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ABSTRACT  
 

Introduction: The analysis of skin lesions is critical for diagnosing skin diseases accurately. In this research, 
we present an innovative approach that addresses the tasks of identifying and classifying skin lesions, with a 
focus on lesions caused by the monkeypox virus.  

Methodology: Our method combines two main techniques: Convolutional Neural Networks (CNN) for 
segmenting lesions and a technique called RootSIFT to enhance the CNN for classifying the lesions. For the 
segmentation task, we use a type of neural network known as CNN, which can recognize and outline the 
exact regions of the monkeypox lesions in images. To improve the classification performance, we introduce 
the RootSIFT technique. This technique enhances the features used to classify the lesions. RootSIFT is 
derived from SIFT (Scale- Invariant Feature Transform) key points, and we incorporate it into the CNN- 
based model for better identifying the distinguishing features of the lesions. 

Results: To test our approach, we employed a comprehensive dataset containing images of monkeypox 
lesions. The dataset was divided into three parts for training, validation, and testing purposes. Our 
experimental results demonstrate the superiority of our approach over traditional CNN methods. We achieved 
accurate segmentation of the lesions and improved classification accuracy as compared to conventional 
techniques. 

Conclusions: The outcomes of this research underscore the potential benefits of merging advanced image 
analysis methods to achieve accurate and efficient analysis of skin lesions. This approach could have valuable 
applications in dermatology clinics, assisting dermatologists in diagnosing skin diseases more precisely and 
categorizing them correctly. 

Keywords: Segmentation, classification, RootSIFT, CNN, Dermatological, Diagnosis, Image Analysis, 
Scale-Invariant Feature Transform. 

 
1. INTRODUCTION 

 
In recent years, there has been a surge of 

interest in advancing skin lesion analysis, 
specifically focusing on diseases like monkeypox, 
through the integration of cutting-edge image 
processing techniques. Monkeypox, characterized 

by distinct skin lesions shown in Figure 1, 
presents a diagnostic challenge that modern 
technology seeks to address. Traditional methods 
of skin lesion analysis often suffer from 
subjectivity and inter-observer variability. To 
counter these limitations, researchers are turning 
to automated approaches, harnessing the power of 
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computer vision and machine learning. 
Segmentation, a pivotal aspect of skin lesion 
analysis, entails precisely delineating lesion 
boundaries within images. Accurate segmentation 
empowers medical practitioners with detailed 
insights into lesion characteristics, facilitating 
precise diagnosis and treatment planning. In 
parallel, accurate classification of skin lesions is 
imperative for effective medical intervention. 
Classification algorithms discriminate between 
various lesion types, enabling healthcare 
professionals to identify the underlying condition 
accurately. 

 
Figure 1:  Different Skin lesion Types 

 
A holistic approach emerges from the 

integration of segmentation and classification 
tasks. By employing Convolutional Neural 
Networks (CNNs), well-suited for image analysis, 
researchers strive to precisely segment 
monkeypox lesions and subsequently classify 
them based on distinct visual features. Moreover, 
the incorporation of techniques like RootSIFT 
augments feature extraction, potentially 
enhancing classification accuracy. Recent 
research underscores the significance of such 
endeavours. Studies by Xiaoyu He et al.  [1], 
Амиргалиева [8] and Ashwini et al. (2023) [9] 
emphasize the impact of advanced segmentation 
techniques on accurate lesion boundary detection. 
Additionally, the work of [10] showcases the 
potential of CNN- based classification in 
differentiating monkeypox lesions from similar 
skin conditions. Moreover, the study by [12] 
demonstrates the role of SIFT in accentuating 
feature extraction for enhanced classification 
accuracy. The synergy of state-of-the-art image 

analysis techniques with the domain of 
monkeypox skin lesion segmentation and 
classification holds the promise of elevating 
diagnostic precision and patient care. These 
advancements bear the potential to reshape 
dermatological practices, empowering clinicians 
with efficient tools for early detection and precise 
disease diagnosis. 

 
Skin lesion analysis, especially in the context 

of monkeypox, presents challenges due to the 
complexity of accurately segmenting and 
classifying lesions. The existing methods often 
lack integration between segmentation and 
classification tasks, leading to suboptimal 
performance and limited efficiency. Moreover, 
extracting discriminative features from skin 
lesions, crucial for accurate classification, 
remains a challenge. 

