
Journal of Theoretical and Applied Information Technology
15th January 2024. Vol.102. No 1

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

144

CYBERSECURITY: MALWARE MULTI-ATTACK
DETECTOR ON ANDROID-BASED DEVICES USING DEEP

LEARNING METHODS

MUSTAFA ABABNEH1 AND AAYAT ALJARRAH2

1Department of Computer Science, Kingdom of Bahrain – Riffa Building 287, Road 3903, Block 939, P.O.

Box 40434 Bahrain

2Department of Computer Science, Nasser Vocational Training Centre Jau, Road No. 5712, Jaww P.O. Box
80240, Bahrain

Email: mustafa.ababneh86@gmail.com, aayat.aljarrah@nvtc.edu.bh

ABSTRACT

Android-based devices are currently a prime target for cyber-attackers. New malware is being developed and
released, with devastating effects on sensitive information lost and ransom payments. Android developers
and users continue to look for holistic methods of detecting all types of malware instead of individual ones.
The aim of this study is to test the combined impact of deep learning (DL) methods on detecting malware
with multi-attack features on Android devices. A malware multi-attack detector (MMAD) combined DL
methods: deep neural networks (DNN), recurrent neural networks (RNN), convolutional neural networks
(CNN), multilayer perceptron’s (MLP), and end-to-end (E2E). Each of these methods detects specific types
of malware. Different types of malware attacks, including benign ones, were used to train and test the MMAD
model. Experimental results indicated that the proposed MMAD model was efficient in detecting eleven
types of malware attacks with a high and constant multi-classification capability. Our results with 96.54%
accuracy, 95.38% precision, 92.65% recall, and a 94.66 F-score showed that the MMAD approach is
effective, efficient, and simple to use.
Keywords: Android Devices; Malware Multi-Attack Detectors; Deep Learning Methods.

1. INTRODUCTION

Cybersecurity attacks are malicious acts carried out
by hackers, cyberpunks, crackers, keyloggers, and
hacktivists with the dangerous intent of stealing
data, breaching, or interrupting computing systems
(De Arroyabe et al., 2023) [23]. These
cybercriminals unleashed attacks using single or
multiple approaches against a target device (Shaikh
& Siponen, 2023) [54]. A malicious cyber-attack
may steal sensitive information, disable devices, or
use a compromised computer as a launching pad.
The attacks include malware, denial of service, man
in the middle, and injection, which can be difficult
to detect through simple methods (Florackis et al.,
2023) [27].
The most prevalent form of cyberattack is malware.
Malware is any harmful software, including viruses,
spyware, trojan horses, worms, backdoors, and
ransomware (Mijwil et al., 2023) [42]. With mobile
devices becoming more and more important,
cybercriminals are concentrating more on them. As

a result, the range of cyber-attacks aimed at these
devices has increased nowadays (Aslan et al., 2023)
[12]. There are various ways to target Android
devices. This covers potential malicious software,
network-level intrusions, and the use of mobile OS
and device susceptibilities of the mother systems
(Ozdamli et al., 2022 [50] , Yan et al., 2022; Aslan
et al., 2023) [12]. New malware is being discovered
every day. Applications for Android are frequently
used to handle sensitive data, making them major
targets of malware attacks.
The increased level of information sharing and open
interface exposure between ICTs and the public has
increased malicious assaults in both intra-terminal
and inter-terminal networks. Service interruptions,
information outflows, and other problems could
result from such attacks. Attacks with multiple
stages are carried out progressively in several steps.
Each stage of the attack results in the attackers
learning more about the target system, enabling the
next stage of the attack (Hu et al., 2022) [22]. In the
beginning, the attacker tries to gather data and take
advantage of the target system's vulnerabilities.

Journal of Theoretical and Applied Information Technology
15th January 2024. Vol.102. No 1

