
Journal of Theoretical and Applied Information Technology
15th January 2024. Vol.102. No 1

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

214

ELEVATING SENTIMENT ANALYSIS WITH RESILIENT
GREY WOLF OPTIMIZATION-BASED GAUSSIAN-

ENHANCED QUANTUM DEEP NEURAL NETWORKS IN
ONLINE SHOPPING

G.M. BALAJI1, K. VADIVAZHAGAN2

1Research Scholar & Assistant Professor, Department of Computer and Information Science,

Annamalai University, Chidambaram, Tamilnadu, India.
2 Assistant Professor, Department of Computer and Information Science,

Annamalai University, Chidambaram, Tamilnadu, India.
E-mail: 1gmbalaji0813@gmail.com, 2vadivazhagan.k@gmail.com

ABSTRACT

The rise of online shopping reflects a significant change in consumer behavior, with more people drawn to
digital marketplaces due to unparalleled convenience, extensive product variety, and competitive pricing
offered by online platforms. Product reviews have become a cornerstone within this digital retail landscape,
offering invaluable guidance to customers and business proprietors. Shoppers rely on reviews to make well-
informed decisions, gaining insights into product quality and functionality, while entrepreneurs utilize this
feedback to refine their offerings and elevate customer satisfaction. The analysis of sentiments embedded
within product reviews presents formidable challenges due to the intricacies of human language and the sheer
volume of data. To address this tough challenge, this paper introduces Resilient Grey Wolf Optimization-
based Gaussian-Enhanced Quantum Deep Neural Networks (RGWO-GEQDNN). This novel approach
amalgamates the robust, Resilient Grey Wolf Optimization with Gaussian-enhanced Quantum Deep Neural
Networks, providing a potent solution for efficient and accurate sentiment analysis within product reviews.
RGWO-GEQDNN emphasizes the innovative fusion of nature-inspired optimization and quantum computing
principles, promising a breakthrough in sentiment analysis. To assess the performance of RGWO-GEQDNN
against state-of-the-art algorithms, Amazon product review dataset is utilized. The results underscore the
superiority of RGWO-GEQDNN in accurately classifying sentiment from product reviews, highlighting its
transformative potential in the e-commerce landscape.
Keywords: Sentiment, Reviews, Online Shopping, Classification, Amazon, Neural Network

1. INTRODUCTION

Online shopping has come a long way since its

inception, with evolving e-commerce trends shaping
how we buy goods and services. In the ever-
advancing landscape of technology and shifting
consumer preferences, the online shopping
experience continues to transform [1]. One
noteworthy trend in online shopping is the
remarkable growth of mobile commerce. With the
widespread use of smart phones, consumers can shop
online, making purchases through mobile apps and
responsive websites, ensuring a seamless and
convenient shopping experience from virtually
anywhere. Personalization is another substantial
trend, as retailers utilize data-driven algorithms to
customize individual shoppers' recommendations,
offers, and product suggestions, enhancing the
shopping experience and overall customer

satisfaction[2], [3]. In addition to these trends,
sustainability is rising in online shopping, with
consumers increasingly seeking eco-conscious
products and sustainable practices from e-commerce
platforms. Retailers respond by introducing
sustainable product lines and reducing their
environmental footprint through responsible
shipping and packaging choices. The future of online
shopping is poised to incorporate augmented reality
(AR) and virtual reality (VR) experiences, enabling
consumers to virtually try on clothing or visualize
furniture within their living spaces. These emerging
trends promise a more interactive, personalized, and
eco-friendly online shopping experience, ensuring
that consumers continue to enjoy a dynamic and
ever-improving retail environment [4].

In the era of extensive data and digital

communication, sentiment analysis has become

Journal of Theoretical and Applied Information Technology
15th January 2024. Vol.102. No 1

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

215

essential for unraveling collective opinions,
emotions, and attitudes communicated in vast
quantities of textual data. Driven by natural language
processing and machine learning, this technology
empowers us to access valuable insights into public
perceptions and reactions concerning various topics,
products, and events [5]. Sentiment analysis
transcends the mere classification of sentiments as
positive, negative, or neutral, offering a nuanced
comprehension of the intensity and context of
emotions. Its applications are diverse, with
significant roles in social media monitoring,
customer feedback evaluation, and brand reputation
management [6], [7]. By allowing organizations to
monitor public sentiment, identify trends, and
proactively address emerging concerns, sentiment
analysis ensures that businesses make data-driven
decisions and that researchers gain a comprehensive
understanding of the ever-evolving landscape of
human sentiment in the digital age[8].

While fraught with challenges, Sentiment analysis
brings significant advantages to customers and
companies. Language intricacies, context, and
cultural nuances pose challenges, but they can be
addressed through advancements in machine
learning and deep learning models [9]. Customers
benefit from personalized recommendations,
improved customer support, and the ability to voice
their opinions effectively. On the corporate side,
sentiment analysis unlocks insights into customer
feedback and market trends, enabling data-driven
decision-making, brand reputation management, and
competitive analysis. By addressing these
challenges, sentiment analysis delivers mutual gains
for customers and companies, fostering a symbiotic
relationship built on understanding and
responsiveness [10], [11].

1.1. Problem Statement

The challenge of dealing with noisy data in
sentiment analysis is a persistent and complex
problem that significantly hampers the accuracy and
reliability of sentiment classification models. Noisy
data encompasses a variety of issues, including
typographical errors, grammatical inaccuracies,
slang, jargon, and informal language. These data
imperfections pose substantial obstacles in
accurately gauging sentiment, as they introduce
ambiguity and confusion into the analysis process.
Noisy data leads to misclassifications and erroneous
sentiment interpretations, distorting the true
sentiment expressed in a text. This problem is
exacerbated in user-generated content on social
media platforms, where informal language and
brevity are common. It challenges sentiment analysis

models to differentiate between genuine sentiment
expressions and text that deviates from standard
language conventions. Addressing the noisy data
challenge is crucial for developing more robust
sentiment analysis models. Improving the accuracy
of sentiment classification by effectively filtering
and preprocessing noisy data is an ongoing area of
research in natural language processing. This
problem statement underscores the critical need to
develop techniques that can enhance the reliability of
sentiment analysis in the face of noisy and
unstructured textual data.

1.2. Motivation

The motivation to address the challenge of noisy
data in sentiment analysis stems from its profound
impact on the reliability and accuracy of sentiment
classification models. In a world where user-
generated content on social media platforms and the
digital sphere is ubiquitous, understanding public
sentiment is essential for businesses, organizations,
and researchers. Noisy data, characterized by
typographical errors, grammatical inaccuracies,
informal language, and more, introduces ambiguity
and misclassification, jeopardizing the insights
derived from sentiment analysis. Overcoming this
challenge is imperative to provide accurate and
actionable results for decision-making, brand
reputation management, customer service
improvement, and more. As sentiment analysis
expands into diverse domains, from customer
feedback to market trend analysis, the need to
enhance the precision of sentiment classification in
the face of noisy data becomes increasingly evident.
Ultimately, addressing the challenge of noisy data in
sentiment analysis is not just a technical endeavor
but a strategic imperative for harnessing the full
potential of this valuable tool.

1.3. Objectives

This research endeavor aims to develop a bio-
inspired optimization-based deep learning classifier
for sentiment analysis, specifically tailored to
mitigate the challenges posed by noisy data. Building
upon the motivations outlined earlier, this novel
approach aims to enhance the accuracy and
reliability of sentiment analysis by effectively
filtering and preprocessing noisy textual data. By
integrating bio-inspired optimization techniques
with deep learning models, this research seeks to
differentiate genuine sentiment expressions from
language variations, ensuring that sentiment analysis
provides precise and actionable results. The primary
goal is to address the complex issue of noisy data,
which substantially impacts sentiment analysis

Journal of Theoretical and Applied Information Technology
15th January 2024. Vol.102. No 1

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

216

accuracy, particularly in user-generated content on
social media platforms. This innovative classifier is
envisioned to contribute to the evolution of
sentiment analysis, making it more robust and
adaptable in real-world, unstructured textual data,
ultimately enabling businesses, organizations, and
researchers to make more informed and data-driven
decisions.

2. LITERATURE REVIEW

 “Fuzzy Sentiment in Tweets” [12] tackles

the specific challenges of analyzing fuzzy sentiment
within tweets. The model combines textual features,
such as sentiment lexicons, word embeddings, and
syntactic structures, to effectively capture and
classify ambiguous sentiment expressions. The
Feature Ensemble Model utilizes machine learning
and statistical techniques to adaptively weigh and
combine these features. “Cross-lingual Aspect-
Based Sentiment” [13] introduces a novel approach
to address the challenges of cross-lingual aspect-
based sentiment analysis. It leverages contrastive
learning techniques to align sentiment
representations across different languages, enabling
the model to understand and classify aspect-based
sentiments across language barriers. This involves
developing language-agnostic sentiment
embeddings and aligning them using contrastive loss
functions. “Recursive and Recurrent Networks for
Aspect-Based Sentiment” [14] presents a
sophisticated approach that combines Recursive and
Recurrent Neural Networks (RNNs) to perform
Aspect-Based Sentiment Analysis with a particular
focus on inter-aspect relations. The model uses the
recursive structure to capture relationships between
aspects and utilizes recurrent connections to capture
sequential dependencies within each aspect.

“Semantic Sentiment Analysis” [15]

advances the field of sentiment analysis by
introducing a Semantic Conceptualization using
Tagged Bag-of-Concepts. The critical scientific
contribution lies in integrating semantic tags and
conceptual knowledge into sentiment analysis. This
approach significantly enhances the contextual
understanding of sentiment within text data, paving
the way for more precise sentiment analysis.
“Summarizing Student Survey Responses” [16]
offers a scientific breakthrough in efficiently
analyzing open-ended student survey responses. The
scientific merit of this research lies in its novel
approach to summarizing unstructured survey data.
Cluster analysis contributes by grouping similar
responses based on common themes, and sentiment

analysis assesses the emotional tone within these
clusters. “Urdu Sentiment Analysis with Deep
Learning” [17] advances the scientific understanding
of sentiment analysis in underrepresented languages,
such as Urdu, by applying deep learning algorithms.
The scientific significance lies in exploring deep
learning’s capabilities in capturing sentiment
nuances in a language with limited resources.

“Attention-Emotion-Enhanced Sentiment

Analysis” [18] lies in developing the Attention-
Emotion-Enhanced Convolutional LSTM model. It
leverages the latest advancements in deep learning
and sentiment analysis by incorporating attention
mechanisms to enhance information extraction and
emotional context for sentiment analysis. This
scientific innovation enables accurate sentiment
classification by focusing on crucial text segments
and understanding emotional cues. “Broad Multitask
Transformer Network” [19] is developing a
multitask transformer network to streamline
sentiment analysis across diverse tasks and domains.
It is scientifically significant due to its adaptability
and versatility. The model is based on the
transformer architecture, representing a scientific
breakthrough in natural language processing.
“Dynamic Bayesian Network” [20] offers a novel
perspective on sentiment analysis. DBNs enable
modeling the evolution of topics and sentiments in
textual data over time. This technical innovation
allows for the dynamic tracking of topic-sentiment
dynamics, providing a more sophisticated
understanding of how sentiments evolve in response
to changing topics.

