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ABSTRACT 
 

Software testing encompasses the examination of various data scenarios to assess output and observe 
software behaviour. However, comprehensive testing of all software cases poses challenges due to its 
intricate and complex nature. This paper is dedicated to the identification of redundant test cases through 
the application of deep learning techniques. 
Four distinct deep learning algorithms—Convolutional Neural Network (CNN), Deep Belief Network 
(DBN), Deep Neural Network (DNN), and Long-Term Memory (LSTM)—were employed in this study. 
These algorithms were applied to three datasets: Common Utils for Rapied, JSOUP, and Junit. The 
outcomes affirm the effectiveness of deep learning algorithms in pinpointing redundant test cases. The 
results demonstrated that the deep neural network (DNN) is able to detect repeated test cases, which 
ultimately leads to fewer test cases. Compared with other algorithms of deep learning algorithms, it was 
found that the deep neural network (DNN) is able to cover the test cases, and it has reached a relatively 
high accuracy, with a result of 82.66% 

Keywords: Test Case Reduction, Redundant Test Cases, Deep Learning, Deep Neural Network, Deep 
Belief Network, Convolutional Neural Network, Long-Term Memory. 

 
  
1. INTRODUCTION  

Software testing is considered one of the 
priorities for developers and programmers in 
companies; it aims to detect faults and defects in 
order to treat them. It is difficult to determine 
whether the software works in all circumstances 
and cases, as it is necessary to identify the cases for 
testing to show the conditions in which the software 
works and the conditions in which it does not work 
to treat them later [1]. 

Software testing includes defining specific 
test cases and applying them in different 
environments based on certain rules, as they are 
selected so that they can cover the largest number 
of test cases (Test Coverage), ensuring that they 
cover all system requirements, and ensuring the test 
cases are not repeated [2]. A system must be tested 
for errors during system testing by testing all cases 
in the system to ensure its correctness. However, 
testing all cases is time-consuming, costly, and 
complicated [3], so it is better to build a system 

with a small and effective number of test cases and 
not rely on random tests [4]. 

Redundant test cases negatively affect the 
testing process of the software, as when testing the 
test cases, they are checked again as if they were 
being tested for the first time, thus leading to 
serious consequences in terms of time and cost in 
the testing [5]. 

Regression testing is an important topic in 
test case reduction. It is a type of software testing 
that aims to ensure that modifications to the 
program have not negatively affected its 
functionality; such modifications can be adding a 
new feature, fixing bugs, or even fixing 
performance problems. After this kind of 
modification, we should test the modified system in 
the test cases fully or partially to ensure that the 
new modifications work well [6]. 

In the past few years, there has been an 
interest in deep learning research and its 
applications. [7] Noted that deep learning is 
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considered one of the fields of machine learning, as 
the computer is learning to do business and solve 
problems, learning from experience and without 
prior training. [8] Proved in their study that using 
different types of deep learning algorithms are 
very efficient in reducing the number of test 
cases up to 4.6%. 

There are several machine learning 
algorithms were applied in reducing test cases in 
the literature including: including K-nearest 
Neighbors (KNN) [9], Naïve based [10], K-
means [11, 38], and dynamic domain reduction 
(DDR) [12]. However, in this paper, we used 
deep learning algorithms to detect whether a test 
case is redundant or not. This choice was made 
due to the widespread use of deep learning in 
various fields and the lack of studies on how 
deep learning algorithms can detect and then 
reduce the number of test cases. The main 
contribution of this paper is to detect redundant 
test cases using deep learning algorithms. In 
addition, to evaluate the results that were 
reached based on accuracy, performance time, 
and test coverage.   

Based on the research purpose, and 
after finishing this research, we will be able to 
answer the following two questions: 

 How much it is effective of using deep 
learning algorithms to detect and 
reduce the redundant test cases? 

 What is the appropriate deep learning 
algorithm that can be used in test case 
reduction? 

 
2. BACKGROUND  

 In this section, the background of the 
research will be clarified, as it is divided into two 
main sections: deep learning and test case 
reduction. 