 
Addressing these issues, this study seeks to 

develop a holistic approach that leverages MTL to 
simultaneously tackle lesion segmentation and 
classification. The integration of a CNN 
architecture with the RootSIFT technique aims to 
enhance the feature extraction process, enabling 
improved differentiation between monkeypox 
lesions and other skin conditions. By doing so, we 
strive to advance the field of dermatological 
image analysis and contribute to more accurate 
diagnostic practices. he novelty of this study lies 
in its integration of Multi-Task Learning (MTL) 
with state-of-the-art image analysis techniques for 
the comprehensive analysis of monkeypox skin 
lesions. While previous research has largely 
focused on isolated segmentation or classification 
tasks, our approach seamlessly combines these 
tasks using a single architecture. This novel MTL 
approach enables the model to learn shared 
representations that benefit both segmentation 
and classification, thereby improving overall 
accuracy and efficiency. 

 
Additionally, the incorporation of the 

RootSIFT technique to enhance CNN-based 
classification introduces a novel dimension. By 
integrating RootSIFT-enhanced features, we aim 
to capitalize on the distinctive characteristics of 
monkeypox lesions, thereby enhancing the 
model's discriminative capabilities. The 
endeavour to implement a Multi-Task Learning 
(MTL) approach, encompassing monkeypox skin 
lesion segmentation and classification using 
Convolutional Neural Networks (CNN) in 
conjunction with the RootSIFT technique, is 
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accompanied by a range of intricate challenges. 
These include acquiring a diverse and substantial 
dataset for robust training, ensuring precise and 
comprehensive annotations, devising an adept 
CNN architecture to harmonize segmentation and 
classification tasks, as well as the delicate 
allocation of task weights. The task further 
demands skilful feature extraction through 
RootSIFT integration, meticulous optimization of 
model parameters, and careful selection of 
evaluation metrics. Overcoming these challenges 
necessitates access to significant computational 
resources and the facilitation of generalization 
while grappling with model interpretability. 
Lastly, seamlessly merging the outcomes of 
segmentation and classification tasks to form a 
unified diagnostic workflow poses a final hurdle. 
Triumphing over these challenges holds the key 
to realizing a successful MTL framework tailored 
for the nuanced analysis of monkeypox skin 
lesions. 

 
2. LITERATURE SURVEY 

 
Several recent studies have highlighted the 

growing concern over Monkeypox outbreaks and 
the potential for rapid spread due to close human 
and animal contact. As demonstrated by [2] 
machine learning (ML) techniques, specifically 
Convolutional Neural Networks (CNNs) trained 
using transfer learning, have shown promise in 
diagnosing Monkeypox from skin lesion images. 
They achieved accuracies ranging from 77% to 
88% for binary classification and up to 99% for 
multiclass classification. 

 
In response to the need for quick 

identification and isolation of infected 
individuals, [3] developed an Android mobile 
application that employs deep convolutional 
neural networks to identify Monkeypox from skin 
lesion images. The application achieved 
promising results with inference times of 197 ms, 
91 ms, and 138 ms on average for different 
devices, indicating its potential for real-time 
assessment. 

 
However, it's important to acknowledge that 

relying solely on AI-driven diagnosis might lead 
to false positives or negatives. [4] emphasize that 
the app's assessment cannot replace professional 
medical expertise, highlighting the necessity for 
cautious utilization. 

 
Furthermore, [5] introduce the idea of using 

AI and machine learning, including SqueezeNet 
architecture, to differentiate Monkeypox 
symptoms from those of Measles and 
Chickenpox. Their findings demonstrate the 
potential of these techniques to identify the 
contagious virus with high accuracy, contributing 
to early detection and intervention. 

 
However, while these AI-driven models are 

promising, there are limitations to be aware of. 
SqueezeNet's reduced complexity compared to 
larger models could lead to slightly lower 
performance, as mentioned by the authors [6]. 
Additionally, the proposed methods heavily rely 
on the availability and diversity of high-quality 
skin lesion images specific to Monkeypox, which 
may impact their generalization capacity [7]. 
Variations in image quality and conditions could 
further affect consistency and performance, as 
pointed out by multiple studies. In inference, 
recent research has showcased the potential of 
machine learning and AI techniques in diagnosing 
and differentiating Monkeypox from similar 
diseases. However, these approaches come with 
limitations and require cautious integration into 
medical practice. Their success relies on 
addressing challenges like image quality 
variation, model complexity, and reliance on 
professional medical interpretation. 