“Challenges in Aspect-based Sentiment

Analysis” [21] provides an extensive and technically
detailed overview of the issues and challenges
encountered in aspect-based sentiment analysis. It
delves into the intricacies of this specialized field,
including data sparsity, aspect identification, and
context modeling. “Efficient Adaptive Transfer
Network for Aspect-Level Sentiment” [22] designed
for aspect-level sentiment analysis. The scientific
and technical merit lies in the model’s adaptability
to varying aspects of text data. EATN optimizes the
aspect-level sentiment analysis process by
efficiently transferring knowledge and adapting to
different aspects. “Weight Distributing Method for
Text Sentiment Analysis” [23] investigates the
application of a Weight Distributing Method that
combines sentiment dictionaries and TF-IDF for text
sentiment analysis. The technical advancement is in
the method’s ability to enhance sentiment
classification precision. Systematically weighing the

Journal of Theoretical and Applied Information Technology
15th January 2024. Vol.102. No 1

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

217

impact of sentiment words based on their relevance
to the document’s content provides a more refined
and accurate sentiment analysis.

Significant bio-inspired algorithms [25]-
[42] also plays an important role in classifications.

3. RESILIENT GREY WOLF OPTIMIZATION
- BASED GAUSSIAN - ENHANCED
QUANTUM DEEP NEURAL NETWORKS

3.1.1. Define the Problem

In machine learning and quantum deep
neural networks, it's essential to start by clearly
defining the problem to be solved. This initial step
involves specifying the nature of the task, the data,
and the objective. To determine the problem
mathematically, G-QDNN begins by describing the
task at hand. G-QDNN aims to model the
relationship between inputs and continuous-valued
outputs in regression. Mathematically, the task can
be expressed as Eq.(1).

𝒀 = 𝑓(𝑋) + 𝜀 (1)

where Y represents the continuous-valued output or
target variable, X denotes the input features or
predictors, f(⋅) represents an unknown function that
relates the inputs to the outputs, and ε is the random
error term.

In Eq.(2), G-QDNNs ensure the data is
compatible with continuous-variable quantum
states. The data representation typically consists of a
set of input-output pairs, denoted as (xi,yi) for i =
1,2,…,N, where xi represents the input data for the
i-th instance, and yi is the corresponding target value.
It's essential to ensure that the input features are
continuous and can be encoded in a quantum-
friendly manner. The data should be preprocessed
and normalized to meet these requirements.

𝑥௜ = (𝑥௜ଵ, 𝑥௜ଶ , … , 𝑥௜௠) (2)

where m is the number of input features.

Once the task and data are defined, G-

QDNN needs to specify an objective function that
quantifies the error, or the objective aims to
minimize the same. For regression problems, a
standard objective function is the mean squared error
(MSE). Mathematically, it is defined as Eq.(3).

𝑪(𝜃) =
1

𝑁
෍ (𝑦௜ − 𝑦ො௜)ଶ

ே

௜ୀଵ
 (3)

where C(θ) represents the cost or objective function
to be minimized, N is the number of data points, yi is

the actual target value, 𝑦ොi is the predicted value,
which depends on the parameters θ of the model.

3.1.2. Data Preparation

Data preparation is a crucial step in the
development of a G-QDNN. This step ensures that
the input data is well-structured, compatible with the
quantum framework, and ready for further
processing.

In G-QDNNs, the data typically consists of

a set of input data points, denoted as xi , where i
ranges from 1 to N. Each xi is a m-dimensional vector
representing m continuous variables. G-QDNN
express data preparation as Eq.(4).

𝑥௜ = (𝑥௜ଵ, 𝑥௜ଶ, … , 𝑥௜௠), (4)

where m represents the number of continuous
features in the dataset.

Data preprocessing is essential to ensure

the data is well-suited for quantum processing.
Common preprocessing steps include normalization
and feature scaling. Eq.(5) adjusts the data such that
its mean is zero and its standard deviation is one.

𝑥௜௝ ←
𝑥௜௝ − 𝜇௝

𝜎௝

, (5)

where xij is the j-th feature of the i-th data point, μj is
the mean of the j-th feature, and σj is the standard
deviation of the j-th feature. Having all
characteristics normalized to the same scale for
quantum circuits is helpful.

G-QDNNs operate with Gaussian quantum
states, which are well-suited for representing
continuous variables. The steady quantum states can
be defined as Eq.(6).

𝝆(𝑥௜) =
1

(𝜋ℏ)௠/ଶ
𝑒𝑥𝑝 ቆ−

1

2ℎ
෍ 𝑥௜௝

ଶ
௠

௝ୀଵ
ቇ (6)

where, ρ(xi) represents the quantum state associated
with the i-th data point. The parameter ℏ represents
the effective Planck constant, which influences the
spread of the quantum state.

To prepare the data for quantum
processing, G-QDNN can encode the preprocessed
xi into quantum states using the density matrix
formalism. In Eq.(7), encoding takes the normalized
feature vectors and maps them into quantum states
compatible with a G-QDNN. The quantum state ρ(xi)
encapsulates the information from the original data
point and can be used as input for the G-QDNN.

𝝆(𝑥௜) =
1

(𝜋ℏ)௠/ଶ
𝑒𝑥𝑝 ቆ−

1

2ℎ
෍ 𝑥௜௝

ଶ
௠

௝ୀଵ
ቇ (7)

Journal of Theoretical and Applied Information Technology
15th January 2024. Vol.102. No 1

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

218

Algorithm 1 provides the pseudocode of the

data preparation.

Algorithm 1: Data Preparation

Input:
 Input dataset containing 𝑵 data points,

each represented as 𝒎-dimensional
vectors:

Output:
 A preprocessed dataset suitable for G-

QDNN processing.

Procedure:
1. Normalize the input data:
 For each feature 𝑥௜௝in each data point𝑥௜,

calculate the mean 𝜇௝ and standard
deviation 𝜎௝ of that feature across all
data points.

 Update each feature 𝑥௜௝as follows: 𝑥௜௝ ←
௫೔ೕିఓೕ

ఙೕ

2. Encode the preprocessed data into
continuous quantum states:

 For each preprocessed data point
𝑥௜ , encode it into a continuous
quantum state 𝝆(𝑥௜) suitable for
G-QDNN processing.

3. Preprocess the dataset to hold continuous
quantum states.

3.1.3. Quantum Circuit

In G-QDNNs, defining the quantum circuit
is a pivotal step. The quantum circuit serves as the
core element of the G-QDNN, responsible for
mapping input data to quantum states and,
eventually, generating predictions.

G-QDNNs rely on continuous-variable

quantum states, which are well-suited for encoding
continuous data. These quantum states can be
mathematically described as Eq.(8) (i.e., density
matrices). For a single quantum state corresponding
to an input data point xi, the continuous-variable
quantum state ρ(xi) is expressed as Eq.(8).

𝝆(𝑥௜) =
1

(𝜋ℏ)௠/ଶ
𝑒𝑥𝑝 ቆ−

1

2ℎ
෍ 𝑥௜௝

ଶ
௠

௝ୀଵ
ቇ (8)

where ρ(xi) is the density matrix representing the
quantum state associated with the i-th data point, ℏ
is the effective Planck constant, influencing the
quantum state's spread, m is the number of
continuous features in the dataset, and xij represents
the j-th feature of the i-th data point.

The quantum circuit within a G-QDNN

typically involves Gaussian modes and gates.
Gaussian modes represent continuous-variable
quantum systems, and gates are operations applied
to these modes. Gaussian modes are described as
continuous-variable operators in Eq.(9), which can

be denoted as 𝑎ො௜and 𝑎ො௜
ற

for the i-th mode. These
operators satisfy commutation relations:

ൣ𝑎ො௜ , 𝑎ො௜
ற൧ = 𝛿௜௝ , ൣ𝑎ො௜ , 𝑎ො௝൧ = ൣ𝑎ො௜

ற, 𝑎ො௝
ற൧ = 0, (9)

where δij is the Kronecker delta [24].

Quantum gates within the G-QDNN
manipulate Gaussian modes and their operators.
These gates can be mathematically expressed in
terms of the operators, including displacement gates,
squeezing gates, rotation gates, and more. The effect
of a quantum gate on a Gaussian mode can be
represented as a transformation in the mode

operators, such as 𝑎ො௜and 𝑎ො௜
ற. The quantum circuit

for a G-QDNN is constructed by composing a
sequence of these gates. The parameters of these
gates are usually trained during the optimization
process to learn the most suitable quantum
operations for the given task.

The continuous-variable quantum circuit is
denoted as 𝑈෡(𝜃), is a parameterized sequence of
quantum gates. It operates on the continuous-
variable quantum states, transforming the input data
into a quantum state that encodes information
relevant to the task. Eq.(10) mathematically defines
the quantum circuit.

𝜌ᇱ(𝑋௜) = 𝑈෡(𝜃)𝜌(𝑋௜)𝑈෡ற + 𝜃 (10)
where θ represents the parameters of the quantum
circuit and ρ'(Xi)is the quantum state after applying
the quantum circuit.

Algorithm 2: Quantum Circuit

Input:
 Parameters 𝜽that define the quantum circuit

structure.

Output:
 A parameterized quantum circuit 𝑈෡(𝜃)

Procedure:
1. Initialize an empty quantum circuit 𝑈෡(𝜃).
2. Define the structure of the quantum circuit,

including the number and type of gates, gate

Journal of Theoretical and Applied Information Technology
15th January 2024. Vol.102. No 1

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

219

sequences, and connections between Gaussian
modes.

3. Parameterize the gates by assigning values to
the parameters 𝜽 within the circuit.

4. Optimize the parameters before training.
3.1.4. Quantum Hybrid Model

The Quantum Hybrid Model is a
fundamental component in G-QDNNs. It combines
classical and quantum elements to create a powerful
machine-learning model. At the core of the Quantum
Hybrid Model is a classical neural network, which is
responsible for handling classical data and
performing classical operations. The classical neural
network can be represented as a series of layers with
associated weights and activation functions. For a
single-layer classical neural network, the output zi
can be calculated using Eq.(11).

𝑧௜ = 𝑓 ቆ෍ 𝑤௜௝𝑥௝ + 𝑏௜

௡

௝ୀଵ
ቇ (11)

where zi is the output of a neuron, wij represents the
weight connecting the input xj to neuron i, bi is the
bi as term for neuron i, f(⋅) is the activation function,
such as the sigmoid, ReLU, or any other suitable
function.

The Quantum Circuit, as defined in Section
3.1.3, is the quantum component of the hybrid
model. It processes continuous-variable quantum
states and performs quantum operations. The
quantum circuit 𝑈෡(𝜃) is responsible for encoding
classical data into quantum states and conducting
quantum transformations. The quantum circuit
operates on the density matrix ρ(Xi) for a given input
data point xi as expressed in Eq.(12).

𝜌ᇱ(𝑋௜) = 𝑈෡(𝜃)𝜌(𝑋௜)𝑈෡ற𝜃. (12)

where, ρ'(Xi) represents the quantum state after
applying the quantum circuit. The parameters θ are
trainable and determine the circuit's behaviour.
The Quantum Hybrid Model fuses traditional neural
networks with quantum computing. The output of
the quantum circuit ρ'(Xi) is integrated with the
classical neural network's output. The integration is
expressed in Eq.(13).

𝑶(𝑥௜) = 𝑔 ൬෍ 𝑧௜ + 𝑇𝑟(𝜌ᇱ(𝑋௜)𝑀)
ே೎

௜ୀଵ
൰, (13)

where O(xi) represents the model's prediction for
input xi, g(⋅) is an activation function applied to the
combined output, Nc is the number of neurons in the
classical neural network, zi are the outputs of the
classical neurons, Tr(ρ'(Xi)M) represents the trace of
the product of the quantum state ρ'(Xi)and a
measurement operator M.