2.1 Deep Learning 
Deep learning is divided into three main 

categories: unsupervised deep learning, supervised  
In unsupervised deep learning networks 

(generative learning), it is done by giving the 
training data, but the outputs are not specific and 
unknown. This is done by applying a deep learning 
algorithm to present the outputs, where only the 
data are given and it calculates to provide the 
outputs. Hybrid deep learning resembles a mixture 
of unsupervised and supervised learning; it deals 
with an interactive environment and learns from its 
mistakes; it is like Facebook. In Google and 
YouTube, for example, if you like to read many 
articles from a certain site, it will show you ads 
from the site itself; if it finds the opposite, it will 

not show you anything about the site, meaning that 
it learns from your behavior [13]. 
 

In this paper, we discuss Convolutional Neural 

Network (CNN), Deep Belief Network (DBN), 
Deep Neural Network (DNN), and Long-Term 
Memory (LSTM). These algorithms were chosen 
due to the availability of more references and 
studies for them than other algorithms. 

There are many differences between the 
algorithms. Table 1 shows some differences 
between deep learning algorithms based on 
different criteria: 

2.2 Test case reduction  

During the testing of the system, it is 
difficult to conduct testing of all test cases since 
adding a new requirement to the system requires a 
new system test, and to maintain the efficiency and 
quality of the system, it is necessary to check the 
system. The system is usually tested using 
regression testing.  

The regression test is a type of testing for 
the system, so that the system is tested after the 

Table 1: Differences Between Deep Learning Algorithms 

Criteri
a/ 
Algorit
hms 

CNN LSTM DNN DBN Ref 

Aims Ability to 
detect 
features 
automatic
ally thus 
reduces 
the 
number of 
trainable 
network 
parameter
s 

Predicting, 
classifying, 
and 
processing 
based on 
time series 
data.  

Data 
processin
g in 
complex 
and 
difficult 
ways, 
using 
mathema
tical 
modeling
.
  

It aims at 
how to 
represent 
features, so 
that it solves 
many tasks 
simultaneousl
y based on 
the 
representation 
of common 
features.  

[16] 
[17] 
[18] 
 

Numbe
r of 
Layer 

Three 
layers 
(convoluti
onal 
layers, 
pooling 
layers, 
and fully 
connected 
layers)
  

Three layer 
(gate) Input 
gate, output 
gate, and 
forget gate.
  

Input 
layer, 
several 
hidden 
layers 
and 
output 
layers). 
 

Input layer, 
several 
hidden-layer 
neurons, and 
output layer.
  

[19] 
[20] 
[21] 

Examp
les of 
applica
tions 
  
  
 
  

1. image 
recognitio
n 
2. 
Extended 
for NLP, 
speech 
processing 

Anomaly 
detection in 
network 
traffic  
 

Real-
Time 
Semantic 
Segment
ation 

speech 
popularity 
problems 

[22] 
[23] 
[24] 
[25] 
[26] 
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modification, as it is confirmed that changing the 
code on the program does not affect the 
functionality of the system but rather works well 
after making the required adjustments and 
modifications, to correct existing faults and errors, 
or to change one of the features in the current 
system, as it is considered a criterion of confidence 
for developers because it makes sure that there are 
no unexpected side effects after making the 
modification [10, 14]. 

The authors in [15] Pointed out that there 
are many techniques of regression test case 
reduction that are classified based on coverage, 
requirement, genetic algorithms, slicing, hybrid 
algorithms, fuzzy logic, greedy algorithms, and 
clustering. In general, the testing process helps in 
examining the appropriate software, but it is 
difficult to test all cases of the system due to its 
large size. It needs a lot of money and time. It is 
necessary to reduce the number of test cases to the 
minimum so that it covers all defects in the least 
amount of time. 

3. LITERATURE REVIEWS 

  The following section provides a summary 
of previous studies, which is divided into sections, 
the deep learning and test case reduction.  
 

3.1   Deep Learning  

Deep learning has been used in many 
smart technologies and applications, such as self-
driving cars, facial recognition systems, image 
recognition, NLP processing, and speech 
recognition. Here we focused on applications 
processed using deep learning algorithms. 

It has been noted by Li [27] that one of the 
applications uses deep learning for natural language 
processing. The study shows that the performance 
is significantly superior to traditional techniques, 
and deep learning relies on a strong mechanism for 
classifying the natural language, which reflects 
positively on the results. [28] Noted that another 
application includes image processing in the 
medical field and biometrics. The study turns out 
that the use of deep learning in medical image 
processing has improved more than before, as it has 
achieved high accuracy in image processing results 
and reduced the error rate from 10% to 20%. 

