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ABSTRACT 
 

Centrality considers node importance in complex networks, addressing this issue poses a significant 
challenge in the realm of social network analysis. Over the recent years, various measures  of centrality 
have been suggested to evaluate the impact of nodes inside a network. However, these measures have 
certain drawbacks based on the network structure , lack of ground-truth values etc. This study introduces a 
new centrality metric called Node Pack Fuzzy Information Centrality (NPFIC), which suggests that crucial 
information about a node's significance can be derived from the internal structure of its pack. NPFIC 
quantifies the significance of a node by assessing the information content within its pack, which is 
calculated by the improved Havrda and Charavat entropy. We use Pythagorean Fuzzy Sets to address the 
uncertainty associated with the contributions of neighboring nodes to the centrality of the center node, this 
is often overlooked by established traditional approaches. To illustrate the effectiveness of the proposed 
approach, we compare it with four established centrality measures. We conduct experiments on a real-world 
directed weighted complex network to validate its performance and we employed the susceptible-infected-
recovered (SIR) model to assess the effectiveness of our proposed approach. The outcomes of our 
experiments reveal that the crucial nodes identified by NPFIC significantly influence network connectivity. 

Keywords: Directed Weighted Complex Networks, Pythagorean Fuzzy Sets (PFSs), Node Pack Fuzzy Information 
Centrality(NPFIC), SIR , Havrda-Charvat  Entropy, Centrality Measures. 

 
1. INTRODUCTION  
 
      In recent studies, numerous real-world systems 
are effectively modeled as complex networks, 
including social networks, the internet, power grids, 
and various online networks that significantly 
impact our daily lives. The analysis of complex 
networks[1] enables us to comprehend the 
complexities of unpredictability and forecast the 
evolution of systems. Within these complex 
networks, specific nodes exhibit notable influence, 
and have great impact on the overall structure and 
functionality. If a node has greater influence, then it 
plays crucial roles in facilitating information 
exchange, and their removal can substantially alter 
the network dynamics. Consequently, the 
identification of these influential nodes remains a 
focal point in the ongoing research on complex 
networks.  
     Numerous centrality metrics predominantly 
address unweighted undirected networks, often 
overlooking the significance of edge weights and 

directions. When dealing with directed networks, 
the weights of connections between the nodes can 
hold crucial information and should be considered. 
In many real-world scenarios, the strength, 
intensity, or some other quantitative measures 
associated with the relationship between nodes can 
greatly influence the network's behavior and 
characteristics. Directed weighted networks offer a 
more effective means of accurately depicting the 
relationships among individual nodes compared to 
simple networks. The inclusion of edge weight 
information proves invaluable in gaining a more 
precise understanding of the structure and 
functionality of the network. Consequently, 
detecting crucial nodes in networks with directed 
weights holds significant promise in research 
domains such as the propagation of influence in 
social networks, strategic planning for 
transportation infrastructure, disease spread and 
epidemiology, as well as ranking in scientific 
collaborations among others. The centrality metrics 
employed in complex networks with directed and 
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weighted edges can effortlessly extend beyond 
those originally formulated for simple networks. 
       