The hybrid model is trained through a
combined quantum optimization process. The
classical neural network parameters (weights and
biases) are optimized using classical optimization
algorithms (e.g., gradient descent). In contrast, the
quantum circuit parameters θ are optimized using
quantum optimization methods or hybrid
approaches. The objective function minimized
during training typically includes classical and
quantum components and the entire model is trained
to reduce the overall cost function.

Algorithm 3: Quantum Hybrid Model

Input:
 Classical neural network parameters

(weights and biases).
 Quantum circuit parameters (𝜃).
 Input data 𝑥௜ .

Output:
 Model prediction for input 𝑥௜ .

Procedure:

1. Feed the input data 𝑥௜into the classical neural
network to compute classical outputs 𝑧௜ using
the classical parameters.

2. Apply the quantum circuit 𝑈෡(𝜃) to the input
data 𝑥௜to create a quantum state 𝜌ᇱ(𝑥௜)based
on the quantum parameters 𝜽.

3. Combine the classical outputs 𝑧௜with the
quantum state 𝜌ᇱ(𝑥௜) to produce a model
prediction 𝑶(𝑥௜) using an activation function.

4. The model prediction 𝑶(𝑥௜) is the output for
the input data (𝑥௜) , representing the result of
the Classical-Quantum Hybrid Model.

3.1.5. Parameterization

Parameterization is a fundamental aspect of
G-QDNNs, as it defines the configurations of both
the classical and quantum components. The
parameterization sets the starting values for the
parameters, which will be fine-tuned during training.
G-QDNN will focus on the mathematical aspects of
this step. In G-QDNNs, classical neural network
parameters include weights (W) and biases (b) for
the classical component. These parameters are
initially set with random or predefined values before
training begins.

The weight matrix W connects the inputs of
the classical neural network to its neurons. It's an
Nc×N matrix, where Nc is the number of neurons in
the classical network, and N is the number of input
features. A normal distribution with a zero mean and

Journal of Theoretical and Applied Information Technology
15th January 2024. Vol.102. No 1

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

220

a tiny standard deviation can be used to generate
random variables to use as W starting points.

𝑾 = ൦

𝑤ଵଵ𝑤ଵଶ … 𝑤ଵே

𝑤ଶଵ𝑤ଶଶ … 𝑤ଶே

⋮ ⋮ ⋱ ⋮
𝑤ே೎ଵ𝑤ே೎ଶ … 𝑤ே೎ே

൪. (14)

The bias vector b corresponds to the biases

for each neuron in the classical neural network. It's a
Nc dimensional vector, and Eq.(15) initialize it with
small random values.

𝒃 = ൦

𝑏ଵ

𝑏ଶ

⋮
𝑏ே೎

൪ (15)

The parameter vector θ contains all the

parameters for the quantum circuit. These
parameters determine the settings for the quantum
gates and operations. Eq.(16) includes displacement
parameters, squeezing parameters, and other gate-
specific parameters, depending on the architecture of
the quantum circuit.

𝜽 = (𝜃ଵ, 𝜃ଶ, … , 𝜃௉), (16)

where P is the total number of quantum circuit
parameters.

The choice of how to initialize these

parameters can impact the training and convergence
of the G-QDNN. For initial parameterization, G-
QDNN generally uses weight initialization and
quantum circuit parameter initialization.

(a). Weight Initialization

Randomly initialize the weight matrix W
and the bias vector b for the classical neural network
using random values:

𝑾~𝑁(0, 𝜎ଶ), 𝑏~𝑁(0, 𝜎ଶ). (17)

where σ represents the standard deviation of the
normal distribution.

(b). Quantum Circuit Parameter Initialization

Set the initial values within predefined
ranges or distributions for the quantum circuit
parameters.

𝜃௜~𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 (𝑎, 𝑏), for 𝒊 =
1,2, … , 𝑃

(18)

where Distribution (a, b) represents a specific
distribution with parameters a and b to control the
initial values.

The initial parameterization sets the starting
conditions for the G-QDNN. During training, these
parameters are adjusted to minimize the cost
function, leading to a well-tailored model that can
effectively represent the data and perform quantum-
enhanced machine learning tasks.

Algorithm 4: Parameterization

Input:
 Number of classical neurons 𝑁௖ .
 Several input features 𝑵.
 The total number of quantum circuit

parameters 𝑷.
Output:

 Initial parameter values for the classical
neural network (weights and biases) and
the quantum circuit.

Procedure:

1. Initialize the classical neural network
parameters:
 Create a weight matrix 𝑾 of dimensions

𝑁௖ × 𝑁.
 Initialize 𝑾 with small random values.
 Create a bias vector 𝒃 of dimension 𝑁௖ .
 Initialize 𝒃 with small random values.

2. Initialize the quantum circuit parameters:
 Create a parameter vector 𝜽 of length 𝑷.
 Initialize the elements of 𝜽 with random

values within predefined ranges or
distributions.

3.1.6. Cost Function

The cost function is central in training a G-
QDNN, quantifying the error between the model's
predictions and the true target values. By minimizing
the cost function, the G-QDNN optimizes its
parameters, enabling it to make accurate predictions.
G-QDNN will discuss the mathematical aspects of
the cost function in the context of G-QDNNs.

In G-QDNN, the classical neural network is

responsible for handling classical data. The cost
function for the classical component, often referred
to as the classical cost, is typically expressed as
Eq.(19).

𝐶௖௟௔௦௦௜௖௔௟(𝑊, 𝑏) =
1

𝑁
෍ 𝐿൫𝑦௜ , 𝑓(𝑥௜)൯,

ே

௜ୀଵ
 (19)

where Cclassical(W,b) represents the classical cost
function, W denotes the weight matrix of the
classical neural network, b represents the bias vector,
N is the number of data points, yi is the true target
value for the i-th data point, f (xi)) is the prediction

Journal of Theoretical and Applied Information Technology
15th January 2024. Vol.102. No 1

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

221

made by the classical component for the i-th data
point, a loss function denoted by L(yi, f (xi)),
measures how much predictions deviate from reality.
Mean squared error (MSE) is a widespread loss
function for regression, whereas cross-entropy is
used for classification.

The quantum component in a G-QDNN

involves a quantum circuit that processes
continuous-variable quantum states. The quantum
cost function measures the discrepancy between the
model's predictions and the true target values. For
regression tasks, the quantum cost is often
formulated as Eq.(20)

𝐶௤௨௔௡௧௨௠(𝜃)

=
1

𝑁
෍ ‖𝑦௜

ே

௜ୀଵ

− 〈𝜓(𝑥௜ , 𝜃)|𝑀|𝜓(𝑥௜ , 𝜃)〉‖ଶ,

(20)

where Cquantum(θ) represents the quantum cost
function, θ includes the quantum circuit parameters,
N is the number of data points, yi is the true target
value, 〈ψ(xi,θ)|M|ψ(xi,θ)〉 denotes the expected value
of a measurement operator M on the quantum state
ψ(xi,θ) produced by the quantum circuit.

The overall cost function for a G-QDNN

combines classical and quantum costs to create a
unified cost function, expressed in Eq.(21).

𝐶(𝑊, 𝑏, 𝜃)
= 𝐶௖௟௔௦௦௜௖௔௟(𝑊, 𝑏) + 𝛼𝐶௤௨௔௡௧௨௠(𝜃).

(21)

where C(W, b, θ) represents the total cost function
for the G-QDNN, Cclassical (W,b) is the classical cost,
Cquantum(θ) is the quantum cost, α is a hyperparameter
that balances the contributions of the classical and
quantum components. It determines the relative
importance of the quantum and classical costs during
training. The value of α can be adjusted to control
the trade-off between the classical and quantum
parts.

During training, the goal is to minimize the
total cost function C (W, b, θ) by adjusting the
classical neural network parameters (W and b) and
the quantum circuit parameters (θ). This process is
typically performed using optimization algorithms,
such as gradient descent, that update the parameters
in the direction that reduces the cost function. The
gradients concerning the parameters are computed
through back propagation for the classical neural
network and quantum optimization techniques for
the quantum circuit.

Algorithm 5: Cost Function

Input:
 Neural network parameters (𝑊, 𝑏).
 Quantum circuit parameters (𝜃).
 Training dataset with input features 𝑥௜

and true target values𝑦௜ .
 Hyperparameter 𝜶 for balancing

classical and quantum costs.

Output:
 Total cost 𝑪(𝑊, 𝑏, 𝜃) for the G-

QDNN.

Procedure:
1. Calculate the Classical Cost (𝐶௖௟௔௦௦௜௖௔௟):

 Use the classical neural network with
parameters (𝑊, 𝑏) to make
predictions 𝒇(𝑥௜)for each input 𝑥௜ in
the training dataset.

 Compute the classical cost
𝐶௖௟௔௦௦௜௖௔௟(𝑊, 𝑏) using a suitable loss
function, comparing the predictions
to the true target values 𝑦௜ .

2. Calculate the Quantum Cost ൫𝐶௤௨௔௡௧௨௠൯:
 For each input 𝑥௜ in the training

dataset, apply the quantum circuit
with parameters 𝜽 to produce a
quantum state 𝝍(𝑥௜ , 𝜃).

 Measure the quantum state using a
specified measurement operator 𝑴 to
obtain an expected value
〈𝜓(𝑥௜ , 𝜃)|𝑀|𝜓(𝑥௜ , 𝜃)〉.

 Calculate the quantum cost
𝐶௤௨௔௡௧௨௠(θ) by quantifying the
difference between the expected
values and the true target values 𝑦௜.

3. Compute the Total Cost (𝐶(𝑊, 𝑏, 𝜃)):
 Combine the classical cost

𝐶௖௟௔௦௦௜௖௔௟(𝑊, 𝑏)and the quantum cost
𝐶௤௨௔௡௧௨௠(θ) to form the total cost
𝑪(𝑊, 𝑏, 𝜃) using the hyperparameter
𝜶 to balance their contributions:

4. Incorporate both classical and quantum
components.

3.1.7. Quantum Circuit Optimization

In G-QDNNs, the parameters of the
quantum circuit are adjusted to improve its
performance. Before optimizing the quantum circuit,
G-QDNN needs a quantum cost function that
quantifies the error between the quantum model's
predictions and the true target values. In the context

Journal of Theoretical and Applied Information Technology
15th January 2024. Vol.102. No 1

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

222

of G-QDNNs, the quantum cost function is often
expressed as Eq.(22).

𝐶௤௨௔௡௧௨௠(θ)

=
1

N
෍ ‖y୧

୒

୧ୀଵ

− 〈ψ(x୧, θ)|M|ψ(x୧, θ)〉‖ଶ,

(22)

where Cquantum(θ) represents the quantum cost
function, θ includes the quantum circuit parameters,
N is the number of data points, yi is the true target
value, 〈ψ(xi, θ)|M|ψ(xi,θ)〉 denotes the expected value
of a measurement operator M on the quantum state
ψ(xi, θ) produced by the quantum circuit.

Gradient-based optimization for quantum

circuits involves calculating the gradients of the cost
function concerning the parameters. The gradient ∇θ
Cquantum represents how the cost function changes as
each parameter ϑi is varied. Eq.(23) expresses
gradient operation.

