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ABSTRACT 
 

The rise of online shopping reflects a significant change in consumer behavior, with more people drawn to 
digital marketplaces due to unparalleled convenience, extensive product variety, and competitive pricing 
offered by online platforms. Product reviews have become a cornerstone within this digital retail landscape, 
offering invaluable guidance to customers and business proprietors. Shoppers rely on reviews to make well-
informed decisions, gaining insights into product quality and functionality, while entrepreneurs utilize this 
feedback to refine their offerings and elevate customer satisfaction. The analysis of sentiments embedded 
within product reviews presents formidable challenges due to the intricacies of human language and the sheer 
volume of data. To address this tough challenge, this paper introduces Resilient Grey Wolf Optimization-
based Gaussian-Enhanced Quantum Deep Neural Networks (RGWO-GEQDNN). This novel approach 
amalgamates the robust, Resilient Grey Wolf Optimization with Gaussian-enhanced Quantum Deep Neural 
Networks, providing a potent solution for efficient and accurate sentiment analysis within product reviews. 
RGWO-GEQDNN emphasizes the innovative fusion of nature-inspired optimization and quantum computing 
principles, promising a breakthrough in sentiment analysis. To assess the performance of RGWO-GEQDNN 
against state-of-the-art algorithms, Amazon product review dataset is utilized.  The results underscore the 
superiority of RGWO-GEQDNN in accurately classifying sentiment from product reviews, highlighting its 
transformative potential in the e-commerce landscape. 
Keywords: Sentiment, Reviews, Online Shopping, Classification, Amazon, Neural Network 
 
1. INTRODUCTION  

 
Online shopping has come a long way since its 

inception, with evolving e-commerce trends shaping 
how we buy goods and services. In the ever-
advancing landscape of technology and shifting 
consumer preferences, the online shopping 
experience continues to transform [1]. One 
noteworthy trend in online shopping is the 
remarkable growth of mobile commerce. With the 
widespread use of smart phones, consumers can shop 
online, making purchases through mobile apps and 
responsive websites, ensuring a seamless and 
convenient shopping experience from virtually 
anywhere. Personalization is another substantial 
trend, as retailers utilize data-driven algorithms to 
customize individual shoppers' recommendations, 
offers, and product suggestions, enhancing the 
shopping experience and overall customer 

satisfaction[2], [3]. In addition to these trends, 
sustainability is rising in online shopping, with 
consumers increasingly seeking eco-conscious 
products and sustainable practices from e-commerce 
platforms. Retailers respond by introducing 
sustainable product lines and reducing their 
environmental footprint through responsible 
shipping and packaging choices. The future of online 
shopping is poised to incorporate augmented reality 
(AR) and virtual reality (VR) experiences, enabling 
consumers to virtually try on clothing or visualize 
furniture within their living spaces. These emerging 
trends promise a more interactive, personalized, and 
eco-friendly online shopping experience, ensuring 
that consumers continue to enjoy a dynamic and 
ever-improving retail environment [4]. 

 
In the era of extensive data and digital 

communication, sentiment analysis has become 
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essential for unraveling collective opinions, 
emotions, and attitudes communicated in vast 
quantities of textual data. Driven by natural language 
processing and machine learning, this technology 
empowers us to access valuable insights into public 
perceptions and reactions concerning various topics, 
products, and events [5]. Sentiment analysis 
transcends the mere classification of sentiments as 
positive, negative, or neutral, offering a nuanced 
comprehension of the intensity and context of 
emotions. Its applications are diverse, with 
significant roles in social media monitoring, 
customer feedback evaluation, and brand reputation 
management [6], [7]. By allowing organizations to 
monitor public sentiment, identify trends, and 
proactively address emerging concerns, sentiment 
analysis ensures that businesses make data-driven 
decisions and that researchers gain a comprehensive 
understanding of the ever-evolving landscape of 
human sentiment in the digital age[8]. 

While fraught with challenges, Sentiment analysis 
brings significant advantages to customers and 
companies. Language intricacies, context, and 
cultural nuances pose challenges, but they can be 
addressed through advancements in machine 
learning and deep learning models [9]. Customers 
benefit from personalized recommendations, 
improved customer support, and the ability to voice 
their opinions effectively. On the corporate side, 
sentiment analysis unlocks insights into customer 
feedback and market trends, enabling data-driven 
decision-making, brand reputation management, and 
competitive analysis. By addressing these 
challenges, sentiment analysis delivers mutual gains 
for customers and companies, fostering a symbiotic 
relationship built on understanding and 
responsiveness [10], [11]. 

 
1.1. Problem Statement 

The challenge of dealing with noisy data in 
sentiment analysis is a persistent and complex 
problem that significantly hampers the accuracy and 
reliability of sentiment classification models. Noisy 
data encompasses a variety of issues, including 
typographical errors, grammatical inaccuracies, 
slang, jargon, and informal language. These data 
imperfections pose substantial obstacles in 
accurately gauging sentiment, as they introduce 
ambiguity and confusion into the analysis process. 
Noisy data leads to misclassifications and erroneous 
sentiment interpretations, distorting the true 
sentiment expressed in a text. This problem is 
exacerbated in user-generated content on social 
media platforms, where informal language and 
brevity are common. It challenges sentiment analysis 

models to differentiate between genuine sentiment 
expressions and text that deviates from standard 
language conventions. Addressing the noisy data 
challenge is crucial for developing more robust 
sentiment analysis models. Improving the accuracy 
of sentiment classification by effectively filtering 
and preprocessing noisy data is an ongoing area of 
research in natural language processing. This 
problem statement underscores the critical need to 
develop techniques that can enhance the reliability of 
sentiment analysis in the face of noisy and 
unstructured textual data. 

 
1.2. Motivation 

The motivation to address the challenge of noisy 
data in sentiment analysis stems from its profound 
impact on the reliability and accuracy of sentiment 
classification models. In a world where user-
generated content on social media platforms and the 
digital sphere is ubiquitous, understanding public 
sentiment is essential for businesses, organizations, 
and researchers. Noisy data, characterized by 
typographical errors, grammatical inaccuracies, 
informal language, and more, introduces ambiguity 
and misclassification, jeopardizing the insights 
derived from sentiment analysis. Overcoming this 
challenge is imperative to provide accurate and 
actionable results for decision-making, brand 
reputation management, customer service 
improvement, and more. As sentiment analysis 
expands into diverse domains, from customer 
feedback to market trend analysis, the need to 
enhance the precision of sentiment classification in 
the face of noisy data becomes increasingly evident. 
Ultimately, addressing the challenge of noisy data in 
sentiment analysis is not just a technical endeavor 
but a strategic imperative for harnessing the full 
potential of this valuable tool. 

 
1.3. Objectives 

This research endeavor aims to develop a bio-
inspired optimization-based deep learning classifier 
for sentiment analysis, specifically tailored to 
mitigate the challenges posed by noisy data. Building 
upon the motivations outlined earlier, this novel 
approach aims to enhance the accuracy and 
reliability of sentiment analysis by effectively 
filtering and preprocessing noisy textual data. By 
integrating bio-inspired optimization techniques 
with deep learning models, this research seeks to 
differentiate genuine sentiment expressions from 
language variations, ensuring that sentiment analysis 
provides precise and actionable results. The primary 
goal is to address the complex issue of noisy data, 
which substantially impacts sentiment analysis 
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accuracy, particularly in user-generated content on 
social media platforms. This innovative classifier is 
envisioned to contribute to the evolution of 
sentiment analysis, making it more robust and 
adaptable in real-world, unstructured textual data, 
ultimately enabling businesses, organizations, and 
researchers to make more informed and data-driven 
decisions. 

 
2. LITERATURE REVIEW 

 
 “Fuzzy Sentiment in Tweets” [12] tackles 

the specific challenges of analyzing fuzzy sentiment 
within tweets. The model combines textual features, 
such as sentiment lexicons, word embeddings, and 
syntactic structures, to effectively capture and 
classify ambiguous sentiment expressions. The 
Feature Ensemble Model utilizes machine learning 
and statistical techniques to adaptively weigh and 
combine these features. “Cross-lingual Aspect-
Based Sentiment” [13] introduces a novel approach 
to address the challenges of cross-lingual aspect-
based sentiment analysis. It leverages contrastive 
learning techniques to align sentiment 
representations across different languages, enabling 
the model to understand and classify aspect-based 
sentiments across language barriers. This involves 
developing language-agnostic sentiment 
embeddings and aligning them using contrastive loss 
functions. “Recursive and Recurrent Networks for 
Aspect-Based Sentiment” [14] presents a 
sophisticated approach that combines Recursive and 
Recurrent Neural Networks (RNNs) to perform 
Aspect-Based Sentiment Analysis with a particular 
focus on inter-aspect relations. The model uses the 
recursive structure to capture relationships between 
aspects and utilizes recurrent connections to capture 
sequential dependencies within each aspect.  

 
“Semantic Sentiment Analysis” [15] 

advances the field of sentiment analysis by 
introducing a Semantic Conceptualization using 
Tagged Bag-of-Concepts. The critical scientific 
contribution lies in integrating semantic tags and 
conceptual knowledge into sentiment analysis. This 
approach significantly enhances the contextual 
understanding of sentiment within text data, paving 
the way for more precise sentiment analysis. 
“Summarizing Student Survey Responses” [16] 
offers a scientific breakthrough in efficiently 
analyzing open-ended student survey responses. The 
scientific merit of this research lies in its novel 
approach to summarizing unstructured survey data. 
Cluster analysis contributes by grouping similar 
responses based on common themes, and sentiment 

analysis assesses the emotional tone within these 
clusters. “Urdu Sentiment Analysis with Deep 
Learning” [17] advances the scientific understanding 
of sentiment analysis in underrepresented languages, 
such as Urdu, by applying deep learning algorithms. 
The scientific significance lies in exploring deep 
learning’s capabilities in capturing sentiment 
nuances in a language with limited resources.  

