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ABSTRACT 
 

In this paper, the main aim is to develop an effective method to avoid collisions underwater. Therefore, a 
novel method on fuzzy logic controller (FLC) (Fuzzy type 2) method and system identification have been 
designed with the standard vehicle depth and pitch control dynamics parameters, along with the equations 
of tethered Unmanned underwater vehicles (TUUV) are elaborately discussed in order to avoid movable 
obstacles found in underwater. Moreover, the fuzzy controllers help to accumulate appropriate information 
from the sonar system. Hence utilizing the obtained sonar data or information, the fuzzy controller defines 
the attack angle and speed using the movement captured through the underwater vehicle. The current 
research has used Deep Reinforcement Learning Controller for avoiding collision and normally helps to 
acquire knowledge in accordance with the success rate. The information gathered was utilized to provide an 
effective outcome in the process. The simulation results of the current study with the appropriate definition 
of variables and the performance evaluation will be estimated with the obtained output in terms of 
controlling parameters, including Depth for both positive and Negative, Depth rate, Pitch response, 
Trajectory, and Tracking for TUUV has been explained. The intelligent framework characteristics of the 
system identification and fuzzy controller design of TUUV utilizing a novel method - Deep Reinforcement 
Learning Controller to avoid collision has the capability to procure efficient and better results in avoiding 
movable obstacles found underwater. Eventually, the simulation results of the proposed novel technique 
allow the underwater vehicle to securely navigate by avoiding the obstacles in the desired path. 

 Kkeywords: Tethered Unmanned Underwater Vehicles, Deep Reinforcement Learning, Fuzzy Logic 
Controller, Collision Avoidance, Pitch response, Trajectory, and Tracking 

 
1. INTRODUCTION 
 

Recently, underwater vehicles are gaining huge 
popularity among the researchers because of their 
ability to operate in the unstructured oceanic 
environment [1]. Underwater vehicles help 
researchers to explore marine life and carry out 
research investigations with respect to ocean 
engineering [2]. This research emphasizes on 
tethered unmanned underwater vehicles. 

(TUUV) which belongs to the category of 
remotely operated vehicles. Autonomous control of 
TUUVs is a highly complex and challenging task 
due to the nonlinearities and dynamic 

characteristics associated with these systems. The 
variations in the behavior of the UUVs create 
disturbances in water which leads to volatile 
hydrodynamic effects. Several researchers have 
proposed different control approaches to overcome 
these issues. A H∞ controlling approach was 
proposed and simulated by [3]. Different sliding 
mode control (SMC) techniques have been 
proposed in existing literary works for handling 
uncertainties [4] [5] [6]. These works have 
validated the efficacy of SMC based methods in 
terms of different evaluation metrics such as 
adaptive control, trajectory tracking, stability 
analysis, and ability to cope with external 
disturbances. Advanced and intelligent control 
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techniques based on artificial intelligence and reinforcement learning are implemented in [7] [8] 

[9]. These techniques enable automated control of 
UUVs and allow the learning ability of the vehicles 
based on simple user inputs. They also improve the 
navigation, tracking, and dynamic positioning of 
UUVs. Adaptive control methods such as model-
based [10], model- reference based method [11], 
and fuzzy adaptive control methods [12] are used 
commonly in the controlling of UUVs. The 
adaptive controllers can effectively handle the 
dynamics of vehicle parameters and the 
susceptibility of these parameters to variations. In 
addition to the existing problems, there are other 
factors which deteriorate the performance of the 
controllers. The salinity of underwater affects the 
buoyancy, the sensors and actuators used for 
sensing the changes affect the mass parameters, and 
the presence or obstacles and algae affects the 
damping parameters. These issues can be handled 
effectively by the adaptive controllers. However, 
there are certain limitations which restrict the 
implementation of the adaptive controllers. These 
controllers possess highly undesirable frequency 
characteristics, make contradictory assumptions, 
and exhibit poor transient behavior [13]. Several 
researchers have attempted to overcome the 
drawbacks of these controllers. Most of the research 
works have focused on increasing the controller 
gain which results in undesirable outcomes and 
increase the risk of parameter divergence. Hence it 
is suggested to limit the controller gain by 
compromising on adaptation and convergence. The 
drawbacks of existing controllers motivate 
this research to address the problem. Since it is 
essential to avoid collision in underwater vehicles, 
there is a great need to understand and address this 
problem. 