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

145

Subsequently, the attacker tries to sneak inside the
target system and compromise its resources using
multi-attack accessibility (Li et al., 2023) [75].
Fortifying the Android operating system against
such cyberattacks is possible using a variety of
malware detection techniques. These malware
detection approaches mostly use features contained
in Android applications (Bhat & Dutta, 2022) [16].
The Android defence system is adversely affected
when the analytics data keeps expanding (Wang et
al., 2020) [65]. Multi-approach detection with
improved accuracy considering large data is
required.
Deep learning is currently used in cybersecurity to
protect user privacy, recognize unusual malware,
and complicate numerous attacks (Xin et al., 2018)
[69]. It rapidly detects malware in files and keeps
track of malware risks (Sarker, 2021) [53]. In
addition to deep learning functions for
cybersecurity, deep learning algorithms are better at
detecting and classifying attacks because they are
independent of any well-known risk patterns. As a
result, it can perform better than other computing
methods in terms of accuracy and computing time.
Deep learning methods can effectively extract the
data features and apply them to detect malware
from cyber attackers (Tuor et al., 2017 [61] ; Mijwil
et al., 2023) [42]. It has been suggested that the
combination of these deep learning methods can be
robust and resilient against multiple malware
detections, particularly from attackers using
malware with multiple pathways.
High-potential malware can be difficult to spot for
two reasons (Akhtar & Feng, 2022) [3]. The first is
that it can be challenging to tell whether software is
harmful. The second is that malware employs
technical techniques to make it more challenging to
detect. Antivirus software reportedly fails to
identify 35% of malware (Islam et al., 2023) [32].

1.1. Problem Statement

There has not been reported information on the
combination of deep learning methods to detect
malware with multiple attacks that are difficult to
discover. Adware, bots, fileless malware,
keyloggers, mobile malware, ransomware, rootkits,
spyware, trojans, wiper malware, and worms are
difficult to detect due to their evasiveness (Tahir et
al., 2018) [59]. Malware can change into various
versions or use multiple pathways, which decreases
the likelihood that they will be detected owing to
the variances in their signatures (Pai et al., 2022)
[47]. Some malware executes code that fingerprints
the environment to avoid detection, while others
can confuse automated tools' detection algorithms
due to their multi-attack features (Du et al., 2022)

[16]. Malware can do this by switching the server it
uses to avoid being discovered by technology. This
occurs when malware only operates at specific
moments or in response to specific user actions,
allowing it to operate at susceptible times like the
boot process while dormant the rest of the time,
masking internal data so that malware cannot be
found by automated methods (Aldhyani &
Alkahtani, 2022) [8].
information-hiding strategies, such as spyware and
fileless malware, which runs in memory rather than
using files and makes use of already-existing
system tools to commit crimes (Kaushik et al.,
2023) [36], while ransomware can spread via the
network and files, affecting both software and
hardware (Zhu et al., 2023) [75]. These attacks have
increased in frequency recently, accounting for
33% of malware attacks in 2023, while 493.33
million ransomware attacks were reported in 2022
(Neprash et al., 2022 [45] ; Dameff et al., 2023)
[22]. Over 70% of these attacks are carried out by
cyber-attackers using multi-attack strategies that
are difficult to detect (Dameff et al., 2023) [22].
Even though these attacks are difficult to carry out,
they are becoming more common; therefore, a
robust multi-faceted approach is required to tackle
this problem.
The aim of this study is to test the combined impact
of deep learning methods on detecting malware
with multi-attack features on Android devices. To
achieve this, a detection model combining deep
learning would need to be created to detect attacks
when the Android system is subject to multiple
intrusions.

1.2. Contribution

The contribution of this work includes:
i. We have proposed combined deep learning

methods, including DNN, RNN, CNN, MLP, and
E2E models, in a structured manner for malware
detection.

ii. Each model detects some specific types of malware,
followed by aggregate detection for a holistic
analysis of the multiple attacks.

iii. The model was trained and tested using datasets
including multi malicious attack types instead of
single dataset, making it capable of recognizing any
combination of attacks and categorizing each
clearly.

iv. Holistic detection of malware using holistic deep
learning approaches

2. RELATED WORKS
2.1. Cybersecurity

Cyber-attacks and data breaches can affect any

Journal of Theoretical and Applied Information Technology
15th January 2024. Vol.102. No 1