 
“Attention-Emotion-Enhanced Sentiment 

Analysis” [18] lies in developing the Attention-
Emotion-Enhanced Convolutional LSTM model. It 
leverages the latest advancements in deep learning 
and sentiment analysis by incorporating attention 
mechanisms to enhance information extraction and 
emotional context for sentiment analysis. This 
scientific innovation enables accurate sentiment 
classification by focusing on crucial text segments 
and understanding emotional cues. “Broad Multitask 
Transformer Network” [19] is developing a 
multitask transformer network to streamline 
sentiment analysis across diverse tasks and domains. 
It is scientifically significant due to its adaptability 
and versatility. The model is based on the 
transformer architecture, representing a scientific 
breakthrough in natural language processing. 
“Dynamic Bayesian Network” [20] offers a novel 
perspective on sentiment analysis. DBNs enable 
modeling the evolution of topics and sentiments in 
textual data over time. This technical innovation 
allows for the dynamic tracking of topic-sentiment 
dynamics, providing a more sophisticated 
understanding of how sentiments evolve in response 
to changing topics.  

 
“Challenges in Aspect-based Sentiment 

Analysis” [21] provides an extensive and technically 
detailed overview of the issues and challenges 
encountered in aspect-based sentiment analysis. It 
delves into the intricacies of this specialized field, 
including data sparsity, aspect identification, and 
context modeling. “Efficient Adaptive Transfer 
Network for Aspect-Level Sentiment” [22] designed 
for aspect-level sentiment analysis. The scientific 
and technical merit lies in the model’s adaptability 
to varying aspects of text data. EATN optimizes the 
aspect-level sentiment analysis process by 
efficiently transferring knowledge and adapting to 
different aspects. “Weight Distributing Method for 
Text Sentiment Analysis” [23] investigates the 
application of a Weight Distributing Method that 
combines sentiment dictionaries and TF-IDF for text 
sentiment analysis. The technical advancement is in 
the method’s ability to enhance sentiment 
classification precision. Systematically weighing the 
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impact of sentiment words based on their relevance 
to the document’s content provides a more refined 
and accurate sentiment analysis. 
 

Significant bio-inspired algorithms [25]-
[42] also plays an important role in classifications. 

 
3. RESILIENT GREY WOLF OPTIMIZATION 
- BASED GAUSSIAN - ENHANCED 
QUANTUM DEEP NEURAL NETWORKS 
 
3.1.1. Define the Problem 

In machine learning and quantum deep 
neural networks, it's essential to start by clearly 
defining the problem to be solved. This initial step 
involves specifying the nature of the task, the data, 
and the objective. To determine the problem 
mathematically, G-QDNN begins by describing the 
task at hand. G-QDNN aims to model the 
relationship between inputs and continuous-valued 
outputs in regression. Mathematically, the task can 
be expressed as Eq.(1). 

𝒀 = 𝑓(𝑋) + 𝜀 (1) 

where Y represents the continuous-valued output or 
target variable, X denotes the input features or 
predictors, f(⋅) represents an unknown function that 
relates the inputs to the outputs, and  ε is the random 
error term. 
 

In Eq.(2), G-QDNNs ensure the data is 
compatible with continuous-variable quantum 
states. The data representation typically consists of a 
set of input-output pairs, denoted as (xi,yi) for i = 
1,2,…,N, where xi  represents the input data for the 
i-th instance, and yi is the corresponding target value. 
It's essential to ensure that the input features are 
continuous and can be encoded in a quantum-
friendly manner. The data should be preprocessed 
and normalized to meet these requirements. 

𝑥௜ = (𝑥௜ଵ, 𝑥௜ଶ , … , 𝑥௜௠) (2) 

where m is the number of input features. 
 
Once the task and data are defined, G-

QDNN needs to specify an objective function that 
quantifies the error, or the objective aims to 
minimize the same. For regression problems, a 
standard objective function is the mean squared error 
(MSE). Mathematically, it is defined as Eq.(3).  

𝑪(𝜃) =
1

𝑁
෍ (𝑦௜ − 𝑦ො௜)ଶ

ே

௜ୀଵ
 (3) 

where C(θ) represents the cost or objective function 
to be minimized, N is the number of data points, yi is 

the actual target value, 𝑦ොi is the predicted value, 
which depends on the parameters θ of the model. 
 
3.1.2. Data Preparation  

Data preparation is a crucial step in the 
development of a G-QDNN. This step ensures that 
the input data is well-structured, compatible with the 
quantum framework, and ready for further 
processing. 

 
In G-QDNNs, the data typically consists of 

a set of input data points, denoted as xi , where i 
ranges from 1 to N. Each xi is a m-dimensional vector 
representing m continuous variables. G-QDNN 
express data preparation as Eq.(4). 

𝑥௜ = (𝑥௜ଵ, 𝑥௜ଶ, … , 𝑥௜௠),       (4) 

where m represents the number of continuous 
features in the dataset. 

 
Data preprocessing is essential to ensure 

the data is well-suited for quantum processing. 
Common preprocessing steps include normalization 
and feature scaling. Eq.(5) adjusts the data such that 
its mean is zero and its standard deviation is one. 

𝑥௜௝ ←
𝑥௜௝ − 𝜇௝

𝜎௝

, (5) 

where xij  is the j-th feature of the i-th data point, μj is 
the mean of the j-th feature, and σj  is the standard 
deviation of the j-th feature. Having all 
characteristics normalized to the same scale for 
quantum circuits is helpful. 
 

G-QDNNs operate with Gaussian quantum 
states, which are well-suited for representing 
continuous variables. The steady quantum states can 
be defined as Eq.(6). 

𝝆(𝑥௜) =
1

(𝜋ℏ)௠/ଶ
𝑒𝑥𝑝 ቆ−

1

2ℎ
෍ 𝑥௜௝

ଶ
௠

௝ୀଵ
ቇ (6) 

where, ρ(xi) represents the quantum state associated 
with the i-th data point. The parameter ℏ represents 
the effective Planck constant, which influences the 
spread of the quantum state. 
 

To prepare the data for quantum 
processing, G-QDNN can encode the preprocessed 
xi into quantum states using the density matrix 
formalism. In Eq.(7), encoding takes the normalized 
feature vectors and maps them into quantum states 
compatible with a G-QDNN. The quantum state ρ(xi) 
encapsulates the information from the original data 
point and can be used as input for the G-QDNN. 

𝝆(𝑥௜) =
1

(𝜋ℏ)௠/ଶ
𝑒𝑥𝑝 ቆ−

1

2ℎ
෍ 𝑥௜௝

ଶ
௠

௝ୀଵ
ቇ (7) 
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Algorithm 1 provides the pseudocode of the 

data preparation. 
 

Algorithm 1: Data Preparation 

Input: 
 Input dataset containing 𝑵 data points, 

each represented as 𝒎-dimensional 
vectors:  

Output: 
 A preprocessed dataset suitable for G-

QDNN processing. 
 

Procedure: 
1. Normalize the input data: 
 For each feature 𝑥௜௝in each data point𝑥௜, 

calculate the mean 𝜇௝ and standard 
deviation 𝜎௝  of that feature across all 
data points. 

 Update each feature 𝑥௜௝as follows: 𝑥௜௝ ←
௫೔ೕିఓೕ

ఙೕ
 

2. Encode the preprocessed data into 
continuous quantum states: 

 For each preprocessed data point 
𝑥௜ , encode it into a continuous 
quantum state 𝝆(𝑥௜) suitable for 
G-QDNN processing. 

3. Preprocess the dataset to hold continuous 
quantum states. 

 
3.1.3. Quantum Circuit 

In G-QDNNs, defining the quantum circuit 
is a pivotal step. The quantum circuit serves as the 
core element of the G-QDNN, responsible for 
mapping input data to quantum states and, 
eventually, generating predictions.  

 
G-QDNNs rely on continuous-variable 

quantum states, which are well-suited for encoding 
continuous data. These quantum states can be 
mathematically described as Eq.(8) (i.e., density 
matrices). For a single quantum state corresponding 
to an input data point xi, the continuous-variable 
quantum state ρ(xi) is expressed as Eq.(8). 

𝝆(𝑥௜) =
1

(𝜋ℏ)௠/ଶ
𝑒𝑥𝑝 ቆ−

1

2ℎ
෍ 𝑥௜௝

ଶ
௠

௝ୀଵ
ቇ (8) 

where ρ(xi) is the density matrix representing the 
quantum state associated with the i-th data point, ℏ 
is the effective Planck constant, influencing the 
quantum state's spread, m is the number of 
continuous features in the dataset, and xij represents 
the j-th feature of the i-th data point. 

 
The quantum circuit within a G-QDNN 

typically involves Gaussian modes and gates. 
Gaussian modes represent continuous-variable 
quantum systems, and gates are operations applied 
to these modes. Gaussian modes are described as 
continuous-variable operators in Eq.(9), which can 

be denoted as 𝑎ො௜and 𝑎ො௜
ற

for the i-th mode. These 
operators satisfy commutation relations: 

ൣ𝑎ො௜ , 𝑎ො௜
ற൧ = 𝛿௜௝ ,    ൣ𝑎ො௜ , 𝑎ො௝൧ = ൣ𝑎ො௜

ற, 𝑎ො௝
ற൧ = 0, (9) 

where δij  is the Kronecker delta [24].  
 

Quantum gates within the G-QDNN 
manipulate Gaussian modes and their operators. 
These gates can be mathematically expressed in 
terms of the operators, including displacement gates, 
squeezing gates, rotation gates, and more. The effect 
of a quantum gate on a Gaussian mode can be 
represented as a transformation in the mode 

operators, such as 𝑎ො௜and 𝑎ො௜
ற. The quantum circuit 

for a G-QDNN is constructed by composing a 
sequence of these gates. The parameters of these 
gates are usually trained during the optimization 
process to learn the most suitable quantum 
operations for the given task. 
 

The continuous-variable quantum circuit is 
denoted as 𝑈෡(𝜃), is a parameterized sequence of 
quantum gates. It operates on the continuous-
variable quantum states, transforming the input data 
into a quantum state that encodes information 
relevant to the task. Eq.(10) mathematically defines 
the quantum circuit. 