As inferred from existing literary works, the 
response of TUUV reduces due to the strong 
modeling uncertainties and other complexities such 
as disturbance in the waves or buoyancy changes. 
The nonlinearity associated with the hydrodynamic 
elements affect the accuracy of the pitch control 
techniques. Hence it is essential to design a robust 
controlling strategy for improving the functioning 
of the TUUVs. In this work, an advanced controller 
design is proposed for TUUV using deep 
reinforcement learning based type 2 FLC. The FLC 
is simulated by considering the TUUV parameters 
such as standard vehicle depth and pitch control 
dynamics. The novel tracking controller proposed 
in this work creates optimized fuzzy rules 
automatically using a reinforcement learning (RL) 

mechanism. In addition, the DRL algorithm 
acquires the fuzzy rules by estimating the value of 
each state action pair. 

The prominent contributions of this paper are as 
follows: 

● This paper designs and simulates a TUUV 
model considering the depth and pitch dynamics 
parameters. 

● A novel DRL based controller is designed for 
avoiding collision and improving the functioning of 
TUUV. 

● The TUUV system is modelled by considering 
the system parameters such gravity, buoyancy, 
effects of hydrodynamic forces, and influence of 
sensors and actuators. 

● The pitch response, trajectory and tracking for 
TUUV is estimated using the proposed pitch 
controlling strategy based on Type-2 FLC. 

● The controller performance is validated by 
comparing the results with existing controllers. 

2. RELATED WORKS 
 

Several controlling strategies are available for 
achieving autonomy in an unmanned underwater 
vehicle. Conventional Proportional Integral 
Derivative (PID) controllers are the frequently 
employed methods for controlling the location, and 
orientation of UUVs. These controllers offer robots 
performance with better simplicity [14] [15]. 
However, the performance of PID controllers are 
highly affected when they are implemented for the 
control of nonlinear plants which are time varying 
and have significant time delay. These limitations 
of PID controllers can be resolved by using 
nonlinear PD or PID controllers i.e., conventional 
PD and PID controllers are integrated with other 
nonlinear techniques and learning models [16]. In 
addition to this, PD/PID controllers are combined 
with anti-windup design [17] with nonlinear 
functions. A novel control approach for trajectory 
tracking in AUVs using nonlinear PID (NLPD) 
techniques was presented by [18]. This work 
discusses the advantages of the nonlinear PID 
strategy compared to traditional PID control 
approaches under different operating constraints. 
Results of the experimental analysis shows that the 
nonlinear PID control techniques exhibit excellent 
trajectory performance. However, the performance 
of the NLPD approach deteriorated due to 
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uncontrolled variations and external disturbances in 
the system, observed while determining depth 
trajectory tracking. In addition, the tracking error in 
nonlinear techniques is too high and this is mainly 
due to the buoyancy in the submarines. To 
overcome this problem, NLPD techniques are 
combined with integral components which can 
reduce the tracking error. Correspondingly, a wide 
range of potentially strong controllers are proposed 
for resolving the path tracking problem in UUVs. 
Some of the extensively used techniques are based 
on FLC [19], sliding mode control (SMC) [20] [21], 
neural network methods [22] [23], high order SMC 
(HOSMC) [24], adaptive controllers [25] [26] [27] 
[28] etc. These techniques are advantageous in 
terms of providing better path tracking under 
dynamic conditions. However, they also suffer from 
certain drawbacks. FLC based techniques are cost 
effective and simple, but it is difficult to tune the 
controlling process in underwater systems since 
they are highly unstable. Besides, FLCs are not 
suitable for unknown systems i.e., system without 
any information. Neural networks are considered as 
a potential alternative to overcome this problem, 
Neural networks have an ability to learn from 
previous instances and does not require any 
information for training the system. But, models 
based on neural networks have high computation 
time which is not suitable for real-time applications. 
SMC based models are robust enough to handle the 
uncertainties and external disturbances and have 
finite time convergence. However, the behavior of 
the SMC technique can have an unfavorable effect 
on the system which is mainly due to the chattering 
effect. The chattering effect can be resolved by 
implementing a hyperbolic tangent function instead 
of using a signum function [29]. Another way of 
reducing the chattering effect in SMC is to 
implement a high order SMC which uses a quasi-
continuous control mechanism [30] [31]. For 
achieving better execution in terms of path tracking 
and dynamic control, the gain of the controller is 
adjusted using an adaptive law. It can be 
summarized from the literature review that 
nonlinear controllers are more advantageous 
compared to conventional non-robust techniques. 
But the design of these controllers involves a lot of 
complexities and hence the traditional PID 
controllers and FLCs are integrated with learning 
based models such as reinforcement learning for 
improving their performance. The fusion of these 
techniques is more suitable for estimating the 
uncertainties of UUV parameters and for achieving 
better performance under external disturbances.  