∇ఏ𝐶௤௨௔௡௧௨௠

=
2

𝑁
෍ (𝑦௜

ே

௜ୀଵ

− 〈ψ(x୧, θ)|M|ψ(x୧, θ)〉) ∇ఏ
〈ψ(x୧, θ)|M|ψ(x୧, θ)〉

(23)

This gradient guides the updates to the

quantum circuit parameters in a direction that
minimizes the cost function. The parameters of the
quantum circuit, θ, are updated in each optimization
step. Eq.(24) typically expresses the update rule.

𝜃௡௘௪ = 𝜃௢௟ௗ − 𝜂∇ఏ𝐶௤௨௔௡௧௨௠, (24)

where θnew represents the updated parameters, θold
represents the current parameters, and η is the
learning rate, controlling the size of the parameter
updates. It is a hyperparameter that can be adjusted.

Algorithm 6: Quantum Circuit
Optimization

Input:
 Quantum circuit with initial parameters 𝜃௢௟ௗ .
 Training dataset with input features 𝑥௜ and

true target values 𝑦௜ .
 Hyperparameters: learning rate(𝜂),

maximum iterations, and convergence
criteria.

Output:
 Optimized quantum circuit with updated

parameters 𝜃௡௘௪ .

Procedure:
1. Initialize the quantum circuit parameters:

 Set 𝜃௢௟ௗwith initial values.
 Initialize iteration counter iter to 0.

2. Perform optimization iterations:

 Increment iter by 1.
 Calculate the quantum cost

𝐶௤௨௔௡௧௨௠(𝜃௢௟ௗ) using the current quantum
circuit.

 Update the parameters:
 Check the convergence criteria. If the cost

function converges or the maximum
number of iterations is reached, exit the
loop.

 Otherwise, set 𝜃௢௟ௗ to 𝜃௡௘௪and repeat the
optimization iteration.

 Compute the gradient ∇ఏ𝐶௤௨௔௡௧௨௠ of the
quantum cost concerning the parameters at
𝜃௢௟ௗ .

3.2. Resilient Grey Wolf Optimization
3.2.1. Initialization

Initialization is the foundational step in
RGWO, where the initial population of grey wolves
is created. In RGWO, grey wolves represent
potential solutions to the optimization problem. This
step is crucial, as the quality and diversity of the
initial population can significantly impact the
algorithm’s performance. A well-chosen
initialization strategy can lead to faster convergence
and better solution space exploration. The
initialization process in RGWO typically involves
randomly generating the initial positions for a
population of grey wolves. Let’s delve into this
crucial step mathematically.

Consider a population of grey wolves,

represented as D-dimensional vectors, where D
represents the problem space’s dimensionality.
Therefore, the initialization step aims to generate n
initial solutions, each comprising D coordinates.
These solutions are usually denoted as
X={x1,x2,…..,xn} where xi is a D-dimensional vector.
Eq.(25) represents the same.

𝑥௜ = ൣ𝑥௜,ଵ, 𝑥௜,ଶ, … . , 𝑥௜,஽൧, for 𝒊 =

1,2, … , 𝑛
(25)

where, xi stands for the i-th grey wolf’s coordinates
and xij stands for those coordinates in the j-th
iteration.

The key aspects to consider during
initialization are domain constraints and random
initialization.

Domain Constraints ensure that the initial

positions of grey wolves adhere to any domain
constraints of the optimization problem. If the
problem space has defined bounds for each

Journal of Theoretical and Applied Information Technology
15th January 2024. Vol.102. No 1

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

223

dimension, the initialization process should generate
positions within these bounds. This can be
represented as Eq.(26).

Domain Constraints: 𝑥௜,௝ ∈ ൣ𝑙௝ , 𝑢௝൧,
for 𝒊 = 1,2, … , 𝑛, and 𝒋 = 1,2, … , 𝐷

(26)

where lj indicates the lower limit and uj indicates the
upper bound.

Random initialization encourages
exploration, and the initial positions of grey wolves
are typically initialized within the specified domain.
This randomness helps in distributing the wolves
across the solution space. Eq.(27) expresses the
random initialization.

𝑥௜,௝ = 𝑙௝ + ൫𝑢௝ − 𝑙௝൯. 𝑟𝑎𝑛𝑑(0,1),
for 𝒊 = 1,2, … , 𝑛, and 𝒋 = 1,2, … , 𝐷

(27)

To generate a random integer within the

range of 0 and 1, utilize the rand(0,1) function. This
function produces a random number between 0 and
1, inclusive.
1. Population Size: The population size (n) is a

parameter that can be adjusted to influence the
search behaviour of GWO. A larger population
can enhance exploration, while a smaller size
can lead to more focused exploitation.

2. Initialization Strategy: Specific initialization
strategies can be employed depending on the
problem. A stratified initialization method may
ensure an even distribution of wolves across
the solution space.

Algorithm 7: Initialization

Input:
 𝒏 (Population size): The population density

of grey wolves.
 𝑫 (Dimensionality): The dimensionality of

the problem space.
 𝑙௝(Lower bounds for each dimension 𝒋) A

vector holding the bottom boundaries for
each dimension.

 𝑢௝ (Upper bounds for each dimension𝒋): A
vector with the maximum values in each
dimension.

Output:

 𝑿: The initial population of grey wolves,
represented as a set of 𝒏 solutions, where
each solution is a 𝑫-dimensional vector.

Procedure:
1. Initialize an empty set 𝑿 = {} to store the

initial population of grey wolves.

2. For 𝒊 in the range 1 to 𝒏:
 Initialize an empty vector 𝑥௜ = [] to

represent 𝒊-th grey wolf position.
3. For 𝒋 in the range 1 to 𝑫:

 Produce an unpredictable integer 𝒓
between zero and one.

 Calculate the 𝒊-th grey wolf position in D
dimension

 Append 𝑥௜,௝ to 𝑥௜ to form the 𝑫-
dimensional position vector for the 𝒊-th
grey wolf.

 Append 𝑥௜ to the set 𝑿to include it in the
initial population.

4. Return the set 𝑿 as the initial population of
grey wolves.

3.2.2. Objective Function

The objective function, often considered
the heart of any optimization algorithm, is pivotal in
guiding the search for optimal solutions. In the
RGWO context, this function represents the problem
the algorithm aims to solve. The objective function,

denoted as𝑓(𝑥), is the mathematical representation
of the optimization problem. It takes a potential

solution, 𝑥, as input and maps it to an real number,
representing the quality of that solution. In GWO,
the objective function is usually in the form of

𝑓: 𝑅஽ → 𝑅,where 𝑅஽is the 𝐷-dimensional

problem space, and 𝑅 is the set of real numbers.

The primary objective is to either maximize
or minimize 𝑓(𝑥) based on the nature of the
optimization problem. Eq.(28) expresses the
objective function.

𝑴𝒂𝒙𝒊𝒎𝑖𝑧𝑒 𝑓(𝑥)
𝑴𝒊𝒏𝒊𝒎𝒊𝒛𝒆 𝑓(𝑥)

(28)

The structure of RGWO’s objective

function in detail is given as Eq.(29). Given a

solution, 𝑥 represented as a 𝐷-dimensional vector:

𝒙 = [𝑥ଵ, 𝑥ଶ, … , 𝑥஽] (29)

The objective function f(x) maps this D-

dimensional vector to a real number that quantifies
the quality of the solution as mentioned in Eq.(30).

𝒇(𝑥) = 𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 (𝑥ଵ, 𝑥ଶ, … , 𝑥஽) (30)

In the RGWO optimization scenario, the

objective function is the basis for fitness evaluation.
After initializing the population of grey wolves, an

Journal of Theoretical and Applied Information Technology
15th January 2024. Vol.102. No 1

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

224

individual wolf’s fitness for its position is computed
by applying the objective function. The fitness value
essentially represents the “goodness” of the solution.
The higher the fitness, the better the solution is
concerning the optimization goal (maximization or
minimization). Eq.(31) expresses the fitness Fi of the
i-th grey wolf.

𝐹௜ = 𝑓(𝑥௜) (31)

where xi is indicates the i-th grey wolf. By
evaluating the fitness of each wolf based on the
objective function, GWO can effectively distinguish
between good and poor solutions in the population.

Algorithm 8: Objective Function

Input:
 𝒙 (Solution): A potential solution

represented as a 𝑫-dimensional vector.
 𝑫 (Dimensionality): Dimensionality of the

problem space.
 Problem-specific parameters (if required

for the objective function).

Output:
 𝒇(𝑥): Effective solution

Procedure:

1. Step 1: Define the objective function
𝒇(𝑥) corresponding to the
optimization problem.

2. Step 2: Calculate the value of the
objective function

3. Step 3: Return 𝒇(𝑥) as fitness value
expressing the quality.

3.2.3. Position Update

The Position Update step aims to modify
the positions of grey wolves to facilitate the search
for optimal solutions. The new positions are
determined using mathematical equations inspired
by the hunting and grey wolves’ social behaviours.
In RGWO, each wolf’s position is represented as a
D-dimensional vector in Eq.(32):

𝒙 = [𝑥ଵ, 𝑥ଶ, … , 𝑥஽] (32)

where D is the dimensionality of the problem space.

The Position Update process considers the

influence of these leaders on the entire population.
To calculate the updated wolf position, the
influences of the alpha, beta, and delta wolves are
incorporated into the equation. Eq.(33) assists in
identifying the position of a grey wolf .

𝑥௜
௧ାଵ =

𝑥௜
௧ + 𝐴. 𝑟ଵ − 𝑥௜

௧

2
 (33)

where updated position is indicated as xi
(t+1)at the

t+1-th iteration, the current position is represented as
xi

t at iteration t, and A is a coefficient representing
the influence of the alpha wolf. r1 is a random vector
that introduces stochasticity into the position update.
The equation’s division by 2 ensures that the updated
position lies between the current and alpha wolf
positions.

The position updates for the beta and delta
wolves are calculated using their respective
influence coefficients. Eq.(34) is applied to calculate
the same.

𝑥௜
௧ାଵ =

𝑥௜
௧ + 𝐵. 𝑟ଶ − 𝑥௜

௧

2
 (𝑓𝑜𝑟 𝑏𝑒𝑡𝑎 𝑤𝑜𝑙𝑓)

𝑥௜
௧ାଵ

=
𝑥௜

௧ + 𝐷. 𝑟ଷ − 𝑥௜
௧

2
 (𝑓𝑜𝑟 𝑑𝑒𝑙𝑡𝑎 𝑤𝑜𝑙𝑓)

(34)

These equations ensure that the three

different types of wolves guide each wolf to explore
and exploit the solution space effectively. The
random vectors (r1, r2 and r3) introduce randomness,
diversifying the search process.

Algorithm 9: Position Update

Input:
 𝑿 (Population): The current population of grey

wolves.
 Position of A (Alpha wolf’s position)
 Position of B (Beta wolf’s position)
 Position of D (Delta wolf’s position)

Output:
 𝑿 (Updated Population): The population of grey

wolves with adjusted positions.

Procedure:
1. For each grey wolf 𝑥௜ in the population 𝑿:

 Generate random vectors 𝑟ଵ, 𝑟ଶ and 𝑟ଷ to
introduce stochasticity.

 Update the position of 𝑥௜ as follows:
2. Calculate the new position by averaging the

current position 𝑥௜, alpha’s position A, and a
scaled random vector 𝑟ଵ.

3. Repeat the same process for beta and delta
wolves using their influence coefficients and
random vectors.
 Ensure the updated position remains within the

defined problem space bounds (domain
constraints).