𝜌ᇱ(𝑋௜) = 𝑈෡(𝜃)𝜌(𝑋௜)𝑈෡ற + 𝜃 (10) 
where θ represents the parameters of the quantum 
circuit and ρ'(Xi )is the quantum state after applying 
the quantum circuit. 
 

Algorithm 2: Quantum Circuit 

Input: 
 Parameters 𝜽that define the quantum circuit 

structure. 
 
Output: 
 A parameterized quantum circuit 𝑈෡(𝜃) 
 
Procedure: 
1. Initialize an empty quantum circuit 𝑈෡(𝜃). 
2. Define the structure of the quantum circuit, 

including the number and type of gates, gate 
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sequences, and connections between Gaussian 
modes. 

3. Parameterize the gates by assigning values to 
the parameters 𝜽 within the circuit. 

4. Optimize the parameters before training. 
3.1.4. Quantum Hybrid Model  

The Quantum Hybrid Model is a 
fundamental component in G-QDNNs. It combines 
classical and quantum elements to create a powerful 
machine-learning model. At the core of the Quantum 
Hybrid Model is a classical neural network, which is 
responsible for handling classical data and 
performing classical operations. The classical neural 
network can be represented as a series of layers with 
associated weights and activation functions. For a 
single-layer classical neural network, the output zi 
can be calculated using Eq.(11). 

𝑧௜ = 𝑓 ቆ෍ 𝑤௜௝𝑥௝ + 𝑏௜

௡

௝ୀଵ
ቇ (11) 

where zi is the output of a neuron, wij represents the 
weight connecting the input xj  to neuron i, bi is the 
bi as term for neuron i, f(⋅) is the activation function, 
such as the sigmoid, ReLU, or any other suitable 
function.  
 

The Quantum Circuit, as defined in Section 
3.1.3, is the quantum component of the hybrid 
model. It processes continuous-variable quantum 
states and performs quantum operations. The 
quantum circuit 𝑈෡(𝜃) is responsible for encoding 
classical data into quantum states and conducting 
quantum transformations. The quantum circuit 
operates on the density matrix ρ(Xi)  for a given input 
data point xi as expressed in Eq.(12). 

𝜌ᇱ(𝑋௜) = 𝑈෡(𝜃)𝜌(𝑋௜)𝑈෡ற𝜃. (12) 

where, ρ'(Xi) represents the quantum state after 
applying the quantum circuit. The parameters θ are 
trainable and determine the circuit's behaviour. 
The Quantum Hybrid Model fuses traditional neural 
networks with quantum computing. The output of 
the quantum circuit ρ'(Xi) is integrated with the 
classical neural network's output. The integration is 
expressed in Eq.(13). 

𝑶(𝑥௜) = 𝑔 ൬෍ 𝑧௜ + 𝑇𝑟(𝜌ᇱ(𝑋௜)𝑀)
ே೎

௜ୀଵ
൰, (13) 

where O(xi) represents the model's prediction for 
input xi, g(⋅) is an activation function applied to the 
combined output, Nc is the number of neurons in the 
classical neural network, zi are the outputs of the 
classical neurons, Tr(ρ'(Xi)M) represents the trace of 
the product of the quantum state ρ'(Xi )and a 
measurement operator M. 

 

The hybrid model is trained through a 
combined quantum optimization process. The 
classical neural network parameters (weights and 
biases) are optimized using classical optimization 
algorithms (e.g., gradient descent). In contrast, the 
quantum circuit parameters θ are optimized using 
quantum optimization methods or hybrid 
approaches. The objective function minimized 
during training typically includes classical and 
quantum components and the entire model is trained 
to reduce the overall cost function. 

 

Algorithm 3: Quantum Hybrid Model 

Input: 
 Classical neural network parameters 

(weights and biases). 
 Quantum circuit parameters (𝜃). 
 Input data 𝑥௜ . 

 
Output: 
 Model prediction for input 𝑥௜ . 

 
Procedure: 

1. Feed the input data 𝑥௜into the classical neural 
network to compute classical outputs 𝑧௜ using 
the classical parameters. 

2. Apply the quantum circuit 𝑈෡(𝜃) to the input 
data 𝑥௜to create a quantum state 𝜌ᇱ(𝑥௜)based 
on the quantum parameters 𝜽. 

3. Combine the classical outputs 𝑧௜with the 
quantum state 𝜌ᇱ(𝑥௜) to produce a model 
prediction 𝑶(𝑥௜) using an activation function. 

4. The model prediction 𝑶(𝑥௜) is the output for 
the input data (𝑥௜) , representing the result of 
the Classical-Quantum Hybrid Model. 

 
3.1.5. Parameterization 

Parameterization is a fundamental aspect of 
G-QDNNs, as it defines the configurations of both 
the classical and quantum components. The 
parameterization sets the starting values for the 
parameters, which will be fine-tuned during training. 
G-QDNN will focus on the mathematical aspects of 
this step. In G-QDNNs, classical neural network 
parameters include weights (W) and biases (b) for 
the classical component. These parameters are 
initially set with random or predefined values before 
training begins. 
 

The weight matrix W connects the inputs of 
the classical neural network to its neurons. It's an 
Nc×N matrix, where Nc is the number of neurons in 
the classical network, and N is the number of input 
features. A normal distribution with a zero mean and 
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a tiny standard deviation can be used to generate 
random variables to use as W starting points.   
 

𝑾 = ൦

𝑤ଵଵ𝑤ଵଶ   …  𝑤ଵே 

𝑤ଶଵ𝑤ଶଶ   …  𝑤ଶே 

⋮       ⋮       ⋱       ⋮
𝑤ே೎ଵ𝑤ே೎ଶ   …  𝑤ே೎ே

൪. (14) 

 
The bias vector b corresponds to the biases 

for each neuron in the classical neural network. It's a 
Nc dimensional vector, and Eq.(15) initialize it with 
small random values.  

𝒃 = ൦

𝑏ଵ

𝑏ଶ

⋮
𝑏ே೎

൪ (15) 

 
The parameter vector θ contains all the 

parameters for the quantum circuit. These 
parameters determine the settings for the quantum 
gates and operations. Eq.(16) includes displacement 
parameters, squeezing parameters, and other gate-
specific parameters, depending on the architecture of 
the quantum circuit. 

𝜽 = (𝜃ଵ, 𝜃ଶ, … , 𝜃௉), (16) 

where P is the total number of quantum circuit 
parameters. 

 
The choice of how to initialize these 

parameters can impact the training and convergence 
of the G-QDNN. For initial parameterization, G-
QDNN generally uses weight initialization and 
quantum circuit parameter initialization.  

 
(a). Weight Initialization 

Randomly initialize the weight matrix W 
and the bias vector b for the classical neural network 
using random values: 

𝑾~𝑁(0, 𝜎ଶ), 𝑏~𝑁(0, 𝜎ଶ). (17) 

where σ represents the standard deviation of the 
normal distribution. 
 
(b). Quantum Circuit Parameter Initialization 

Set the initial values within predefined 
ranges or distributions for the quantum circuit 
parameters.  

𝜃௜~𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 (𝑎, 𝑏),  for 𝒊 =
1,2, … , 𝑃 

(18) 

where Distribution (a, b) represents a specific 
distribution with parameters a and b to control the 
initial values. 

 

The initial parameterization sets the starting 
conditions for the G-QDNN. During training, these 
parameters are adjusted to minimize the cost 
function, leading to a well-tailored model that can 
effectively represent the data and perform quantum-
enhanced machine learning tasks. 

 

Algorithm 4: Parameterization 

Input: 
 Number of classical neurons 𝑁௖ . 
 Several input features 𝑵. 
 The total number of quantum circuit 

parameters 𝑷. 
Output: 

 Initial parameter values for the classical 
neural network (weights and biases) and 
the quantum circuit. 

 
Procedure: 

1. Initialize the classical neural network 
parameters: 
 Create a weight matrix 𝑾 of dimensions 

𝑁௖ × 𝑁. 
 Initialize 𝑾 with small random values. 
 Create a bias vector 𝒃 of dimension 𝑁௖ . 
 Initialize 𝒃 with small random values. 

2. Initialize the quantum circuit parameters: 
 Create a parameter vector 𝜽 of length 𝑷. 
 Initialize the elements of 𝜽 with random 

values within predefined ranges or 
distributions. 

 
3.1.6. Cost Function 

The cost function is central in training a G-
QDNN, quantifying the error between the model's 
predictions and the true target values. By minimizing 
the cost function, the G-QDNN optimizes its 
parameters, enabling it to make accurate predictions. 
G-QDNN will discuss the mathematical aspects of 
the cost function in the context of G-QDNNs. 

 
In G-QDNN, the classical neural network is 

responsible for handling classical data. The cost 
function for the classical component, often referred 
to as the classical cost, is typically expressed as 
Eq.(19). 

𝐶௖௟௔௦௦௜௖௔௟(𝑊, 𝑏) =
1

𝑁
෍ 𝐿൫𝑦௜ , 𝑓(𝑥௜)൯,

ே

௜ୀଵ
 (19) 

where Cclassical(W,b) represents the classical cost 
function, W denotes the weight matrix of the 
classical neural network, b represents the bias vector, 
N is the number of data points, yi  is the true target 
value for the i-th data point, f (xi)) is the prediction 
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made by the classical component for the i-th data 
point, a loss function denoted by           L(yi, f (xi)), 
measures how much predictions deviate from reality. 
Mean squared error (MSE) is a widespread loss 
function for regression, whereas cross-entropy is 
used for classification. 

 
The quantum component in a G-QDNN 

involves a quantum circuit that processes 
continuous-variable quantum states. The quantum 
cost function measures the discrepancy between the 
model's predictions and the true target values. For 
regression tasks, the quantum cost is often 
formulated as Eq.(20) 

𝐶௤௨௔௡௧௨௠(𝜃)

=
1

𝑁
෍ ‖𝑦௜

ே

௜ୀଵ

− 〈𝜓(𝑥௜ , 𝜃)|𝑀|𝜓(𝑥௜ , 𝜃)〉‖ଶ, 

(20) 

where Cquantum(θ) represents the quantum cost 
function, θ includes the quantum circuit parameters, 
N is the number of data points, yi is the true target 
value, 〈ψ(xi,θ)|M|ψ(xi,θ)〉 denotes the expected value 
of a measurement operator M on the quantum state 
ψ(xi,θ) produced by the quantum circuit.  