The authors in [29] Conducted a study 
aimed at predicting defects in projects based on 
static metrics using the Deep Belief Network 
(DBN) algorithm and transfer learning. The 
methodology of the study relies on three steps: first, 

data collection and processing; second, building a 
model to improve the prediction of errors in 
projects based on DBN and transfer learning; and 
third, building a defect prediction model. They 
collected 13 datasets from 10 open-source projects 
written in the Java. 

Programming language. The data set 
contains 20 measures. The methodology of the 
study uses the matrix as an input feature, such as 
WMC, DIT, NOC, CBO, etc. After conducting the 
experiment, it relied on F-measure measurement in 
the confusion matrix. After that, the proposed 
model was evaluated based on three settings, which 
are DBN_Only, T_DBN, and T_DBN [SMOTE]. 
Based on F-measures, DBN_Only is 4.9%, T_DBN 
is 3.6%, and T_DBN [SMOTE] is 5.1%. Therefore, 
the proposed model with three settings is better 
than the model of TCA/TCA+ techniques. 

Another study conducted in [30] indicated 
the detection of the incidence of skin cancer using 
deep learning algorithms. Detecting skin cancer 
depends on the image that is taken. To extract the 
features in the image and distinguish whether there 
is skin cancer or not, this study used artificial 
neural networks (ANN), convolutional neural 
networks (CNN), Kohonen self-organizing neural 
networks (KNN), and the Radial Basis Function 
Network (RBFN) for image classification in the 
detection of melanoma. The study showed that each 
of the algorithms has advantages and disadvantages 
for detecting skin cancer, but the CNN algorithm 
got the best results in classifying the image. 

 The study in  [31] aims to use deep 
learning algorithms to detect malware in order to 
determine the most effective algorithms for 
malware detection, the study used three deep 
learning algorithms: Convolutional Neural Network 
(CNN), Long Short-Term Memory (LSTM), and 
Deep Neural Network (DNN). The results of the 
study conclude the superiority of deep learning 
algorithms for malware detection, and CNN 
algorithm was the best for detection, followed by 
LTSM and finally DNN; the accuracy rate reached 
to 96% for all algorithm, the Recall rate reached to 
97%, and Precision rate reached to 97%. 

3.2   Test Case Reduction  

There are several techniques that help 
detect repeat test cases; this section reviews some 
studies on redundant test case detection. 

The authors in [32] conducted a study to 
use static techniques in reducing test cases. ABB 
was used to detect redundancy test cases as it 
provides information on whether a test case can be 
deleted or combined with other test cases. An 
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experiment was conducted on a group of test cases 
that reached 6246 procedures, where 4218 test 
cases and 1637 test units were found. Three 
measures were used to evaluate the similarity in the 
test cases of the proposed ABB. It was concluded 
that 7%–23% of the test cases are considered 
redundant, either to be deleted or combined with 
other test cases. 

Later, a comparison was done between the 
Tester-Assisted method and the traditional method 
for detecting the redundancy of test cases; it found 
that the traditional method was less efficient and 
effective than the Tester-Assisted method. 

Another think about conducted by [33] 
used the hybrid Particle Swarm Optimization (PSO) 
to select which test cases require execution, Java 
was used to implement the suggested algorithm, it 
gives an input, and this method returns the number 
of predicted test cases, and the number of particles 
needed for the test cases. The results of the study 
indicated that the PSO algorithm provides the best 
and most effective result to reduce the number of 
test cases, it reached a rate equivalent to 50%. 

According to [1] the purpose of this study 
was to identify and refactor the source code to 
reduce the redundancy in the development of 
software test cases by using code on Android 
applications, this method helps to make changes in 
the source code by improving the quality and 
reducing the redundancy in the building of the test 
cases by making it easier to read the source code. In 
this study, the application was Alogcat (Android) 
and DART (Eclipse) was implemented as an add-on 
tool that helps reduce the number of test cases. 
According to the study, DART reduces the number 
of test cases by 28% as it can cover 5 of the test 
cases. 