Journal of Theoretical and Applied Information Technology
15th January 2024. Vol.102. No 1

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

225

4. Return the updated population 𝑿 with adjusted
positions.

3.2.4. Fitness Evaluation
Fitness evaluation in RGWO revolves

around the objective function f(x), which represents
the optimization problem to be solved. The objective
function maps a potential solution x to a real number
that signifies the quality or cost of that solution. In
mathematical terms, the objective function is
expressed as Eq.(35).

𝑓(𝑥) =
𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 (𝑥ଵ, 𝑥ଶ, … , 𝑥஽)

(35)

where D is the dimensionality of the problem space,
and x1, x2,…,xD are the coordinates of the solution x.

The goal can vary based on the problem

type, such as maximizing profit, minimizing cost,
optimizing resource allocation, or achieving any
measurable criterion that characterizes the problem.
Eq.(36) expresses the Fitness evaluation.

𝑭(𝑥) = 𝑓(𝑥) (36)

 where F(x) represents the fitness value of x.

The Fitness Evaluation step in RGWO as it

serves multiple key functions:
1. Quality Assessment: It quantifies how well a

potential solution performs concerning the
optimization goal.

2. Ranking Wolves: The fitness values of grey
wolves rank them within the population.
Wolves with higher fitness values are likelier
to become alpha or beta wolves, influencing the
algorithm’s search dynamics.

3. Selection Mechanism: The fitness values are
employed in selecting alpha, beta, and delta
wolves. These leaders guide the rest of the
population towards better solutions, ensuring a
balanced exploration-exploitation process.

4. Convergence Tracking: Fitness evaluation is
crucial for tracking the algorithm’s
convergence. As the optimization progresses,
monitoring the changes in fitness values
provides insights into how the algorithm
approaches a solution.

5. Diversity Maintenance: By distinguishing
between solutions with different fitness levels,
the algorithm retains diversity within the
population, preventing premature convergence
to local optima.

Algorithm 10: Fitness Evaluation

Input:
 𝑿 (Population): The current population of

grey wolves.
 𝒇(𝑥) (Objective Function):
 𝑫 (Dimensionality): The dimensionality of

the problem space.
Output:

 𝑭 (Fitness Values): The fitness scores
for every grey wolf in the population
are represented as a vector.

Procedure:

1. Initialize an empty vector 𝑭 to store the
fitness values of the grey wolves.

2. For each grey wolf 𝑥௜ in the population
𝑿:
 Calculate the fitness value 𝐹௜ by

applying the objective function 𝒇(𝑥)
 Append 𝐹௜to the vector 𝑭 to record

the fitness value of 𝑥௜ .
3. Return the vector 𝑭 containing grey wolf

fitness values.

3.2.5. Dominance Ranking

Dominance ranking is fundamentally a
comparison process that determines which solutions
in the population are superior to others. It relies on
the fitness values calculated in the previous step. In
mathematical terms, we have a set of fitness values
F={F1, F2,….,Fn}, where n represents the population
size. To establish dominance, a solution xi is
compared to another solution x j, typically in a pair-
wise manner. Dominance between two solutions is
determined by comparing their fitness values.
RGWO defines two critical relationships, which are:

a). Weak Dominance (≺): Solution xi weakly
dominates solution x j (denoted xi ≺ x j) if xi
is at least as good as xj in all objectives and
strictly better in at least one objective.

b). Strong Dominance (≺s): Solution xi
strongly dominates solution xj (denoted xi
≺s xj) if xi is strictly better than xj in all
objectives.

Journal of Theoretical and Applied Information Technology
15th January 2024. Vol.102. No 1

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

226

Algorithm 11: Dominance ranking

Input:
 𝑭 (Fitness Values) of the grey wolves

in the population.

Output:
 𝑹 (Dominance Ranks): A vector

containing the dominance ranks of
the grey wolves based on their fitness
values.

Procedure:

1. Initialize a vector 𝑹 to store the
dominance ranks, initially filled with
zeros.

2. For each grey wolf 𝑥௜ in the population
with fitness value 𝐹௜:
 Initialize a dominance count 𝐶௜to

zero.
 For every other grey wolf 𝑥௝in the

population with fitness value 𝐹௝:
3. If 𝐹௜is weakly better than𝐹௝,

increment 𝐶௜by 1.
4. If 𝐹௜ is strictly better than𝐹௝,

increment 𝐶௜by 1 again.
 Calculate the dominance rank

𝑅௜ for 𝑥௜as 𝐶௜ + 1.
 Assign 𝑅௜ to the

corresponding position in the
𝑹 vector.

 Higher ranks indicate better
solutions, if not satisfied, go
to Step 1

3.2.6. Leader Selection

Leader selection in RGWO revolves around
dominance and the rankings assigned to grey wolves
based on their fitness values. As discussed in the
previous step (Dominance Ranking), each solution xi
is assigned a dominant rank Ri, where higher ranks
indicate better solutions. The dominance rank means
the solution’s relative performance within the
population. The leader selection process aims to
choose the three wolves responsible for guiding the
population toward better solutions. These leaders are
selected based on their dominant ranks.

The alpha wolf (A) is the solution with the
highest dominance rank, indicating the best
performance in the population. The beta wolf (B) has
the second-highest dominance rank, while the delta
wolf (D) has the third-highest dominance rank.
Eq.(37) is utilized for calculating the rank.

𝐴 = arg max
௜

𝑅௜

𝐵 = arg max
௜

{𝑅௜: 𝑅௜ ≠ 𝑅஺}

𝐷 = arg max
௜

{𝑅௜: 𝑅௜ ≠ 𝑅஺ 𝑎𝑛𝑑 𝑅௜

≠ 𝑅஻}

(37)

where argmaxi represents the index i that maximizes
the specified condition.

Algorithm 12: Leader Selection

Input:
 R (Dominance Ranks): A vector containing

the population’s dominance ranks of the
grey wolves.

Output:
 A (Alpha Wolf): The grey wolf with the

highest dominance rank.
 B (Beta Wolf): The grey wolf with the

second-highest dominance rank, excluding
the alpha wolf.

 D (Delta Wolf): The grey wolf with the
third-highest dominance rank, excluding the
alpha and beta wolves.

Procedure:
1. Identify the alpha wolf (A) as the grey

wolf with the highest dominant rank from
the R vector.

2. Determine the beta wolf (B) as the grey
wolf with the second-highest dominance
rank from the R vector, excluding the
alpha wolf.

3. Find the delta wolf (D) as the grey wolf
with the third-highest dominance rank
from the R vector, excluding the alpha and
beta wolves.

4. The selected alpha, beta, and delta
wolves (A, B, and D) are designated as
leaders, guiding the population in the
subsequent steps of the RGWO
algorithm.

3.2.7. Encircle Prey

The Encircle Prey step in RGWO is
inspired by the cooperative hunting behaviour of
grey wolves in nature. When wolves detect potential
prey, they coordinate their movements to encircle it,
closing in for a successful hunt. In the context of
GWO, this behaviour is mathematically modeled to
optimize a problem. The core idea is that grey
wolves form a circle around a prey, each wolf
adjusting its position and role to contribute to the
encirclement. In RGWO, the prey represents the

Journal of Theoretical and Applied Information Technology
15th January 2024. Vol.102. No 1

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

227

optimal solution sought by the algorithm, and the
grey wolves symbolize the candidate solutions
within the population. The wolves’ locations are
updated mathematically based on a search agent’s
location relative to the prey. In the RGWO
algorithm, the positions of the alpha, beta, and delta
wolves play a crucial role in guiding the movement
of the remaining wolves. The alpha wolf represents
the best solution so far, while the beta and delta
wolves represent the second and third-best solutions
selected in the Leader Selection step. The
encirclement process drives the population toward
the vicinity of the optimal solution.

Determine the encircling centres for each

leader (CA, CB,and CD) by averaging their positions.
These centres represent the focal points around
which the rest of the wolves will attempt to encircle.
Each non-leader wolf in the population adjusts its
position based on the leaders’ positions and the
encircling centres. The position update equations
ensure that wolves move toward forming
encirclement. The Eq.(38) - Eq.(40) typically
introduce randomness to mimic natural movement:
For a wolf xi encircling the alpha wolf:

𝑥௜
௧ାଵ = 𝐶௔ − 𝐴. 𝑟ଵ (38)

For a wolf 𝑥௜ encircling the beta wolf:

𝑥௜
௧ାଵ = 𝐶஻ − 𝐴. 𝑟ଶ (39)

For a wolf 𝑥௜encircling the delta wolf:

𝑥௜
௧ାଵ = 𝐶஽ − 𝐴. 𝑟ଷ (40)

where the updated position is represented as xi
(t+1)at

the (t+1)-th iteration. A, B, and D are coefficients
that control the influence of the leaders and r1, r2 and
r3 introduce randomness.

The Encircle Prey step is an iterative
process that aims to guide the population toward
encircling the optimal solution. As the iterations
progress, wolves adjust their positions to encircle the
prey more effectively. This process continues
throughout the GWO algorithm, complementing
other phases like Exploration and Exploitation to
optimize the problem effectively.

Algorithm 13: Encircle Prey

Input:
 𝑿 (Population): The current population

of grey wolves.
 A (Alpha wolf’s position)

 B (Beta wolf’s position)
 D (Delta wolf’s position)

Output:

 𝑿 (Updated Population): The population
of grey wolves with adjusted positions.

Procedure:

1. Calculate the encircling centre for the
alpha, beta, and delta wolves:

2. For each grey wolf 𝑥௜ in the population
𝑿:

a). Generate random vectors 𝑟ଵ, 𝑟ଶ
and 𝑟ଷ to introduce
stochasticity.

b). Update the position of 𝑥௜ based
on its role in encircling the
prey:
 If 𝑥௜ is encircling the alpha

wolf, update its position
towards C୅with the
influence of A random
vector

 If 𝑥௜is encircling the beta
wolf, update its position
towards C୆with the
influence of B and random
vector

 If 𝑥௜is encircling the delta
wolf, update its position
towards Cୈwith the
influence of D and random
vector

3. Ensure that the updated positions of the
grey wolves remain within the defined
problem space bounds (domain
constraints).

4. Return the updated population 𝑿 with
adjusted positions.

3.2.8. Update Alpha, Beta, and Delta

The “Update Alpha, Beta, and Delta” step
involves re-evaluating the leadership roles of the
alpha, beta, and delta wolves based on their
performance in the current iteration. The aim is to
continually adapting the leadership structure to
ensure that the best-performing wolves guide the
population towards optimal solutions. The
performance of each leader is assessed based on their
fitness values. Recall that in RGWO, each solution
xi has a fitness value Fi, which quantifies its quality
in terms of the optimization problem. The leadership
structure is redefined based on the performance of
the current leaders. If a new wolf outperforms one of

Journal of Theoretical and Applied Information Technology
15th January 2024. Vol.102. No 1

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

228

the leaders, it takes on the corresponding leadership
role.