 
The overall cost function for a G-QDNN 

combines classical and quantum costs to create a 
unified cost function, expressed in Eq.(21). 

𝐶(𝑊, 𝑏, 𝜃) 
= 𝐶௖௟௔௦௦௜௖௔௟(𝑊, 𝑏) + 𝛼𝐶௤௨௔௡௧௨௠(𝜃). 

(21) 

where C(W, b, θ) represents the total cost function 
for the G-QDNN, Cclassical (W,b) is the classical cost, 
Cquantum(θ) is the quantum cost, α is a hyperparameter 
that balances the contributions of the classical and 
quantum components. It determines the relative 
importance of the quantum and classical costs during 
training. The value of α can be adjusted to control 
the trade-off between the classical and quantum 
parts. 
 

During training, the goal is to minimize the 
total cost function C (W, b, θ) by adjusting the 
classical neural network parameters (W and b) and 
the quantum circuit parameters (θ). This process is 
typically performed using optimization algorithms, 
such as gradient descent, that update the parameters 
in the direction that reduces the cost function. The 
gradients concerning the parameters are computed 
through back propagation for the classical neural 
network and quantum optimization techniques for 
the quantum circuit. 

 
 
 

Algorithm 5: Cost Function 

Input: 
 Neural network parameters (𝑊, 𝑏). 
 Quantum circuit parameters (𝜃). 
 Training dataset with input features 𝑥௜  

and true target values𝑦௜  . 
 Hyperparameter 𝜶 for balancing 

classical and quantum costs. 
 

Output: 
 Total cost 𝑪(𝑊, 𝑏, 𝜃) for the G-

QDNN. 
 

Procedure: 
1. Calculate the Classical Cost  (𝐶௖௟௔௦௦௜௖௔௟): 

 Use the classical neural network with 
parameters (𝑊, 𝑏) to make 
predictions 𝒇(𝑥௜)for each input 𝑥௜  in 
the training dataset. 

 Compute the classical cost 
𝐶௖௟௔௦௦௜௖௔௟(𝑊, 𝑏) using a suitable loss 
function, comparing the predictions 
to the true target values 𝑦௜ . 

2. Calculate the Quantum Cost ൫𝐶௤௨௔௡௧௨௠൯: 
 For each input 𝑥௜ in the training 

dataset, apply the quantum circuit 
with parameters 𝜽 to produce a 
quantum state 𝝍(𝑥௜ , 𝜃). 

 Measure the quantum state using a 
specified measurement operator 𝑴 to 
obtain an expected value 
〈𝜓(𝑥௜ , 𝜃)|𝑀|𝜓(𝑥௜ , 𝜃)〉. 

 Calculate the quantum cost 
𝐶௤௨௔௡௧௨௠(θ) by quantifying the 
difference between the expected 
values and the true target values 𝑦௜. 

3. Compute the Total Cost (𝐶(𝑊, 𝑏, 𝜃)): 
 Combine the classical cost 

𝐶௖௟௔௦௦௜௖௔௟(𝑊, 𝑏)and the quantum cost 
𝐶௤௨௔௡௧௨௠(θ)  to form the total cost 
𝑪(𝑊, 𝑏, 𝜃) using the hyperparameter 
𝜶 to balance their contributions: 

4. Incorporate both classical and quantum 
components. 

 
3.1.7. Quantum Circuit Optimization 

In G-QDNNs, the parameters of the 
quantum circuit are adjusted to improve its 
performance. Before optimizing the quantum circuit, 
G-QDNN needs a quantum cost function that 
quantifies the error between the quantum model's 
predictions and the true target values. In the context 
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of G-QDNNs, the quantum cost function is often 
expressed as Eq.(22). 

𝐶௤௨௔௡௧௨௠(θ) 

=
1

N
෍ ‖y୧

୒

୧ୀଵ

− 〈ψ(x୧, θ)|M|ψ(x୧, θ)〉‖ଶ, 

(22) 

where Cquantum(θ) represents the quantum cost 
function, θ includes the quantum circuit parameters, 
N is the number of data points, yi is the true target 
value, 〈ψ(xi, θ)|M|ψ(xi,θ)〉 denotes the expected value 
of a measurement operator M on the quantum state 
ψ(xi, θ) produced by the quantum circuit. 

 
Gradient-based optimization for quantum 

circuits involves calculating the gradients of the cost 
function concerning the parameters. The gradient ∇θ 
Cquantum represents how the cost function changes as 
each parameter ϑi is varied. Eq.(23) expresses 
gradient operation. 

∇ఏ𝐶௤௨௔௡௧௨௠ 

=
2

𝑁
෍ (𝑦௜

ே

௜ୀଵ

− 〈ψ(x୧, θ)|M|ψ(x୧, θ)〉) ∇ఏ 
〈ψ(x୧, θ)|M|ψ(x୧, θ)〉 

(23) 

 
This gradient guides the updates to the 

quantum circuit parameters in a direction that 
minimizes the cost function. The parameters of the 
quantum circuit, θ, are updated in each optimization 
step. Eq.(24) typically expresses the update rule. 

𝜃௡௘௪ = 𝜃௢௟ௗ − 𝜂∇ఏ𝐶௤௨௔௡௧௨௠, (24) 

where θnew represents the updated parameters, θold 
represents the current parameters, and η is the 
learning rate, controlling the size of the parameter 
updates. It is a hyperparameter that can be adjusted. 

Algorithm 6: Quantum Circuit 
Optimization 

Input: 
 Quantum circuit with initial parameters 𝜃௢௟ௗ . 
 Training dataset with input features 𝑥௜  and 

true target values 𝑦௜  . 
 Hyperparameters: learning rate(𝜂), 

maximum iterations, and convergence 
criteria. 

Output: 
 Optimized quantum circuit with updated 

parameters 𝜃௡௘௪ . 
 

Procedure: 
1. Initialize the quantum circuit parameters: 

 Set 𝜃௢௟ௗwith initial values. 
 Initialize iteration counter iter to 0. 

2. Perform optimization iterations: 

 Increment iter by 1. 
 Calculate the quantum cost 

𝐶௤௨௔௡௧௨௠(𝜃௢௟ௗ) using the current quantum 
circuit. 

 Update the parameters: 
 Check the convergence criteria. If the cost 

function converges or the maximum 
number of iterations is reached, exit the 
loop. 

 Otherwise, set 𝜃௢௟ௗ  to 𝜃௡௘௪and repeat the 
optimization iteration. 

 Compute the gradient ∇ఏ𝐶௤௨௔௡௧௨௠ of the 
quantum cost concerning the parameters at 
𝜃௢௟ௗ  . 

 
 
3.2. Resilient Grey Wolf Optimization 
3.2.1. Initialization 

Initialization is the foundational step in 
RGWO, where the initial population of grey wolves 
is created. In RGWO, grey wolves represent 
potential solutions to the optimization problem. This 
step is crucial, as the quality and diversity of the 
initial population can significantly impact the 
algorithm’s performance. A well-chosen 
initialization strategy can lead to faster convergence 
and better solution space exploration. The 
initialization process in RGWO typically involves 
randomly generating the initial positions for a 
population of grey wolves. Let’s delve into this 
crucial step mathematically. 

 
Consider a population of grey wolves, 

represented as D-dimensional vectors, where D 
represents the problem space’s dimensionality. 
Therefore, the initialization step aims to generate n 
initial solutions, each comprising D coordinates. 
These solutions are usually denoted as 
X={x1,x2,…..,xn} where xi is a D-dimensional vector. 
Eq.(25) represents the same. 

𝑥௜ = ൣ𝑥௜,ଵ, 𝑥௜,ଶ, … . , 𝑥௜,஽൧, for 𝒊 =

1,2, … , 𝑛 
(25) 

where, xi stands for the i-th grey wolf’s coordinates 
and xij stands for those coordinates in the j-th 
iteration. 
 

The key aspects to consider during 
initialization are domain constraints and random 
initialization.  

 
Domain Constraints ensure that the initial 

positions of grey wolves adhere to any domain 
constraints of the optimization problem. If the 
problem space has defined bounds for each 
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dimension, the initialization process should generate 
positions within these bounds. This can be 
represented as Eq.(26). 

Domain Constraints: 𝑥௜,௝  ∈  ൣ𝑙௝ , 𝑢௝൧,  
for 𝒊 = 1,2, … , 𝑛, and 𝒋 = 1,2, … , 𝐷 

(26) 

where lj indicates the lower limit and uj indicates the 
upper bound. 
 

Random initialization encourages 
exploration, and the initial positions of grey wolves 
are typically initialized within the specified domain. 
This randomness helps in distributing the wolves 
across the solution space. Eq.(27) expresses the 
random initialization. 

𝑥௜,௝ = 𝑙௝ + ൫𝑢௝ − 𝑙௝൯. 𝑟𝑎𝑛𝑑(0,1),  
for 𝒊 = 1,2, … , 𝑛, and 𝒋 = 1,2, … , 𝐷 

(27) 

 
To generate a random integer within the 

range of 0 and 1, utilize the rand(0,1) function. This 
function produces a random number between 0 and 
1, inclusive. 
1. Population Size: The population size (n) is a 

parameter that can be adjusted to influence the 
search behaviour of GWO. A larger population 
can enhance exploration, while a smaller size 
can lead to more focused exploitation. 

2. Initialization Strategy: Specific initialization 
strategies can be employed depending on the 
problem. A stratified initialization method may 
ensure an even distribution of wolves across 
the solution space. 

 

Algorithm 7: Initialization 

Input: 
 𝒏 (Population size): The population density 

of grey wolves. 
 𝑫 (Dimensionality): The dimensionality of 

the problem space. 
 𝑙௝(Lower bounds for each dimension 𝒋) A 

vector holding the bottom boundaries for 
each dimension. 