       L. Zadeh introduced Fuzzy Sets (FSs)[2], a 
concept widely employed across various domains,  
including uncertainty measurement[3], multiple 
attributes decision making[4], analyzing and 
supporting decision-making[5], information 
granules[6], and similarity measures[7]. Unlike 
Boolean logic, Fuzzy Sets excel at quantifying 
uncertain information, making them well-suited for 
complex networks. Pythagorean membership 
grades for multicriteria decision making were first 
proposed by Yager[8].  Zhang and Xu [9] expanded 
the application of the Technique for Order 
Preference by Similarity to an Ideal Solution 
(TOPSIS) to incorporate Pythagorean and hesitant 
fuzzy sets in the context of multiple criteria 
decision-making. More recently, Xue et al.[10] 
presented the Pythagorean fuzzy LINMAP method, 
incorporating entropy for effective decision making 
in railway project investments.  Shannon entropy, a 
concept in information theory, plays a crucial role 
in evaluating the anticipated information within a 
message. Its applications extend to the analysis of 
complex networks, particularly in identifying 
influential spreaders[11]. Zareie et al.[12] 
introduced the Entropy-Based Ranking Measure 
(ERM), emphasizing the concept that influential 
spreaders are characterized by substantial and 
evenly distributed degrees. ERM assesses the 
entropy of the immediate neighbors of a node those 
at the second order and  concentrating on local 
information. However, it exclusively considers the 
node's immediate and secondary neighbors. Deng 
and Wen[13] applied Shannon entropy in their 
study to evaluate node importance through the 
introduction of the LID model. Even though LID 
employs Shannon entropy for quantifying 
information within a node box, it does not 
investigate the internal structure of these boxes. 
Traditional centrality metrics, including Degree 
Centrality(DC) [14], Betweenness Centrality (BC) 
[15], Closeness Centrality (CC) [16], Eigenvector 
Centrality (EC) [17], and PageRank (PR) [18], have 
been developed to assess the importance of nodes 
in a network by considering the factors like node 
distance and the number of connections. These 
traditional approaches focus on various 
characteristics of complex networks.  
      Wang et al.[19] investigated the detection of 
pivotal nodes within directed biological networks, 
relying on the characterization of node importance 
derived from instances observed in diverse 
networks with 2, 3, and a subset of 4 nodes. 

Additionally, Sheng et al.[20] introduced the 
concept of influential nodes in complex networks.  
Wang  et al.[21] introduced a novel approach for 
discerning influential nodes in complex networks 
through a semi-local measure. Panfeng[22], 
implemented a voting methodology to recognize 
pivotal nodes within social networks. CC is only 
applicable to undirected networks, while PR and 
EC are generally used for directed networks. Garas 
and colleagues [23] presented a technique for k-
shell decomposition in weighted networks. It can 
identify the nodes with the greatest impact in a 
network with weights by splitting a network into k-
shell structure. PageRank asserts that a node's 
significance in web page ranking is tied to the 
quantity and quality demonstrated by the 
neighboring nodes.  
 
      However, these approaches overlook the wider 
configuration of networks. In addressing this issue, 
Betweenness Centrality (BC) examines the 
centrality of a node by assessing the number of 
shortest paths that traverse through it. On the other 
hand, Closeness Centrality (CC) posits that a node 
with the minimal average distance to other nodes 
wields greater influence. Although BC and CC 
prove to be effective, they are hindered by 
computational complexity, leading to suboptimal 
performance in complex networks. 
 
       In our discussions so far with different 
approaches [12]–[23] one problem identified  is that 
all the models  rely on observing the entire network 
and due to computational complexity, 
implementing this approach becomes impractical 
for large-scale social networks. Additionally, the 
center node receives the most significant 
contributions from its neighboring nods and their 
edge weights, are considered as an important 
concept in the directed weighted networks. It is a 
very typical task to identify vital nodes by 
considering all these features of individual nodes in 
directed weighted networks. Many current 
centrality metrics only consider the overall count of 
neighbors connected to a node and neglect an in-
depth analysis of the local network structure, 
leading to inaccuracies. 
         Here, we introduce NPFIC as an approach to  
assess the significance of nodes within directed 
weighted networks by considering two factors: in-
weights and out-weights. Based on the above 
discussions, the motivating factors behind our study 
can be succinctly summarized as follows:    
i) to account for the variability in centrality 

values within a specific node due to 
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uncertainty in edges, utilize Pythagorean 
fuzzy relations.  

ii) to explore and analyze the inner structure 
of a node's pack within directed weighted 
networks and ascertain the amount of 
information it encompasses.               

iii) to address the uncertainty linked with 
contributions from neighboring nodes to 
their central node, by leveraging 
Pythagorean fuzzy sets. 

iv) to enhance the efficiency of Havrda and 
Charavat entropy and to optimize its 
utilization in directed weighted networks. 

