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ABSTRACT 
 

Airborne pollution poses a significant threat to public health, leading to detrimental health effects. Despite global 
economic growth, ensuring access to clean air has become increasingly challenging worldwide. The contamination of 
air occurs as dust particles and smoke, released by vehicles and industries, suspend into the atmosphere, exacerbating 
the challenge of providing clean air for people. Hence, it is imperative to predict the Air Quality Index (AQI) to 
safeguard the lives of people, especially considering the severe health effects caused by the inhalation of small 
particles. This paper outlines a deep learning methodology for constructing Air Quality Index (AQI) prediction 
models. The models utilize hourly meteorological data and pollutant information, aiming to fulfill the critical 
requirement for precise assessments of air quality. The aim of this paper is to formulate predictive models for 
AQI in Thiruvananthapuram, Kerala, employing deep learning algorithms, thereby addressing the escalating 
challenge of air pollution in the region. Deep neural network architectures, such as Long Short-Term Memory (LSTM), 
Bidirectional Long Short-Term Memory (BI- LSTM), and Gated Recurrent Unit (GRU), are implemented to construct 
the prediction model. When compared to other algorithms, GRU demonstrated promising outcomes. The findings of 
this research contribute not only to the advancement of AQI prediction models but also highlight the practical 
significance of employing deep learning techniques for accurate and timely air quality assessments. The 
outcomes have practical implications for public health and environmental management, providing a basis for 
informed decision-making in mitigating the adverse effects of air pollution. 
Keywords: Ammonia, CO, Pollution, Prediction Models, Meteorological Data 
 

1. INTRODUCTION 
 

The Air Quality Index (AQI) is 
employed as a daily metric to convey the state 
of air quality, offering a quantifiable measure 
of how air pollution affects human health. It 
serves as a crucial tool in representing and 
communicating the impact of air quality on 
well-being. Predicting AQI aims to aid individuals 
in comprehending how the air quality in their 
vicinity influences their health. The values of the 
seven pollutants PM2.5, PM10, Ammonia, 
Carbon Monoxide, Ozone, Sulphur Dioxide, 
Nitrogen Dioxide [1] are used to calculate Air 
Quality Index. 

 
Particulate Matter denotes the solid 

particles and liquid droplets found in the 
atmosphere. Particulate Matter enters the lungs and 
stays in the tissues for a long time. This causes 
cancer and other respiratory diseases [2]. Sulfur 
dioxide is a toxic, colorless gas with a pungent 
smell. Sulphuric acid exposure can have 

devastating consequences for those who have 
asthma. Ground-level ozone is one of the most 
dangerous pollutants in the atmosphere. 
Ammonia is a hazardous gas that causes 
cardiovascular illness in people who breathe it for an 
extended period. Thus, the value of the air quality 
index depends upon the level of presence of these 
particles in the air. 

 
Inadequate air quality not only 

correlates with the release of harmful 
pollutants but also presents a direct risk to 
respiratory health, making it a critical concern 
for communities and policymakers alike. 
Particularly vulnerable are children and 
individuals with pre-existing respiratory 
conditions, who face heightened health risks 
when exposed to compromised air quality. 
Thus, building an effective forecasting model for 
the air quality index is crucial so that individuals 
can protect themselves by avoiding exposure to 
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outdoor pollutants. 
 

The Central Pollution Control Board has 
set the National Ambient Air Quality Standard, 
defining the necessary air quality level and 

incorporating a specified safety margin to 
ensure the protection of public health. The 
AQI breakpoints and the pollutant breakpoints 
are provided in Table 1 & Table2. 

 
 

Table 1. Threshold Levels 
of AQI 

 
 

Index AQI Category 

0-100 Good 

101 – 200 Moderate 

201-300 Poor 

301 – 400 Very Poor 

401 – 500 Severe 

 
Table 2. Breakpoints for 

the pollutants 
 
 

An effective forecast of AQI can be made 
using machine learning, which is a part of 
artificial intelligence that helps systems learn 
from data. Deep Learning methods are a subset of 
machine learning technique which includes a 
neural network with more layers that helps in 
decision making by learning through examples as 
humans do. 

 
Numerous researchers actively engaged in 

predicting the Air Quality Index (AQI) value 
using a variety of algorithms, including both 
conventional Machine Learning and advanced 
Deep Learning techniques. In [3], the authors 
employed various machine learning models for 
Air Quality Index (AQI) prediction. The 
objective of their study was to construct 
predictive models for forecasting pollutant 
levels, including PM2.5, using publicly 
accessible data for New Delhi. The utilized 
algorithms encompassed Linear Regression, 
Lasso Regression, XG Boost, Random Forest 
Regression, and K- Nearest Neighbors 
Algorithm. To evaluate the performance of these 
models, the authors employed metrics such as 
Mean Absolute Error (MAE), Mean Squared 
Error (MSE), and Root Mean Squared Error 
(RMSE). Conclusively, the authors found that the 
Random Forest Regressor yielded the most 
accurate results, showcasing a Mean Average 
Error of 24.75, Mean Squared Error of 1675.42, 
and Root Mean Squared Error of 

40.93 in this AQI prediction task. 
 

In the paper [4], the authors investigated 
and compared three air pollution prediction 
techniques—Linear Regression, Random Forest 
Regression, and Convolutional Neural Network 
(CNN). Emphasizing the importance of Root 
Mean Squared Error (RMSE) as an indicator of 
accuracy, the study revealed that the Random 
Forest algorithm outperformed others for city day 
data with an MSE of 936. Conversely, CNN 
demonstrated superior performance for city hour 
data, yielding the lowest MSE of 1834. The 
paper delved into data preprocessing, 
addressing missing values, and proceeded to 
compare various machine learning and deep 
learning models. The suggested model was 
lauded for its utility in visualizing air quality, 
showcasing its potential for forecasting pollutant 
levels. 

