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ABSTRACT 
 

The study scrutinizes the implementation of the Gated Recurrent Unit within Recurrent Neural Networks for 
constructing nationalistic music. The GRU model demonstrates the capability to algorithmically emulate 
patriotic melodies from original compositions, thereby highlighting the transformational role of machine 
learning in crafting intricate musical structures. The effectiveness of the GRU model is further evaluated 
through the Turing Test, revealing a significant 46.5% misidentification rate. This evidence underlines the 
model's success in producing complex compositions that bear a striking resemblance to human-created 
pieces. Ultimately, these findings contribute to the broader understanding of GRU's potential in innovative 
music composition, thereby facilitating the enhancement of nationalism through the potent medium of music. 
Keywords: Algorithmic Composition, GRU, Nationalistic Music, Turing Test, LSTM 
 
1. INTRODUCTION  
 

Nationalism, a distinct cultural affiliation, 
pervades various spheres including multinational 
firms, health behaviors, and public perceptions [1], 
[2], [3]. However, in many places like Indonesia, 
there is an alarming decline in nationalism, 
attributable to numerous factors. These include the 
commodification within consumer culture [4], 
negligence towards historical artifacts [5], 
insufficient preservation of cultural heritage [6], and 
the manifestation of conflicts and threats in 
individuals' lives [7]. Added to this, the 
reverberations of a global democratic regression 
impacting Indonesian democracy [8] and complex 
social and cultural dynamics intersecting with 
modernization and globalization processes [9] are 
compromising nationalism. 

Amid these challenges, one potent medium to 
rekindle nationalism is music [10]. Music has 
demonstrated its capability to promote nationalism 
or patriotism, by imbuing cultural and national 
values and fostering national identity and pride [11], 
[12], [13]. Music can stimulate the human psyche as 
well as physical changes like pulse rate and breathing 
rhythm [14], [15]. Nationalistic music, crafted 
during periods of autonomy and self-rule, has been 
particularly influential in evoking patriotic 
sentiments and reminding the populace of their 
nation's history and struggles [16]. 

Traditional music composition, though, is an 
intricate, labor-intensive process [17]. Ideation and 
arrangement of elements often become a slog for 
composers. Therefore, a need for alternative and 
innovative approaches in music composition is 
evident, and algorithmic composition provides a 
potential solution [18], [19]. Utilizing patterns and 
principles in note sequences, it is possible to use 
computer algorithms combined with artificial 
intelligence and machine learning techniques to 
largely automate the composition process [20], [21], 
[22]. Examples of algorithm applications for 
automatic musical composition include rule-based 
for Gamelan music [23], Genetic Algorithms for 
creating melodic sequences capable of imitating 
human composition [24], and Neural Networks [25]. 

Advancements in machine learning, particularly 
the Gated Recurrent Unit (GRU) in Recurrent Neural 
Networks (RNNs), have shown promising outcomes 
in the realm of music composition [26], [27], [28], 
[29], [30]. For this research, we aim to use RNN with 
GRU variations to simulate human-like nationalist 
melodies. Specifically, we will explore patterns and 
temporal information found in data sequences of 
Indonesian nationalistic songs and strive to produce 
a melody indistinguishable from human 
compositions. The outcome of this research presents 
an opportunity to enhance the composition of 
nationalist music, contributing to efforts to bolster 
nationalism in contemporary society. 
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2. LITERATURE REVIEW 

This section comprises the literature review 
related to the topic of the research. 

2.1 Nationalistic Music 
Music that is classified as nationalist serves 

as a genre that embodies the cultural, historical, and 
political identity of a nation or specific subgroup 
within a nation. This type of music often 
incorporates traditional musical structures, 
indigenous instruments, and lyrics that express 
nationalistic sentiments. Analyzing nationalist 
music requires examining its distinct characteristics 
and recurring elements while considering the 
cultural and historical context in which it arose. 
Furthermore, studying how music has been utilized 
to promote nationalistic ideology and foster unity 
provides valuable insights into the socio-political 
dynamics of society. In the Indonesian context, 
nationalistic music has played a substantial role in 
cultivating a shared identity among its diverse 
population. This is achieved through the 
incorporation of patriotic compositions such as 
Indonesia Raya and Rayuan Pulau Kelapa [31] 