 
    The main objectives of this article can be 
outlined as follows:  
i) NPFIC mainly focuses on the internal 
arrangement of a node's pack to determine its 
global significance, this involves treating a node's 
pack as a Pythagorean set and using an improved 
Havrda-Charavat entropy for assessing the level of 
certainty within the pack. This method provides 
enhanced accuracy.  
ii) In contrast to existing methods, NPFIC 
recognizes that the influence of neighboring nodes 
on a central node's importance is closely tied to 
their degree of membership and non-membership, 
so it employs fuzzy sets to distribute different 
weights to neighbor nodes within a node’s pack 
with appropriate considerations towards directed 
weighted networks.        
iii) NPFIC measures and employs the improved 
Havrda-Charavat entropy to assess the node’s 
importance and its ability to spread in directed 
weighted networks. 
 
    This paper is organized in the following manner: 
Initially, we provide a concise overview of existing 
centrality measures. Following that, we articulate 
our method for identifying influential nodes, 
encompassing the calculation of shortest distances 
between two vertices in a directed network with 
assigned weights and the application of Havrda-
Charvat Entropy. Subsequent sections include a 
comparative analysis of experimental results and 
analysis. Lastly, we present our conclusions. 

2. PRELIMINARIES 

2.1 Definition Of Pythagorean Fuzzy Set 

      Consider a universal set X. A Pythagorean 
fuzzy set (PFS)[24], denoted as  P on X  is defined 
as   Р = { }  
where MP(x):X→[0,1] represents the membership 
degree, and NP(x):X→[0,1] represents the non-
membership degree of x∈X to the set P. This is 

subject to the condition .  
For simplicity, Zhang, and Xu[9] introduced the 
notation (MP(X),NP(X)) as a Pythagorean fuzzy 
number (PFN), denoted as P=(MP,NP). For any PFS 
P in X, the value IP(X) called the Pythagorean index 
of the element x in P, representing the 
indeterminacy or hesitancy of an element x∈X. 
 

2.2 Centrality Measures in a Graph 

       Centrality measures utilize the graph's 
topological configuration to evaluate the 
importance of individual nodes. Local indicators, 
like degree centrality, focus on the intrinsic 
characteristics of each node, while Semi-local 
measures such as the h-index [25] and entropy 
centrality [26] analyze node connections to 
determine its significance. Conversely, global 
metrics like closeness centrality [27] and k-shell 
centrality [28] necessitate a thorough exploration of 
the entire graph to assess the centrality of each 
node. 
 
2.2.1 Degree Centrality(DC): 
          DC provides the most straightforward 
measure for depicting the importance of nodes in 
networks with weights. In weighted networks, the 
degree centrality considers two important 
parameters  which are  strength and  degree of the 
node. Opsahl et al.[29] introduced a generalized 
degree centrality for weighted networks, 
incorporating these parameters. This centrality 
measure is defined as: 
 
                                          (1) 

where  , the tuning parameter, α, plays 
a crucial role in determining the emphasis on node 
degree or strength. When α falls between 0 and 1, 
greater significance is attributed to the degree, while 
a value above 1 prioritizes node strength. Despite its 
importance, determining the exact α value can be 
challenging. Wei et al.(30) presented a technique for 
determining the most suitable value of α. Yustiawan 
et al.[31] utilized the centrality metric mentioned to 
identify influential nodes within online social 
networks. This metric is adaptable to directed 
networks with weights, incorporating both the 
node's in-degree and out-degree to determine in-
degree and out-degree centrality, respectively. The 
Degree Centrality (DC) of node i, represented as 
CD(i), is determined using the following definition: 
                                               (2) 
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where aij denotes the link or relationship between 
node i and j and  wij  denotes  the connection  
weight. 
 
2.2.2   H-index Centrality(HC):  
      Lü et al. [32] presented the operator H, 
specifically designed to act on a restricted set of real 
numbers (x1, x2, . . . , xn), producing an integer y. In 
this context, y signifies the maximum value such 
that there exist at least y items in (x1, x2, . . . , xn), 
with each item being not less than y. Subsequently, 
the H-index of node i is computed as follows: hi = 
H(ka, kb , . . . , kc)  here, ki represents the node i's 
degree. and ka, kb , . . . , kc represents the levels of 
connectivity among the adjacent nodes.  
We set the zero-order H-index, hi(0), as ki  for a 
node i. Extending this concept, an n-order H-index 
(where n > 0) is defined iteratively using the 
formula:  
  hi(n) = H(ha(n−1), hb(n−1), . . . , hc(n−1))            (3)  
Here, the first-order H-index value is treated as the 
ultimate H-index value, denoted as hi(1) = hi. 
 