 
In [5], the authors introduced a significant 

contribution to air quality management in Vietnam, 
employing the WRF model and machine learning 
algorithms, specifically highlighting the 
effectiveness of the Extra Trees Regression model 
in forecasting PM2.5 concentrations in Ho Chi 
Minh City. The study meticulously evaluated 
the model's performance, showcasing impressive 
statistical indicators such as RMSE = 7.68 µg m–
3, MAE = 5.38 µg m–3, and an R-squared value 
of 0.68. The model's accuracy was further 
underscored by a 74% accuracy rate in the 
confusion matrix. Notably, the research 
emphasized the simplicity and stability of the 
predictive model, built on a comprehensive dataset 
spanning over three years and utilizing a single 
machine learning algorithm. The study's 
findings highlighted the model's capability to 
provide hourly PM2.5 concentration predictions 
for short to medium-term durations, addressing 
pollution concerns and offering valuable insights 
into health impacts for effective early warning 
systems and air quality management in major cities. 

 
The research outlined in [6] provided a 

holistic methodology for predicting fine 
particulate matter (PM2.5) and nitrogen oxide 
(NOx) concentrations in Jaipur city, India, 
addressing the pressing concern of air 
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pollution. Employing a machine learning-based 
multiple linear regression (MLR) model and 
utilizing two months of 2018 data, the authors 
selected input variables through the Pearson 
correlation coefficient method. The study 
highlighted the efficacy of the MLR model 
in forecasting PM2.5 and NOx 
concentrations across three locations in 
Jaipur, achieving commendable accuracy with 
R2 values ranging from 0.59 to 0.68 for PM2.5 
and 0.56 to 0.81 for NOx. The research not only 
contributed to the field of air quality prediction 
but also emphasized the importance of 
machine learning methodologies in 
overcoming limitations posed by traditional 
approaches. Additionally, the paper underlined 
the potential for implementing such models in 
developing countries like India, where limited 
monitoring infrastructure exists. Overall, the 
study provided valuable insights for mitigating 
air pollution and managing air quality in urban 
environments. 

 
The literature survey provided a 

comprehensive overview of diverse 

studies conducted by researchers to predict 
the Air Quality Index (AQI) using 
various machine learning and deep 
learning algorithms. The details are 
summarized in Table 3. Despite the 
advancements in predicting AQI, there 
remains a need for a more robust and 
region-specific model that not only 
considers pollutant concentrations and 
meteorological factors but also 
incorporates the unique characteristics of 
the study area. Additionally, the current 
literature lacks a comprehensive 
comparison of deep learning models such as 
LSTM and GRU with conventional 
machine learning algorithms in the specific 
context of Thiruvananthapuram, Kerala. 
Thus, this study endeavors to fill this 
gap by formulating a problem that seeks to 
enhance the accuracy and applicability of 
AQI prediction models for the local 
environment. 

 
Table 3. Performance Summary of 
Reviewed Papers 

 
 

While considerable strides have been 
made in the field of air quality research, the 
persistence of air pollution as a pressing issue 
necessitates a closer examination of its enduring 
relevance. Despite advancements in technology 
and regulatory measures, the ubiquity and diverse 
sources of pollutants, coupled with evolving 
environmental challenges, contribute to the 
ongoing impact on air quality. This study aims to 
shed light on the continued significance of air 
quality concerns, emphasizing the need for robust 
predictive models to address the dynamic nature 
of pollutants and their effects. 

In this research work, we posit the 
hypothesis that implementing advanced deep 
learning architectures, specifically Long Short-Term 
Memory (LSTM), Bidirectional Long Short- Term 
Memory (BI-LSTM), and Gated Recurrent Unit 
(GRU), will lead to a significant improvement in 
the accuracy of Air Quality Index (AQI) 
predictions. Our hypothesis is based on the 
amalgamation of meteorological and pollutant 
features, coupled with feature engineering, to capture 
nuanced relationships within the dataset. To test 
this hypothesis, we calculate AQI using 

pollutant features, adding it as the dependent 
attribute for developing robust AQI prediction 
models. The performance of these models is 
methodically assessed through metrics including 
Mean Absolute Error (MAE), Root Mean 
Squared Error (RMSE), Mean Squared Error 
(MSE), and R-Squared value. This thorough 
evaluation ensures a comprehensive 
understanding of their predictive accuracy and 
reliability. 

 
2. COLLECTION AND PREPARATION 

OF DATA 
 

Air quality data is originated from the 
Central Control Room for Air Quality 
Management, a division of the Central Pollution 
Control Board in Delhi. The data is accessible 
through an online portal [7]. Meteorological data 
spanning the years 2017 to 2020 for 
Thiruvananthapuram city in Kerala is procured 
from the Visual Crossing Website [8]. 
Comprising around 26,305 time series samples, 
this hourly dataset amalgamates meteorological 
parameters (Temperature, Relative Humidity, 
Dew, Sea Level Pressure, Cloud Cover, Visibility, 
Conditions, Icon, Solar Radiation, Barometric 
Pressure, Atmospheric Temperature, Rainfall, 
Feels-like, Wind Speed, and Wind Direction) 
with pollutant data (Ammonia, Particulate matter 
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of size 2.5 and 10, CO, Ozone, SO2, and NOx) 
for in-depth analysis. 

 
Relative Humidity is the percentage of 

water vapor present in the air out of the 
maximum amount [9]. Due to their small size and 
high polarity, water molecules can form strong 
bonds with various substances. The presence 
of water molecules suspended in the air 
significantly enhances the scattering of light by 
particles. Dew, in turn, is the condensed form of 
water vapor, appearing as droplets. The Dew 
Point signifies the temperature at which water 
vapor condenses to form droplets. The presence 
of dew in a surface layer reduces the pollutant 
concentration. 