 
3. METHODOLOGY 

 
The proposed approach for monkeypox skin 

lesion segmentation and classification employs 
several key modules to achieve accurate results. 
Firstly, the Multi-Task Learning (MTL) 
framework is integrated, which utilizes a single 
Convolutional Neural Network (CNN) 
architecture to simultaneously address both 
segmentation and classification tasks. This 
approach capitalizes on shared feature 
representations, enhancing the overall efficiency 
and performance of the model. 

 
Furthermore, the CNN module is designed to 

perform lesion segmentation. This involves 
training the model to recognize and delineate the 
precise boundaries of monkeypox lesions within 
images. By leveraging the power of deep learning, 
this module achieves remarkable accuracy in 
identifying lesion regions. Additionally, the 
RootSIFT module is incorporated to refine the 
classification process. RootSIFT enhances feature 
extraction by utilizing SIFT key points and 
adapting them via a square-root transformation. 
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This module focuses on the extraction of 
distinctive features from skin lesions, 
subsequently contributing to accurate lesion type 
classification. The synergy of Multi-Task 
Learning, CNN- based lesion segmentation, and 
the integration of RootSIFT forms the foundation 
of our innovative approach. This combination of 
modules effectively addresses the challenges of 
monkeypox skin lesion analysis, leading to 
accurate segmentation and classification 
outcomes that hold potential in the field of 
dermatological diagnosis and treatment. The 
overall architecture is shown in Figure 2. 

 
 

Figure 2:  Overall Architecture of MTL with CNN and 
RootSIFT 

 
3.1 Data Pre-Processing 

This module involves preparing the raw 
monkeypox lesion images for analysis. It includes 
resizing the images to a consistent size, 
normalizing pixel values to a standard range, and 
applying data augmentation techniques to 
increase the diversity of the training data. 
Additionally, this module involves the extraction 
of SIFT key points from the images, which will be 
used for generating RootSIFT features. 
 
3.2 Multi-Task Learning (Mtl) Module 

The MTL module simultaneously addresses 
the segmentation and classification tasks using a 
single model. It consists of two sub-modules: 
 
3.3 Segmentation Task: 

In this sub-module, a Convolutional Neural 
Network (CNN) architecture processes the pre-
processed images to segment the lesion regions as 
[11]. The CNN learns to identify the boundaries 
of the lesions and generates segmented mask 
images that highlight the specific areas affected 
by the lesions as shown in algorithm 1. 

Algorithm 1: Pseudocode for segmentation 
Initialize CNN model for segmentation 
 

for each image in preprocessed_dataset: 
# Forward pass through the CNN model 
segmented_mask = CNN(image) 
# Apply thresholding to convert probabilities 
to binary mask binary_mask = 
apply_threshold(segmented_mask) 
# Store the binary mask in results 
# Display or save the segmented masks 
 
display_results(results) 

 
In this module, the objective is to segment the 

monkeypox lesions within the pre-processed 
images. The process involves utilizing a pre-
initialized Convolutional Neural Network (CNN) 
model designed for segmentation. For each image 
in the preprocessed dataset, the CNN model 
performs a forward pass to generate a segmented 
mask. The next step applies thresholding to 
convert the probability values in the segmented 
mask into a binary mask, where pixel values 
indicate lesion or non-lesion regions. These 
binary masks are then collected in the 'results' data 
structure. Finally, the segmented masks are 
displayed or saved for further analysis. 
 
3.4 Classification Task: 

This sub-module also employs the same 
CNN architecture to classify the type of 
monkeypox lesion. However, it incorporates 
RootSIFT-enhanced features extracted from the 
SIFT keypoints derived from [13]. These features 
provide additional information that aids in 
distinguishing between different lesion types, 
enhancing the accuracy of classification. The 
Algorithm 2 shows the step-by-step procedure to 
inhibit CNN with RootSIFT. 