2.2.3 Betweenness Centrality(BC):  
     Betweenness centrality (BC) examining the 
impact of nodes on the information flow along the 
shortest paths within a network. The betweenness 
centrality of a specific node i, represented as CB(i), 
is formally defined as  follows: 

                                       (4) 

where bpq is the overall quantity of shortest paths 
connecting node p to node q, and bpq(i) signifies 
the count of such shortest paths that pass-through 
node i.  
 
2.2.4 PageRank(PR): 
     It evaluates the importance of web pages by 
analyzing their link structure, operating under the 
assumption that  the impact of a page is gauged by 
both the number and quality of other pages linking 
to it When a page receives links from numerous 
high-quality sources, it is considered to have high 
quality as well. Zhang et al.[33], define the 
weighted PageRank as  follows:  

     (5)                                                                           
It excels in networks with a specified direction but 
is not suitable for application in undirected 
networks.  

2.3 Havrda-Charvat Entropy 

    To express the entropy of Pythagorean fuzzy sets 
(PFSs) in a probability-oriented manner, we use 
Havrda and Charavat's entropy concept (Hϒ(p)), 

applying it to a probability mass function 
represented as  p = {p1, p2, ..., pk}, 

       
 Hϒ(p) =                                                                (6)       

                                          
Consider a finite set of things denoted as : 
X    is a finite universe of 
discourses. Now, for a PFS denoted as Ҏ within X, 
we suggest a specific type of entropy measurement 
as, 

       

                         
𝐸ு  

ϒ (Ҏ) =                                                              
                                                                            (7) 

                    
where   is the membership degree, 

 is the non-membership degree and 

is the indeterminacy of the random 

variable xi ∈ X to the set . 
 
3. NODE PACK FUZZY INFORMATION   

       CENTRALITY 

    Here we introduce our proposed method and 
implemented using an example network. We 
formulate a complex network model with directed 
edges with associated weights on them, denoted as 
G(V, E, W, K). Here, V = {vi} comprises the set of 
vertices, E = eij ,indicates the edges directed from 
vertex vi to vertex vj (i.e eij = {(vi, vj)}), W = wij 
denotes the corresponding weights, and K = 
{(kin(vi), kout(vi), k(vi))} represents the three values 
associated with each node: in-degree (kin(vi)), out-
degree (kout(vi)), and total degree (k(vi)). The 
calculation method for node degrees in directed 
networks with weights can be formulated as ,  

          kin(vi) =      i = 1, 2, · · · ,N   

          kout(vi) =    i = 1, 2, · · · ,N 
          k(vi) = kin(vi) + kout(vi)                                (8)                                     
For a given node vi, kin(vi) denote the count of 
incoming edges, representing nodes directed 
towards vi, while kout(vi) indicates the count of 
outgoing edges, representing nodes directed from 
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vi. It is assumed in this paper that the network is 
free of loops and  multiple edges. 

3.1 The Most Direct Path Connecting any Two 
Vertices within the Network 

   We can determine the shortest distance between 
any two nodes in weighted networks represented as 
ωij, by applying the Dijkstra algorithm. 
Consequently, the greatest minimum distance from 
node i to any other nodes in the network can be 
defined as follows: 

                        Li =                        (9)  

Here, Li represents the maximum shortest distance 
and varies for each node, indicating the locality 
scale around that specific node. 