 
2.2 Algorithmic Composition 

Algorithmic composition relies on 
computational methods to generate music varying 
from traditional composition that depends heavily on 
human intuition and creativity [32]. This technique 
boasts its origins to the mid-20th century with 
pioneers like Iannis Xenakis utilizing algorithms for 
crafting complex musical structures [33]. Later, 
advancements in technology equipped composers to 
delve into computer-programmed compositions, 
incorporating techniques such as rule-based 
grammar and cellular automata [34]. 

The advent of artificial intelligence and 
machine learning ignited significant transformations 
within algorithmic composition. Now, creations 
depend not solely on predetermined rules but can 
also learn from existing musical data [35]. This leads 
to more human-like compositions and has had 
profound impacts on the coupling of music and 
technology. 

 
2.3 Recurrent Neural Network 

The Recurrent Neural Network (RNN) is a 
Neural Network model distinguished by cyclic 
connections between units that allow an 
understanding of sequential data through the 
influence of past inputs on future data. Notably used 
in applications such as speech recognition [36], 
image recognition [37], language translation systems 

[38], text summarization [39], and even sequential 
data like music notation [40]. 

Simply put, the RNN architecture as 
depicted in Figure 1 receives an input x on the time 
dimension t i.e. xt and hidden state h of the previous 
time dimension ht-1. After the computing process is 
done, the system then generates an output value o 
and h on the t time as ot and ht. Hidden state in RNN 
models is used as internal memory, which is capable 
of temporarily storing information received by the 
system at the time t. Despite its storage potentials, 
RNN struggles with the Vanishing Gradient 
Problem, triggering swift changes in gradient values 
[41]. Consequently, alternatives like GRU or LSTM 
are often utilized due to constraints in practical RNN 
application. 

 

 
 
Figure 1: Architecture of the Recurrent Neural Network 

 
2.4 Gated recurrent Unit 

Gated Recurrent Units represent an 
adaptation of the conventional RNN model which 
facilitates the capturing of links across different time 
intervals [42]. The GRU architecture is less complex 
than LSTM, while still exhibiting similar 
functionalities. Differing from the tri-gate system of 
LSTM, GRUs solely integrate two gates and, as 
such, do not necessitate distinct memory cells for 
information preservation. Figure 2 shows the 
architecture of the GRU. 

 
Figure 2: Architecture of the Gated Recurrent Units 

 
Gated Recurrent Units computation 

primarily differs from pure RNN in the calculation 
of the hidden state (ht). Prior to this, the GRU 
calculates three parameters, including two governing 
gates: the reset gate (rt), which manages the blend of 
new inputs with previous information, and the 
update gate (zt) orchestrating how previous 
information is processed further. In an ideal 
scenario, if the reset gate values were 1 and the 
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update gate 0, GRU calculations would parallel pure 
RNN model output. The third parameter (gt) 
represents a temporary hidden state (ℎ̃) unaffected by 
previous calculations. 

 
rt=σ(Urxt+ Wrht-1)  (1) 
zt=σ(Uzxt+ Wzht-1)  (2) 
gt=tanh൫Uhxt+ Wh(rt ht-1)൯ (3) 
 
Where, σ stands for the sigmoid function, xt 

represents the input at time t, and ht-1 represents the 
hidden state at the previous time step. Each symbol 
W, U, rt, and zt are vectors and tanh stands for 
hyperbolic tangent function. After all parameters are 
calculated, the hidden state calculation process is 
performed using the following equation: 

 
ht=(1- zt)ht-1+ ztgt   (4) 
 

3. METHOD 

This section describe the data collection 
and preprocessing, the proposed method, model 
training, music generation phase, and the model 
evaluation. 