The drawbacks of existing controllers are as 
follows: Adaptive controllers might struggle to 
adapt quickly to rapidly changing or nonlinear 
dynamics, leading to potential errors in collision 
avoidance. It is challenging to achieve adaptability 
since it might affect the stability. In dynamic 
environments, adaptive controllers prioritize 
collision avoidance without emphasizing stability. 
Hence, these controllers fail to achieve a balanced 
trade-off between collision avoidance and stability” 
As inferred from existing literary works, the 
response of TUUV reduces due to the strong 
modelling uncertainties and other complexities such 
as disturbance in the waves or buoyancy changes. 
The nonlinearity associated with the 
hydrodynamic elements affect the accuracy of the 
pitch control techniques. Hence it is essential to 
design a robust controlling strategy for improving 
the functioning of the TUUVs. 

3.  DYNAMIC MODELING OF THE TUUV 
 

The TUUV system is modeled by 
considering the system parameters such gravity, 
buoyancy, effects of hydrodynamic forces, and 
influence of sensors and actuators. The dynamic 
model of the TUUV is expressed using a matrix, 
using the SNAME notation [32]. The notations and 
expressions used for modeling is expressed in 
below equations: 

ή = J(𝜂) v    (1) 

Mv̇ + C(v)v + D(v)v + g(𝜂) = 𝜏 + ωd (2) 

Where, v is the vector of the matrix which 
represents the velocity in the fixed frame and is 
defined as v = [u, v, w, p, q ,r]T , η defines the 
position and is given as 𝜂 = [x, y, z, 𝜑, 𝜃, † ]T, g 
denotes the gravitational force, τ is the control input 
vector and wd is the vector that represent 
disturbances in the external environment. 
 

A Jacobian transformation matrix denoted 
as J(η) ∈ R6x6 is used to map the body fixed frame 
to the earth fixed frame. The matrix consists of 
three main parameters namely mass (M), Coriolis 
centripetal (C), and inertia (D). In this work, the 
TUUV is assumed to have slow dynamics and 
hence the velocity of the vehicle in terms of 
Coriolis centripetal becomes negligible (C(v) ≈ 0). 
The dynamics of the TUUV is described using six 
degrees of freedom which is formulated by 
considering 3 different translations and 
orientations. The input vector denoted as τ ∈ R6 
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𝑑

uses the six actions for controlling the system. 
These actions are initially represented in the form 
of body frame which is further remodeled and 
converted into the earth frame by utilizing the 
kinematic equations and the model parameters as 
illustrated in equation 3. 
ή = (5) 𝑣 

5 ̈ = (5) 𝑣 * + 𝐽 * (5) 𝑣 

𝑀*(5) = 𝐽−(5)𝑀𝐽−1(5) 

𝐷*(𝑣, 5) = 𝐽−(5) 𝐷(𝑣)𝐽−1(5) 

𝑔* (5) = 𝐽^(−𝑇) (5)𝑔(5) 

𝑟* = 𝐽−(5) 𝑟 

 ω𝑑
 * = 𝐽−(η)ω𝑑    (3) 

Based on the transformation, equation 2 
can be transformed into an earth frame and is 
expressed using equation 4. 

𝑀*(5)5** + 𝐷*(𝑣, 5)5* + 𝑔*(5) = 𝑟* + ω𝑑* (4) 

This work investigates the dynamics of the 
TUUV and analyses its translational motion along 
the z axis and its orientation is calculated based on 
the pitch angle. Hence, the parameters can be 
transformed as follows: M*(η), D*(η) ∈ R2x2 and 
g*, τ*, ω* ∈ R2. The term τ* is defined as the 
control input and is given as; 

𝜏* = J−TT Ku    (5) 

Where, u ∈ R2 denotes the vector of the control 
inputs. 

4. DESIGN OF TUUV USING PID AND 
FUZZY TYPE 2 CONTROLLER 

 
The proposed TUUV model is designed by 

considering the depth and pitch dynamics 
parameters of the system. The controller in this 
research combines PID and the type 2 FLC for 
target tracking and path planning. The motion 
equation for the TUUV is defined as; 
m (𝜔 ̇ − 𝑢0𝑞) = 𝑍    (6) 
𝐼𝑦𝑞 = 𝑀     (7) 
Where Z is defined as the heave external force, m is 
the pitch moment consisting of hydrodynamics, q is 
the pitch. 