Measurement of the redundancy Score in 
test cases, since the test cases are implemented 
using the same instructions with the same line of 
code and require high time and cost to implement, a 
test case matching approach was proposed by [34], 
the study was conducted on a test set of duplicate 
test cases, it was performed on two Java programs 
(student grades and quadratic function). The test 
case matching approach measured the redundancy 
score on both test groups, and the detection of the 
redundant test cases was 37% and 67% 
respectively. 

The authors in [35] Indicated in their study 
that aimed to mutation-based fault localization 
(MBFL) using Contribution-based Test Case 
Reduction Strategy (CBTCR), due to the high cost 
when implementing a large mutation, (CBTCR) 
value of each test case is measured and it selected 

based on the value. Depending on Top-N and MAP 
metrics, CBTCR was is best than MBFL such as 
FTMES and IETCR. In addition CBTCR reduce 
cost by 85.43%.   

4. RESEARCH METHODOLOGY  

This section provides an overflow of the 
phases used to implement our approach. It is used 
to detect whether the test case is a redundant or not 
and then reduce test cases using deep learning 
algorithms. Below, each phase will be explained in 
details. Figure 1 represents the approach followed 
to detect the redundancy of test cases using deep 
learning algorithms.  

The details of this process will be 
discussed in the next section. 

 

 
 

4.1   Research Plan  

Phase1: Collect the source code with test case 
and derivation metrics 

This phase consists of several parts: 
collecting the Java open-source codes that have test 
cases, identify the metrics of test cases that 
represent the features, and the extract the values of 
the metrics from the test cases. The approach starts 
with collecting a set of under-tested open-source 
code written in Java programming language. After 
that, the codes were run on the Eclipse tool, which 
is an integrated development environment (IDE), to 

Figure 1: Research Methodology. 
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make sure they were working correctly. We 
selected applications that already have test cases. 
Moreover, Junit is used to automatically generate a 
set of test cases for any given input class. 

This process used to increase the number of test 
cases and to make sure that we have redundant test 
cases.  After that, we identified the metrics that 
represents the feature for test cases. 

Table 2 contains a description of the metrics 
used to build the dataset [36]. 

 

 
 
 
 
 

 

Table 2: Dataset Metrics 

Matrix Name Matrix Description  

Test Case Number of classes and method 
names 

Class Label Retrieve the status of test cases 
whether it is redundancy or not 

Coverage The Percentage of test cases 
covered 
Covered 

Covered 
Instruction 

The number of code Instruction 
executed and covered 

Missed 
Instructions 

The number of code Instruction 
that not executed and covered 

Total 
Instructions
  

The number of codes executed and 
non- executed 

BRANCH
  

The number of Branch statement 
in each method that Coverage 

CALL  The number of total call 
expression for each method 

CALLED  The number of methods that called 
Whether it is override or overload. 

CALLEDt The number of methods that called 
Whether it is override or overload by 
time. 
 

Executable statements 
(EXEC) 

The number of Executable statements 
for each method 
 

Line Of Code (LOC) The number of Lines of Code for each 
method 

CAUGHT   The total number of exception class in 
each method are caught it. 

Halsted Difficulty (D) The level of difficulty for 
understanding a method 

Halsted Effort (E)  The level of effort for understanding a 
method 

Halsted Length (N)  The number of operator and operands 
in each method 

Number of Type 
parameter(NTP)  

The total number of types of 
parameters for every method 
 

STAT   The total statement for every method 

THROWS The number of exception class it 
declares in "throws" clause 

Halsted Volume (V) Size of the method, it is defined as 
N*log(n). 

v(g) Cyclomatic complexity, it is the 
number of operations the method will 
perform, and the time spent 
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The features have been optimized in the three 
datasets, and they deal with common features in the 
dataset as their number was optimized to 20 
features, including: coverage, covered instruction, 
missed instructions, total instructions, batch, call, 
called, calledt, executable statements (EXEC), line 
of code (LOC), caution, halsted difficulty (D), 
halsted effort (E), halsted length (N), number of 
parameters (NP), number of type parameters 
(NTP), stats, throws, halsted volume (V), and v(g). 