The pack’s alpha wolf is the top performer
among a group of solutions. If any wolf xi has a
higher fitness value than the current alpha wolf. It
replaces the alpha wolf. The new alpha wolf (Anew) is
the wolf with the highest fitness value:

𝐴௡௘௪ = arg max
௜

𝐹௜ (41)

The beta wolf has the second-highest
fitness value among the wolves, excluding the alpha
wolf. If a wolf xi surpasses the current beta wolf, it
takes over the beta leadership role. The new beta
wolf (Bnew) is the wolf with the second-highest
fitness value after the alpha wolf:

𝐵௡௘௪ = arg max
௜

{𝐹௜: 𝑥௜ ≠ 𝐴} (42)

The delta wolf holds the third-highest

fitness value among the wolves, excluding the alpha
and beta wolves. If a wolf xi exceeds the delta wolf’s
fitness, it becomes the new delta wolf (Dnew):

𝐷௡௘௪ = arg max
௜

൜
𝐹௜: 𝑥௜ ≠ 𝐴 𝑎𝑛𝑑

𝑥௜ ≠ 𝐵
ൠ (43)

The new leadership structure is based on

these updated alpha, beta, and delta wolves, ensuring
that the best-performing wolves continue effectively
guiding the population.

Algorithm 14: Update Alpha, Beta, and
Delta

Input:
 A (Current Alpha Wolf)
 B (Current Beta Wolf)
 D (Current Delta Wolf)
 X (Population): The current population

of grey wolves.

Output:
 𝐴௡௘௪(Updated Alpha Wolf)
 𝐵௡௘௪ (Updated Beta Wolf)
 𝐷௡௘௪ (Updated Delta Wolf)

Procedure:

1. Initialize 𝐴௡௘௪ , 𝐵௡௘௪ and 𝐷௡௘௪ with the
current alpha, beta, and delta wolves.

2. Calculate the fitness values of all wolves
in the population 𝑿.

3. For each wolf in the population 𝑥௜ in the
population 𝑿:

 If the fitness value of 𝑥௜ is
higher than the fitness value of

the new𝐴௡௘௪, update 𝐴௡௘௪to be
𝑥௜ .

 If the fitness value of 𝑥௜is
higher than the fitness value of
𝐵௡௘௪ and 𝑥௜is not the same as
𝐴௡௘௪, update 𝐵௡௘௪ , to be 𝑥௜ .

 If the fitness value of 𝑥௜is
greater than the fitness value of
𝐷௡௘௪ , and 𝑥௜is not the same as
𝐴௡௘௪ and 𝑥௜ is not the same as
𝐵௡௘௪ , update 𝐷௡௘௪ to be 𝑥௜ .

4. The updated alpha, beta, and delta
wolves (𝐴௡௘௪, 𝐵௡௘௪ 𝑎𝑛𝑑 𝐷௡௘௪) are now
the leaders guiding the population in the
subsequent steps of the RGWO
algorithm.

3.2.9. Exploration and Exploitation

The positions of grey wolves in the
population are updated based on a mixture of
exploration and exploitation methods. The aim is to
balance venturing into new territory and exploiting
promising areas. The specific equations and
strategies used for exploration and exploitation may
vary depending on the GWO variant.

Exploration in RGWO involves

introducing randomness or stochasticity to
encourage the population to explore new regions of
the solution space. Common exploration strategies
include:

1. Random Movement: Wolves adjust their

positions within a specific range. This
randomness can be controlled using parameters.

2. Levy Flight: Levy flights are a special kind of
random walk in which large and small steps are
taken. It introduces heavy-tailed random steps
to promote exploration.

On the other hand, exploitation aims to

focus on promising areas of the solution space.
Wolves exploit regions with known high fitness
values or solutions. Exploitation strategies include:
1. Deterministic Movement: Wolves move

towards leaders’ positions, such as the alpha,
beta, or delta wolves, which are expected to be
closer to optimal solutions.

2. Leader Guidance: Wolves follow the
trajectories of leaders, imitating their
movements and leveraging their guidance.

Combining exploration and exploitation

strategies can mathematically represent the
Exploration and Exploitation step. The wolf (xi)

Journal of Theoretical and Applied Information Technology
15th January 2024. Vol.102. No 1

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

229

updated position at the next iteration (t+1) is a result
of both exploration (Ei

t+1) and exploitation (Xi
t+1)

components:

𝑥௜
௧ାଵ = 𝐸௜

௧ାଵ + 𝑋௜
௧ାଵ (44)

The exploration component (Ei

t+1)
Introduces randomness and encourages diversity in
the population, expressed as Eq.(21).

𝐸௜
௧ାଵ = 𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛 𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦 (45)

The exploitation component (Ei
t+1))guides

wolves toward promising regions or solutions, often
in the direction of leaders, as expressed in Eq.(46).

𝑋௜
௧ାଵ = 𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛 𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦 (46)

Exploration and exploitation strategies vary
among GWO variants and are often parameterized to
control the balance between the two. Achieving the
right balance is crucial for the algorithm’s success in
finding optimal solutions to complex optimization
problems.

3.2.10. Termination

The termination criteria are essential for
controlling the algorithm’s behaviour and preventing
it from continuing indefinitely. RGWO stops after a
predetermined number of iterations (maximum)
have been reached. The termination decision
depends solely on the number of iterations, which
can be set based on the available computational
resources and the problem’s complexity. RGWO
stops if the current iteration count (t) exceeds the
predetermined maximum iterations (Tmax) and it is
expressed in Eq.(47).

If 𝒕 > 𝑇௠௔௫ , stop (47)

3.3. Fusion of RGWO and GEQDNN
The fusion of RGWO and GEQDNN

represents a synergistic approach to enhance
sentiment analysis's overall performance in online
shopping. Inspired by the cooperative hunting
behavior of grey wolves, RGWO introduces an
adaptive mechanism that optimizes the neural
network's performance. RGWO excels in finding
global optima in complex search spaces, a crucial
attribute in refining the parameters of the GEQDNN.
This adaptability ensures that the model is finely
tuned to the intricacies of sentiment analysis within
product reviews. Gaussian enhancement introduces
probabilistic distributions, providing a more
nuanced representation of uncertainties in sentiment
expression. By combining this Gaussian refinement
with the adaptive optimization capabilities of

RGWO, the model gains an improved ability to
capture subtle variations in sentiment, enhancing its
precision and accuracy. Incorporating quantum
principles into deep neural networks through
Gaussian enhancement allows for parallel
processing and superposition, exponentially
increasing computational efficiency. The synergy of
RGWO and Gaussian-Enhanced Quantum Deep
Neural Networks addresses the challenges of
sentiment analysis, particularly in dealing with the
vast amounts of textual data inherent in online
shopping, leading to faster and more accurate results.

3.3.1. Advantages of RGWO-GEQDNN

The significant advantages of RGWO-
GEQDNN are
 Nuanced Sensitivity: RGWO-GEQDNN's

fusion allows for heightened sensitivity,
accurately capturing subtle nuances in
sentiment expression.

 Adaptive Precision: Resilient Grey Wolf
Optimization ensures adaptive tuning,
maintaining high accuracy in dynamic
sentiment contexts.

 Efficient Processing: Gaussian-enhanced
quantum principles enable efficient parallel
processing, ensuring faster and more reliable
sentiment analysis, particularly in extensive
data scenarios.

 Global Optimization: RGWO's capability for
global optimization enhances the model's
efficiency in navigating complex sentiment
landscapes, leading to more accurate
classifications.

4. ABOUT DATASET

The Amazon Product Review Dataset, a
treasure trove of diverse opinions and user feedback,
offers rich insights into consumer preferences and
sentiments. With millions of reviews spanning many
product categories, it provides a comprehensive
view of the collective voice of Amazon customers.
Researchers and businesses find immense value in
this dataset, as it enables sentiment analysis, trend
identification, and market research. Its size and
variety make it valuable for training machine
learning models and natural language processing
algorithms. From understanding customer
satisfaction to tracking emerging product trends, the
Amazon Product Review Dataset is a vital resource
for those seeking to explore the world of e-
commerce through the lens of user-generated
content.This study investigates the electronics
product review dataset from Amazon's collection of

Journal of Theoretical and Applied Information Technology
15th January 2024. Vol.102. No 1

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

230

product review datasets, encompassing 6,739,590
customer reviews. The dataset is composed of 11
fields, and detailed descriptions of these fields are
provided in Table 1

Table 1. Field Description

Field Name Description

reviewerID
A unique identifier for the
person reviewing the product

asin
An exclusive identifier for the
product being reviewed

reviewerName
The name of the individual
providing the review

vote
The count of helpful votes
received by the review

style
Product metadata is represented
as a dictionary.

reviewText
The written content of the
review

overall
The numerical rating is given to
the product.

summary
A summary or title of the
review

unixReviewTime
The time of the review is
represented in Unix time.

reviewTime
The time of the review in its
raw format

image
Images shared by users after
receiving the product.

5. PERFORMANCE METRICS

Sentiment analysis employs the terms TP
(True Positive), TN (True Negative), FP (False
Positive), and FN (False Negative) to assess the
accuracy of sentiment classification. TP represents
instances where the model correctly identifies
positive sentiment, while TN denotes cases where it
accurately recognizes negative sentiment. FP occurs
when the model mistakenly detects positive
sentiment in negative text, and FN indicates the
model incorrectly identifies negative sentiment in
positive text. These metrics are crucial in evaluating
the precision and effectiveness of sentiment analysis
models, allowing for a comprehensive assessment of
their performance in categorizing sentiments
accurately. TP, TN, FP and FN are variables in the
chosen performance metrics below to evaluate the
proposed classifier's performance against the state-
of-the-art classifiers.
 Precision: Precision (PREC) in sentiment

analysis indicates the accuracy of positive
sentiment predictions. It measures the ratio of
correctly identified positive sentiments to all
predicted positive sentiments by a model.

 Recall: Recall (RCLL), in the context of
sentiment analysis, assesses the model's ability
to identify actual positive sentiments. It is the
ratio of correctly identified positive sentiments
to all actual positive sentiments.

 Classification Accuracy: Classification
accuracy (CL-AC) measures the overall
correctness of a model's sentiment predictions
in sentiment analysis. It calculates the ratio of
correctly predicted sentiments to the total
number of sentiments in the dataset.

 F-Measure: The F-Measure (F-MSR) is a
sentiment analysis metric that balances
precision and recall. It comprehensively
evaluates a model's ability to make accurate
positive sentiment predictions while capturing
a high percentage of positive sentiments.

 Fowlkes–Mallows Index: The Fowlkes–
Mallows Index (FMI) in sentiment analysis
measures precision and recall's geometric
mean. It assesses a model's ability to accurately
predict positive sentiments while considering
the trade-off between precision and recall.

 Matthews Correlation Coefficient: The
Matthews Correlation Coefficient (MCC) is a
sentiment analysis metric considering true and
false positives and negatives, providing a
robust measure of the relationship between
predicted and actual sentiments.

6. RESULTS AND DISCUSSION
6.1. Precision and Recall Analysis

Figure 1 and Table 2 present precision and
recall metrics for three sentiment analysis
algorithms: DLGM, ESDM, and RGWO-GEQDNN.
Precision measures the accuracy of positive
sentiment identification, while recall assesses the
algorithm's ability to capture all positive sentiments
in electronic product reviews.

Figure 1. Precision And Recall

R
es

u
lt

s
(%

)

Performance Mtrics

DLGM ESDM RGWO-GEQDNN

Journal of Theoretical and Applied Information Technology
15th January 2024. Vol.102. No 1

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

231

DLGM showcases a precision of 58.366%

and a recall of 68.869%. Its performance reflects its
focus on fine-grained aspect-based sentiment
analysis. DLGM's disentangled graph representation
dissects complex linguistic structures and precisely
identifies aspects and sentiments. It balances
precision and recall by emphasizing the
explainability of sentiment classifications. This
approach enables detailed insights into sentiment
relationships. Its intricacy might introduce a trade-
off between precision and recall, particularly when
handling complex or noisy text data. Despite its
contributions, DLGM may suffer from slower
processing times, and its disentangled analysis may
occasionally struggle with capturing sentiment
nuances effectively, which impacts both precision
and recall.