Assuming that the TUUV is operating in a vertical 
plane with a constant speed and a smaller pitch 
angle, the following relation can be derived as 
shown in equation 8. 
𝜃 ̇ = 𝑞     (8) 
ż = −𝑢0 𝑠i𝑛 𝜃 + ω𝑐𝑜𝑠 𝜃 = − 𝜃 𝑢0 + ω (9) 

The external forces and momentum acting 
upon the system is evaluated by determining the 
relation between different parameters such as linear 
damping, dynamics of stern plane deflection, and 
hydrodynamic mass. The effect of moment due to 
the vertical distance between the centre of gravity 
and buoyancy is also considered while modeling 
the system. The equations for modeling the TUUV 
are given below: 
𝑍 = 𝑍𝜔 ̇ 𝑤 + 𝑍𝑞 ̇𝑞 ̇ + 𝑍w𝑤 + 𝑍𝑞𝑞 + 𝑍ð𝛿𝑠  
𝑀 = 𝑀�̇� 𝑤 + 𝑀𝑞 ̇𝑞 ̇ + 𝑀 
𝑀 ≈ 𝑀�̇� 𝑤 + 𝑀𝑞 ̇𝑞 ̇  + �̇�  
w𝑤 + 𝑀𝑞𝑞 − (𝑧𝐺 − 𝑧𝐵)i𝑛𝜃 + 𝑀ð𝛿𝑠 ωω + 𝑀𝑞𝑞 − 
W̅�̅��̅� ̅�̅�𝜃 + 𝑀ð𝛿𝑠                                (10) 

The transfer function for the system 
considering the depth parameter is given in 
equation 11. 



ఋ௦
(𝑠) = 𝑏1𝑠2 + (𝑏2𝑎12 − 𝑏1𝑎22 − 𝑏2𝑢0) + (𝑏2𝑢0𝑎11 

− 𝑏1𝑎21𝑢0 − 𝑏1𝑎23 + 𝑏2𝑎13) 

 
 

[𝑠3 − (𝑎11 + 𝑎22)2 + (𝑎11𝑎12 − 𝑎23 − 𝑎21𝑎12) + 
(𝑎11𝑎23 − 𝑎21𝑎13)]                                          (11) 

The transfer function for the control design is given 
as: 

      (12) 

   (13) 

Where Kθ is the gain constant of the 

controller, ωθ is the natural frequency, and £θ is the 
relative damping ratio. 

4.1 PID and Fuzzy Type 2 Controller 

Fuzzy logic controllers with a self-tuning 
PID controller are used for parameter tuning of the 
TUUV. Fuzzy-based PID controllers increase 
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stability and provide efficient speed control. Figure 
1 depicts the schematic of the closed loop 
controller. 

     

Figure 1 Simulink Model Of The Plant With PID 
Controller. 

The controller is provided with a feedback 
system, which compares the output with a set point 
(desired state) and estimates the error e(t). Based on 
the error generated, the controller adjusts the output 
generated by the control unit ‘M’. The process is 
repeated until the error becomes zero or negligible. 
The  term ‘P’ (proportional) in the PID controller is 
directly proportional to the actual error value i.e., if 
the error is high then correspondingly, the control 
output will also be high and vice versa. The 
response speed of the controller is proportional to 
the gain factor (Kp) and the response speed can be 
increased by increasing Kp. However, the value of 
Kp should not be increased beyond the threshold 
value since it makes the system unstable. The 
integral controller ‘I’ is responsible for reducing the 
steady state error by integrating the actual error 
value with respect to time. The integration will 
reduce the error value to a negligible value or near 
to zero. Unlike the proportional gain (Kp), the gain 
of the integral controller (Ki) is inversely 
proportional to the response speed of the controller. 
Combining proportional and integral controller (PI 
controller) will strengthen the steady state response 
of the system. Derivative controller ‘D’ is usually 
implemented as a combined form of PD or PID and 
is not implemented as a single unit since it might 
result in zero output for a non-zero error. The 
controller gain Kd is directly proportional to the 
error generated. 

The transfer function illustrating the gain 
and time delay of the controller is defined as: 

 
     (14) 
Where, KP Ki and Kd are defined as the controller 
gain for the Proportional, Integral and Derivative 

respectively, and Ti and Td are the integral time 
and derivative time respectively. 
 