 
3.1 Data Collection and Preprocessing 

 

 
 

Figure 3. Tanah Tumpah Darahku song notation 
 
Reference data for this study were extracted 

from songbook sources namely Himpunan Lengkap 
Lagu-lagu Wajib Nasional dan Daerah and 
Kumpulan Terbaik & Terlengkap Lagu Wajib 
Nasional dan Daerah comprising 45 national and 
regional songs, which included tracks like Indonesia 
Pusaka and Bendera Merah Putih. Preprocessing 

was indispensable for transposing numbered musical 
notations into a model-input-friendly format, which 
involved handling pitch and duration separately. An 
example of the preprocessing for Tanah Tumpah 
Darahku is illustrated in Figure 3. 

The melody's pitch data handling involves 
recording each pitch value in a pitch_train.txt file 
based on numbered notation. High notes, low notes, 
and accidental notes are encoded using different 
symbols as (‘), (.), and (#) respectively. The symbol 
0 denotes the absence of a note. Redundancy is 
avoided by only writing a note marked with a legato 
bow once, regardless of its repetition. Figure 4 
displays illustrations of two identical tones that have 
been marked with the legato bow.  

 
 

Figure 4. Two notes with legato bow 
 

The outcomes of pitch depiction for the 
musical piece entitled Tanah Tumpah Darahku 
corresponding to every line of the aforementioned 
musical notation are ascertained as follows: 

5. 5. 5. 5. 1 1 1 1 2 2 1 2 3 0 
5. 5. 5. 5. 1 1 1 1 2 2 4#. 4#. 5. 0 
5 5 5 5 4 4 4 4 3 3 4 3 2 0 
5 5 5 5 4 4 4 4 3 3 2 2 1 0 
 
Melody duration data is recorded in 

duration_train.txt file using decimal values 
representing the required beats or time for each note. 
For instance, a single beat is marked as 1, half a beat 
as 0.5, and two beats as 2. This setup allows for a 
precise analysis of the duration data for each 
notation line: 

1.5 0.5 1 1 1.5 0.5 1 1 1.5 0.5 1 1 3 1 
1.5 0.5 1 1 1.5 0.5 1 1 1.5 0.5 1 1 3 1 
1.5 0.5 1 1 1.5 0.5 1 1 1.5 0.5 1 1 3 1 
1.5 0.5 1 1 1.5 0.5 1 1 1.5 0.5 1 1 3 1 
 

3.2 Proposed Method 
This research employs a two-stage 

methodology. The training phase, as depicted in 
Figure 5, exploits 45 nationalistic songs stored in 
two files for pitch and duration data, with the aim to 
develop a model that learns from such music 
patterns. The composition stage,  as depicted in 
Figure 6, uses short melodic sequences or random 
melody generation to create music, leading to a 
MIDI file with the new compositions. Preprocessing 
is required for transforming raw data into a suitable 
format for training. Each input consists of a sequence 
of n items with a target value, and both inputs and 
outputs should be vectors. 
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Figure 5: The Training Phase in the Proposed Method 
 

 
 

Figure 6: The Composition Phase in the Proposed 
Method 

 
In preprocessing, full compositions are 

fragmented into smaller sequences with determined 
target values for training. If sequence length is set as 
time_dim, sequence data can be retrieved from the i-
th to the (i + time_dim)-th data index. The target 
output is from the (time_dim + 1)-th data index. This 
process continues until all song data is used. An 
example is the first verse of W. R. Supratman's Ibu 
Kita Kartini: 

1 2 3 4 5 3 1 6 1’ 7 6 5 
 
If the data is split into 4 tone sequences as 

the time_dim size and 1 tone sequence as the target, 
the input data obtained is presented in Table 1: 

 
Table 1. The input data in four note sequence 

i Input Sequence Target Output 
0 1 2 3 4 5 
1 2 3 4 5 3 
2 3 4 5 3 1 
3 4 5 3 1  6 
4 5 3 1 6 1’ 
5 3 1 6 1’ 7 
6 1 6 1’ 7 6 
7 6 1’ 7 6 5 

 

In the preprocessing phase, data values in 
sequences are translated into a one-hot vector 
format, enhancing their representation. Each value 
becomes a 1 x N vector in the embedding model, 
where N signifies the vocabulary's size, holding all 
possible data value classes. Each vector element 
represents a distinct value from the vocabulary, 
excluding the actual value's index. For instance, in a 
seven-pitch musical scale per octave, the vocabulary 
comprises all conceivable note durations, totalling 
seven elements: vocabulary = {1, 2, 3, 4, 5, 6, 7}. 
When the tone value 2 is converted to the one-hot 
vector format, the resulting vector is: 