 
Phase2: Build the dataset 
Data preparation is one of the basic operations 

of preparing data and preparing it for work, as it 
includes data processing, cleansing, validation, 
transformation and making it suitable for use and 
analysis of results. The data were collected from 
three datasets (Common Utils For Rapied dataset, 
JSOUP dataset, and junit dataset), each dataset 
extracted from different Open-Sources.  

Therefore, it has different characteristics and 
domain from the other, as each dataset has a set of 
different metrics from the other so we selected 20 
features because it the common in three datasets. 
After selecting the metrics, the dataset had missing 
values so it has been removed, and the necessary 
values that have the effect of reducing test cases 
were calculated using the Understand tool edition 
6.1 to calculate the value of metrics to use it. 

To build the datasets, we used the understand 
tool Edition 6.1 to measure the metrics for each test 
case in the dataset. This tool is an integrated 
development environment (IDE). It is able to 
analyze and understand the source code by 
calculating the selected metrics (Understand, 2024). 
In this paper deals with three datasets that have 
different features and instances. 

The first dataset is called Common Utils the 
Rapied dataset which contains a low number of test 
cases; the number of test cases is 437. The scorned 
dataset is JSOUP dataset which contains 665 test 
cases. A third dataset has been added, which is the 
junit dataset. It contains a high number of test 
cases, 1269 test cases. Thus, the test cases in the 
datasets were applied using deep learning 
algorithms to detect the redundancy of test cases. 
The three collected datasets are different in terms of 
the number of lines in code for each test case, the 
number of coverages, the number of covered 
instructions, the number of total instructions, and 
the number of calls. Table 3 contains information 
about these datasets. 

Phase 3: Apply deep learning algorithms 
Through the use of deep learning algorithms, 

the original test cases were reduced to the smallest 

set of test cases that covered the source code. In this 
phase, four deep learning algorithms were applied, 
including the convolutional neural network (CNN), 
deep belief network (DBN), deep neural network 
(DNN), and long short-term memory (LSTM). 

While previewing test cases datasets, there are 
several redundant test cases in it. For the purpose of 
reducing time spent, cost, and effort, the number of 
test cases should be reduced. 

The CNN, DBN, DNN, and LSTM algorithms 
are applied to the three datasets. For example, apply 
the CNN algorithm to the Common Utils for 
Rapied dataset (D1), the JSOUP dataset (D2), the 
junit dataset (D3), and so on for the rest of the 
algorithms. These algorithms are used to detect and 
identify which test case in the datasets is redundant 
with another test case. In this paper, these 
algorithms will identify redundant test cases based 
on a set of features (metrics) of test cases in the 
source code.  

Each algorithm has different settings, but in 
general, what distinguishes deep learning is the 
hidden layer, as it performs mathematical 
calculations and transactions within each algorithm, 
so it is necessary to choose the number of hidden 
layers carefully. The number of hidden layers is 
associated with the percentage of accuracy, as many 
experiments were conducted to carefully choose the 
number of hidden layers to increase the percentage 
of accuracy. The experiment was carried out on a 

Table 3: Dataset Description 

 
Matrix Name 

 
Common 
Utils For 
Rapied 

 
JSOUP 
 

 
Junit 

 
 
Number of 
Test Case 
 
 

 
 
437 

 
 
665 

 
 
1269 

Number of 
coverage 

73 44 124 

Number of 
covered 
Instruction  
 
 

115 10 29 

Number of 
missed 
instruction 
  
 
 

48 31 48 

Number of 
total 
instruction  

129 50 153 

Number of 
call 

61 4 359 
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number of hidden layers at 1, 3, 5, 8, based on the 
highest accuracy we obtained when the number of 
hidden layers equals three. 

When applying deep learning algorithms, it is 
necessary to define epochs, which represent the 
hyper parameter that describes how many times the 
algorithm must repeat a training dataset 
(Papadomanolaki et al., 2016). After one epoch, the 
internal model parameters have been updated for 
each sample in the training dataset. Each epoch is 
made up of one or more batches (Papadomanolaki 
et al., 2016). In this paper, we applied the deep 
learning algorithm with 3000 epochs, which means 
the model will be updated 3000 times in one epoch, 
and the batch size is 300 batches at a time. The 
primary reason we use the sigmoid function is that 
it exists between 0 and 1. Therefore, it's specifically 
used for models in which we should predict the 
opportunity as an output. Since the opportunity for 
something exists simplest between the varieties of 0 
and 1, sigmoid is the proper choice. 