FLC is applied for the UUV, for 
maintaining constant speed irrespective of 
uncertainties such as time varying parameters and 
external disturbances. In this research, a type 2 FLC 
is used which can modulate the FLC parameters. 
The inference rule in a fuzzy controller is designed 
by aggregating the input and output parameters 
which are tuned using a DRL technique. The fuzzy 
inference system (FIS) is tested using a trial and 
error technique to optimize the controlling process. 
The tuned parameter values are converted into 
fuzzy values considering the membership functions 
and the respective values of the parameters. The 
design parameters of the FLC are selected based on 
the controller’s input and output. Four main 
parameters such as base, inference engine, 
fuzzification and defuzzification are used in the 
design of FLC. The design parameters of the FLC 
have a direct impact on the fuzzy inference 
systems. The error (e) is calculated by determining 
the defuzzified output. If the obtained error is 
positive then the corresponding output is also 
positive and vice versa. The membership rule 
between two variables is shown in equation 15. 
𝜇_𝑅 (𝑥, 𝑦) = 𝑚i𝑛    (15) 
where, 𝜇_𝑅 (𝑥, 𝑦) defines the membership rule 
between the variables. 
 
4.2 Deep Reinforcement Learning 
 

The DRL technique is used for improving 
the functioning of TUUV and for avoiding 
collision. The DRL technique employs an efficient 
Q-learning mechanism which allows the system 
parameters to make decisions automatically without 
requiring any previous knowledge of the 
environment [33]. Reinforcement learning 
algorithms employ a goal- directed learning 
approach which extracts necessary information by 
interacting with the systems unlike other 
approaches which are trained using only the 
training data. The dynamic learning behavior of the 
DRL algorithms not only decides the actions to be 
taken, but also discovers which actions provide 
greatest rewards for achieving the goal [34] and 
validates the action using a trial and error method. 
 

Typically, the problem of RL is computed 
as a Markov Decision Process (MDP) and is 
defined as a tuple denoted by (S, A, R, P, γ). The 
terms S and A are defined as the set of all possible 
states and available actions for each state 
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respectively, R signifies the reward function, P is 
defined as the probability of transition, and γ 
represents the discount factor. The main objective 
of the agent in the RL interface is to identify a 
policy π (a|s) which takes a random action (a ∈ A) 
for the current state (s ∈ S) for maximizing the 
expected (E), and cumulative reward as shown in 
equation 19: 
𝑚𝑎𝑥 𝐸|(𝑇)|     (16) 
Where, R(T) = ∑𝑐 𝛾𝑡𝑟(𝑎𝑡, 𝑠𝑡) ; 0 ≤ 𝛾 ≤ 1 
 

The primary components of the RL model 
are policy, reward shaping, value function, and 
model [35]. The preliminary objective of the DRL 
algorithm is to obtain an optimal policy π* that 
represents the respective control actions (ut) for all 
states of the system (xt) based on the short and long 
term rewards. 

The configuration of the TUUV model has 
six degrees of freedom and hence the control 
system must control the output of 6 thrusters to 
obtain better dynamic references. In addition, the 
control system must also handle the nonlinearities 
associated with 6 DOF (degrees of freedom) in a 
dynamic and volatile environment [36]. In this 
research, a deterministic policy based on actor-
critic learning is used for approximating the 
behavior of the model. In this process, the model 
parameters are updated periodically through which 
the adaptability is achieved. The policy parameters 
are updated continuously in every iteration by 
learning from previous interaction between the 
TUUV and the external environment. 
 
5. SIMULATION RESULTS 
 

The Simulink model of the 
controller for TUUV is illustrated in 
figure 2 
 
 
 
 
 
 
 
 
 

Figure 2 Simulink Model Of The Controller 
 

The proposed controller was simulated 
using MATLAB, which is a high performance 
oriented simulation software that uses technical 
programming language for generating simulink 
models. The SIMULINK model consists of an 

integrator, time-delay blocks, an amplifier and 
output blocks. The simulation model integrates 
computation, visualization, and programming in a 
systematic manner and the problems and solutions 
are expressed using appropriate mathematical 
expressions. In this research, simulation was 
performed using Math and computation Algorithm 
which helps in modelling, simulating and 
prototyping the data. During the simulation, all 
blocks are connected in such a way that the data 
from one block is sent to another block without 
losing any important information. The signals are 
generated and are given to the blocks as input and 
are analysed as different functions. The processed 
and transferred data is in discrete form since all 
computerized systems process discrete functions. 
An appropriate simulation time set up was 
determined by the fastest dynamics in the simulated 
system and the maximum and minimum range for 
the input and output of the model is predetermined. 
Simulation is performed to validate the working of 
the controller in terms of different performance 
parameters which are discussed in the below 
sections. 
 