 
Figure 1:  Methodology 

3.2 Proposed Method 

    The significance of a node is evaluated by 
NPFIC, by taking  into account two factors: 
inbound importance and outbound importance. In 
this context, the inbound importance of node i is 
represented by NPFICin(i), and the outbound 
importance is denoted by NPFICout(i). We 
introduce the definition of NPFIC as outlined 
below: 
Definition : Node Pack Fuzzy Information 
Centrality 

   (10) 

 
                                                              (11) 

Where the distance 'd' is measured from the central 
node 'i' and varies within the range of one to the 
pack size 'D'. NPFIC uses d2  to account for the 
time delay in information transmission within a 
complex network. This approach more accurately 
models the distribution of communication 

propagation within complex networks.  

and ϑ୅౟౤

ଶ (d)  are the membership and the non-

membership of neighboring nodes in the in-pack is 
determined based on the minimal distances to the 

central node i, which are denoted as d.   

and ϑ୅౥౫౪

ଶ (d)   are the membership and the non-

membership of neighboring nodes in the out-pack 
is determined based on the minimal distances from 
the central node i, which are denoted as d.  
The following outlines the comprehensiveness of 
NPFIC: 
Step 1: Acquire the directed weighted network 
dataset.  
Step  2:  Load the dataset , preprocess  it as  needed. 
Obtain the pack size D by (12). The pack size 
definition clarifies that NPFIC revolves around the 
quasi-local information of a node. 

               D =                                           (12) 

 where Li  is defined from the eq. (9). 
Step 3: Determine the weighted degree of 
membership of nodes within a fuzzy set, 
considering the number of neighbor nodes within a 
specific layer. NPFIC emphasizes the count of 
directed edges connecting all neighboring nodes in 
that layer, along with their respective weights. The 
membership degrees of nodes as weighted fuzzy 
numbers  are provided by,                       

          (13) 

   (14)                                  
where kin(j), is the quantity of nodes that are 
directed to node j within the distance d, ni(d) 
represents the count of nodes for which the shortest 
distances from node i equal d, determined through 
Boolean logic in LID[13] but which is not a 
reasonable method when dealing with fuzzy data.   
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Figure 2:  Visual representation of NPFIC’s process .

 

In our method  ni(d) is calculated by using breadth 
first search algorithm with some improved function. 
kout(j) is the quantity of nodes emanating from node 
j within the distance d. Every node is distinguished 
by its exclusive shortest distances from the central 
node and acquires diverse weights through fuzzy 
sets. The assignment of weights to nodes by fuzzy 
sets is computed based on the following equation: 

                                                    (15) 

Here, X(d) allows us to assess the contributions of 
nodes ranked according to their minimal distances 
from the central node through FSs. Nodes closer to 
the center have X(d) values closer to one, indicating 
a higher contribution to the centrality of the node's 
influence.  
Step 4: Calculate non-membership and 
indeterminacy values  by  analyzing  edge weights, 
and variability. The non-membership degree of 
each node in a distance d can be calculated by  the 
inverse of edge weights. 

              (16) 

                 (17) 
Indeterminacy value can be determined based on 
the imprecision associated with edge weights. It can 
be a fixed value or calculated based on the standard 
deviation of edge weights within a certain 
neighborhood. 
Step5: Calculate the Pythagorean fuzzy entropy of a    
node i by (10) and  (11).                                  
Step6: Define fuzzy membership function by 
specifying the membership ranges to convert the 
fuzzy entropy into a fuzzy membership value to 
node i. 
Step7: Rank node i's centrality by organizing nodes 
according to their fuzzy membership values. 
 

3.3 Example Network Explanation 

     To demonstrate the functionality of the 
suggested approach, consider the simple network 
depicted in figure 3. The diagram illustrates the 
process of determining the NPFIC value for node i. 
In the pack of node i, nodes at different shortest 
distances contain diverse amounts of information. 
Consequently, the information uncertainty within 
node i's pack is influenced by the formation is 
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determined by nodes having varied shortest 
distances from node i. While the NPFIC value for 
node i is specifically calculated here, it's important 
to note that in real-time applications, calculating 
centrality values for each node involves treating 
each node as a center node. 