 𝑢௝ (Upper bounds for each dimension𝒋): A 
vector with the maximum values in each 
dimension.  

 
Output: 

 𝑿: The initial population of grey wolves, 
represented as a set of 𝒏 solutions, where 
each solution is a 𝑫-dimensional vector. 

 
Procedure: 
1. Initialize an empty set 𝑿 = {} to store the 

initial population of grey wolves. 

2. For 𝒊 in the range 1 to 𝒏: 
 Initialize an empty vector 𝑥௜ = [] to 

represent 𝒊-th grey wolf position. 
3. For 𝒋 in the range 1 to 𝑫: 

 Produce an unpredictable integer 𝒓 
between zero and one.  

 Calculate the 𝒊-th grey wolf position in D 
dimension  

 Append 𝑥௜,௝  to 𝑥௜  to form the 𝑫-
dimensional position vector for the 𝒊-th 
grey wolf. 

 Append 𝑥௜  to the set 𝑿to include it in the 
initial population. 

4. Return the set 𝑿 as the initial population of 
grey wolves. 

 
3.2.2. Objective Function 

The objective function, often considered 
the heart of any optimization algorithm, is pivotal in 
guiding the search for optimal solutions. In the 
RGWO context, this function represents the problem 
the algorithm aims to solve. The objective function, 

denoted as𝑓(𝑥), is the mathematical representation 
of the optimization problem. It takes a potential 

solution, 𝑥, as input and maps it to an real number, 
representing the quality of that solution. In GWO, 
the objective function is usually in the form of 

𝑓: 𝑅஽ → 𝑅,where 𝑅஽is the 𝐷-dimensional 

problem space, and 𝑅 is the set of real numbers. 
 

The primary objective is to either maximize 
or minimize 𝑓(𝑥) based on the nature of the 
optimization problem. Eq.(28) expresses the 
objective function. 

𝑴𝒂𝒙𝒊𝒎𝑖𝑧𝑒 𝑓(𝑥) 
𝑴𝒊𝒏𝒊𝒎𝒊𝒛𝒆 𝑓(𝑥) 

(28) 

 
The structure of RGWO’s objective 

function in detail is given as Eq.(29). Given a 

solution, 𝑥 represented as a 𝐷-dimensional vector: 

𝒙 = [𝑥ଵ, 𝑥ଶ, … , 𝑥஽] (29) 

 
The objective function f(x) maps this D-

dimensional vector to a real number that quantifies 
the quality of the solution as mentioned in Eq.(30).  

𝒇(𝑥) = 𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 (𝑥ଵ, 𝑥ଶ, … , 𝑥஽) (30) 

 
In the RGWO optimization scenario, the 

objective function is the basis for fitness evaluation. 
After initializing the population of grey wolves, an 
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individual wolf’s fitness for its position is computed 
by applying the objective function. The fitness value 
essentially represents the “goodness” of the solution. 
The higher the fitness, the better the solution is 
concerning the optimization goal (maximization or 
minimization). Eq.(31) expresses the fitness Fi of the 
i-th grey wolf.  

𝐹௜ = 𝑓(𝑥௜) (31) 

where xi  is indicates the i-th grey wolf. By 
evaluating the fitness of each wolf based on the 
objective function, GWO can effectively distinguish 
between good and poor solutions in the population. 

 

Algorithm 8: Objective Function 

Input: 
 𝒙 (Solution): A potential solution 

represented as a 𝑫-dimensional vector. 
 𝑫 (Dimensionality): Dimensionality of the 

problem space. 
 Problem-specific parameters (if required 

for the objective function). 
 

Output: 
 𝒇(𝑥): Effective solution 

 
Procedure: 

1. Step 1: Define the objective function 
𝒇(𝑥) corresponding to the 
optimization problem. 

2. Step 2: Calculate the value of the 
objective function  

3. Step 3: Return 𝒇(𝑥) as fitness value 
expressing the quality. 

 
3.2.3. Position Update 

The Position Update step aims to modify 
the positions of grey wolves to facilitate the search 
for optimal solutions. The new positions are 
determined using mathematical equations inspired 
by the hunting and grey wolves’ social behaviours. 
In RGWO, each wolf’s position is represented as a 
D-dimensional vector in Eq.(32): 

𝒙 = [𝑥ଵ, 𝑥ଶ, … , 𝑥஽] (32) 

where D is the dimensionality of the problem space.  
 
The Position Update process considers the 

influence of these leaders on the entire population. 
To calculate the updated wolf position, the 
influences of the alpha, beta, and delta wolves are 
incorporated into the equation. Eq.(33) assists in 
identifying the position of a grey wolf . 

𝑥௜
௧ାଵ =

𝑥௜
௧ + 𝐴. 𝑟ଵ − 𝑥௜

௧

2
 (33) 

where updated position is indicated as xi
(t+1)at the 

t+1-th iteration, the current position is represented as 
xi

t at iteration t, and A is a coefficient representing 
the influence of the alpha wolf. r1 is a random vector 
that introduces stochasticity into the position update. 
The equation’s division by 2 ensures that the updated 
position lies between the current and alpha wolf 
positions. 
 

The position updates for the beta and delta 
wolves are calculated using their respective 
influence coefficients. Eq.(34) is applied to calculate 
the same. 

𝑥௜
௧ାଵ =

𝑥௜
௧ + 𝐵. 𝑟ଶ − 𝑥௜

௧

2
  (𝑓𝑜𝑟 𝑏𝑒𝑡𝑎 𝑤𝑜𝑙𝑓) 

𝑥௜
௧ାଵ

=
𝑥௜

௧ + 𝐷. 𝑟ଷ − 𝑥௜
௧

2
  (𝑓𝑜𝑟 𝑑𝑒𝑙𝑡𝑎 𝑤𝑜𝑙𝑓) 

(34) 

 
These equations ensure that the three 

different types of wolves guide each wolf to explore 
and exploit the solution space effectively. The 
random vectors (r1, r2 and r3) introduce randomness, 
diversifying the search process. 

Algorithm 9: Position Update 

Input: 
 𝑿 (Population): The current population of grey 

wolves. 
 Position of A (Alpha wolf’s position) 
 Position of B (Beta wolf’s position) 
 Position of D (Delta wolf’s position) 
 

Output: 
 𝑿 (Updated Population): The population of grey 

wolves with adjusted positions. 
 

Procedure: 
1. For each grey wolf 𝑥௜ in the population 𝑿: 

 Generate random vectors 𝑟ଵ, 𝑟ଶ and 𝑟ଷ to 
introduce stochasticity. 

 Update the position of  𝑥௜ as follows: 
2. Calculate the new position by averaging the 

current position 𝑥௜, alpha’s position A, and a 
scaled random vector 𝑟ଵ. 

3. Repeat the same process for beta and delta 
wolves using their influence coefficients and 
random vectors. 
 Ensure the updated position remains within the 

defined problem space bounds (domain 
constraints). 
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4. Return the updated population 𝑿 with adjusted 
positions. 
 

3.2.4. Fitness Evaluation 
Fitness evaluation in RGWO revolves 

around the objective function f(x), which represents 
the optimization problem to be solved. The objective 
function maps a potential solution x to a real number 
that signifies the quality or cost of that solution. In 
mathematical terms, the objective function is 
expressed as Eq.(35). 

𝑓(𝑥) = 
𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 (𝑥ଵ, 𝑥ଶ, … , 𝑥஽) 

(35) 

where D is the dimensionality of the problem space, 
and x1, x2,…,xD are the coordinates of the solution x. 

 
The goal can vary based on the problem 

type, such as maximizing profit, minimizing cost, 
optimizing resource allocation, or achieving any 
measurable criterion that characterizes the problem. 
Eq.(36) expresses the Fitness evaluation. 

𝑭(𝑥) = 𝑓(𝑥) (36) 

 where F(x)  represents the fitness value of x. 
 
The Fitness Evaluation step in RGWO as it 

serves multiple key functions: 
1. Quality Assessment: It quantifies how well a 

potential solution performs concerning the 
optimization goal.  

2. Ranking Wolves: The fitness values of grey 
wolves rank them within the population. 
Wolves with higher fitness values are likelier 
to become alpha or beta wolves, influencing the 
algorithm’s search dynamics.  

3. Selection Mechanism: The fitness values are 
employed in selecting alpha, beta, and delta 
wolves. These leaders guide the rest of the 
population towards better solutions, ensuring a 
balanced exploration-exploitation process. 

4. Convergence Tracking: Fitness evaluation is 
crucial for tracking the algorithm’s 
convergence. As the optimization progresses, 
monitoring the changes in fitness values 
provides insights into how the algorithm 
approaches a solution. 

5. Diversity Maintenance: By distinguishing 
between solutions with different fitness levels, 
the algorithm retains diversity within the 
population, preventing premature convergence 
to local optima. 
 

 

Algorithm 10: Fitness Evaluation 

Input: 
 𝑿 (Population): The current population of 

grey wolves. 
 𝒇(𝑥) (Objective Function): 
 𝑫 (Dimensionality): The dimensionality of 

the problem space. 
Output: 

 𝑭 (Fitness Values): The fitness scores 
for every grey wolf in the population 
are represented as a vector.  

 
Procedure: 

1.  Initialize an empty vector 𝑭 to store    the 
fitness values of the grey wolves. 

2.  For each grey wolf 𝑥௜ in the population 
𝑿: 
 Calculate the fitness value 𝐹௜ by 

applying the objective function 𝒇(𝑥) 
  Append  𝐹௜to the vector 𝑭 to record 

the fitness value of 𝑥௜ . 
3. Return the vector 𝑭 containing grey wolf 

fitness values. 
 
3.2.5. Dominance Ranking 

Dominance ranking is fundamentally a 
comparison process that determines which solutions 
in the population are superior to others. It relies on 
the fitness values calculated in the previous step. In 
mathematical terms, we have a set of fitness values 
F={F1, F2,….,Fn}, where n represents the population 
size. To establish dominance, a solution xi is 
compared to another solution x j, typically in a pair-
wise manner. Dominance between two solutions is 
determined by comparing their fitness values. 
RGWO defines two critical relationships, which are: 

a). Weak Dominance (≺): Solution xi weakly 
dominates solution x j (denoted xi ≺ x j) if xi   
is at least as good as xj in all objectives and 
strictly better in at least one objective. 

b). Strong Dominance (≺s): Solution xi 
strongly dominates solution xj (denoted xi 
≺s xj) if xi is strictly better than xj in all 
objectives. 
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Algorithm 11: Dominance ranking 

Input: 
 𝑭 (Fitness Values) of the grey wolves 

in the population. 
 