 
Barometric Pressure signifies the 

atmospheric pressure, while Sea Level 
Pressure reflects the thermal contrast between 
sea and land. Atmospheric pressure at any 
elevation, computed through a formula, is 
adjusted to a value approximating the 
pressure at sea level. Cloud Cover serves as an 
indicator of prevailing sky cloudiness. 

 
Cloud Cover denotes the proportion of 

the sky typically obscured by clouds from a 
specific vantage point. Visibility gauges sky 
clarity, representing the maximum distance 
an object is discernible to the naked eye. The 
presence of aerosols in the air creates a white 
haze, impacting object identification in the 
distance. Solar radiation quantifies the sun's 
emitted energy [10]. Rainfall signifies the 
total water volume precipitated in an area. 
Wind Speed indicates the rate of wind flow 
from a particular direction. Notably, rainfall 
and wind speed exhibit an indirect 
relationship with the Air Quality Index: 
rainfall dissolves atmospheric pollutants, 
while wind speed disperses pollutant 
particles, contributing to their dissipation. 

 
The acronym PM denotes particulate 

matter, encompassing both liquid droplets and 
solid air particles such as ashes, soot, and 
ash. Particle pollution encompasses 
inhalable particles of varying sizes, including 
small (PM10) and large (PM2.5) particles, 
with respective sizes of 10 and 2.5 micrometers. 
Exposure to these particles can cause 
respiratory issues, impacting the heart and 
lungs [11]. Carbon monoxide (CO), a 
colorless, odorless, and tasteless flammable 

gas, stands as the most prevalent airborne 
pollutant. It originates primarily from 
vehicles and the combustion of fossil fuels. 
Sulphur dioxide, a transparent gas with a 
pungent odor, is toxic. Its interaction with 
sulphuric acid produces sulphurous acid and 
sulphate particles. The main sources of 
sulphuric acid are humans and industrial waste. 

 
Ozone gas (O3) consists of three 

oxygen atoms and is categorized into two 
types. The ozone found in the upper 
atmosphere protects humans from ultraviolet 
radiation, while ground-level ozone poses a 
significant threat as one of the most 
hazardous contaminants in the atmosphere 
[12]. 

 
Nitrogen oxide is produced through 

the reaction between nitrogen and oxygen, 
remaining inert at low temperatures but 
transforming into NOX during high 
temperatures. This NOX contributes to acid 
rain and smog. Transportation activities and 
fossil fuel combustion are the primary 
sources of nitrogen oxides. Ammonia, 
characterized by a pungent odor, combines 
with sulphates and nitrates to form PM2.5. 
Prolonged inhalation of this poisonous gas 
can lead to cardiovascular diseases [13]. 

 
Thusa total of 26,305 timeseries data 

with  22 features that includes 15 
meteorological features and 7 pollutant 
features are prepared. To prepare the labelled 
instances, the values for the target variable 
AQI is calculated using the equation given 
below and added to the respective tuples. 
Ip = [IHi – ILo / BPHi – BPLo] (Cp – BPLo) 
+ ILo 

 
Where, 
Ip = index of pollutant p 
Cp = truncated concentration of pollutant p 
BPHi = concentration breakpoint i.e. greater than or 
equal to Cp BPLo = concentration breakpoint i.e. 
less than or equal to Cp IHi = AQI value 
corresponding to BPHi 
ILo = AQI value corresponding to BPLo 
The features are summarized in Table 4 and 
sample meteorological data and air pollutant data is 
provided in Table 5 and Table 6 respectively. 
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Table 4. Meteorological and Pollutant features 
 

Meteorological Features Pollutant Features 

Feelslike Barometric Pressure PM2.5 

Dew Air Temperature PM10 

Sea Level Pressure  
Rainfall 

 
Carbon Oxide 

Cloudcover Wind Speed Sulphur Dioxide 

Visibility Wind Direction Ozone 

Temperature Conditions Nitrogen Oxide 

Relative Humidity  
Icon 

 
Ammonia 

Solar Radiation   

 
Table 5. Sample Meteorological data Table 6. Sample Pollutant data 

 
2.1. Data Exploration 

Exploratory data analysis involves utilizing 
statistical techniques and visualization methods 
to delve into the data, revealing latent patterns and 
trends. It serves as a vital preliminary step 
following data collection, wherein the data is 
observed, graphed and manipulated without 
making presuppositions. This process aids in 
evaluating data quality, performing data pre- 
processing, and selecting relevant features [14]. In 
our previous work the exploratory data analysis was 
performed which helped in identifying the most 
contributing features, outliers etc. The 
observations from the exploratory data analysis 
are explained below. Exploratory plots such as 
Heat Map, Boxplot, Pairplot, Barchart were used 
to get an overall understanding of the data and 
identify the correlation between meteorological 
features and pollutants. Heat Map gives a visual 
representation of the entire data. The objective of 
generating the heatmap is to understand the impact 
of all the values in the raw data in a single form [15]. 
The heat map generated for the data is given in 
Figure. 1. 

 
 
 

 

 
Figure. 1. Heat Map generated on the entire 
data 

 
 

The heatmap analysis unveiled notable 

correlations within the dataset. Dew exhibited 
positive correlations with feels-like, cloud cover, 
atmospheric conditions, air temperature, and 
wind speed. Temperature showed positive 
correlations with feels-like, visibility, PM10, 
sulfur dioxide, ozone, solar radiation, air 
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temperature, wind speed, wind direction, and 
the Air Quality Index (AQI). Additionally, Sea 
Level Pressure, PM2.5, PM10, CO, SO2, Ozone, 
NOx, NH3, temperature, and wind direction 
were positively correlated with AQI, while feels 
like, dew, cloud cover, atmospheric conditions, 
icon, rainfall, and wind speed exhibited 
negative correlations with AQI. However, 
no significant correlations were observed 
between cloud cover, barometric pressure, 
and AQI. 