    
Figure 3:  Example Directed Weighted Network 

 
The implementation process is illustrated as 
follows: 
Step 1: Assume that we want to find the centrality 
of node i as the center node using Pythagorean 
fuzzy sets with incorporated edge weights and 
determine its size D in this example suppose  3.  
Step 2: NPFIC examines the count of neighboring 
nodes within a specific layer, emphasizing the 
directed edges connected to all those neighbors and 
their respective weights. Compute the weighted 
distances from node i to all remaining nodes within 
a 3-hop range, utilizing normalized edge weights. 
Step 3: Determine the membership values of nodes 
𝜇஺೔೙

ଶ (𝑑) and 𝜇஺೚ೠ೟
ଶ (𝑑). Compute the weighted fuzzy 

values to represent nodes both in in-pack and out-
pack using the following calculation,  

 
             = 0.2 * 0.8948 + 0.4 * 0.8948 
             = 0.5369                   

 
             = 0.6 * 0.6412 + 0.8 * 0.6412 
             = 0.8976 

  
             = 0.3 * 0.3679 

                 = 0.1103 

where kin(j), represents the count of nodes directed 
towards the central node i,  from figure 4(b)  and  
ni(d) represents the count of neighboring nodes in 
each layer of the in-pack associated with node i. 
and wkj is the weight value on each edge in a short 
distance of d to node i. 

 
               = 0.1*0.8948+0.1*0.8948+0.2*0.8948 
               = 0.0894 + 0.0894 + 0.1789 
               = 0.3577 

 
               = 0.5*0.6412 + 0.4*0.6412 + 0.5*0.6412 
               = 0.3206+0.2564+0.3206 
               = 0.8976 

 
               = 0.8*0.3679+0.9*0.3679 
               = 0.2943 + 0.3311 
               = 0.6254   
where kout(j) represents the count of nodes directed 
away from the central node i, from figure 4(c)  and  
ni(d) represents the number of adjacent nodes in 
each layer connected to node i through its outgoing 
connections and wjk is the weight value on each 
edge in a short distance of d from node i. 

Step 4: Determine non-membership  based 
on the inverse of edge weights. 

 

                = (1-  )+ ) 

                = (1-0.5) +(1-1) 
                = 0.5 

 

                = (1- )+(1- ) 

                = (1 - 0.5)+(1 - 0.6667) 
                = 0.5 + 0.3333 
                = 0.8333 

 
                = 1- 0.2727   
                = 0. 7273                               
 
similarly,   

 are also calculated.  
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Figure 4: (a) An illustration of a directed weighted pack of Node i.  (b) in-pack of  Node i.  (c) out-pack of Node  i. 

 

To determine indeterminacy ) , we will use a 
fixed value in both in-pack and out-pack , let's say 

=0.1, which represents a moderate level of  
imprecision. 
Step 5: Obtain NPFICin(i) = 0.4813 and NPFICout(i) 
= 0.4517   by  (10) and  (11).  
Step 6: Define fuzzy membership function by 
specifying the membership ranges to convert the 
fuzzy entropy values to a centrality value of  node i. 
Assume that if the obtained  NPFIC value is less 
than 0.50, it reflects the lower entropy indicates 
greater importance of a node ,or else if the value 
less than 0.75 then it reflects moderate centrality, 
otherwise node has high ambiguity or uncertainty.   
Step 7: Finally, determine the Rank Centrality of 
node i by arranging the centrality scores for each 
node. 
 
4. RESULTS AND ANALYSIS 

       We tested the viability and efficiency of 
NPFIC through experiments on a directed weighted 
real-world complex network. We compared it 
against four centrality measures: DC, BC, H-Index, 
and PageRank. 

4.1 Dataset     

     The effectiveness of NPFIC is verified through 
its application to a real-world complex network. 
Soc_bitcoin Network, a weighted directed network 
comprised of individuals engaging in bitcoin 
transactions on the social media platform called 
Bitcoin Alpha.  

 

 

Due to the anonymity of bitcoin users, it is essential 
to keep a record of user reputation to mitigate 
transactions with potentially fraudulent and risky 
individuals. Members on Bitcoin Alpha assess each 
other by providing ratings that range from total 
distrust to total trust. In table 1, it presents the 
details of this network.  