One_hot vector(2)= 

⎣
⎢
⎢
⎢
⎢
⎢
⎡
0
1
0
0
0
0
0⎦

⎥
⎥
⎥
⎥
⎥
⎤

 

Still in the preprocessing phase, the first 
element of the vector, a value of two, is disregarded. 
The second element is the actual value, while all 
other elements are set to zero. Examining a specific 
input data sequence (1,2,3,4,3,4,5,3) containing five 
unique values, we need an eight-dimensional array 
to hold it. Thus, the initial data is manipulated to 
form a matrix: 

⎣
⎢
⎢
⎢
⎡

  

1
0
0
0
0

  

0
1
0
0
0

  

0
0
1
0
0

  

1
0
0
0
0

  

0
0
1
0
0

  

0
0
0
1
0

  

0
0
0
0
1

  

0
0
1
0
0

  

⎦
⎥
⎥
⎥
⎤

 

 
Every input dataset, being a sequential 

arrangement of data, is processed so that each 
individual value is converted into an N-sized vector. 
This input data is represented by a 3D matrix of I x 
S x N dimensions, where I signifies the volume of 
training data, S indicates the count of sequences 
within an input, and N aptly reflects the vocabulary 
size. 

 
3.3 Model Training 

Once the preprocessing stage is completed, 
the resulting matrix will be used as the training 
dataset for the model. The procedural stages carried 
out by the model during the training process are 
described below. 

1) Define model training parameters including 
epochs, hidden layers, and learning rate. 

2) Initialize GRU variant RNN weights U (Ur, 
Uz, Uh) and W (Wr, Wz, Wh), V weight, and 
4 bias weights (br, bz, bh, c). 
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3) Initialize a hidden state of 1 x H 
dimensions, where H equates to the size of 
the hidden layer. 

4) Calculate values for GRU gates. Update 
gate (z) and reset gate (r) derive from 
sigmoid activation functions of specific 
sum values. 

5) Ascertain temporary hidden state using 
tanh activation function. 

6) Determine current time-step hidden state 
from update gate and temporary hidden 
state. 

7) Sequentially repeat steps 4-6 for each input 
data sequence value. 

8) Procure output vector containing probable 
output values using softmax activation 
function and Mean-Squared Error (MSE) 
for error quantification. 

MSE=
1

2n
 ∑ ൫Yi - Y෠ i൯

2n
i=1    (5) 

where n denotes number of data points, Yi is 
observed value, and 𝑌෠௜ is the predicted 
value. 

9) Incrementally update all model weight 
values based on gradient and learning rate 
with Adam's optimizer. 

10) Iterate steps 4-9 for all input data. 
11) Replicate steps 4-10 for determined epochs. 
12) Archive model weight values for future use 

in new music creation. 

3.4 Music Composition Stage  
Upon concluding the training phase, the 

model purportedly comprehends patterns and styles 
prevalent in Indonesian nationalistic music. The 
subsequent stage is music composition, where the 
generated melody undergoes a procedure akin to that 
of the training phase during the initial embedding 
process. The procedural operations for music 
composition are described below: 

1) Initialize input parameters such as new note 
number and initial melody pieces. 

2) Load model using precalculated weights 
from training phase. 

3) Calculate GRU gate values using sigmoid 
functions on respective summations. 

4) Acquire temporary hidden state using tanh 
activation function on resulting sum of 
input, reset gate, and bias.  

5) Compute current hidden state using update 
gate and temporary hidden state, also 
accounting for previous timestep's hidden 
state. 

6) Sequentially execute steps 3-5 for all data 
sequence values. 

7) Generate output vector with softmax 
activation function on product of final 
hidden state and weight, summed with bias. 
Select highest output probability. 

8) Implement steps 3-7 iteratively for preset 
number of new tones 

9) Create new melody sequence post step 8 
based on embedded training data patterns. 