Output: 
 𝑹 (Dominance Ranks): A vector 

containing the dominance ranks of 
the grey wolves based on their fitness 
values. 

 
Procedure: 

1. Initialize a vector 𝑹 to store the 
dominance ranks, initially filled with 
zeros. 

2. For each grey wolf 𝑥௜ in the population 
with fitness value 𝐹௜: 
 Initialize a dominance count 𝐶௜to 

zero. 
 For every other grey wolf 𝑥௝in the 

population with fitness value 𝐹௝: 
3. If 𝐹௜is weakly better than𝐹௝, 

increment 𝐶௜by 1. 
4. If 𝐹௜ is strictly better than𝐹௝,  

increment 𝐶௜by 1 again. 
 Calculate the dominance rank 

𝑅௜ for 𝑥௜as 𝐶௜ + 1. 
 Assign 𝑅௜  to the 

corresponding position in the 
𝑹 vector. 

 Higher ranks indicate better 
solutions, if not satisfied, go 
to Step 1 

 
3.2.6. Leader Selection 

Leader selection in RGWO revolves around 
dominance and the rankings assigned to grey wolves 
based on their fitness values. As discussed in the 
previous step (Dominance Ranking), each solution xi 
is assigned a dominant rank Ri, where higher ranks 
indicate better solutions. The dominance rank means 
the solution’s relative performance within the 
population. The leader selection process aims to 
choose the three wolves responsible for guiding the 
population toward better solutions. These leaders are 
selected based on their dominant ranks. 

The alpha wolf (A) is the solution with the 
highest dominance rank, indicating the best 
performance in the population. The beta wolf (B) has 
the second-highest dominance rank, while the delta 
wolf (D) has the third-highest dominance rank. 
Eq.(37) is utilized for calculating the rank. 

𝐴 = arg max
௜

𝑅௜ 

𝐵 = arg max
௜

{𝑅௜: 𝑅௜ ≠ 𝑅஺} 

𝐷 = arg max
௜

{𝑅௜: 𝑅௜ ≠ 𝑅஺ 𝑎𝑛𝑑 𝑅௜

≠ 𝑅஻} 

(37) 

where argmaxi represents the index i that maximizes 
the specified condition. 
 

Algorithm 12: Leader Selection 

Input: 
 R (Dominance Ranks): A vector containing 

the population’s dominance ranks of the 
grey wolves. 

 
Output: 
 A (Alpha Wolf): The grey wolf with the 

highest dominance rank. 
 B (Beta Wolf): The grey wolf with the 

second-highest dominance rank, excluding 
the alpha wolf. 

 D (Delta Wolf): The grey wolf with the 
third-highest dominance rank, excluding the 
alpha and beta wolves. 

 
Procedure: 
1. Identify the alpha wolf (A) as the grey 

wolf with the highest dominant rank from 
the R vector. 

2. Determine the beta wolf (B) as the grey 
wolf with the second-highest dominance 
rank from the R vector, excluding the 
alpha wolf. 

3. Find the delta wolf (D) as the grey wolf 
with the third-highest dominance rank 
from the R vector, excluding the alpha and 
beta wolves. 

4. The selected alpha, beta, and delta 
wolves (A, B, and D) are designated as 
leaders, guiding the population in the 
subsequent steps of the RGWO 
algorithm. 

 
3.2.7. Encircle Prey 

The Encircle Prey step in RGWO is 
inspired by the cooperative hunting behaviour of 
grey wolves in nature. When wolves detect potential 
prey, they coordinate their movements to encircle it, 
closing in for a successful hunt. In the context of 
GWO, this behaviour is mathematically modeled to 
optimize a problem. The core idea is that grey 
wolves form a circle around a prey, each wolf 
adjusting its position and role to contribute to the 
encirclement. In RGWO, the prey represents the 
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optimal solution sought by the algorithm, and the 
grey wolves symbolize the candidate solutions 
within the population. The wolves’ locations are 
updated mathematically based on a search agent’s 
location relative to the prey. In the RGWO 
algorithm, the positions of the alpha, beta, and delta 
wolves play a crucial role in guiding the movement 
of the remaining wolves. The alpha wolf represents 
the best solution so far, while the beta and delta 
wolves represent the second and third-best solutions 
selected in the Leader Selection step. The 
encirclement process drives the population toward 
the vicinity of the optimal solution. 

 
Determine the encircling centres for each 

leader (CA, CB,and CD) by averaging their positions. 
These centres represent the focal points around 
which the rest of the wolves will attempt to encircle. 
Each non-leader wolf in the population adjusts its 
position based on the leaders’ positions and the 
encircling centres. The position update equations 
ensure that wolves move toward forming 
encirclement. The Eq.(38) - Eq.(40) typically 
introduce randomness to mimic natural movement: 
For a wolf  xi encircling the alpha wolf: 

𝑥௜
௧ାଵ = 𝐶௔ − 𝐴. 𝑟ଵ (38) 

For a wolf  𝑥௜  encircling the beta wolf: 

𝑥௜
௧ାଵ = 𝐶஻ − 𝐴. 𝑟ଶ (39) 

For a wolf 𝑥௜encircling the delta wolf: 

𝑥௜
௧ାଵ = 𝐶஽ − 𝐴. 𝑟ଷ (40) 

where the updated position is represented as xi
(t+1)at 

the (t+1)-th iteration. A, B, and D are coefficients 
that control the influence of the leaders and r1, r2 and 
r3 introduce randomness. 
 

The Encircle Prey step is an iterative 
process that aims to guide the population toward 
encircling the optimal solution. As the iterations 
progress, wolves adjust their positions to encircle the 
prey more effectively. This process continues 
throughout the GWO algorithm, complementing 
other phases like Exploration and Exploitation to 
optimize the problem effectively. 

 

Algorithm 13: Encircle Prey 

Input: 
 𝑿 (Population): The current population 

of grey wolves. 
 A (Alpha wolf’s position) 

 B (Beta wolf’s position) 
 D (Delta wolf’s position) 

 
Output: 

 𝑿 (Updated Population): The population 
of grey wolves with adjusted positions. 

 
Procedure: 

1. Calculate the encircling centre for the 
alpha, beta, and delta wolves: 

2. For each grey wolf 𝑥௜  in the population 
𝑿: 

a). Generate random vectors 𝑟ଵ, 𝑟ଶ 
and 𝑟ଷ to introduce 
stochasticity. 

b). Update the position of 𝑥௜  based 
on its role in encircling the 
prey:  
 If 𝑥௜  is encircling the alpha 

wolf, update its position 
towards C୅with the 
influence of A random 
vector  

 If  𝑥௜is encircling the beta 
wolf, update its position 
towards C୆with the 
influence of  B and random 
vector  

 If 𝑥௜is encircling the delta 
wolf, update its position 
towards Cୈwith the 
influence of  D and random 
vector  

3. Ensure that the updated positions of the 
grey wolves remain within the defined 
problem space bounds (domain 
constraints). 

4. Return the updated population 𝑿 with 
adjusted positions. 

 
3.2.8. Update Alpha, Beta, and Delta 

The “Update Alpha, Beta, and Delta” step 
involves re-evaluating the leadership roles of the 
alpha, beta, and delta wolves based on their 
performance in the current iteration. The aim is to 
continually adapting the leadership structure to 
ensure that the best-performing wolves guide the 
population towards optimal solutions. The 
performance of each leader is assessed based on their 
fitness values. Recall that in RGWO, each solution 
xi has a fitness value Fi, which quantifies its quality 
in terms of the optimization problem. The leadership 
structure is redefined based on the performance of 
the current leaders. If a new wolf outperforms one of 
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the leaders, it takes on the corresponding leadership 
role. 

The pack’s alpha wolf is the top performer 
among a group of solutions. If any wolf xi has a 
higher fitness value than the current alpha wolf. It 
replaces the alpha wolf. The new alpha wolf (Anew) is 
the wolf with the highest fitness value: 

𝐴௡௘௪ = arg max
௜

𝐹௜ (41) 

The beta wolf has the second-highest 
fitness value among the wolves, excluding the alpha 
wolf. If a wolf xi surpasses the current beta wolf, it 
takes over the beta leadership role. The new beta 
wolf (Bnew) is the wolf with the second-highest 
fitness value after the alpha wolf: 

𝐵௡௘௪ = arg max
௜

{𝐹௜: 𝑥௜ ≠ 𝐴} (42) 

 
The delta wolf holds the third-highest 

fitness value among the wolves, excluding the alpha 
and beta wolves. If a wolf xi exceeds the delta wolf’s 
fitness, it becomes the new delta wolf (Dnew): 

𝐷௡௘௪ = arg max
௜

൜
𝐹௜: 𝑥௜ ≠ 𝐴 𝑎𝑛𝑑 

𝑥௜ ≠ 𝐵
ൠ (43) 

 
The new leadership structure is based on 

these updated alpha, beta, and delta wolves, ensuring 
that the best-performing wolves continue effectively 
guiding the population. 
 

Algorithm 14: Update Alpha, Beta, and 
Delta 

Input: 
 A (Current Alpha Wolf) 
 B (Current Beta Wolf) 
 D (Current Delta Wolf) 
 X (Population): The current population 

of grey wolves. 
 

Output: 
 𝐴௡௘௪(Updated Alpha Wolf) 
 𝐵௡௘௪  (Updated Beta Wolf) 
 𝐷௡௘௪  (Updated Delta Wolf) 

 
Procedure: 

1. Initialize 𝐴௡௘௪ , 𝐵௡௘௪  and 𝐷௡௘௪  with the 
current alpha, beta, and delta wolves. 

2. Calculate the fitness values of all wolves 
in the population 𝑿. 

3. For each wolf   in the population 𝑥௜ in the 
population 𝑿: 

 If the fitness value of  𝑥௜ is 
higher than the fitness value of 

the new𝐴௡௘௪, update 𝐴௡௘௪to be 
𝑥௜ . 