Table 1: Fundamental Details About the Dataset 

Note: |N| and |V| denote the number of nodes and edges in the 
dataset. The symbols <d> and <dmax> signify the mean and 
maximum degree, respectively. Additionally, <ω> and <ωmax> 
represent the mean and maximum distances that are shortest. 
  

4.2 Nodes In Top-10 

     Here we utilized NPFIC along with four 
alternative centrality metrics  to locate the top ten 
nodes with the most significant influence in the 
Soc_bitcoin network. The outcomes are presented 
in table 2. If a node is colored, it signifies that it 
ranks within the top ten crucial nodes as identified 
by NPFIC. Furthermore, a node is underscored 
when it emerges not only within the top 10 rankings 
as per NPFIC but also maintains an identical 
position on that list. It’s important to note that 
variations in fundamental concepts and focal points 
across various centrality metrics can result in 
diverse outcomes. In table 2, an analysis of the 
Soc_bitcoin network indicates that the leading 
influential nodes identified by NPFIC, H-INDEX, 
and BC align. PR and NPFIC share identical top-2, 

Network |N| |V| <d> dma <ω> ωmax 

Soc_bitcoin 3783 24,186 10.345 84 2.567 6 
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top-6, and top-7 nodes. There are six nodes 
consistently ranked in the top 10 between BC and 
NPFIC, five between DC and NPFIC, and three 
nodes concurrently ranked in BC, H-INDEX, and 
NPFIC. 
 

Table 2: Identified Top ten Nodes by Five Centrality 
Measures. 

________________________________ 
 

4.3 Assessing the Dissemination Capability 
through the SI Model 

     In our study, we employ the susceptible-infected 
(SI) model[35] to evaluate the effectiveness of 
various centrality metrics. 
 
4.3.1 SI Model:  
    The model known as susceptible-infected-
recovered(SIR) is a widely used framework for 
simulating disease transmission in networks. It 
categorizes individuals into susceptible, infected, 
and recovered classes. During any specific time 
interval , the likelihood of a susceptible individual 
getting affected by neighboring nodes that are also 

infected is calculated by   while the 

probability of the infected recovering is denoted as 
λ. A relatively small ∁ value ensures that nodes on 
an individual level contribute  to a significant role 
in the speed and scale of infection. The total 
population is represented by the sum of susceptible 
individuals (S(t)), infected individuals (I(t)), and 
recovered individuals (R(t)). Within the framework 
of the SI model, which is a modified version of the 
SIR model, the recovery parameter λ is set to 0, 
signifying the absence of recovered individuals. In 
our study, we utilize the SI model to assess the 
impact of top 10 nodes  identified using various 
centrality measures. These nodes are identified as 
the network's initially infected nodes, and their 

impact is observed in the cumulative count of 
infected nodes across each time interval.  
 
4.3.2  Result Analysis:  
      In this study, we assigned a value of 2 to ρ to 
ensure a small spreading infection ability, 
emphasizing the impact on the top-10 nodes. By 
conducting 120 independent experiments to 
mitigate randomness, we enhance result credibility. 
As depicted in figure 5, initially infected nodes are 
only ten, aligning with the experiment's context. In 
the early stages of infection, the overall number of 
infected nodes undergoes rapid growth, indicating 
the extensive connectivity between initially infected 
nodes and numerous nodes that have not yet been 
affected. As the infection spreads, the growth rate 
gradually slows down, consistent with the pattern 
of disease transmission. This trend validates the 
experiment's rationality and authenticity. In figure 5 
illustrates the results for the Soc_bitcoin network, 
showing that NPFIC consistently outperforms other 
centrality measures across all time steps, indicating 
a larger number of infected nodes compared to 
alternative methods. 

 

Figure 5: Determine the Average Number of Infected 
Nodes. 