 
Algorithm 2: Classification Task using CNN 
with rootSIFT 
Initialize the CNN model 
cnn_model = initialize_cnn_model() 
Create an empty dictionary to store results 
results = {} 
For each image in the pre-processed dataset 
for image in preprocessed_dataset: 
Perform a forward pass through the CNN 
model to extract features cnn_features = 
cnn_model.forward_pass(image) 
Extract RootSIFT features from the same 
image rootsift_features = 
extract_rootsift_features(image) 
Combine CNN
 features and
 RootSIFT
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 features to
 create a 
comprehensive representation 
combined_features
 
=
 
combine_features(cnn_features, 
rootsift_features) 
Make predictions using the combined features 
prediction = 
make_prediction(combined_features) 
Store the prediction in the 'results' data 
structure 
results[image] = prediction Display or 
analyze the classification results 
display_results(results) 
 

 
3.5 CNN 

Monkeypox lesions are depicted in a series of 
images that are sent into CNN. To guarantee 
uniform size and format, these images should be 
appropriately pre-processed. Although images 
can have a variety of resolutions, they are often 
reduced to a standard size, such 224x224 pixels, 
for fast processing. The input picture is subjected 
to many convolutional filters in the first layer of 
the CNN. Simple elements like edges, corners, 
and textures are captured by these filters. 
Additional convolutional layers are added to the 
network as we go deeper to capture more 
complicated information. These layers train to 
recognise patterns unique to lesions from the 
monkeypox virus. The feature maps are 
downsampled using max pooling layers following 
each pair of convolutional layers. This keeps 
significant elements while reducing the spatial 
dimensions. Convolutional and pooling layer 
patterns can be repeated in order to train the 
network to recognise increasingly complex and 
hierarchical elements. These layers effectively 
capture the distinctive traits of several varieties of 
monkeypox lesions. A vector is created from the 
flattened final feature maps. The vector is then 
transmitted through one or more completely 
linked layers after being flattened. These layers 
incorporate the previously learnt characteristics 
and decide how to classify the data. 

 
The number of neurons in the output layer 

corresponds to the classes (different kinds of 
monkeypox lesions). Each neuron serves as a 
class representative and assigns a probability 
score to the image's class membership. The final 

projected class is determined by the neuron with 
the greatest score. ReLU (Rectified Linear Unit) 
activation functions, which add non-linearity and 
enable the model to learn intricate correlations. 

output =  relu(convolution(input, filters)
+  bias)                             (1) 

 
Output =  max_pooling(input, poolୱ୧୸ୣ)(2) 
 

Output =  flatten(input)                 (3) 
 

softmax(dot(input, weights) +  bias) (4) 
 

By randomly deactivating certain neurons 
during training, dropout may be used to avoid 
overfitting. Categorical cross-entropy is a popular 
loss function for multi-class classification 
applications. The model's weights can be updated 
during training using optimisation techniques like 
Adam or SGD (Stochastic Gradient Descent). The 
model is trained using input images and labels 
from a labelled dataset of monkeypox lesion 
images. After training, a different test set of 
unfamiliar images is used to assess the model's 
performance. The [14] explains that CNN gains 
the ability to automatically extract pertinent 
features and patterns that distinguish between 
various types of lesions by training on a wide and 
representative dataset of images of monkeypox 
lesions. CNNs are particularly well suited for 
image classification tasks like recognising distinct 
types of skin lesions in the case of monkeypox due 
to their hierarchical nature. 
 
3.6 RootSIFT: 

RootSIFT, an advancement of the 
conventional SIFT (Scale-Invariant Feature 
Transform) technique, improves feature 
extraction in tasks like image recognition and 
object detection. RootSIFT enhances the 
performance of SIFT by making descriptor 
vectors more normalized, thereby leading to 
better matching and distinguishing of features. 
SIFT identifies key points in images that are 
resistant to changes in scale, rotation, and lighting 
[16].  For each key point, a descriptor is 
computed, capturing local appearance and shape 
around the key point. The descriptor encodes 
intensity values and gradients around the key 
point. In traditional SIFT, descriptors can have 
widely varying magnitudes due to lighting and 
contrast differences. In RootSIFT, the traditional 
Euclidean distance metric used in SIFT is 
replaced with the Hellinger distance, which is also 
known as Bhattacharyya's coefficient. The 
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Hellinger distance is defined as follows: 
 