  If the fitness value of 𝑥௜is 
higher than the fitness value of 
𝐵௡௘௪  and 𝑥௜is not the same as  
𝐴௡௘௪, update 𝐵௡௘௪ , to be 𝑥௜ . 

 If the fitness value of 𝑥௜is 
greater than the fitness value of 
𝐷௡௘௪ , and 𝑥௜is not the same as 
𝐴௡௘௪ and 𝑥௜ is not the same as 
𝐵௡௘௪ , update 𝐷௡௘௪ to be 𝑥௜ . 

4. The updated alpha, beta, and delta 
wolves (𝐴௡௘௪, 𝐵௡௘௪  𝑎𝑛𝑑 𝐷௡௘௪) are now 
the leaders guiding the population in the 
subsequent steps of the RGWO 
algorithm. 

 
3.2.9. Exploration and Exploitation 

The positions of grey wolves in the 
population are updated based on a mixture of 
exploration and exploitation methods. The aim is to 
balance venturing into new territory and exploiting 
promising areas. The specific equations and 
strategies used for exploration and exploitation may 
vary depending on the GWO variant. 

 
Exploration in RGWO involves 

introducing randomness or stochasticity to 
encourage the population to explore new regions of 
the solution space. Common exploration strategies 
include: 

 
1. Random Movement: Wolves adjust their 

positions within a specific range. This 
randomness can be controlled using parameters. 

2. Levy Flight: Levy flights are a special kind of 
random walk in which large and small steps are 
taken. It introduces heavy-tailed random steps 
to promote exploration. 

 
On the other hand, exploitation aims to 

focus on promising areas of the solution space. 
Wolves exploit regions with known high fitness 
values or solutions. Exploitation strategies include: 
1. Deterministic Movement: Wolves move 

towards leaders’ positions, such as the alpha, 
beta, or delta wolves, which are expected to be 
closer to optimal solutions. 

2. Leader Guidance: Wolves follow the 
trajectories of leaders, imitating their 
movements and leveraging their guidance. 

 
Combining exploration and exploitation 

strategies can mathematically represent the 
Exploration and Exploitation step. The wolf (xi) 
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updated position at the next iteration (t+1) is a result 
of both exploration (Ei

t+1) and exploitation (Xi
t+1) 

components: 

𝑥௜
௧ାଵ = 𝐸௜

௧ାଵ + 𝑋௜
௧ାଵ (44) 

 
The exploration component (Ei

t+1) 
Introduces randomness and encourages diversity in 
the population, expressed as Eq.(21).  

𝐸௜
௧ାଵ = 𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛 𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦 (45) 

The exploitation component (Ei
t+1) )guides 

wolves toward promising regions or solutions, often 
in the direction of leaders, as expressed in Eq.(46). 

𝑋௜
௧ାଵ = 𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛 𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦 (46) 

Exploration and exploitation strategies vary 
among GWO variants and are often parameterized to 
control the balance between the two. Achieving the 
right balance is crucial for the algorithm’s success in 
finding optimal solutions to complex optimization 
problems. 

 
3.2.10. Termination 

The termination criteria are essential for 
controlling the algorithm’s behaviour and preventing 
it from continuing indefinitely. RGWO stops after a 
predetermined number of iterations (maximum) 
have been reached. The termination decision 
depends solely on the number of iterations, which 
can be set based on the available computational 
resources and the problem’s complexity. RGWO 
stops if the current iteration count (t) exceeds the 
predetermined maximum iterations (Tmax) and it is 
expressed in Eq.(47). 

If 𝒕 > 𝑇௠௔௫ , stop (47) 

3.3. Fusion of RGWO and GEQDNN 
The fusion of RGWO and GEQDNN 

represents a synergistic approach to enhance 
sentiment analysis's overall performance in online 
shopping. Inspired by the cooperative hunting 
behavior of grey wolves, RGWO introduces an 
adaptive mechanism that optimizes the neural 
network's performance. RGWO excels in finding 
global optima in complex search spaces, a crucial 
attribute in refining the parameters of the GEQDNN. 
This adaptability ensures that the model is finely 
tuned to the intricacies of sentiment analysis within 
product reviews. Gaussian enhancement introduces 
probabilistic distributions, providing a more 
nuanced representation of uncertainties in sentiment 
expression. By combining this Gaussian refinement 
with the adaptive optimization capabilities of 

RGWO, the model gains an improved ability to 
capture subtle variations in sentiment, enhancing its 
precision and accuracy. Incorporating quantum 
principles into deep neural networks through 
Gaussian enhancement allows for parallel 
processing and superposition, exponentially 
increasing computational efficiency. The synergy of 
RGWO and Gaussian-Enhanced Quantum Deep 
Neural Networks addresses the challenges of 
sentiment analysis, particularly in dealing with the 
vast amounts of textual data inherent in online 
shopping, leading to faster and more accurate results. 
 
 
3.3.1. Advantages of RGWO-GEQDNN 

The significant advantages of RGWO-
GEQDNN are 
 Nuanced Sensitivity: RGWO-GEQDNN's 

fusion allows for heightened sensitivity, 
accurately capturing subtle nuances in 
sentiment expression. 

 Adaptive Precision: Resilient Grey Wolf 
Optimization ensures adaptive tuning, 
maintaining high accuracy in dynamic 
sentiment contexts. 

 Efficient Processing: Gaussian-enhanced 
quantum principles enable efficient parallel 
processing, ensuring faster and more reliable 
sentiment analysis, particularly in extensive 
data scenarios. 

 Global Optimization: RGWO's capability for 
global optimization enhances the model's 
efficiency in navigating complex sentiment 
landscapes, leading to more accurate 
classifications. 

 
4. ABOUT DATASET 

The Amazon Product Review Dataset, a 
treasure trove of diverse opinions and user feedback, 
offers rich insights into consumer preferences and 
sentiments. With millions of reviews spanning many 
product categories, it provides a comprehensive 
view of the collective voice of Amazon customers. 
Researchers and businesses find immense value in 
this dataset, as it enables sentiment analysis, trend 
identification, and market research. Its size and 
variety make it valuable for training machine 
learning models and natural language processing 
algorithms. From understanding customer 
satisfaction to tracking emerging product trends, the 
Amazon Product Review Dataset is a vital resource 
for those seeking to explore the world of e-
commerce through the lens of user-generated 
content.This study investigates the electronics 
product review dataset from Amazon's collection of 
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product review datasets, encompassing 6,739,590 
customer reviews. The dataset is composed of 11 
fields, and detailed descriptions of these fields are 
provided in Table 1 

 
Table 1. Field Description 

Field Name Description 

reviewerID 
A unique identifier for the 
person reviewing the product 

asin 
An exclusive identifier for the 
product being reviewed 

reviewerName 
The name of the individual 
providing the review 

vote 
The count of helpful votes 
received by the review 

style 
Product metadata is represented 
as a dictionary. 

reviewText 
The written content of the 
review 

overall 
The numerical rating is given to 
the product. 

summary 
A summary or title of the 
review 

unixReviewTime 
The time of the review is 
represented in Unix time. 

reviewTime 
The time of the review in its 
raw format 

image 
Images shared by users after 
receiving the product. 

 
5. PERFORMANCE METRICS 

Sentiment analysis employs the terms TP 
(True Positive), TN (True Negative), FP (False 
Positive), and FN (False Negative) to assess the 
accuracy of sentiment classification. TP represents 
instances where the model correctly identifies 
positive sentiment, while TN denotes cases where it 
accurately recognizes negative sentiment. FP occurs 
when the model mistakenly detects positive 
sentiment in negative text, and FN indicates the 
model incorrectly identifies negative sentiment in 
positive text. These metrics are crucial in evaluating 
the precision and effectiveness of sentiment analysis 
models, allowing for a comprehensive assessment of 
their performance in categorizing sentiments 
accurately. TP, TN, FP and FN are variables in the 
chosen performance metrics below to evaluate the 
proposed classifier's performance against the state-
of-the-art classifiers. 
 Precision: Precision (PREC) in sentiment 

analysis indicates the accuracy of positive 
sentiment predictions. It measures the ratio of 
correctly identified positive sentiments to all 
predicted positive sentiments by a model. 

 Recall: Recall (RCLL), in the context of 
sentiment analysis, assesses the model's ability 
to identify actual positive sentiments. It is the 
ratio of correctly identified positive sentiments 
to all actual positive sentiments. 

 Classification Accuracy: Classification 
accuracy (CL-AC) measures the overall 
correctness of a model's sentiment predictions 
in sentiment analysis. It calculates the ratio of 
correctly predicted sentiments to the total 
number of sentiments in the dataset. 

 F-Measure: The F-Measure (F-MSR) is a 
sentiment analysis metric that balances 
precision and recall. It comprehensively 
evaluates a model's ability to make accurate 
positive sentiment predictions while capturing 
a high percentage of positive sentiments. 

 Fowlkes–Mallows Index: The Fowlkes–
Mallows Index (FMI) in sentiment analysis 
measures precision and recall's geometric 
mean. It assesses a model's ability to accurately 
predict positive sentiments while considering 
the trade-off between precision and recall. 

 Matthews Correlation Coefficient: The 
Matthews Correlation Coefficient (MCC) is a 
sentiment analysis metric considering true and 
false positives and negatives, providing a 
robust measure of the relationship between 
predicted and actual sentiments. 

 
6. RESULTS AND DISCUSSION 
6.1. Precision and Recall Analysis 

Figure 1 and Table 2 present precision and 
recall metrics for three sentiment analysis 
algorithms: DLGM, ESDM, and RGWO-GEQDNN. 
Precision measures the accuracy of positive 
sentiment identification, while recall assesses the 
algorithm's ability to capture all positive sentiments 
in electronic product reviews. 