The pitch and duration components 
generated by the model are subsequently combined 
and integrated into a unified melodic structure, 
which is then encoded and saved as a MIDI file. For 
instance, the obtained outcomes of the pitches and 
durations are as follows: 

Pitch   = 1’ 7 6 5 6 5 
Duration  = 0.5 0.5 0.5 0.5 1 1 
 
This suggests that the initial pitch data 

sequence's high do note (1') will be maintained for 
half a beat, its duration value denotes this. The final 
la note (6) of the last pitch data sequence will have a 
sound production duration of one tap, denoted by its 
respective duration value. Each value in the result 
sequence equates a pitch value and its time interval, 
especially when a pitch value is 0 that signals no note 
play in that specific interval. In the scope of MIDI 
production, sound signals are created using absolute 
pitch values. The do-re-mi tone requires conversion 
into an appropriate pitch value for MIDI file 
incorporation. 

 
3.5 Model Evaluation 

A Turing test will be employed to assess the 
model-generated music's quality without disclosing 
to the non-expert evaluators the origin of 
compositions. The evaluation set comprises a mixed 
collection of human-created and GRU-generated 
samples, presented in randomized order. Tester will 
assign a score of 0 or 1, representing the model or 
human composition, respectively. The test primarily 
aims to gauge the evaluators' ability to distinguish 
between human-composed and machine-produced 
music and collect subjective feedback on the 
evaluation difficulty. 

 
4. RESULT AND DISCUSION 

The parameters to perform model training 
are as follows: a) sequence size:  8; b) batch size: 24; 
c) number of epochs: 250; d) number of hidden 
dimension: 200. Table 2 below show the encoded 
pitch and duration data. Basically, the model training 
process in the GRU variant is to determine the 7 most 
appropriate weight values, namely Ur, Uz, Uh, Wr, 
Wz, Wh, and V and 4 biases br, bz, bh, and c. Firstly, 
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the training phase is carried out on the RNN in the 
pitch layer, with pitch data as training data. The 
weights and biases of the pitch RNN are initialised 
randomly. 

 
Table 2: Sample of Encoded Pitch and Duration Data 

No. Song Title Pitch Duration 

1 
Andika 
Bhayangkari 

0 3 1 2 3 4 5 6 
5 1 1' 1' 7 6 5 
3 1 1 1' 1' 7 6 
5 4 3 1 3 2 1 
7. 1 0 1 4 3 2 
3 4 5 4 3 1 6 5 
4# 2 7 6 5 1 1' 
1' 7 6 5 4 3 1 3 
2 1 7. 1 3 3 2 
1 7. 1 

3 1 1.5 0.5 1 1 1.5 
0.5 1 1 1.5 0.5 1 1 2 
1 0.5 0.5 1.5 0.5 1 1 
1.5 0.5 1 1 1.5 0.5 1 
1 2 1 1 1.5 0.5 1 0.5 
0.5 1.5 0.5 1 1 1.5 
0.5 1 1 1.5 0.5 1 1 
1.5 0.5 1 1 1.5 0.5 1 
1 1.5 0.5 1 1 3 1 1.5 
0.5 1 1 4 

2 
Bangun 
Pemuda 
Pemudi 

5. 3. 4. 5. 1 2 
3 1 1 7. 2 1 7. 
6. 5. 0 5. 3. 4. 
5. 1 2 3 1 2 2 
3 4# 5 0 2 2 2 
3 3 4 3 4 3 3 2 
1 3 2 0 5. 1 2 
3 5 5 4 3 2 1 2 
3 0 5. 1 2 3 5 
5 4 3 2 3 2 1 

1 0.75 0.25 1 0.75 
0.25 2 2 1.5 0.5 0.5 
0.5 0.5 0.5 3 1 1 
0.75 0.25 1 0.75 
0.25 2 2 1.5 0.5 1 1 
3 1 1 0.75 0.25 1 1 
1.5 0.5 2 1 0.75 
0.25 1 1 3 1 1 0.75 
0.25 1 1 2 1 0.75 
0.25 2 2 3 1 1 0.75 
0.25 1 1 2 1 0.75 
0.25 2 2 4 