 
A histogram provides a visual representation 

of continuous data, organizing it into non-
overlapping bins or ranges [16]. The primary 
purpose of a histogram is to illustrate the 
frequency of a feature's occurrence. Figure 2 
displays the histogram generated from the raw 
data. The analysis indicates that, for the 
majority of days, humidity falls within the range 
of 65 to 70, temperature within 27 to 30, and 
dew value from 23 to 24. The observed 
minimum and maximum values for humidity 
were 50 and 100, respectively. 

 

 

Figure. 2. Histogram generated on the entire data 
 
Pair plots were used to identify pairwise 

relationships in the raw data. Boxplots provides a 
five number summary and was also used to identify the 
outliers present in the data. Pair plot generated for the 
raw data is given in figure 3. The pair plots generated 
depicts that the features sea level pressure, PM2.5, 
PM10, CO, NOx, NH3, SO2 and Ozone were 
positively correlated with Air Quality Index whereas 
feels like, dew, humidity, Wind Speed, Cloud Cover 
were negatively correlated with air quality index 
 
 

Figure. 3. Pair plot generated on the raw data 
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Correlation between each pair of features was 
identified to select the most contributing features and 
the results obtained are shown in Table 7. It has been 
identified that cloud cover and barometric pressure 
have no correlation with the prediction of AQI value. 

 
 
 

 
Table 7. Correlation between the attributes and AQI 

S.No Attribute Correlation Value Result 
 
 
1 

 
 

Feelslike 

- 0.0126887246062 
51351 

 
Negatively Correlated 

 
2 

Dew - 0.3015968201961 
364 

Negatively Correlated 

 
3 

Sea Level Pressure 0.2839030027863 
6227 

Positively Correlated 

 
4 

 
Cloudcover 

0.1012631286566 
0123 

Positively Correlated 

 
5 

 
Visibility 

0.0003432320255 
69354 

 
No correlation 

 
6 

 
PM2.5 

0.5756957872056 
067 

Positively Correlated 

 
7 

 
PM10 

0.5810464548312 
541 

Positively Correlated 

 
8 

Carbon Oxide 0.4576441360302 
9847 

Positively Correlated 

 
9 

Sulphur Dioxide 0.3007450067079 
0966 

Positively Correlated 

 
10 

 
Ozone 

0.4470679404848 
0963 

Positively Correlated 

 
11 

Nitrogen Oxide 0.1817958779449 
8741 

Positively Correlated 

 
12 

 
Ammonia 

0.2803357111530 
1464 

Positively Correlated 

 
13 

Temperatur e 0.3119078283575 
685 

Positively Correlated 

 
14 

Relative Humidity 0.4541541870799 
8985 

Positively Correlated 

 
 

15 

 
Solar Radiation 

- 0.0174908770669 
20537 

 
Negatively Correlated 

 
16 

Barometric Pressure 0.0076884989859 
714635 

 
No Correlation 

 
17 

Air 
Temperatur e 

- 0.0638200672482 
9173 

 
Negatively Correlated 

 
18 

 
Rainfall 

- 0.1207312355884 
903 

 
Negatively Correlated 

 
19 

Wind Speed - 0.1365778017395 
007 

 
Negatively Correlated 

20 Wind Direction 0.1019325194893 
6194 

Positively Correlated 

 
22 

Conditions - 0.1162363113881 
4557 

 
Negatively Correlated 

 
23 

 
Icon 

- 0.0733477949698 
372 

 
Negatively Correlated 
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The analysis highlighted positive correlations 
between Sea Level Pressure, PM2.5, PM10, CO, 
SO2, Ozone, NOx, NH3, temperature, and wind 
direction with AQI. Conversely, feels-like, dew, 
cloud cover, atmospheric conditions, icon, 
rainfall, and wind speed showed negative 
correlations with AQI. No correlations were 
found between cloud cover, barometric 
pressure, and AQI. Furthermore, features such as 
relative humidity, wind speed, sea level 
pressure, and all pollutant data were identified 
to have outliers, necessitating preprocessing. 
Tasks such as filling missing values, outlier 
removal, and normalization were identified 
through  
Exploratory Data Analysis (EDA) for attributes 
like NH3 and sea level pressure, ensuring effective 
preprocessing. 
 

2.2. Preprocessing 
For any data science project, data 

preprocessing and Exploratory Data Analysis 
(EDA) stand as crucial tasks. As a result of 
exploratory data analysis, it is understood that there 
is no correlation between Visibility, Barometric 
Pressure and Air Quality Index. So, these two 
features are not used for further processing. 
Among the other features, two features’ conditions 
and icon are non-numerical variables. Most 
machine learning and deep learning algorithms 
cannot handle categorical data. The best practice is 
to convert them to numerical data and apply them in 
the algorithms. One of the methods to convert 
categorical data to numerical data is one hot 
encoding which encodes the categorical data to 
binary vectors. In this paper Label Encoder 
function from scikit-learn library is used here to 
convert them into numerical variables. 

Handling missing data is the essential 
step to be performed during pre-processing since 
the presence of missing values produces biased 
results. The techniques to fill the missing 
values include replacing with median value, 

replacing with mode value. Ignoring the entire 
record and Interpolation[17]. In this paper 
Interpolation technique is used to fill the missing 
values. Interpolation is the process of filling the 
missing values with the neighboring values. 

Building an efficient model requires the 
dataset with no outliers. In this paper outliers are 
detected and replaced using an interpolation 
technique which falls under the category of 
clustering-based methods. Scaling refers to the 
handling of highly variable magnitudes, values, 
or units, which is another crucial pre-processing 
activity. When feature scaling is absent, machine 
learning algorithms tend to favor larger values 
over smaller ones, irrespective of the 
measurement unit. Standardization and Min-
Max scaling represent approaches to address this 
issue. 