The activation function is differentiable, that 
means the slope will be discovered of the sigmoid 
curve at any point; it is monotonic, but the 
function’s by-product is not. The logistic sigmoid- 
for the activation function- can motivate a neural 
network to get caught up in the training time. The 
softmax function is a more generalized logistic 
activation function that is used for multiclass 
classification. Finally, the sigmoid function curve 
seems like an S-shape. 

This phase is very important because the results 
obtained will be used in the next phase. It shows the 
ability of deep learning algorithms to detect 
redundancy in test cases. Thus, after applying the 
deep learning algorithms to the three datasets, the 
number of reduced test cases per dataset is shown. 
When applying DL algorithms, we must divide the 
datasets into training and testing data. The common 
Utils for Rapied dataset uses 68% for training and 
32% for testing (297 instances for training and 140 
instances for testing). The JSOUP dataset uses 45% 
for testing and 55% for training (300 instances for 
testing and 365 instances for training). junit dataset, 
using 23% for testing and 77% for training (292 
instances for testing and 977 instances for training). 

Phase 4: Reduce the test case dataset  
Building the proposed approach model in the 

Knime tool is the most important step in reducing 
the number of tests because all subsequent 
operations on the test case depend on the model. 
Once the model is completed the efficiency of the 
test cases generated by the model increases. 

The proposed approach model is generated to 
create reduced test cases. The difficulty of creating 
test cases depends on the size of the program, as it 

is difficult to create test cases for complex systems 
such as neural networks without automation. If the 
dataset is very large, this usually means that the 
number of test cases is very large, or even infinite. 
However, as the quality of the system improves, it 
needs to identify good test cases to help the 
evaluators find as many defects as possible in the 
system at a suitable cost [37]. 

This phase shows the number of test cases after 
applying deep learning algorithms. We show the 
datasets after removing the redundant test cases, as 
a dataset will be obtained for each algorithm. For 
example, after applying the CNN algorithm to the 
three datasets, new datasets will be obtained, which 
are the reduced D1 dataset using CNN, the reduced 
D2 dataset using CNN, and the reduced D3 dataset 
using CNN. Thus, these algorithms are ready to be 
compared to determine which algorithm is more 
effective in detecting redundant test cases. 

 
Phase 5: Evaluate the test cases  
In the evaluation phase, the results obtained are 

collected to ensure that they have achieved the 
objectives that were identified or not, and 
evaluation is considered essential to ensuring the 
effectiveness and efficiency of the proposed 
approach. 

In this phase, the reduced datasets using deep 
learning algorithms are evaluated to determine 
which algorithm is best suited for detecting 
redundant test cases. There are several techniques 
that are used to evaluate the performance of results, 
such as accuracy, error rate, complexity, time, and 
test coverage. 

Performance measures techniques: 
Accuracy: This is the ratio of the number of 

accurate predictions out of all the predictions; it is 
given as a percentage. In general, the number of 
samples to be matched is divided by the number of 
all samples; the higher the number, the better the 
classifier. In this paper, the accuracy values are 
posted from 0 to 1, and then they are converted into 
a percentage value from 1 to 100. 

  
(1)  

 
Complexity time: It expresses the amount of 

time a system, code, or algorithm takes to run. That 
is the time required to process and get results within 
a given number of inputs. There are different types 
of complexity time used, such as linear time, 
constant time, and polynomial time. 

Test coverage: this is a specific type of 
systematic and sequential test in which each line of 
code is evaluated individually. As a type of 
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software testing, test coverage is done in the 
category of technical testing methods rather than 
as part of an overall strategy of code. 

 
Phase 6: Analysis the result  
In the last stage, the accuracy, complexity, 

time, and coverage for each deep learning 
algorithm in detecting the redundancy of test 
cases will be calculated. 

First of all, the deep learning algorithms that 
were used will be compared, including CNN, 
DBN, DNN, and LSTM, to determine which 
algorithms are best in terms of accuracy, so the 
higher the percentage, the better the results. 