3 
Bendera 
Kita 

3 2 1 2 3 1 5. 
5 4 5 3 0 4 3 4 
5 6 4 2 2 5 4# 
6 5 0 3 2 1 2 3 
1 5. 5 3 4 5 6 
0 6 4 2 2 3 4 5 
5 4 2 3 1 0 

1 0.5 0.5 1 1 2 2 2 1 
1 3 1 1.5 0.5 1 1 1.5 
0.5 2 1 1 1 1 3 1 1 
0.5 0.5 1 1 2 2 1.5 
0.5 1 1 3 1 1.5 0.5 1 
1 1.5 0.5 2 1.5 0.5 1 
1 3 1 

 
After all weight and bias values are randomly 

initialised, the training data is then fed into the 
model. Loss in the first iteration is calculated by 
MSE based on the difference between the resulting 
output and the target output to be achieved. By using 
equation (6), the MSE is obtained as follows: 

 

MSE = 
൫0-(- 0.0046)൯

2
+൫0-(- 0.0058)൯

2
+ ...

2 × 24 
 

              
+൫0-(- 0.0053)൯

2

2 × 24 
 = 0.45445 

 
The value above is then used to calculate the 

gradient and change all the weight and bias values. 
Upon completing the training phase, which includes 
250 epochs of weight and bias updates within each 
pitch and duration layer, the resultant values are 
conserved. These outcomes are later deployed 
during the music composition stage, indicating the 
allocation of weight and bias to the pitch layer. The 
following result shows the weights and biases of the 
GRU pitch layer: 

 
 

Ur (8 x 200) = 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
-0.5168 1.3807 ⋯ 0.0879
-0.9756 0.1433 ⋯ 1.1651
0.0113 0.6004 ⋯ 0.2418
0.8141 -0.4032 ⋯ -0.2233
-1.5003 1.2071 ⋯ -1.0017
0.3677 0.8771 ⋯ -0.9969
-1.2141 -0.4462 ⋯ 0.4663 
0.1929 -0.8737 ⋯ -0.0861⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 
Uz (8 x 200) = 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
−0.0683 −0.1761 ⋯ 0.2227
−0.2695 0.0440 ⋯ −0.5168
−0.2567 0.2873 ⋯ −0.4508
−0.4913 −0.3130 ⋯ 0.1909
−0.9555 0.0962 ⋯ −0.1060
−0.8702 0.2500 ⋯ 0.8441
0.1879 −0.3179 ⋯ −0.8508
0.3745 0.3205 ⋯ −1.6519⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 
Uh (8 x 200) = 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
−0.6427 −0.0119 ⋯ −0.2857
0.2032 −0.1171 ⋯ 0.1119

−0.2546 0.2475 ⋯ −0.1565
−0.2569 −0.2646 ⋯ −0.6361
0.5948 0.6434 ⋯ 0.3152
0.5359 0.3698 ⋯ 0.0604
0.2219 0.5437 ⋯ 0.2306

−0.4765 −0.1810 ⋯ 0.2433 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 
Wr (200 x 200) = 

൦

−0.1088 −0.0883 ⋯ 0.2094 
0.0389 −0.2485 ⋯ −0.0647 

⋮ ⋮ ⋱ ⋮
0.1345 −0.2250 ⋯ −0.0195

൪ 

 
Wz (200 x 200) = 

൦

−0.3532 0.2033 ⋯ −0.3093 
0.0931 −0.1240 ⋯ 0.1243

⋮ ⋮ ⋱ ⋮
0.1695 −0.3963 ⋯ −0.2283

൪ 

 
 

𝑏௥(200) =

⎣
⎢
⎢
⎢
⎢
⎡
−0.1656
−0.1375
−0.2551

⋮
0.0886

−0.1021⎦
⎥
⎥
⎥
⎥
⎤

; 𝑏௭(200) =

⎣
⎢
⎢
⎢
⎢
⎡
−0.1307
0.1654

−0.0694
⋮

0.4118
0.0851 ⎦

⎥
⎥
⎥
⎥
⎤

 

 

