENCES

[1] Ibrahim, R., Ahmed, M., Nayak, R., & Jamel,
S. "Reducing redundancy of test cases
generation using code smell detection and
refactoring ". Journal of King Saud University-
Computer and Information Sciences, 32(3),
2020. 367-374.

[2] Bierig, R., Brown, S., Galván, E., & Timoney,
J. "Essentials of Software Testing". Cambridge
University Press. 2021.

[3] Normann, F. "Test Case Selection Based on
Code Changes". Teknisk- naturvetenskaplig
fakultet UTH-enheten. 2019.

[4] Zhang, C., Groce, A., & Alipour, M. A. "Using
test case reduction and prioritization to
improve symbolic execution ". In Proceedings
of the 2014 International Symposium on
Software Testing and Analysis. 2014, pp. 160-
170. ACM.

[5] Alsukhni, A. A. Saifan, and H. Alawneh. "A
new data mining-based framework to test case
prioritization using software defect prediction ".
International Journal of Open Source Software
and Processes (IJOSSP), no. 1, 2017. 21-41.

[6] Rosero, R. H., Gómez, O. S., & Rodríguez, G.
"Regression testing of database applications
under an incremental software development
setting". IEEE, 2017, pp. 18419-18428.

[7] Yuan, X., He, P., Zhu, Q., & Li, X.
"Adversarial examples: Attacks and defenses
for deep learning". IEEE transactions on
neural networks and learning systems. 2019.

[8] Zhou, J., Li, F., Dong, J., Zhang, H., & Hao, D.
"Cost-Effective Testing of a Deep Learning
Model through Input Reduction". In 2020
IEEE 31st International Symposium on
Software Reliability Engineering (ISSRE),
2020, pp. 289-300.

[9] Meçe, E. K., Paci, H., & Binjaku, K. "The
Application Of Machine Learning In Test Case
Prioritization-A Review". European Journal of

 Journal of Theoretical and Applied Information Technology
30th June 2024. Vol.102. No. 12

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5031

Electrical Engineering and Computer Science,
4(1). 2020.

[10] Saifan, A. A. "Test Case Reduction Using Data
Mining Classifier Techniques". JSW, 11(7),
2016, pp.656-663.

[11] Pandey, A., & Malviya, A. K. "Enhancing test
case reduction by k-means algorithm and
elbow method". International Journal of
Computer Sciences and Engineering, 6(6), pp.
299-303, 2018.

[12] Chaurasia, V., Chauhan, Y., &
Thirunavukkarasu, K. "A survey on test case
reduction techniques". International Journal of
Science and Research (IJSR), 2014.

[13] Deng, L. A. "Tutorial survey of architectures,
algorithms, and applications for deep learning".
APSIPA Transactions on Signal and
Information Processing, 2014.

[14] Kapfhammer, G. M. "Regression testing". In
Encyclopedia of Software Engineering Three-
Volume Set (Print), Auerbach Publications,
2010, pp. 893-915.

[15] Alian, M., Suleiman, D., & Shaout, A. "Test
case reduction techniques-survey".
International Journal of Advanced Computer
Science & Applications, 1(7), 2016, pp. 264-
275.

[16] Alzubaidi, L., Zhang, J., Humaidi, A. J., Al-
Dujaili, A., Duan, Y., Al-Shamma, O. &
Farhan, L. "Review of deep learning:
Concepts, CNN architectures, challenges,
applications, future directions". Journal of big
Data, 8(1), 2021, pp. 1-74.

[17] Staudemeyer, R. C., & Morris, E. R.
"Understanding LSTM--a tutorial into Long
Short-Term Memory Recurrent Neural
Networks". arXiv preprint arXiv:1909.09586,
2019.

[18] Hailesilassie, T. "Rule extraction algorithm for
deep neural networks: A review". arXiv
preprint arXiv:1610.05267, 2016.

[19] Johansson, A., & Sandberg, O. "A
Comparative Study of Deep-Learning
Approaches for Activity Recognition Using
Sensor Data in Smart Office Environments",
2018.

[20] Jiang, J., Zhang, J., Zhang, L., Ran, X., Jiang,
J., & Wu, Y. "DBN Structure Design
Algorithm for Different Datasets Based on
Information Entropy and Reconstruction
Error". Entropy, 20(12), 2018, pp. 927.