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

146

network and Android devices. Attacks can
potentially completely damage the Android system,
and sensitive information can be lost (Abdel
Ouahab et al., 2022) [1][2]. Information theft,
monetary gain, espionage, or sabotage are a few
examples of the attacker's motivations (Mijwil et
al., 2023) [42].
Bhandari et al. (2023) [14] used distributed deep
neural network-based middleware for cyber-attacks
detection in the smart IoT ecosystem. The deep
neural network (DNN) model used in IoT devices is
subjected to performance and concurrency testing
in order to confirm the viability of in-production
deployment. On each of the used datasets, the ML
models were able to show nearly 93 percent
detection accuracy and a 92 percent f1-score. The
models' output demonstrates that the system
properly and effectively detects malware and
attacks in smart environments.
An Android malware detection model called
RHSODL-AMD is presented by Albakri et al.
(2023) [7]. The method described comprises
identifying the Application Programming Interface
(API) calls and the most important permissions,
which produces effective differentiation between
legitimate software and malicious software. As a
result, a strategy called RHSO-FS was developed to
enhance the classification outcomes. The Adamax
optimizer with attention recurrent autoencoder
(ARAE) model is also used to identify malware on
Android. The RHSODL-AMD technique's
experimental validation on the Andro-AutoPsy
dataset demonstrates its promising performance,
with a maximum accuracy of 99.05 percent.
The Optimal Ensemble Learning Approach for
Cybersecurity (AAMD-OELAC) method is
presented by Alamro et al. (2023) [5]. The
automatic classification and identification of
Android malware is the primary goal of the AAMD-
OELAC method. The AAMD-OELAC technique
uses three machine learning (ML) models—the
kernel extreme learning machine (KELM),
regularised random vector functional link neural
network, and least square support vector machine—

for the identification of Android malware
(RRVFLN). Last, the hunter-prey optimization
(HPO) method is used to tune the three DL models'
parameters for better malware detection outcomes.
The simulation results demonstrated how AAMD-
OELAC technology outperforms other currently
employed techniques.
Abdel Ouahab et al. (2022) [1][2], proposed an
intelligent cybersecurity framework specialized in
malware attacks in a layered architecture. The
framework core layer processes unknown datasets
of harmful software after receiving the unknown
malware and using the malware visualisation
approach. The algorithms K-Nearest Neighbor,
Decision Tree, and Random Forest are used to
group malware data into families. The suggested
Intelligent Cybersecurity Framework is
implemented in an intuitive graphic user interface.
The random forest method performs the
classification task with the highest level of
precision (97.6%).

2.2. Malware Attacks on Android

The most frequent type of threat to Android is
malware. Android malware is defined as malware
that particularly targets the Android operating
system and damages or steals data from mobile
devices running Android (Bhat & Dutta, 2022 [16]
; Albakri et al., 2023) [7]. Malware can also
sneakily install itself without the user's knowledge
or agreement by exploiting flaws in operating
systems or web browsers (Da Costa & Moia, 2012).
Once installed, malware has the ability to track user
activity, communicate sensitive information to the
attacker, help the perpetrator breach other network
targets, and even make the user's device a member
of a botnet that the attacker uses for nefarious
purposes (Varlioglu et al., 2022) [62]. Trojans,
spyware, adware, ransomware, worms, botnets, and
backdoors are the classifications given to these
malware (Gibert et al., 2020; Mahdavifar et al.,
2020) [39]. Malware is typically categorised by
researchers into sub-types, as shown in Table 1.

Table 1: categorisation of malwares and their target

effect
Type Target Effect Real-World example Reference

Ransomware Prevents the victim from
accessing data until the ransom is
paid

RYUK Dameff et al.
(2023)[22]

Fileless
Malware

Alters native OS files Astaroth Varlioglu et al.
(2022) [62]

Journal of Theoretical and Applied Information Technology
15th January 2024. Vol.102. No 1

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

147

Spyware Gathers information on user task
without the user's awareness

DarkHotel Qabalin et al.
(2022) [49]

Adware Operates undesirable ads Fireball Alani et al. (2022)
[6]

Trojans Masquerades itself as wanted
code

Emotet Kanaker et al.
(2022) [33]

Worms Replicates itself to spread within
a network

Stuxnet Pan et al. (2022)
[48]

Rootkits Provides hackers access to a
victim's device remotely.

Zacinlo Mohammadzad &
Karimpour (2023)
[44]

Keyloggers Observes user's keystrokes Olympic Vision Bhardwaj &
Goundar (2020)
[15]

Bots Unleashes a massive barrage of
attacks

Echobot Alahmadi et al.
(2020) [4]

MobileMalware Infects mobile devices Triada Kouliaridis et al.
(2020); Sallow et
al. (2020) [37]

Wiper Malware Erases user information in a way
that makes it unrecoverable.