 𝑏௛(200) =

⎣
⎢
⎢
⎢
⎢
⎡
−0.0610
−0.0552
0.0358

⋮
0.0780
0.2425 ⎦

⎥
⎥
⎥
⎥
⎤

; V (200 x 1) = 

⎣
⎢
⎢
⎢
⎢
⎡
−0.0023
−0.0056
0.0040

⋮
0.1006
0.0890 ⎦

⎥
⎥
⎥
⎥
⎤

 

 
c (1) = [0.0292] 
 

In the testing phase, the desired sequence size 
determines the input values. For a sequence size of 
8, as used in training, eight pitch and duration values 
are input to generate music. The utilized generation 
values are:  

Pitch = 5 1' 1' 7 6 5 1' 2' 
Duration = 1.5 0.5 1 1 1.5 0.5 
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ℎ௧(1 𝑥 28 𝑥 200) =  

⎣
⎢
⎢
⎢
⎡
−0.0285 −0.0298 ⋯ 0.1240
−0.0259 0.1032 ⋯ 0.0494

⋮ ⋮ ⋱ ⋮
0.1672 0.0519 ⋯ 0.1009
0.1628 0.0568 ⋯ 0.1006⎦

⎥
⎥
⎥
⎤

 

 

therefore 𝑜𝑢𝑡𝑝𝑢𝑡 = (ℎ௧ × 𝑉) + 𝑐 = 

⎣
⎢
⎢
⎢
⎢
⎡

0.0438
0.1425

−0.0100
⋮

0.6598
⋮ ⎦

⎥
⎥
⎥
⎥
⎤

 

 
The produced output vector contains values for 

all possible outputs. The largest value and its 
corresponding index are identified, here being 
0.6598 at index 14. According to the pitch 
vocabulary, index 14 signifies 3', hence the system 
has composed a new pitch of 3'. The same 
computation is executed on duration data, resulting 
in the highest output value of 0.4603 at index 2. 

 

𝑜𝑢𝑡𝑝𝑢𝑡 =

⎣
⎢
⎢
⎢
⎢
⎡
0.0236
0.2169
0.4603

⋮
0.0065

⋮ ⎦
⎥
⎥
⎥
⎥
⎤

 

 
In our duration vocabulary, index 2 equates to 

1.5, implying a generated duration of 1.5 seconds per 
model prediction. For the next iteration, input 
consists of the recent eight sequence values. 
Utilizing a sequence length of nine from the initial 
iteration, the input for the following round comprises 
values ordered from two to nine. Here are the inputs 
for the model's second iteration: 

Pitch  = 1' 1' 7 6 5 1' 2' 3’ 
Duration  = 0.5 1 1 1.5 0.5 1 1 1.5 
 
The creation process is repeated whenever 

additional notes are required. Once nine new notes 
have been generated, the resulting melody is as 
follows: 

Pitch  = 5 1' 1' 7 6 5 1' 2' 3’ 1’ 2’ 7 1’ 2’ 
    3’ 2’ 1’  
Duration  = 1.5 0.5 1 1 1.5 0.5 1 1 1.5 0.5 1 

   1 1.5 0.5 1 1 1.5 
 

To listen to the final melody based on these 
pitch and duration values, the resulting data is 
converted into audio files in MIDI format. A Turing 
test, engaging ten individuals for evaluation, is then 
conducted to assess the model's efficacy in melody 
creation. Participants assess 20 MIDI audio files, 
consisting of 10 GRU-generated and 10 human-
composed melodies, played in randomized order. 
Refer to Table 3 for sample music data used in the 
test, and Table 4 presents the Turing Test results. 

Table 3: Sample of The Music Data for Testing 

Code Composer Pitch 
Encoding 

Pitch 
Duration 

Musical 
Notation 

L01 Machine 3 2 3 4 5 
5 6 7 1’ 
2’ 2’ 1’ 
2’ 3’ 4’ 
3’ 2’ 1’ 
1’ 

2 1 1 2 2 2 
1 1 2 2 2 1 
1 2 2 2 1 1 
2 

3 . 2 3 | 4 . 
5 . | 5 . 6 7 | 
1> . 2> . | 
2> . 1 2 | 3> 
. 4> . | 3> . 
2 1 | 1 .  