Min-Max scaling is a method that adjusts 
a feature or observation value, transforming it to a 
range between 0 and 1 within its distribution [18]. 
A feature value is rescaled using the very effective 
standardization procedure so that its distribution 
has a mean value of 0 and a variance of 1. In this 
paper Min Max scaling is used for normalizing the 
values of all the attributes. 

 
3. AIR QUALITY PREDICTION 

MODEL - DESIGN & 
METHODOLOGY 

 
Predicting air quality is crucial as it serves 

as an early warning system to protect lives. This 
paper aims to explore the correlation between 
meteorological data and air pollutant features and 
leverage them to construct a predictive model for 
the Air Quality Index. The efficacy of the prediction 
model hinges on the quality of the data utilized. 
Therefore, collecting relevant data, conducting 
thorough pre-processing, and selecting pertinent 
features are pivotal in developing an efficient 
prediction model. The system architecture is 
illustrated in Figure 4. 

Figure 4. System Design Framework 
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3.1 Data Modelling and Training Dataset 
The air quality time series data collected for 
Trivandrum area, has been analyzed and 
preprocessed as described in section 2. Feature 
selection methods are categorized into Filter 
methods, wrapper methods, embedded methods, 
and hybrid methods. In this paper one of the 
filter techniques called correlation coefficient 
is used to identify the attributes that do not 
contribute to the prediction. One of the wrapper 
methods called select k best is used to identify 
the most contributing features [19]. As a 
result of identifying correlation coefficients, the 
features such as Visibility and Barometric 
Pressure are removed as there is no correlation 
between them and AQI. As a result of the 
select k best method, the best 15 most 
contributing attributes are identified. 
Finally, a dataset with 26,305 instances and 16 
attributes has been developed. Since AQI 
prediction process is modelled as regression 
task, the attributes such as Temperature, Dew, 
Atmospheric Temperature, Cloud cover, 
conditions, icon, Rainfall, Wind Speed, 
PM2.5,PM10, CO, SO2, Ozone, NOx and NH3 

are considered as independent variables and the 
AQI is a target variable. 
 
To create a prediction, model the dataset is 
split for training and testing. 80% of the 
records are used for the training and 20% are 
used for testing the model. The algorithms such 
as LSTM, Bidirectional LSTM and GRU are 
used to build a forecasting model. 

 
3.2 Methodology 
Deep Learning, a subset of Artificial Intelligence 
and a variant of machine learning, employs 
densely layered architectures reminiscent of human 
decision-making[20].With the ability to handle 
intricately interconnected and diverse 
unstructured data, deep learning equips machines 
to tackle complex problems. As deep learning 
algorithms accumulate knowledge, their 
performance improves, and they acquire 
expertise through learning from examples. The 
potency of deep learning is harnessed with 
considerable processing power and extensive 
information, making it adaptable to various data 
types. Notable deep learning algorithms 
encompass Convolutional Neural Network, Long 
Short-Term Memory, Recurrent Neural Network, 
Generative Adversarial Network, Radial Basis 
Function, Multilayer Perceptron, Deep Belief 
network, and Autoencoders. This paper explores 

advancements in Recurrent Neural Network, such 
as LSTM, Bidirectional LSTM, and Gated 
Recurrent Unit, for constructing AQI prediction 
models. 
 
3.2.1Long Short-Term Memory (LSTM) 
Long Short-Term Memory Network is a type of 
RNN suitable for time series prediction. The LSTM 
cells could add long term memory which makes the 
forecasting model powerful and provides accurate 
results. If a long trend is available in the data, LSTM 
is the best choice of algorithm for prediction. Even 
Though GRU is faster than LSTM, LSTM provides 
better accuracy than GRU as it includes 3 gates 
whereas GRU has only 2 gates. It can also handle the 
vanishing gradient problem faced by RNN. RNN keeps 
track of previous data and employs it when processing 
new input. Addressing the challenge of vanishing 
gradients, traditional Recurrent Neural Networks 
(RNNs) exhibit a drawback in recalling long-term 
dependencies. This limitation is specifically 
overcome by Long Short- Term Memory (LSTM) 
networks. An LSTM consists of three distinct 
components, each serving a unique purpose. The 
initial segment determines the necessity of 
retaining or discarding information from the 
previous timestamp. The subsequent segment 
focuses on assimilating new insights from the input 
data. Finally, the third segment conveys updated 
information from the current timestamp to the 
succeeding one [21]. These components are categorized 
as follows, Forget Gate, responsible for the first part, 
Input Gate, constituting the second part and Output 
Gate, representing the final element. 
 
3.2.2. Bidirectional Long Short-Term Memory 
The concept of incorporating sequence information 
in both directions—backward (future to past) and 
forward— is encapsulated in the term "Bidirectional 
Long Short-Term Memory" (Bidirectional LSTM), 
where "bidirectional" pertains to the flow of 
information from both past to future. Distinct from the 
conventional LSTM, a Bidirectional LSTM (BI-
LSTM) facilitates dual input streams that traverse in 
both directions. While the standard LSTM enables 
input to flow in one direction—either backward or 
forward— BI-LSTMs accommodate bidirectional 
input, capturing insights from both past and future 
contexts [22]. This augmentation equips the network 
with enriched informational resources, enhancing its 
access to contextual understanding. 
 
3.2.3 Gated Recurrent Unit (GRU) 
Gated Recurrent Unit is one of the most 
advanced RNN that are widely used for time 
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series forecasting. GRU has simple architecture. 
Reset and update gates are two of its gates. The 
gates are used to regulate the information 
flow. The reset gate is responsible for short term 
memory and update gate for long term 
memory. GRU works by creating candidate 
hidden states by obtaining values such as input, 
hidden state from previous timestamp and 
output of reset gate applied to tanh function. 
The value of the reset gate determines how 
much information from the previous 
information to be considered. The candidate 
state and update gate are then used to build 
hidden states [23]. The output of the update 
gate is very critical as it controls both the 
historical information and new information 
which comes from the candidate state. Due to 
the simple architecture GRU is faster to train 
when compared to LSTM and BILSTM. 