Based on terms of complexity and time, 
depend on the low percentage. That is, the lower 
percentage for executing the code is the better 
algorithm than other algorithms. Based on terms 
of test coverage, depend on the high percentage. 
That is, with the highest percentage of covered 
test cases, it is the better algorithm than other 
algorithms. 

4.2 Discussion the result  

We applied a deep learning algorithm to the 
KNIME tool to detect the redundancy of test 
cases. We evaluated the algorithms based on three 
techniques: accuracy, test coverage, and 
performance time, which will be summarized in 
detail below. 

 
4.2.1: Accuracy  
Accuracy is expressed as the number of times 

the classifier's answer was correct. The accuracy 
scale was used in our paper because it is one of the 
most widespread criteria, and most studies depend 
on the accuracy criterion to measure the results that 
have been reached [38].  

Table 4 summarizes the accuracy rate of each 
algorithm in the three datasets for redundancy 
detection of test cases. 

 
As noted in Table 4, shown is the accuracy 

statistic for CNN, DBN, DNN, and LSTM on three 
data sets (Common Utils for Rapied, JSOUP, and 
Junit). 

Based on the Common Utils for Rapid dataset, 
the most accurate is 83.57% in the DNN algorithm, 

with 117 correct classifications out of 140 
instances, while the lowest percentage of accuracy 
is 78.57% based on the LSTM algorithms. 

As for the JSOUP dataset, the CNN and DNN 
algorithms each had the same value of accuracy, 
which equaled 83.33%; while the lowest percentage 
of accuracy is 76% based on LSTM algorithms. 

 In the Junit dataset, the accuracy rate reached 
80.47% in the CNN algorithm, where the number 
of correct classifieds reached 192 out of 292, while 
the lowest percentage of accuracy was 69.86% 
based on the LSTM algorithms. 
 

4.2.2: Test Coverage  
Test coverage is one of the methods used to test 

the source code of software. We used the test 
coverage to find out whether removing redundant 
test cases affects the coverage rate of the source 
code or not. By using Eclipse for Java code 
coverage, we depended on the EclEmma feature.  

 
Table 4: Dataset description 

 
Data 
set  

 
Algorith
m 
 
 

 
Accuracy 

 
# of 
classif
y 

 
Correct 

 
Wrong 
 
 
 

Commo
n Utils 
For 
Rapied 

CNN 79.286% 140 111 29 

DBN 81.42% 140 114 26 

DNN 83.57% 140 117 23 

LSTM 78.57% 140 110 30 
 
 

JSOUP 

CNN 83.33% 300 250 50 

DBN 82.66% 300 248 52 

DNN 83.33% 300 250 50 

LSTM 76% 300 228 72 
 
 

Junit 

CNN 80.47% 292 235 57 

DBN 78.08% 292 228 64 

DNN 76.71% 292 224 68 

LSTM 69.86% 292 204 88 
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As shown in Table 5, the percentage of the 

coverage for CNN was 37.5% before test case 
reduction, but after the test case reduction, it was 
33.7%. It took 3.26 seconds less than before 
coverage, so it covered 442 test cases out of the 
2371 test cases. As for the DBN algorithm, the 
percentage test coverage before reduction is 1.5%, 
but after covering 442 test cases out of 2371, it got 
a 0.9% percentage.  

After test coverage, it takes 3.601 seconds to 
perform. We also note that the DNN and LSTM 
algorithms kept the percentage of test coverage 
before and after reduction unchanged since the 
DNN is 22.6% and the LSTM is 66.3%, as the time 
for DNN before and after reduction was 2.0 
seconds and for LSTM before and after reduction 
was 2.3 seconds. 

 
1.2. Performance time   

The performance time it expresses for the time 
taken to execute the deep learning algorithms 
shows the execution time for each block in all 
datasets (Common Utils for Rapied, JSOUP, and 
Junit). Tables 6 summarize the results for 
performance time for each algorithm in the Knime 
tool. 
 