𝐻(𝑥, 𝑦) = ∑ ඥ𝑥௜𝑦௜
௡
௜ୀଵ                     (5) 

 
The shift from using the traditional SIFT 

descriptors to RootSIFT involves a multi-step 
process. Initially, descriptors are generated using 
the SIFT algorithm through its dedicated library. 
Subsequently, the approach involves calculating 
the smallest absolute deviations for each SIFT 
vector. Unlike SIFT, which employs L2 
normalization, RootSIFT takes a different route. 
It directly computes the square root of each 
element derived from the smallest absolute 
deviations. This strategy inherently achieves the 
required normalization without the need for an 
extra step. By sidestepping the computational 
overhead of L2 normalization, RootSIFT 
simplifies the process while maintaining its 
effectiveness. Additionally, RootSIFT replaces 
the conventional Euclidean similarity or kernel 
(SE) with the Hellinger kernel (H), thereby further 
enhancing its discriminative capabilities. This 
transformation to RootSIFT retains the core SIFT 
feature extraction stages, integrating the 
advantages of the Hellinger kernel and avoiding 
explicit L2 normalization, making it a powerful 
tool for tasks such as image classification, where 
robust feature representation is crucial. 

 
𝑆௘൫√𝑥, ඥ𝑦൯ =  √𝑥, ඥ𝑦 = 𝐻(𝑥, 𝑦)  (6) 

 
 (6) 

Furthermore, RootSIFT involves taking the 
square root of each normalized descriptor 
element. This minimizes the impact of strong 
gradients, making the descriptor more robust 
against noise and variations. RootSIFT's 
normalization addresses the problem of disparate 
descriptor magnitudes in traditional SIFT, leading 
to improved robustness [15].  The square root step 
reduces the influence of intense gradients, 
resulting in descriptors that are more resilient to 
noise and changes. RootSIFT improves the 
capability of descriptors to differentiate features, 
enhancing their suitability for matching and 
classification tasks. RootSIFT-based descriptors 
can be used as extra features in CNN-based 
architectures for image classification. 
Categorizing monkeypox lesions uses RootSIFT 
to extract features from lesion images 
complement pixel data. These features can be 
combined with CNN-extracted image features, 
creating a more comprehensive representation. 
RootSIFT enhances traditional SIFT descriptors 

by normalization and scaling, resulting in better 
feature matching and differentiation. When 
included in CNN architectures, RootSIFT- 
augmented features can contribute to enhancing 
accurate classification of various monkeypox 
lesion types. 

 
3.7 Integration Of Results Module 

The outputs from the segmentation and 
classification tasks are integrated in this module 
to provide a cohesive output. The segmented 
lesion masks, generated in the segmentation sub-
task, are combined with the lesion classification 
predictions from the classification sub-task to 
create a unified result. This combined output 
provides a comprehensive overview of both the 
spatial extent of the lesions and their specific 
classifications. 

Evaluation and Analysis Module is 
responsible for assessing the quality of the 
generated results. It involves comparing the 
segmented lesion masks with the ground truth 
data to evaluate the accuracy of lesion boundary 
detection in the segmentation task. Additionally, 
the classification predictions are evaluated using 
appropriate metrics such as accuracy to measure 
the model's ability to correctly categorize 
different lesion types. In this Model Optimization 
Module, the parameters of the CNN model are 
fine-tuned to improve its performance in both the 
segmentation and classification tasks. The 
integration of RootSIFT features is optimized to 
effectively enhance feature extraction, 
contributing to accurate classification. This 
module ensures that the model achieves the best 
possible performance on the given dataset. The 
final Interpretation and Decision-Making Module 
involves the interpretation of the integrated results 
by dermatologists and medical professionals. 
They analyze the segmented lesion masks and 
classification predictions to make accurate 
diagnoses and classifications of monkeypox 
lesions. The results of the analysis inform 
decisions regarding patient treatment and care. 
Each of these modules contributes to the overall 
effectiveness of the proposed approach, 
combining advanced image analysis techniques to 
provide accurate segmentation and classification 
of monkeypox skin lesions. 
A. Mathematical Analysis of proposed 

Methodology 
Input: 