 
3.3. Hyperparameter Tuning 
The pre-processed data undergoes application 
to deep learning algorithms for constructing 
an effective AQI prediction model. 
Enhancing the performance of deep learning 
models involves hyperparameter tuning. 
Hyperparameters such as the number of 
hidden layers, activation function, epochs, batch 
size, and dropout rate are adjusted to establish 
an optimized model. Positioned between the 
input and output layers, hidden layers play a 
pivotal role in model architecture [24]. The 
decision regarding the quantity of hidden 
layers hinges on the intricacy of the problem at 
hand. 
 
Optimizers serve as strategies to minimize loss 
by adjusting weights or learning rates. Diverse 
optimizers encompass gradient descent, 
stochastic gradient descent, momentum-based 
gradient descent, RMSProp, Adagrad, Adam, 
and others. In this context, the Adam optimizer 
is leveraged for optimization. Adam optimizers 
exhibit efficacy due to the integration of 
momentum gradient descent's history preservation 
and RMSProp's adaptive learning rate. The concept 
of epochs signifies the number of times the network 
processes the complete training dataset. Training 
with numerous epochs could lead to overfitting, this 
is mitigated through an early stopping technique. 
Early stopping automatically halts training after a 
certain number of epochs when performance 
stabilizes. Additionally, to counteract overfitting, 
dropout techniques are employed. Drop out entails 
the random exclusion of neurons during training, 

temporarily removing their contribution to 
downstream neuron activation during the 
forward pass, and bypassing weight updates 
during the backward pass. The quantity of 
training samples used in a single iteration is 
termed the "batch size" in machine learning.. 
As AQI prediction task is formulated as a 
regression problem, the pattern of independent 
variables is self learnt through representation learning 
from the above training dataset to model the target 
variable using LSTM, BIRNN, GRU. Thus 
independent AQI prediction models are built. 
Model performance assessment employs metrics 
including Mean Absolute Error, Mean Squared 
Error, Root Mean Squared Error, and R Square. 
Root Mean Squared Error serves as a primary 
evaluation metric. It gauges the dissimilarity between 
predicted and observed values, quantifying the 
average error through squaring and subsequent 
calculation of the square root [25]. This approach 
lends substantial weight to significant errors due to 
the prior squaring of errors before averaging. The Mean 
Absolute Error, on the other hand, represents the mean 
of absolute prediction errors across all instances within 
the test set. A pivotal evaluation metric, the R2 score 
(pronounced as R squared), stands as the coefficient of 
determination. Operating by contrasting expected and 
observed values, a higher R2 score signifies better 
model performance. The effectiveness of the model is 
validated through these metrics. Model performance is 
deemed favorable when Root Mean Squared Error and 
Mean Absolute Error exhibit low values, while the R2 
score demonstrates a high value. 
 
4. EXPERIMENT AND RESULTS 
 
In the deep learning-based approach to predict the 
air quality index the dataset with meteorological 
features and pollutant features are used for building 
the model. The dataset includes 26,305 instances 
with 16 features. Among which 80 percent of the 
records are used for training and 20 percent of the 
records are used for testing. Different optimizers, 
including Adam, Adagrad, and Gradient Descent, 
were evaluated, and dropout rates ranging from 10 
to 20 were tested. Batch sizes between 20 and 64 were 
utilized during experimentation, and the impact of 
various epoch sizes, such as 100, 200, and 300, was 
observed. The LSTM, BILSTM, and GRU 
algorithms were fine-tuned with hyperparameters 
such as hidden layers, optimizer, epoch, batch size, 
and dropout to optimize the deep network. The 
experiments were executed with the parameter 
configurations outlined in Table 8, leading to the 
development of the prediction model. 



Journal of Theoretical and Applied Information Technology 
15th January 2024. Vol.102. No 1 

© 2023 Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
22 

  

Table 8. List Of Hyperparameters And Optimum Value 
 

Hyperparameter Values 

Optimizer Adam 

Batch size 64 

Dropout 10 

Learning rate 0.01 

 
 
 
The performance metrics such as Root Mean 
Square value, Mean Absolute error and R-Squared 
value observed for evaluating the performance of the 
AQI prediction models for various epochs using 
LSTM algorithm are provided in Table 
9. From the prediction result it was observed that, 
as the number of epochs increases, the performance 
of the model also increases and becomes stable at 
the epoch 300 for LSTM. Mean Absolute Error 
was more when the epoch is 100 and got reduced 
when the epoch is 300. Mean absolute error was 
0.5157when the epoch was 100 and reduced to 
0.4182 when the epoch was 300 for LSTM. The 
high Root Mean Square error 0.7722 was 
observed at the epoch 100 whereas it is reduced 
to 0.6279 at the epoch 300. R-Squared value 
was 0.4651 for LSTM at the epoch 100 and 
increased to 0.6685 at the epoch 300. 
 

Table 9. – Performance Evaluation Of 
LSTM Model For Various Epochs 

 

 LSTM 

Epochs 100 200 300 

 
MAE 

 
0.5157 

 
0.4772 

 
0.4182 

 
RMSE 

 
0.7722 

 
0.6708 

 
0.6279 

 
R2 

 
0.4651 

 
0.5292 

 
0.6685 

 
The difference between the expected value and 
predicted value captured when using LSTM for 
the epoch 300 are provided in Figure 5. 
 