ESDM exhibits a precision of 69.403% and
a recall of 70.542%, indicating its capability to
perform well in sentiment analysis. ESDM excels by
effectively utilizing syntactic dependency features
and grammatical structure modeling. It captures
nuanced sentiment expressions by considering
syntactic dependencies. Its focus on aspect-aware
sentiment analysis allows for precisely identifying
relationships between product features and
sentiments. ESDM handles negations efficiently,
improving both precision and recall. Due to its
intensive syntactic analysis, it may not be as suitable
for enormous datasets. It's also limited when dealing
with non-standard or informal language, which can
affect precision and recall in real-world scenarios.

RGWO-GEQDNN demonstrates
exceptional precision of 96.036% and recall of
96.829%, making it a standout performer. The
outstanding results can be attributed to its unique
combination of resilient grey wolf optimization and
enhanced quantum deep neural networks. This blend
allows for robust optimization and fine-grained
sentiment modeling. RGWO-GEQDNN efficiently
explores solutions with the resilience of grey wolf
optimization and the parallelism of quantum
computing. The quantum computing principles
enable it to capture complex sentiment patterns with
exceptional precision and recall. Its adaptability to
large datasets and probabilistic output add to its
outstanding performance in sentiment analysis,
making it a top-performing algorithm in this
evaluation.

Table 2. Precision And Recall
Classification
Algorithms

PREC
(%)

RCLL
(%)

DLGM 58.366 68.869

ESDM 69.403 70.542

RGWO-GEQDNN 96.036 96.829

6.2. Classification Accuracy and F-Measure
Analysis

Figure 2 and Table 3 provide insights into
classification accuracy and F-measure metrics for
three sentiment analysis algorithms: DLGM, ESDM,
and TABC-TSGMM. Classification accuracy
measures the overall correctness of sentiment
classification, while the F-measure assesses the
balance between precision and recall in sentiment
analysis.

DLGM exhibits a classification accuracy of
63.401% and an F-measure of 25.974%. These
metrics reveal the algorithm's effectiveness in
accurately classifying sentiments and highlight some
limitations. The classification accuracy indicates its
ability to make correct sentiment predictions, and it
may serve well in scenarios where precision is
prioritized over recall. The relatively low F-measure
suggests room for improvement in balancing
precision and recall. DLGM's unique disentangled
graph representation and emphasis on explainability
contribute to its classification accuracy, but its fine-
grained aspect analysis can sometimes hinder overall
recall, affecting the F-measure.

Figure 2. Classification Accuracy And F-Measure

ESDM showcases a classification accuracy

of 69.97% and an F-measure of 37.804%,
demonstrating its proficiency in sentiment analysis.
The classification accuracy highlights its capability
to correctly classify sentiments, making it a reliable
choice for precision-oriented tasks. The noteworthy

R
es

u
lt

s
(%

)

Performance Metrics

DLGM ESDM RGWO-GEQDNN

Journal of Theoretical and Applied Information Technology
15th January 2024. Vol.102. No 1

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

232

F-measure underlines its balanced approach to
precision and recall, indicating an ability to
effectively capture sentiments without
compromising precision. ESDM's emphasis on
syntactic dependency features, grammatical
structure modeling, and aspect-aware sentiment
analysis collectively contribute to its robust
classification accuracy and well-balanced F-
measure, making it a versatile and high-performing
algorithm.

TABC-TSGMM exhibited exceptional

performance, marking a significant milestone in
sentiment analysis. The algorithm achieved an
impressive classification accuracy of 96.432% and
an F-measure of 92.887%, reflecting its unparalleled
precision and balanced handling of precision and
recall. This outstanding precision makes TABC-
TSGMM an ideal choice for applications where the
accurate identification of sentiments is paramount.
This extraordinary performance is rooted in the
algorithm's robust optimization techniques, most
notably its utilization of the artificial bee colony
(ABC) optimization algorithm, which enables it to
tenaciously explore and fine-tune solutions. TABC-
TSGMM leverages a Taylor series-based approach
within a Gaussian Mixture Model, empowering it to
capture even the most intricate sentiment patterns
and relationships in the data. This advanced
modeling technique equips TABC-TSGMM to excel
in nuanced sentiment analysis, elevating it above
conventional sentiment analysis methods.

Table 3. Classification Accuracy And F-Measure
Classification
Algorithms

FMI
(%)

MCC
(%)

DLGM 63.401 25.974

ESDM 69.970 37.804

RGWO-GEQDNN 96.432 92.887

6.3. Fowlkes–Mallows Index and Matthews
Correlation Coefficient Analysis.

Figure 3 and Table 4 examine two essential
evaluation metrics: the Fowlkes–Mallows Index
(FMI) and the Matthews Correlation Coefficient
(MCC) for three sentiment analysis algorithms:
DLGM, ESDM, and RGWO-GEQDNN.

Figure 3. Fowlkes–Mallows Index And Matthews

Correlation Coefficient

DLGM exhibits an FMI of 62.554% and a
MCC of 63.184%. While DLGM offers some
valuable insights into sentiment analysis, it has a few
limitations. The MCC indicates a moderate overall
performance but leaves room for improvement. One
of DLGM's disadvantages is that it can be
computationally intensive and may suffer from
slower processing times, mainly when dealing with
large datasets. Its disentangled analysis might
occasionally struggle with capturing sentiment
nuances effectively, affecting precision and recall, as
reflected in the MCC. DLGM's performance can be
improved by addressing these computational and
sensitivity issues.

ESDM presents an FMI of 68.934% and an

MCC of 69.968%. ESDM showcases notable
strengths, but it also has some limitations. The MCC
suggests that ESDM performs well but leaves room
for further enhancement. One of its challenges is that
it may not be as effective when handling non-
standard or informal language, which can impact its
real-world applicability. ESDM's intensive syntactic
analysis can be computationally demanding, making
it less suitable for extensive datasets. Addressing
these language-dependent limitations and
optimizing computational efficiency could be
beneficial to further improve its performance.

Table 4. Fowlkes–Mallows Index And Matthews
Correlation Coefficient

R
es

u
lt

s
(%

)

Performance Metrics

DLGM ESDM RGWO-GEQDNN

Classification
Algorithms

CL-AC (%) F-MSR (%)

DLGM 62.554 63.184

ESDM 68.934 69.968

RGWO-
GEQDNN

96.442 96.431

Journal of Theoretical and Applied Information Technology
15th January 2024. Vol.102. No 1

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

233

RGWO-GEQDNN impressively achieves
an FMI% of 96.442% and an MCC of 96.431%.
RGWO-GEQDNN represents the state-of-the-art in
sentiment analysis with its remarkable performance.
However, it's important to note that this algorithm
might require substantial computational resources,
potentially limiting its practical use in resource-
constrained environments. Its exceptional
performance may come at the cost of model
explainability, as the complex modeling techniques
utilized in quantum-deep neural networks can be
challenging to interpret. RGWO-GEQDNN's
superior performance makes it a compelling choice
for high-precision sentiment analysis tasks, provided
that computational resources and model
transparency are accounted for in the application's
context.

The proposed algorithm, RGWO-

GEQDNN, outshines the state-of-the-art
alternatives. Its advantages lie in its tenacious
optimization through resilient grey wolf
optimization and the incorporation of enhanced
quantum deep neural networks. This unique
combination allows it to achieve superior
classification accuracy and F-measure. RGWO-
GEQDNN stands out by capturing complex
sentiment patterns effectively, making it an excellent
choice for precision-oriented sentiment analysis
tasks. While it may demand more computational
resources and pose challenges in model
explainability, its remarkable performance makes it
a compelling option in scenarios where high
precision is critical.

7. CONCLUSION

Resilient Grey Wolf Optimization-based

Gaussian-Enhanced Quantum Deep Neural Network
(RGWO-GEQDNN) is proposed as a transformative
solution in the domain of sentiment analysis for
online shopping. This approach blends the power of
Resilient Grey Wolf Optimization with quantum
computing principles and adeptly addresses the
intricate challenges posed by sentiment analysis
within product reviews. The outcomes of its
evaluation using the Amazon product review dataset
unambiguously underscore RGWO-GEQDNN's
superiority over existing algorithms. RGWO-
GEQDNN's exceptional performance can be
attributed to several key factors. The innovative
fusion of Resilient Grey Wolf Optimization and
Gaussian-enhanced quantum deep neural networks
enhances the model's ability to recognize subtle
nuances in language and sentiment expression,

leading to more accurate sentiment classification.
This heightened sensitivity enables RGWO-
GEQDNN to extract sentiments from reviews that
may be challenging for traditional algorithms to
classify. RGWO-GEQDNN's quantum-inspired
approach allows it to efficiently process and analyze
vast amounts of textual data, making it highly
capable of handling the substantial volume of
product reviews typically encountered in e-
commerce. This efficiency accelerates sentiment
analysis, leading to faster and more reliable results.
RGWO-GEQDNN's capacity to adapt and optimize,
inspired by the Resilient Grey Wolf Optimization
algorithm, further contributes to its superior results.
This adaptability ensures the model remains
effective in the ever-evolving online shopping
landscape.

REFERENCES:

[1]. T. Rabeya, E. Khatun, S. R. H. Noori, S. Akter,

and I. Jahan, “Bengali Review Analysis for
Predicting Popular Cosmetic Brand Using
Machine Learning Classifiers,” Lecture Notes
in Networks and Systems, vol. 383. pp. 251–
260, 2023. doi: 10.1007/978-981-19-4960-
9_21.

[2]. N. W. Madinga and J. Lappeman, “Social
Media Sentiment Analysis: Online versus
‘Brick and Mortar’ Retailers in South Africa,”
J. African Bus., vol. 24, no. 2, pp. 345–362,
Apr. 2023, doi:
10.1080/15228916.2022.2069418.

[3]. Tomczyk and L. Eger, “Online safety as a new
component of digital literacy for young
people,” Integr. Educ., vol. 24, no. 2, pp. 172–
184, 2020, doi: 10.15507/1991-
9468.099.024.202002.172-184.

[4]. D. Zhang, Z. Shen, and Y. Li, “Requirement
analysis and service optimization of multiple
category fresh products in online retailing
using importance-Kano analysis,” J. Retail.
Consum. Serv., vol. 72, 2023, doi:
10.1016/j.jretconser.2022.103253.

[5]. S. Katada, S. Okada, and K. Komatani,
“Transformer-Based Physiological Feature
Learning for Multimodal Analysis of Self-
Reported Sentiment,” in ACM International
Conference Proceeding Series, 2022, pp. 349–
358. doi: 10.1145/3536221.3556576.

[6]. J. Chen, C. Sun, S. Zhang, and J. Zeng, “Cross-
modal dynamic sentiment annotation for
speech sentiment analysis,” Comput. Electr.
Eng., vol. 106, 2023, doi:
10.1016/j.compeleceng.2023.108598.

Journal of Theoretical and Applied Information Technology
15th January 2024. Vol.102. No 1

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

234

[7]. N. Zhong and J. B. Ren, “Using sentiment
analysis to study the relationship between
subjective expression in financial reports and
company performance,” Front. Psychol., vol.
13, 2022, doi: 10.3389/fpsyg.2022.949881.