 
 
 
 
 
 
 

 
            Table 6: Performance time 

Algorithm Time 

CNN 242 milliseconds 

DBN 636 milliseconds 

DNN 169 milliseconds 

LSTM 194 milliseconds 

 
Table 6 shows the performance time for 

deep learning algorithms; the results are distinct 
amongst different algorithms. The lowest 
percentage for performance time was DNN, as it 
reached a value equivalent to 169 milliseconds.      
It was followed by the LSTM algorithms, which 
took 194 milliseconds. After that, the CNN 
algorithm took 242 milliseconds, but the most time-
consuming algorithm is DBN, which is equivalent 
to 636 milliseconds. 

2. Threat To Validity 

The paper presents a case study involving three 
deep learning algorithms applied on three test cases 
dataset. The purpose of the case study is to affirm 
the effectiveness of deep learning algorithms in 
pinpointing redundant test cases. Both the deep 
learning algorithms and the selected test cases 
dataset bear some properties which may affect the 
validity of the results and the usability of the 
approach. We only choose three deep learning 
algorithms which are not enough for drawing 
general conclusion about the ability of deep 

Table 5: Summary of test Coverage 

Dataset   
 
         
 
 
              
   
 
 

Algorithm 

 
Test coverage before reduction 

 
Test coverage after reduction 

Number of instances Percent
age  

Time in 
second 

Number of instances Percent
age  

Time in 
Second  

D1 D2 D3 Total   D1 D2 D3 Total   

CNN 437 665 1269 2371 37.5% 3.63s 73 87 262 442 33.7% 3.26s 

DBN  437 665 1269 2371 1.5% 3.851s 73 87 262 442 0.9% 3.601s 

DNN 437 665 1269 2371 22.6% 2.0s 73 87 262 442 22.6% 2.0s 

LSTM  437 665 1269 2371 66.3% 2.3s 73 87 262 442 66.3% 2.3s 
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learning algorithms to reduce the number of test 
cases. The small size of datasets utilized in this 
study poses a significant threat to validity, 
potentially compromising the generalizability and 
reliability of the findings. With limited data points, 
the risk of sampling bias increases, leading to 
skewed results that may not accurately represent the 
broader population or phenomena under 
investigation. 

3. CONCLUSION  

The software testing process plays a crucial role 
in providing transparent insights into the quality of 
software and the potential risks of failure for future 
users. This is significant because the early 
identification and resolution of software errors 
contribute to saving time and money during the 
testing phase. 

Conducting exhaustive software testing is often 
challenging, leading to the selection of a subset of 
test cases to ensure comprehensive coverage 
without redundancy. Detecting redundant test cases 
poses its own challenges, and various techniques, 
tools, and algorithms, including those based on 
deep learning are employed for this purpose. 

This paper focuses on leveraging deep learning 
algorithms to identify redundancy in test cases. 
Four deep learning algorithms—Convolutional 
Neural Network (CNN), Deep Neural Network 
(DNN), Deep Belief Network (DBN), and Long 
Short-Term Memory (LSTM)—have been chosen 
due to the abundance of references and studies 
supporting their effectiveness. 

The application of these deep learning 
algorithms involves three datasets: Common Utils 
for Rapied, JSOUP, and Junit. The datasets are 
meticulously prepared, with class labels classified 
manually to facilitate integration with the KNIME 
tool. 

The data is divided into testing and training sets, 
and each algorithm is applied to the three datasets 
using the KNIME tool. The comparison of results is 
based on three criteria: accuracy, test coverage, and 
performance time. 

The paper yielded notable results, with accuracy 
being a key focus. The DNN algorithm proved most 
accurate for the Common Utils for Rapied dataset, 
achieving 83.57%. For the JSOUP dataset, both 
CNN and DNN algorithms demonstrated an 
identical accuracy of 83.33%. In the case of the 
Junit dataset, the CNN algorithm achieved an 
accuracy rate of 80.47%. 

Examining test coverage revealed interesting 
findings. The CNN algorithm exhibited test 

coverage of 37.5% before test reduction, which 
decreased to 33.7% after reduction. The DBN 
algorithm, on the other hand, started with 1.5% test 
coverage before reduction and reached 0.9% after 
reduction, taking 3.601 seconds to complete. 
Meanwhile, the DNN and LSTM algorithms 
maintained constant test coverage percentages 
before and after reduction—22.6% for DNN and 
66.3% for LSTM. 
Considering performance time, the DNN algorithm 
emerged as the most efficient, boasting the lowest 
percentage at 169 milliseconds. 
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