 

 
Figure 1. Precision And Recall 
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DLGM showcases a precision of 58.366% 

and a recall of 68.869%. Its performance reflects its 
focus on fine-grained aspect-based sentiment 
analysis. DLGM's disentangled graph representation 
dissects complex linguistic structures and precisely 
identifies aspects and sentiments. It balances 
precision and recall by emphasizing the 
explainability of sentiment classifications. This 
approach enables detailed insights into sentiment 
relationships. Its intricacy might introduce a trade-
off between precision and recall, particularly when 
handling complex or noisy text data. Despite its 
contributions, DLGM may suffer from slower 
processing times, and its disentangled analysis may 
occasionally struggle with capturing sentiment 
nuances effectively, which impacts both precision 
and recall. 
 

ESDM exhibits a precision of 69.403% and 
a recall of 70.542%, indicating its capability to 
perform well in sentiment analysis. ESDM excels by 
effectively utilizing syntactic dependency features 
and grammatical structure modeling. It captures 
nuanced sentiment expressions by considering 
syntactic dependencies. Its focus on aspect-aware 
sentiment analysis allows for precisely identifying 
relationships between product features and 
sentiments. ESDM handles negations efficiently, 
improving both precision and recall. Due to its 
intensive syntactic analysis, it may not be as suitable 
for enormous datasets. It's also limited when dealing 
with non-standard or informal language, which can 
affect precision and recall in real-world scenarios. 
 

RGWO-GEQDNN demonstrates 
exceptional precision of 96.036% and recall of 
96.829%, making it a standout performer. The 
outstanding results can be attributed to its unique 
combination of resilient grey wolf optimization and 
enhanced quantum deep neural networks. This blend 
allows for robust optimization and fine-grained 
sentiment modeling. RGWO-GEQDNN efficiently 
explores solutions with the resilience of grey wolf 
optimization and the parallelism of quantum 
computing. The quantum computing principles 
enable it to capture complex sentiment patterns with 
exceptional precision and recall. Its adaptability to 
large datasets and probabilistic output add to its 
outstanding performance in sentiment analysis, 
making it a top-performing algorithm in this 
evaluation. 

 
 
 

Table 2. Precision And Recall 
Classification 
Algorithms 

PREC 
(%) 

RCLL 
(%) 

DLGM 58.366 68.869 

ESDM 69.403 70.542 

RGWO-GEQDNN 96.036 96.829 

 
6.2. Classification Accuracy and F-Measure 
Analysis 

Figure 2 and Table 3 provide insights into 
classification accuracy and F-measure metrics for 
three sentiment analysis algorithms: DLGM, ESDM, 
and TABC-TSGMM. Classification accuracy 
measures the overall correctness of sentiment 
classification, while the F-measure assesses the 
balance between precision and recall in sentiment 
analysis. 

DLGM exhibits a classification accuracy of 
63.401% and an F-measure of 25.974%. These 
metrics reveal the algorithm's effectiveness in 
accurately classifying sentiments and highlight some 
limitations. The classification accuracy indicates its 
ability to make correct sentiment predictions, and it 
may serve well in scenarios where precision is 
prioritized over recall. The relatively low F-measure 
suggests room for improvement in balancing 
precision and recall. DLGM's unique disentangled 
graph representation and emphasis on explainability 
contribute to its classification accuracy, but its fine-
grained aspect analysis can sometimes hinder overall 
recall, affecting the F-measure. 

 

 
Figure 2. Classification Accuracy And F-Measure 

 
ESDM showcases a classification accuracy 

of 69.97% and an F-measure of 37.804%, 
demonstrating its proficiency in sentiment analysis. 
The classification accuracy highlights its capability 
to correctly classify sentiments, making it a reliable 
choice for precision-oriented tasks. The noteworthy 
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F-measure underlines its balanced approach to 
precision and recall, indicating an ability to 
effectively capture sentiments without 
compromising precision. ESDM's emphasis on 
syntactic dependency features, grammatical 
structure modeling, and aspect-aware sentiment 
analysis collectively contribute to its robust 
classification accuracy and well-balanced F-
measure, making it a versatile and high-performing 
algorithm. 

 
TABC-TSGMM exhibited exceptional 

performance, marking a significant milestone in 
sentiment analysis. The algorithm achieved an 
impressive classification accuracy of 96.432% and 
an F-measure of 92.887%, reflecting its unparalleled 
precision and balanced handling of precision and 
recall. This outstanding precision makes TABC-
TSGMM an ideal choice for applications where the 
accurate identification of sentiments is paramount. 
This extraordinary performance is rooted in the 
algorithm's robust optimization techniques, most 
notably its utilization of the artificial bee colony 
(ABC) optimization algorithm, which enables it to 
tenaciously explore and fine-tune solutions. TABC-
TSGMM leverages a Taylor series-based approach 
within a Gaussian Mixture Model, empowering it to 
capture even the most intricate sentiment patterns 
and relationships in the data. This advanced 
modeling technique equips TABC-TSGMM to excel 
in nuanced sentiment analysis, elevating it above 
conventional sentiment analysis methods. 
 

Table 3. Classification Accuracy And F-Measure 
Classification 
Algorithms 

FMI 
(%) 

MCC 
(%) 

DLGM 63.401 25.974 

ESDM 69.970 37.804 

RGWO-GEQDNN 96.432 92.887 

 
6.3. Fowlkes–Mallows Index and Matthews 
Correlation Coefficient Analysis. 

Figure 3 and Table 4 examine two essential 
evaluation metrics: the Fowlkes–Mallows Index 
(FMI) and the Matthews Correlation Coefficient 
(MCC) for three sentiment analysis algorithms: 
DLGM, ESDM, and RGWO-GEQDNN. 

 

 
Figure 3. Fowlkes–Mallows Index And Matthews 

Correlation Coefficient 
 

DLGM exhibits an FMI of 62.554% and a 
MCC of 63.184%. While DLGM offers some 
valuable insights into sentiment analysis, it has a few 
limitations. The MCC indicates a moderate overall 
performance but leaves room for improvement. One 
of DLGM's disadvantages is that it can be 
computationally intensive and may suffer from 
slower processing times, mainly when dealing with 
large datasets. Its disentangled analysis might 
occasionally struggle with capturing sentiment 
nuances effectively, affecting precision and recall, as 
reflected in the MCC. DLGM's performance can be 
improved by addressing these computational and 
sensitivity issues. 

 
ESDM presents an FMI of 68.934% and an 

MCC of 69.968%. ESDM showcases notable 
strengths, but it also has some limitations. The MCC 
suggests that ESDM performs well but leaves room 
for further enhancement. One of its challenges is that 
it may not be as effective when handling non-
standard or informal language, which can impact its 
real-world applicability. ESDM's intensive syntactic 
analysis can be computationally demanding, making 
it less suitable for extensive datasets. Addressing 
these language-dependent limitations and 
optimizing computational efficiency could be 
beneficial to further improve its performance. 
 

Table 4. Fowlkes–Mallows Index And Matthews 
Correlation Coefficient 

R
es

u
lt

s 
(%

)

Performance Metrics

DLGM ESDM RGWO-GEQDNN

Classification 
Algorithms 

CL-AC (%) F-MSR (%) 

DLGM 62.554 63.184 

ESDM 68.934 69.968 

RGWO-
GEQDNN 

96.442 96.431 
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RGWO-GEQDNN impressively achieves 
an FMI% of 96.442% and an MCC of 96.431%. 
RGWO-GEQDNN represents the state-of-the-art in 
sentiment analysis with its remarkable performance. 
However, it's important to note that this algorithm 
might require substantial computational resources, 
potentially limiting its practical use in resource-
constrained environments. Its exceptional 
performance may come at the cost of model 
explainability, as the complex modeling techniques 
utilized in quantum-deep neural networks can be 
challenging to interpret. RGWO-GEQDNN's 
superior performance makes it a compelling choice 
for high-precision sentiment analysis tasks, provided 
that computational resources and model 
transparency are accounted for in the application's 
context. 

 
The proposed algorithm, RGWO-

GEQDNN, outshines the state-of-the-art 
alternatives. Its advantages lie in its tenacious 
optimization through resilient grey wolf 
optimization and the incorporation of enhanced 
quantum deep neural networks. This unique 
combination allows it to achieve superior 
classification accuracy and F-measure. RGWO-
GEQDNN stands out by capturing complex 
sentiment patterns effectively, making it an excellent 
choice for precision-oriented sentiment analysis 
tasks. While it may demand more computational 
resources and pose challenges in model 
explainability, its remarkable performance makes it 
a compelling option in scenarios where high 
precision is critical. 

 
7.  CONCLUSION 

 
Resilient Grey Wolf Optimization-based 

Gaussian-Enhanced Quantum Deep Neural Network 
(RGWO-GEQDNN) is proposed as a transformative 
solution in the domain of sentiment analysis for 
online shopping. This approach blends the power of 
Resilient Grey Wolf Optimization with quantum 
computing principles and adeptly addresses the 
intricate challenges posed by sentiment analysis 
within product reviews. The outcomes of its 
evaluation using the Amazon product review dataset 
unambiguously underscore RGWO-GEQDNN's 
superiority over existing algorithms. RGWO-
GEQDNN's exceptional performance can be 
attributed to several key factors. The innovative 
fusion of Resilient Grey Wolf Optimization and 
Gaussian-enhanced quantum deep neural networks 
enhances the model's ability to recognize subtle 
nuances in language and sentiment expression, 

leading to more accurate sentiment classification. 
This heightened sensitivity enables RGWO-
GEQDNN to extract sentiments from reviews that 
may be challenging for traditional algorithms to 
classify. RGWO-GEQDNN's quantum-inspired 
approach allows it to efficiently process and analyze 
vast amounts of textual data, making it highly 
capable of handling the substantial volume of 
product reviews typically encountered in e-
commerce. This efficiency accelerates sentiment 
analysis, leading to faster and more reliable results. 
RGWO-GEQDNN's capacity to adapt and optimize, 
inspired by the Resilient Grey Wolf Optimization 
algorithm, further contributes to its superior results. 
This adaptability ensures the model remains 
effective in the ever-evolving online shopping 
landscape. 
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