 
 
 
 
 
 
 
 
 
 

Figure. 5. Difference Between Expected Value And 
Observed Value For LSTM 

 
The performance of the BILSTM model evaluated 
using the metrics RMSE, MAE and R2 value are 
provided in Table10. Mean absolute error is 0.7714 
at the epoch 100 and gradually 
 reduced and reached 0.5287 at the epoch 200. 
Root mean squared error is less at the epoch 200 
whereas high RMSE is observed during the epoch 
100.R squared value was 0.2108 at the epoch 100 
whereas it is increased to 0.6000 at the epoch 
200. 
 

Table 10. – Performance Evaluation Results Of BI - 
LSTM Model For Various Epochs. 

 
 BI-LSTM 

epochs 100 200 300 

 
MAE 

 
0.7714 

 
0.5287 

 
0.7846 

RMSE 0.9405 0.7987 0.8203 

R2 0.2108 0.6000 0.5901 
 
The difference between the expected value and 
predicted value captured when using BILSTM for the 
epoch 200 are provided in Figure 6. 
 

 
 

Figure. 6. Difference Between Expected Value And 
Observed Value For BI -LSTM 

 



Journal of Theoretical and Applied Information Technology 
15th January 2024. Vol.102. No 1 

© 2023 Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
23 

  

Performance of the generated GRU model is 
evaluated and the results observed at the various 
epochs are provided in Table 11. Mean absolute 
error was 0.7662 for epoch 100 and got reduced 
to 0.2136 when the epoch size was increased to 
300. Similarly high RMSE value 0.8529 was 
obtained at the epoch 100 and low error value 
0.3168 was observed at the epoch 300. R2 value 
was 0.4539 at the epoch 100 and increased to 
0.8566 at the epoch 300. 
 

Table 11. – Performance Evaluation Results Of GRU 
Algorithm For Various Epochs. 

 
 GRU 

Epochs 100 200 300 

 
MAE 

 
0.7662 

 
0.6634 

 
0.2136 

RMSE 0.8529 0.7139 0.3168 

R2 0.4539 0.6690 0.8566 

 
The difference between the expected value and predicted 
value captured when using GRU for epoch 300 are 
provided in Figure 7. 

 

 
Figure. 7. Difference Between Expected Value And 

Observed Value For GRU 
 

After comparing the performance of the models built 
using LSTM, BI-LSTM and GRU, it was understood 
that high R2 value was obtained for the prediction 
model built using GRU. Root Mean Squared error and 
Mean absolute error was also low in GRU when 
compared to LSTM and BILSTM. 
 
The performance of the AQI prediction models 
developed using deep learning algorithms such as 
LSTM, BILSTM and GRU observed at the epoch 200 
are compared with prediction models developed using 
traditional machine learning algorithms. The machine 
learning algorithms such as Linear Regression, Support 
Vector Regression, Decision Tree Regression and 
XGBoost algorithms were used for building the AQI 
prediction model. The same performance evaluation 
metrics are used for comparison. The values observed 
for the performance metrics of deep models and 
traditional machine learning based AQI models are 
provided in Table 12. 
 

Table 12. Comparative Performance Results Of AQI 
Prediction Models 

When considering the error rate XGBoost algorithm is better than the other machine learning algorithms. The high 
Root Mean squared error 0.9462 is observed in linear regression whereas the error rate is reduced to 0.6937 in 
XGBoost algorithm. The R Square value0.4896 was observed for support vector regression whereas it got 
improved to 0.5936 with XGBoost algorithm. The comparison of deep learning models vs machine learning based 
AQI prediction models is illustrated in Figure. 8. 

 
Figure. 8. Comparative Performance Analysis Of AQI Prediction Models 

 
By comparing the performance of deep learning algorithms with machine learning algorithms, it was clearly 
understood that the lower error rate was observed for GRU when compared to all the other algorithms. Similarly high R 

Squared value was obtained for GRU. Thus, an accurate AQI prediction model can be built using the GRU 
algorithm. 
 
When comparing the performance of Air Quality Index (AQI) models constructed through deep learning architectures 
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such as LSTM, BILSTM, and GRU with the outcomes detailed in Table 3 from the reviewed papers, significant 
enhancements in AQI prediction are evident. The traditional Machine Learning Algorithms, including Linear 
Regression, Lasso Regression, XGBoost, Random Forest, and K Nearest Neighbors, yielded higher errors with a 
MAE of 24.74, MSE of 1675.42, and RMSE of 40.93. In contrast, the GRU-based AQI prediction model 
demonstrated substantially lower errors, achieving a minimum MAE of 0.2136 and RMSE of 0.3168. The Extra 
Trees Regression model, used for PM2.5 prediction, exhibited an RMSE of 7.68, MAE of 5.38, and R-squared 
value of 0.68. Comparatively, the GRU-based AQI prediction model outperformed with an accuracy of 0.8566. 
The superiority of the GRU architecture was further evident in predicting PM2.5 and NOx, where it achieved an 
impressive accuracy of 0.8566, surpassing the R-squared values of 0.68 and 0.81 reported in the literature. These 
findings underscore the remarkable efficacy of deep learning models, particularly GRU, in enhancing the precision 
and accuracy of AQI predictions. 
 
From this research work, the following observations are made. The experimental results demonstrate that 
machine learning algorithms can also be used for time series AQI forecasting. But when comparing the 
performance with deep learning algorithms, the prediction accuracy is more for deep learning based AQI prediction 
models as it can handle multiple input variables with noisy complex dependencies. One of the advantages of deep 
learning networks is their capacity to extract patterns from input data that spans relatively extended sequences. Through 
feature selection best contributing features are identified which helped the deep learning architectures to identify the 
trend present in the data. The ability to fine-tune the parameters to their ideal values improved forecast accuracy 
and decreased error rate. The quality of AQI prediction is improved by including Meteorological features with 
pollutant data since they have a greater impact on determining the air quality. Thus, the enhanced air quality 
prediction model with meteorological and pollutant time series data has proven to be an effective tool in predicting 
the air quality in different locations. 
 