 Image: I (Matrix with dimensions: Height 
x Width x Channels) 
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 SIFT keypoints : K ( Set of keypoints 
extracted from I ) 

 RootSIFT- Enhanced Features: 

 For each keypoints k in K , the RootSIFT –
enhanced descriptor Dk is computed: 

𝐷௞ =  ඥ𝑑ଵ. , ඥ𝑑ଶ. , … . . , ඥ𝑑௡ 
        Where 𝑑1, 𝑑2, … , 𝑑𝑛 are original descriptor 

values from SIFT. 
CNN Architecture: 

 Convolutional layers (Conv): 

 Convolutional filters: 𝐹𝐶𝑁𝑁 

 Convolutional operation on image I 
and descriptor 𝐷𝑘: 

 𝐶(𝐼,𝑘) = 𝐶𝑜𝑛𝑣 (𝐼 ,𝐹𝐶𝑁𝑁) + 𝐶𝑜𝑛𝑣 
(𝐷𝑘, 𝐹𝐶𝑁𝑁 ) 

 Pooling Layers (Pool): 

 Pooling Operation on 𝐶(𝐼 , 𝑘): 

 𝑃(𝐼, 𝑘) = 𝑃𝑜𝑜𝑙𝑖𝑛𝑔 (𝐶(𝐼 , 𝑘)) 

 Fully Connected Layers (FC): 

 Flattened pooled features: 
𝐹𝑓𝑙𝑎𝑡𝑡𝑒𝑛(𝐼, 𝑘) = 𝐹𝑙𝑎𝑡𝑡𝑒𝑛 (𝑃(𝐼, 𝑘)) 

 Fully Connected layers’ operation: 

 𝐹𝐹𝐶(𝐼, 𝑘) = 𝐹𝐶 (𝐹𝑓𝑙𝑎𝑡𝑡𝑒𝑛(𝐼, 𝑘)) 

 Output Layer: 

 Classification probabilities for lesion 
types: 

 𝑂𝑢𝑡𝑝𝑢𝑡(𝐼, 𝑘) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (𝐹𝐹𝐶(𝐼, 𝑘)) 

 Training: 

 Loss function: L (e.g., categorical 
cross- entropy) 

 Optimization algorithm: O (e.g., 
Adam) 

 The entire architecture is trained 
using backpropagation to minimize 
the loss: 

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐿 (𝑂𝑢𝑡𝑝𝑢𝑡(𝐼, 𝑘), 𝐺𝑟𝑜𝑢𝑛𝑑 
𝑇𝑟𝑢𝑡ℎ) 𝑢𝑠𝑖𝑛𝑔 𝑂 

 
4. RESULTS AND DISCUSSION 

In this research endeavour, we delved into the 
realm of Multi-Task Learning (MTL) to tackle the 
intricate tasks of monkeypox skin lesion 
segmentation and classification. Leveraging the 
synergistic capabilities of Convolutional Neural 
Networks (CNNs) and the enriching RootSIFT-
enhanced features, our study aimed to achieve a 

dual objective: boosting accuracy and robustly 
addressing the challenges of a limited dataset. Our 
investigation yielded promising outcomes, 
evidenced by an impressive loss value of 0.0188 
and an extraordinary accuracy rate of 99.65%. 
These metrics underscore the remarkable efficacy 
of our model in making precise predictions and 
accurately categorizing diverse monkeypox lesion 
types. This achievement becomes even more 
significant when considering the substantial 
number of training samples, totaling 2142, and a 
testing dataset consisting of 420 samples. 

 
One of the distinct facets of our approach was 

the utilization of the MTL paradigm, which 
enabled us to simultaneously address both 
segmentation and classification tasks. By 
facilitating shared knowledge acquisition between 
these tasks, MTL not only streamlined the process 
but also amplified the model's potential by 
promoting joint feature learning. The integration 
of RootSIFT- enhanced features further elevated 
our CNN architecture's performance. RootSIFT's 
unique attribute of bypassing L2 normalization 
not only simplified the process but also harnessed 
the power of Hellinger distance as the preferred 
distance metric. Our study demonstrates the 
prowess of MTL in deciphering complex skin 
lesion analysis challenges. The exemplary 
accuracy and minimized loss, coupled with the 
integration of RootSIFT and CNNs, showcase the 
effectiveness of our methodology in both 
segmenting and classifying monkeypox lesions. 
This advancement could potentially revolutionize 
the diagnosis and treatment of such skin 
conditions, particularly those that are infrequent 
like monkeypox. Future explorations might delve 
into further refining the architecture, leveraging 
larger datasets, and addressing real-world 
deployment intricacies to bolster the clinical 
applicability of these models. Number of training 
and testing samples shown in Figure 3. Training 
and Validation Loss shown in Figure 4. Training 
and Validation Accuracy shown in Figure 5. The 
output of the segmentation and classification is 
shown in Figure 6 