[8]. Y. Wang, J. Guo, C. Yuan, and B. Li,
“Sentiment Analysis of Twitter Data,” Appl.
Sci., vol. 12, no. 22, 2022, doi:
10.3390/app122211775.

[9]. H. Kwak and J. An, “Revealing the hidden
patterns of news photos: Analysis of millions
of news photos through GDELT & deep
learning-based vision APIs,” in AAAI
Workshop - Technical Report, 2016, vol. WS-
16-16-, pp. 99–107. doi:
10.1609/icwsm.v10i2.14840.

[10]. Y. Sun, Q. Sun, and S. Zhu, “Prediction of
Shanghai Stock Index Based on Investor
Sentiment and CNN-LSTM Model,” J. Syst.
Sci. Inf., vol. 10, no. 6, pp. 620–632, 2022, doi:
10.21078/JSSI-2022-620-13.

[11]. T. Aditya Sai Srinivas, K. Govinda, S.
Ramasubbareddy, and E. Swetha,
“Sentimental analysis of demonetization over
twitter data using machine learning,” J.
Comput. Theor. Nanosci., vol. 16, no. 5–6, pp.
2055–2058, 2019, doi:
10.1166/jctn.2019.7849.

[12]. H. T. Phan, V. C. Tran, N. T. Nguyen, and D.
Hwang, “Improving the Performance of
Sentiment Analysis of Tweets Containing
Fuzzy Sentiment Using the Feature Ensemble
Model,” IEEE Access, vol. 8, pp. 14630–
14641, 2020, doi:
10.1109/ACCESS.2019.2963702.

[13]. N. Lin, Y. Fu, X. Lin, D. Zhou, A. Yang, and
S. Jiang, “CL-XABSA: Contrastive Learning
for Cross-Lingual Aspect-Based Sentiment
Analysis,” IEEE/ACM Trans. Audio Speech
Lang. Process., vol. 31, pp. 2935–2946, 2023,
doi: 10.1109/TASLP.2023.3297964.

[14]. C. R. Aydln and T. Gungor, “Combination of
recursive and recurrent neural networks for
aspect-based sentiment analysis using inter-
aspect relations,” IEEE Access, vol. 8, pp.
77820–77832, 2020, doi:
10.1109/ACCESS.2020.2990306.

[15]. Y. S. Mehanna and M. Bin Mahmuddin, “A
Semantic Conceptualization Using Tagged
Bag-of-Concepts for Sentiment Analysis,”
IEEE Access, vol. 9, pp. 118736–118756,
2021, doi: 10.1109/ACCESS.2021.3107237.

[16]. H. Kim and G. Qin, “Summarizing Students’
Free Responses for an Introductory Algebra-
Based Physics Course Survey Using Cluster

and Sentiment Analysis,” IEEE Access, vol.
11, pp. 89052–89066, 2023, doi:
10.1109/ACCESS.2023.3305260.

[17]. U. Sehar, S. Kanwal, K. Dashtipur, U. Mir, U.
Abbasi, and F. Khan, “Urdu Sentiment
Analysis via Multimodal Data Mining Based
on Deep Learning Algorithms,” IEEE Access,
vol. 9, pp. 153072–153082, 2021, doi:
10.1109/ACCESS.2021.3122025.

[18]. F. Huang, X. Li, C. Yuan, S. Zhang, J. Zhang,
and S. Qiao, “Attention-Emotion-Enhanced
Convolutional LSTM for Sentiment Analysis,”
IEEE Trans. Neural Networks Learn. Syst.,
vol. 33, no. 9, pp. 4332–4345, 2021, doi:
10.1109/TNNLS.2021.3056664.

[19]. T. Zhang, X. Gong, and C. L. P. Chen, “BMT-
Net: Broad Multitask Transformer Network for
Sentiment Analysis,” IEEE Trans. Cybern.,
vol. 52, no. 7, pp. 6232–6243, 2022, doi:
10.1109/TCYB.2021.3050508.

[20]. H. Liang, U. Ganeshbabu, and T. Thorne, “A
Dynamic Bayesian Network Approach for
Analysing Topic-Sentiment Evolution,” IEEE
Access, vol. 8, pp. 54164–54174, 2020, doi:
10.1109/ACCESS.2020.2979012.

[21]. A. Nazir, Y. Rao, L. Wu, and L. Sun, “Issues
and Challenges of Aspect-based Sentiment
Analysis: A Comprehensive Survey,” IEEE
Trans. Affect. Comput., vol. 13, no. 2, pp. 845–
863, 2022, doi:
10.1109/TAFFC.2020.2970399.

[22]. K. Zhang et al., “EATN: An Efficient Adaptive
Transfer Network for Aspect-Level Sentiment
Analysis,” IEEE Trans. Knowl. Data Eng., vol.
35, no. 1, pp. 377–389, 2023, doi:
10.1109/TKDE.2021.3075238.

[23]. H. Liu, X. Chen, and X. Liu, “A Study of the
Application of Weight Distributing Method
Combining Sentiment Dictionary and TF-IDF
for Text Sentiment Analysis,” IEEE Access,
vol. 10, pp. 32280–32289, 2022, doi:
10.1109/ACCESS.2022.3160172.

[24]. C. F. V. Loan, “The ubiquitous Kronecker
product,” J. Comput. Appl. Math., vol. 123, no.
1, pp. 85–100, 2000, doi:
https://doi.org/10.1016/S0377-
0427(00)00393-9.

[25]. D. Jayaraj, J. Ramkumar, M. Lingaraj, and B.
Sureshkumar, “AFSORP: Adaptive Fish
Swarm Optimization-Based Routing Protocol
for Mobility Enabled Wireless Sensor
Network,” Int. J. Comput. Networks Appl.,
vol. 10, no. 1, pp. 119–129, 2023, doi:
10.22247/ijcna/2023/218516.

Journal of Theoretical and Applied Information Technology
15th January 2024. Vol.102. No 1

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

235

[26]. R. Jaganathan and V. Ramasamy,
“Performance modeling of bio-inspired
routing protocols in Cognitive Radio Ad Hoc
Network to reduce end-to-end delay,” Int. J.
Intell. Eng. Syst., vol. 12, no. 1, pp. 221–231,
2019, doi: 10.22266/IJIES2019.0228.22.

[27]. J. Ramkumar, K. S. Jeen Marseline, and D. R.
Medhunhashini, “Relentless Firefly
Optimization-Based Routing Protocol
(RFORP) for Securing Fintech Data in IoT-
Based Ad-Hoc Networks,” Int. J. Comput.
Networks Appl., vol. 10, no. 4, pp. 668–687,
Aug. 2023, doi: 10.22247/ijcna/2023/223319.

[28]. J. Ramkumar and R. Vadivel, “Improved frog
leap inspired protocol (IFLIP) – for routing in
cognitive radio ad hoc networks (CRAHN),”
World J. Eng., vol. 15, no. 2, pp. 306–311,
2018, doi: 10.1108/WJE-08-2017-0260.

[29]. M. Lingaraj, T. N. Sugumar, C. S. Felix, and J.
Ramkumar, “Query aware routing protocol for
mobility enabled wireless sensor network,” Int.
J. Comput. Networks Appl., vol. 8, no. 3, pp.
258–267, 2021, doi:
10.22247/ijcna/2021/209192.

[30]. R. Vadivel and J. Ramkumar, “QoS-enabled
improved cuckoo search-inspired protocol
(ICSIP) for IoT-based healthcare
applications,” Inc. Internet Things Healthc.
Appl. Wearable Devices, pp. 109–121, 2019,
doi: 10.4018/978-1-7998-1090-2.ch006.

[31]. J. Ramkumar and R. Vadivel, “Improved Wolf
prey inspired protocol for routing in cognitive
radio Ad Hoc networks,” Int. J. Comput.
Networks Appl., vol. 7, no. 5, pp. 126–136,
2020, doi: 10.22247/ijcna/2020/202977.

[32]. A. Senthilkumar, J. Ramkumar, M. Lingaraj,
D. Jayaraj, and B. Sureshkumar, “Minimizing
Energy Consumption in Vehicular Sensor
Networks Using Relentless Particle Swarm
Optimization Routing,” Int. J. Comput.
Networks Appl., vol. 10, no. 2, pp. 217–230,
2023, doi: 10.22247/ijcna/2023/220737.

[33]. J. Ramkumar and R. Vadivel, “Whale
optimization routing protocol for minimizing
energy consumption in cognitive radio
wireless sensor network,” Int. J. Comput.
Networks Appl., vol. 8, no. 4, pp. 455–464,
2021, doi: 10.22247/ijcna/2021/209711.

[34]. R. Jaganathan and R. Vadivel, “Intelligent Fish
Swarm Inspired Protocol (IFSIP) for Dynamic
Ideal Routing in Cognitive Radio Ad-Hoc
Networks,” Int. J. Comput. Digit. Syst., vol.
10, no. 1, pp. 1063–1074, 2021, doi:
10.12785/ijcds/100196.

[35]. P. Menakadevi and J. Ramkumar, “Robust
Optimization Based Extreme Learning
Machine for Sentiment Analysis in Big Data,”
2022 Int. Conf. Adv. Comput. Technol. Appl.
ICACTA 2022, pp. 1–5, Mar. 2022, doi:
10.1109/ICACTA54488.2022.9753203.

[36]. J. Ramkumar and R. Vadivel, CSIP—cuckoo
search inspired protocol for routing in
cognitive radio ad hoc networks, vol. 556.
2017. doi: 10.1007/978-981-10-3874-7_14.

[37]. J. Ramkumar, C. Kumuthini, B. Narasimhan,
and S. Boopalan, “Energy Consumption
Minimization in Cognitive Radio Mobile Ad-
Hoc Networks using Enriched Ad-hoc On-
demand Distance Vector Protocol,” in 2022
International Conference on Advanced
Computing Technologies and Applications,
ICACTA 2022, 2022. doi:
10.1109/ICACTA54488.2022.9752899.

[38]. L. Mani, S. Arumugam, and R. Jaganathan,
“Performance Enhancement of Wireless
Sensor Network Using Feisty Particle Swarm
Optimization Protocol,” ACM Int. Conf.
Proceeding Ser., pp. 1–5, Dec. 2022, doi:
10.1145/3590837.3590907.

[39]. R. Jaganathan, V. Ramasamy, L. Mani, and N.
Balakrishnan, “Diligence Eagle Optimization
Protocol for Secure Routing (DEOPSR) in
Cloud-Based Wireless Sensor Network,”
2022, doi: 10.21203/rs.3.rs-1759040/v1.

[40]. J. Ramkumar, R. Vadivel, and B. Narasimhan,
“Constrained Cuckoo Search Optimization
Based Protocol for Routing in Cloud
Network,” Int. J. Comput. Networks Appl.,
vol. 8, no. 6, pp. 795–803, 2021, doi:
10.22247/ijcna/2021/210727.

[41]. J. Ramkumar, S. S. Dinakaran, M. Lingaraj, S.
Boopalan, and B. Narasimhan, “IoT-Based
Kalman Filtering and Particle Swarm
Optimization for Detecting Skin Lesion,” in
Lecture Notes in Electrical Engineering, 2023,
vol. 975, pp. 17–27. doi: 10.1007/978-981-19-
8353-5_2.

[42]. J. Ramkumar and R. Vadivel, “Multi-Adaptive
Routing Protocol for Internet of Things based
Ad-hoc Networks,” Wirel. Pers. Commun.,
vol. 120, no. 2, pp. 887–909, Apr. 2021, doi:
10.1007/s11277-021-08495-z.