[21] Salman, A. G., Heryadi, Y., Abdurahman, E.,
& Suparta, W. "Single layer & multi-layer
long short-term memory (LSTM) model with
intermediate variables for weather

forecasting". Procedia Computer Science, 135,
2018, pp. 89-98.

[22] Lee, S., Kim, H., Lieu, Q. X., & Lee, J. "CNN-
based image recognition for topology
optimization". Knowledge-Based Systems, 198,
2020, pp. 105887.

[23] Krizhevsky, A., Sutskever, I., & Hinton, G. E.
"Imagenet classification with deep
convolutional neural networks". Advances in
neural information processing systems, 25,
2012, pp.1097-1105.

[24] Malhotra, P., Vig, L., Shroff, G., & Agarwal,
P."Long short-term memory networks for
anomaly detection in time series". In
Proceedings, Vol. 89, 2015, pp. 89-94.

[25] Paszke, A., Chaurasia, A., Kim, S., &
Culurciello, E. "Enet: A deep neural network
architecture for real-time semantic
segmentation". arXiv preprint
arXiv:1606.02147. 2016

[26] Prasetio, M. D., Hayashida, T., Nishizaki, I., &
Sekizaki, S. "Deep belief network optimization
in speech recognition". In 2017 International
Conference on Sustainable Information
Engineering and Technology (SIET). IEEE,
2017, pp. 138-143.

[27] Li, H. "Deep learning for natural language
processing: advantages and challenges".
National Science Review. 2017.

[28] Vargas, R., Mosavi, A., & Ruiz, R. "Deep
learning: a review". Advances in Intelligent
Systems and Computing. 2017

[29] Saifan, A. A., & Al Smadi, N. "Source code-
based defect prediction using deep learning and
transfer learning". Intelligent Data Analysis.
23(6), 2019, pp. 1243-1269.

[30] Dildar, M., Akram, S., Irfan, M., Khan, H. U.,
Ramzan, M., Mahmood, A. R., & Mahnashi,
M. H. "Skin Cancer Detection: A Review
Using Deep Learning Techniques".
International journal of environmental
research and public health, 18(10), 2021,
pp.5479.

[31] Altaiy, M., YILDIZ, İ., & Bahadır, U. Ç. A. N.
"Malware detection using deep learning
algorithms". AURUM Journal of Engineering
Systems and Architecture, 7(1), 2023, pp.11-
26.

[32] Li, N., Francis, P., & Robinson, B. "Static
Detection of Redundant Test Cases: An Initial
Study". In 19th International Symposium on
Software Reliability Engineering. IEEE, 071-
9458/08, 2008.

[33] Nagar, R., Kumar, A., Kumar, S., & Baghel, A.
S. "Implementing test case selection and

 Journal of Theoretical and Applied Information Technology
30th June 2024. Vol.102. No. 12

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5032

reduction techniques using meta-heuristics". In
2014 5th international conference-confluence
the next generation information technology
summit (Confluence). IEEE, 2014. pp. 837-
842.

[34] Saputra, M. C., Katayama, T., Kita, Y.,
Yamaba, H., Aburada, K., & Okazaki, N.
"Measuring Redundancy Score for Test Suite
Evaluation by Using Test Cases Matching
Approach". Journal of Robotics, Networking
and Artificial Life. 2021.

[35] Wang, H., Yang, K., Zhao, X., Cui, Y., &
Wang, W. "Contribution-based Test Case
Reduction Strategy for Mutation-based Fault
Localization". DOI reference number:
10.18293/SEKE2023-180. 2023 .

[36] Vuori, M. "About metrics and reporting in
model-based robot assisted functional testing.
Project report". 2014, pp. 13.

[37] Saifan, A., & Dingel, J. "Model-based testing
of distributed systems". Technichal report,
2008, pp.548.

[38] Saifan A. A., E. Alsukhni, H. Alawneh and A.
Al-Sbaih, “Test case reduction using data
mining technique,” International Journal of
Software Innovation (IJSI), vol. 4, no. 4, pp.
56–70, 2016.