5. CONCLUSION 
 
This work models the prediction of the Air Quality Index (AQI) as a task centered around time series forecasting. 
It showcases the application of deep learning methodologies to forecast the AQI value, employing sophisticated neural 
network structures like LSTM, BILSTM, and GRU. The study incorporates a time series dataset comprising 8 
meteorological attributes and 7 pollutant features, amalgamating them into a unified representation of air quality 
data. The initial step involved Exploratory Data Analysis (EDA), which provided insights into data distribution and the 
significance of individual parameters in predicting the air quality index. Through various preprocessing techniques, 
the air quality dataset was refined to ensure its suitability for analysis. Subsequently, deep learning-based 
models for AQI prediction were devised, employing LSTM, BILSTM, and GRU architectures, followed by 
meticulous performance evaluation. The performance of the models is evaluated using Mean Absolute Error, 
Mean Squared Error, Root Mean Squared Error and R Squared value. When comparing the performance of all 
the algorithms, the model built using GRU showed superior accuracy. Notably, the study raises pertinent questions 
regarding the applicability of predictive models in regions with limited historical data, suggesting avenues for 
future research to explore techniques like data augmentation and transfer learning to enhance the accuracy in such 
scenarios. 
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Table 2. Breakpoints For The Pollutants 
 

AQI Category PM10 24-hr PM2.5 24- 
hr 

NO2 

24-hr 
O3 

8 hr 
CO 

8 hr (mg/m3)
SO2 

24-hr 

Good 0-50 0-30 0-40 0-50 0-1.0 0-40 

Satisfactory 51-100 31-60 41-80 51-100 1.1-2.0 41-80 

Moderate 101-250 61-90 81-80 101-168 2.1-10 81-380 

Poor 251-350 91-120 181-280 169-208 10.1 – 17 381-800 

Very Poor 351-430 121-250 281-400 209-748 17.1-34 801-1600 

Severe 430+ 250+ 400+ 748+* 34+ 1600+ 

 
 

Table 3. Performance Summary Of Reviewed Papers 
 

 Objective Algorithm Performance 

[3] Predict 
value 

AQI Linear Regression, Lasso Regression, XG Boost, 
Random Forest Regression, and K- 

Nearest Neighbors 
Algorithm. 

MAE - 24.74 
MSE - 1675.42 
RMSE – 40.93 

[4] Predict AQI Linear Regression, 
Random Forest 
Regression, and 

Convolutional Neural Network (CNN) 

MSE – 1834 
RMSE – 42.82 

[5] Forecast PM2.5 
value 

Extra Trees Regression RMSE - 7.68 µg m–3 
, 

MAE = 5.38 µg m–3 , 
R-Squared = 0.68 

[6] Forecast 
PM2.5 
NOX 

 
and 

Multiple regression
(MLR) 

linear R-Squared – 0.68 for PM2.5 
R-Squared – 0.81 for NOX 
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Table 5. Sample Meteorological Data 
 

Datetime Dew Cc Vis Pm SR bp Ws 

2017-07- 
01T00:00:00 

 
23 

 
50 

 
3 

 
12 

 
85 

 
22 

 
6.5 

2017-07- 
01T01:00:00 

 
23 

 
50 

 
3 

 
14 

 
85 

 
22 

 
1.25 

2017-07- 
01T02:00:00 

 
23.7 

 
44.3 

 
3.6 

 
11 

 
86 

 
22 

 
1.75 

2017-07- 
01T03:00:00 

 
22 

 
36.4 

 
3 

 
11.5 

 
86 

 
22 

 
26.25 

2017-07- 
01T04:00:00 

 
22 

 
54.5 

 
2 

 
12.25 

 
86.5 

 
22 

 
10 

2017-07- 
01T05:00:00 

 
23.1 

 
75.1 

 
3.6 

 
10.25 

 
87.75 

 
22.25 

 
19.25 

2017-07- 
01T06:00:00 

 
22 

 
50 

 
3 

 
12 

 
88 

 
33.5 

 
43.25 

2017-07- 
01T07:00:00 

 
22 

 
36.4 

 
3 

 
16.75 

 
85.75 

 
136.5 

 
1 

 
 

 
Table 6. Sample Pollutant Data 

 
 

Datetime 
PM PM10 CO SO2 ozone NOX 

2017-07- 
01T00:00:00 

12 44 0.56 3.45 10.12 2.77 

2017-07- 
01T01:00:00 

14 38.25 0.56 3.9 12.52 2.73 

2017-07- 
01T02:00:00 

11 36.75 0.55 4.38 15.9 3.62 

2017-07- 
01T03:00:00 

11.5 30.25 0.56 4.25 15.87 2.53 

2017-07- 
01T04:00:00 

12.25 31.5 0.28 4.37 15.93 2.73 

2017-07- 
01T05:00:00 

10.25 31.75 0.34 4.07 12.08 4.12 

2017-07- 
01T06:00:00 

12 29.5 0.41 3.2 12.2 3.7 

2017-07- 
01T07:00:00 

16.75 36.75 0.45 2.98 12.08 4.02 

2017-07- 
01T08:00:00 

21.75 47 0.58 2.8 16.63 3.85 

2017-07- 
01T09:00:00 

19 54 0.56 2.67 13.3 4.35 
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Table 12. Comparative Performance Results Of AQI Prediction Models 
 

 LSTM BI-LSTM GRU LR SVR DTR XGBoost 

MAE 0.4182 0.5287 0.2136 0.8462 0.7048 0.6639 0.5849 

RMSE 0.6279 0.7987 0.3168 0.9462 0.80 0.835 0.693 

R2 0.685 0.6000 0.8566 0.5278 0.4896 0.5813 0.5936 

 
 

 

 

 

 
Figure. 8. Comparative Performance Analysis Of Aqi Prediction Models 

 