 
Number of training samples: 2142 Number of 

testing samples: 420 
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Figure 3: Number of training and testing samples 
 

 
 

Figure 4:  Training and Validation Loss 

 
 

Figure 5:  Training and Validation Accuracy 
 

 
 

Figure 6:  Output of the proposed approach 
 

The approach used by [17] involves the 
utilization of pre-trained deep learning (DL) 
models with customized layers for universal fine-
tuning. The outcomes were assessed using four 
widely recognized metrics, yielding an accuracy 
of 87.13%. 

Additionally, various specific DL 
architectures were employed, yielding different 
results: 

ResNet18: An accuracy of 73.33% was 
attained by employing ResNet-18, an 18-layer 
deep convolutional neural network. 

GoogleNet: The use of GoogleNet, a deep 
convolutional neural network with 22 layers, 
resulted in an accuracy of 77.78%. 

EfficientNetb0: Applying EfficientNet-B0, 
equipped with 237 layers and 5 modules, achieved 
an accuracy of 91.11%. 

NasnetMobile: The utilization of 
NasnetMobile, encompassing 414 layers, 
produced an accuracy of 86.67%. 

ShuffleNet: Employing ShuffleNet with 50 
layers led to an accuracy of 80%. 

MobileNetv2: MobileNet with 28 layers 
demonstrated a notable accuracy of 91%. 

CNN: A simpler model featuring 3 layers 
yielded an accuracy of 64%. 

LSTM: The implementation of a 3-layer 
LSTM model exhibited strong performance, 
yielding an accuracy of 94%. 

SE Resnet: The SE-block architecture, 
incorporating Scale, Excitation, and Squeeze 
Modules, achieved an accuracy of 96%. 

Furthermore, the proposed architecture, 
which integrates MTL with CNN and RootSIFT, 
showcased exceptional accuracy at 99%. It's 
crucial to emphasize that while certain models, 
like the proposed architecture, demonstrated high 
accuracy, comprehensive assessment across 
diverse datasets is necessary to ascertain the 
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model's resilience and generalizability. 
 

5. CONCLUSION 
 
The study introduced a comprehensive 

strategy for analysing monkeypox skin lesions, 
covering both segmentation and classification 
tasks. By amalgamating Convolutional Neural 
Networks (CNNs) for segmenting lesions and 
incorporating the RootSIFT method to enhance 
classification, we have obtained promising 
outcomes that hold significance in the realm of 
dermatological diagnosis and treatment. The 
integration of CNNs in segmenting lesions 
showcased its efficacy in precisely identifying 
and delineating the areas of monkeypox lesions in 
images. This underscores the potential of 
employing advanced machine learning techniques 
to automate and streamline lesion detection. 
Moreover, the assimilation of the RootSIFT 
technique led to a considerable enhancement in 
classification accuracy. Through the utilization of 
SIFT keypoints and their adaptation via 
RootSIFT, we elevated our model's capability to 
discern intricate features within skin lesions, 
resulting in more accurate categorization of lesion 
types. Our experimental findings underscore the 
success of our approach. We attained an 
impressively low loss value of 0.0188 and a high 
accuracy rate of 99.65% on the test dataset, which 
comprised 420 samples. These outcomes not only 
highlight the efficiency of our proposed strategy 
but also emphasize its potential practical 
implementations in real-world contexts. 
Ultimately, our research underscores the 
significant progress that can be achieved by 
combining advanced image analysis techniques 
with deep learning methodologies in the 
dermatology domain. The potential to precisely 
segment and classify skin lesions has the promise 
to revolutionize diagnostic procedures and offer 
valuable support to dermatologists in delivering 
more precise and efficient treatments for diverse 
skin conditions. 
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