5.1 Rotational Velocity and Translational 

Velocity 
 

The PID controller communicates with 
TUUV and external environments. The parameters 
of the PID controllers are tuned using a type 2 FLC 
and the output graph is  illustrated below: 
 

    

Figure 3 Rotational Velocity And Translational Velocity 
Of The System 

 
The outcome of the controlling action 

depicting the potential capability of the model is 
shown in figure 3. These two parameters are 
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computed for the given waypoints and their 
variation with the changes in time is analysed. It 
can be inferred from the results that the control 
parameters can be obtained by computing the 
rotational and translational velocity. The 
coordinates u, v, w define the translational 
displacement and p, q, r denotes rotational 
displacement points. These coordinates are 
evaluated from the center of mass of the TUUV. 
5.2 Rotation and Displacement 
 

The rotation and displacement of the 
vehicle model using type 2 FLC is shown in figure 
3 

 
Figure 4 Rotation And Displacement Of The Model 

Using Type 2 FLC 
 

The outcome of the controlling action 
depicting the potential capability of the model is 
shown in figure 4. These two parameters are 
computed for the given waypoints and their 
variation with the changes in time is analysed. It 
can be inferred from the results that the control 
parameters can be obtained by computing the 
rotational and translational velocity. The 
coordinates u, v, w define the translational 
displacement and p, q, r denotes rotational 
displacement points. These coordinates are 
evaluated from the center of mass of the TUUV. 
 
5.3 Rotation and Displacement 

 
The rotation and displacement of the 

vehicle model using type 2 FLC is shown in figure 
5 

Figure 5 Rotation And Displacement Of The Model 
 

The curves in figure 5 shows that the 
vehicle model communicates through the controller 
which is tuned using the type 2 fuzzy controller. 
The communication is carried out through the set of 
tracking points. 
 

The vehicle path is determined by the type 
2 FLC based PID controller for 3-way points as 
shown in figure 6 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6 Vehicle Path Determined By The Proposed 
Controller For 3-Way Point. 

 
It can be inferred from the above figure 

5.5 that the 3-waypoints are analyzed for varying 
time instances and the vehicle moves randomly 
without colliding with the obstacle. A lag between 
the movement of the vehicle and the way points can 
be observed. 
 
5.4 Comparative Analysis 
 

The performance of the proposed approach 
is validated by comparing the results with other 
existing approaches such as genetic algorithm 
based approach, conventional fuzzy logic control 
(Chen et al., 2018) [37], and Type 2 FLC. The 
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results of the comparative analysis are discussed in 
the table below. 

 
Table 1. Comparative analysis 

 

 

 

 

 

 

 

FIGURE  7 COMPARATIVE ANALYSIS 

The results of the comparative analysis show 
that the proposed approach achieves a very 
minimum error of 0.17 which is lower than other 
control strategies and the proposed approach 
provides better error and standard deviation values. 
This validates the fact the proposed approach is 
quite effective and robust in controlling the vehicle 
path under nonlinear and dynamic conditions. 

 
6. CONCLUSION  

A comprehensive evaluation of the DRL based 
fuzzy type 2 controller is discussed for controlling 
the vehicle path in a tethered unmanned underwater 
vehicle. The proposed controller strategy is 
designed incorporating the static and dynamic 
functionalities of the TUUV. The depth control and 
pitch parameters were considered while modeling 
the dynamic system. The parameters of the PID 
controller were tuned using a type 2 FLC and the 
functioning of the controller was optimized using a 
DRL technique. The DRL technique automatically 
learns the nonlinearities associated with the 
external environment and decides the 
corresponding action. The proposed model was 

simulated using MATLAB and results validated 
the superior performance of the proposed control 
strategy. A comparative analysis was conducted 
wherein the errors and standard deviation values of 
the proposed approach were compared with 
existing techniques. The performance of the DRL 
based type 2 FLC was significantly better than the 
conventional techniques. For future research, this 
work can be 
extended to explore the coordination and 
communication between multiple TUUVs. This 
work intends to develop collaborative strategies 
among several tethered vehicles to collectively 
avoid collisions while accomplishing tasks. 
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