4.4 Evaluate the Network Quality by 
Eliminating Top Nodes 

    Evaluate the network's quality by selectively 
removing crucial nodes, as the connectivity serves 
as an indicator of the network's overall 
performance. The configuration of a network is 
characterized by the following formula: 
 

 
 Rank 

 Soc_bitcoin 

DC BC PR H-INDEX NPFIC 
1 41 62 89 62 62 
2 62 121 41 73 41 
3 51 51 73 51 51 
4 63 63 62 63 63 
5 89 89 51 58 89 
6 73 106 106 110 106 
7 121 19 121 115 121 
8 16 58 110 41 58 
9 114 41 120 86 73 
10 110 104 132 28 110 
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                                      (18) 

 
Let N denote the quantity of nodes within the 
network, and ωij denotes the smallest distance 
between node i and node j. Initially, we eliminated 
T×10% of elements within the network based on 
their importance ranking. Subsequently, we update 
the network and assess its quality using equation 
(18). If the resulting Qn value is lower, it indicates a 
deterioration in the network's connectivity, 
highlighting the significance of the removed nodes. 
The nodes identified by NPFIC carry greater 
influence within the Soc_Bitcoin network 
compared to those identified through alternative 
metrics. Due to the  NPFIC, the Soc_Bitcoin 
network exhibits enhanced performance when the T 
is below 0.50 and above 1.75. Figure 6 illustrates 
the findings from this experiment. 

Figure 6: The quality of the network correlates with T. 

 

4.5  Application of NPFIC in E-Commerce 
Business 

   This article presents a novel centrality 
measurement approach employing Pythagorean 
Fuzzy Sets. In general, the model considers factors 
such as membership, non-membership, and 
indeterminacy value of a node, based on these 
values influence or importance of a node will be 
calculated. The e-commerce business heavily relies 
on central nodes, and while existing methods focus 
on a single parameter like node connectivity, our 
innovative approach considers two crucial factors: 
node connectivity (from directions) and self-weight 
(from activities). In the realm of e-commerce and 
spreading news, self-weight emerges as a 
paramount parameter. Consequently, our model 

proves to be more effective for e-commerce 
businesses. In figure 7, we depict a compact 
network representing online e-commerce platforms 
such as Croma, Amazon, Flipkart, Meesho, and 
others. In this network, every seller and customer 
are treated as a vertex, connected by edges 
representing purchases.  

    Figure 7:  A small online e-commerce  Network. 

Seller vertex values are determined by positive and 
negative reviews, as well as indeterminacy from 
non-reviews. Customer vertex values rely on 
monthly product purchases, order cancellations, and 
inactivity. Edge membership values are assigned 
based on matches. Our model NPFIC,promises 
enhanced outcomes for online e-commerce 
ventures. 

 
5. CONCLUSION 

    In this article we present an innovative method 
known as NPFIC to detect influential nodes in 
complex networks, by focusing on the internal 
arrangement of a node's pack to determine its 
global significance. Unlike existing approaches, 
NPFIC considers that the influence of neighboring 
nodes on a central node's importance is closely tied 
to their degree of membership and non-
membership, so it employs fuzzy sets to distribute 
different weights to neighbor nodes within a node’s 
pack. NPFIC uses Havrda-Charvat entropy,  the 
probability-type of entropy for PFSs to better suit 
real-world directed weighted network 
characteristics. NPFIC assesses node importance by 
examining the information contained within the 
node’s pack defined by the network structure which 
are all calculated through the Havrda-Charvat 
entropy. In computing information, NPFIC  
considers the inner structure of node’s pack, 
providing a more accurate and refined approach to 
evaluate node importance globally in complex 
networks. The effectiveness and superiority of 
NPFIC are confirmed through several experimental 
validations done on complex networks, where it is 
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contrasted with other four centrality metrics. The 
nodes ranked in the top 10 based on NPFIC 
demonstrate their importance through a wider range 
of influence compared to four other methods. In 
conclusion, NPFIC not only helps in identifying 
influential nodes within directed weighted  
networks but also effectively integrates principles 
from information theory with the field of network 
science. Expanding the utilization of NPFIC to 
Neutrosophic graphs within social networks aims to 
identify influential actors and assess the uncertainty 
associated with the contributions of neighboring 
nodes. This endeavor serves to inspire and guide 
future research in this domain. 
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