L03 Human: 
Tanah 
Tumpah 
Darahku 
(beats 1-
8) 

5. 5. 5. 5. 
1 1 1 1 2 
2 1 2 3 0 
5. 5. 5. 5. 
1 1 1 1 2 
2 4#. 4#. 
5. 0 

1.5 0.5 1 1 
1.5 0.5 1 1 
1.5 0.5 1 1 
3 1 1.5 0.5 
1 1 1.5 0.5 
1 1 1.5 0.5 
1 1 3 1 

   —           
— 
5< .5< 5< 5 
| 1 .1 1 1 | 
   —            
2 .2 1 2 | 3 . 
. 1 | 

L12 Machine 5 5 3 4 5 
6 5 3 1 3 
2 1 3 4 2 
4 2 3 4 2 
4 2 5 6 5 
4 

1 1 1 0.5 
0.5 4 0.5 
0.5 0.5 0.5 
1 1 4 1 1 1 
1 1 1 4 1 1 
1 1 2 2 

         __  
5 5 3 45 | 6 
. . . | 53  
__ 
13 2 1 | 3 . . 
. | 4 2 4  
2 | 3 4 2 . | . 
. 4 2 | 5  
6 5 . | 4 . 

L13 Human: 
Suburlah 
Tanah 
Airku 
(beats 9-
13) 

1 1’ 1 6. 
1 4 5 6 5 
3 1 5. 1 2 
3 2 3 6 5 
3 2 

1 1.5 0.5 
0.5 0.5 0.5 
0.5 1 0.5 
0.5 0.5 0.5 
0.5 0.5 1.5 
0.5 0.5 0.5 
0.5 0.5 2 

_  __      __   
1 | 1> . 1 
6<1 45 | 6 
53  
_      __ __ 
__ 
15< 12 | 3 . 
2 36 53 |  
2 . 

Table 4: Result of The Turing Test 

MID
I 

Code 
 

Tester Tota
l 1 2 3 4 5 6 7 8 9 1

0 

L01 0 1 0 0 0 1 1 0 1 1 5 
L02 1 0 1 0 0 0 1 1 0 0 4 
L03 0 0 0 0 1 1 1 1 0 1 5 
L04 1 1 0 1 0 1 0 0 1 1 6 
L05 0 1 0 0 0 0 1 0 0 0 2 
L06 0 0 0 1 0 0 0 0 0 1 2 
L07 0 0 1 0 1 0 1 1 0 0 4 
L08 1 0 1 0 0 1 1 0 1 1 6 
L09 1 0 1 1 1 0 1 1 0 1 7 
L10 1 1 0 1 1 1 1 0 1 1 8 
L11 1 0 0 0 0 0 0 0 0 1 2 
L12 1 0 0 1 1 1 1 0 1 0 6 
L13 1 1 1 1 0 1 1 0 1 0 7 
L14 0 0 1 0 1 0 0 1 1 1 5 
L15 1 0 1 1 1 0 0 1 1 1 7 
L16 1 0 1 1 0 1 0 1 1 1 7 
L17 1 0 1 0 0 1 1 1 1 0 6 
L18 0 1 0 1 0 1 1 0 1 1 6 
L19 0 0 1 0 0 1 1 1 1 1 6 
L20 1 1 0 1 0 0 1 1 0 1 6 

 

Percentage of Failure = 
Σ Totali

Number of Tester
Number of Data

 x 100 % 

= 
12+7+10+10+7+11+14+10+12+14

10
20

 x 100 = 46,5% 
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Table 4 data suggests a high rate of incorrect 
predictions (46.5%) among the ten participants, 
indicating difficulty in discerning between GRU 
model-generated and human-composed melodies. 
All participants reported challenges in distinguishing 
between the two types of compositions. 

This research certainly enhances our knowledge 
of algorithmic composition. It is also crucial to note 
that it comes with inherent constraints, such as the 
use of different algorithm and music dataset. This 
open future exploration and development in the 
study of aformentioned area. 
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