WhisperGate Revay (2022) [51]

2.3. Multi-attack

Hu et al. (2022) [22], proposed a detection system
for intrusions involving diverse combinations of
attacks with multi-classification capacity based on
the mosaic-coded convolution neural network. The
one-dimensional CAN ID was transformed into a
mosaic-like two-dimensional data grid for the CNN
in order to efficiently extract the data characteristics
and preserve the temporal relationships between the
CAN IDs. They trained and tested the model using
four different attack types in all feasible
combinations. In order to simplify the model, the
autoencoder was also utilised to decrease the data's
dimensionality. The proposed method was
successful in detecting all forms of attack
combinations and had a high and stable multi-
classification capacity.
Li et al. (2023) [75] use a CNN based on an auto-
encoder to accomplish multi-attack detection,
which ensures the detection accuracy of multi-
attacks with the multiple classification function.
They assessed the system using four different types
of actual ICT attack data and four popular IDS
techniques, and we showed that our framework
outperformed all benchmarks in terms of accuracy,
recall, precision, and F1-score. The finding showed
a significant step toward developing an IDS that can

identify multi-attacks in both intra-terminal and
inter-terminal networks.
A framework for multiple strategy combinations is
presented by Wang et al. (2020) [65]. Five different
static feature types were used to categorise Android
applications. They employ three filter-based feature
selection techniques to obtain the top-k features that
are most informative in order to increase
classification accuracy and decrease overfitting.
The applications represented by the feature subsets
are then fed into five classification algorithms to
create classifiers. Finally, the classification
outcomes were estimated using either hard voting
or soft voting. The experimental findings
demonstrate that the method can achieve above 98
percent accuracy, precision, recall, and F-score. The
technology offers the highest malware detection
rate of 98.75 percent when compared to other
approaches currently in use.
The method proposed by Da Costa and Moia (2023)
[21] for detecting Android malware consists of a
collection of specific-type detectors, each of which
does a multi-stage analysis based on rules and ML
techniques at various stages of the application cycle
(before and after its installation). The strategy also
differs from cutting-edge solutions in that it is non-
invasive because it uses a method to get application
functionalities without violating the licences and
conditions of use of those programmes. The

Journal of Theoretical and Applied Information Technology
15th January 2024. Vol.102. No 1

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

148

findings showed that the concept offers a better
identification method and is three times faster and,
in some situations, ten times less CPU-intensive
than other methods for classifying applications.
A multi-tiered feature selection technique is
presented by Bhat and Dutta (2022) [16] , and it was
used to find important features that will help
malware detection methods be more accurate. To
classify the chosen feature set, the proposed method
uses five ML algorithms. The best static feature set
(OSFS) and most significant features (MIFs) are
determined by each ML method. Random Forest
classification, which has a 96.28 percent accuracy
rate, is the result of rigorous testing and research.
A Multi-level Anomaly Detector for Android
Malware (MADAM) was proposed by Dini et al.
(2012) [20]. MADAM uses ML techniques to
discriminate between normal and dangerous actions
while simultaneously monitoring Android at the
kernel and user levels to find true malware
infections. The first version of MADAM can
recognise a variety of genuine malware that has
been observed in the wild. Due to the limited
number of false positives produced after the
learning phase, MADAM has no impact on the
usage of the device.

2.4. Deep Learning Methods

Android devices and network resources are harmed
by malicious malware. Many deep learning
algorithms are used for malware detection. Neural
networks and other deep learning methods have
recently been used in many different fields. The
detection of Android malware has been effectively
accomplished using deep learning models
(Mahdavifar et al., 2020) [39]. The architectures
utilise the unique characteristics of the domains
they are used in to increase classification accuracy
(Kaushik et al., 2022) [35].

2.4.1. Deep Neural Network (DNN)

Malware classification can be done using deep
neural networks (DNNs), which are based on
standard feed-forward neural network design (He et
al., 2022). DNNs are usually feed-forward networks
(FFNNs), in which data goes from the input layer to
the output layer without going backward and the
links between the layers are only ever in the forward
direction (Singh et al., 2023) [57]. DNNs can be
used to detect malware at different levels and are
widely used in applications that require safety.
DNNs have a huge number of parameters that are
tuned by the training process in addition to an
architecture that shares certain similarities with

conventional software programmes (Miikkulainen
et al., 2019) [41]. Any strategy for testing DNNs
must take into account the special characteristics of
DNNs, such as the semantic relationship between
layers, the ReLU (Rectified Linear Unit) activation
functions, and the syntactic connections between
neurons in adjacent layers (Chen et al., 2020) [41].

DNNs are computational models made up of
numerous small processing units (similar to
neurons) stacked in interconnected layers and
operating concurrently (Wichmann & Geirhos,
2023). Simple neural networks include two levels:
an input layer and an output layer. Deep neural
networks have multiple layers stacked on top of
each other. Training is the process through which a
DNN learns certain tasks and determines the
strength of connections between its units (Thakkar
& Lohiya, 2023). The trained DNN is then used to
carry out the identical task on brand-new inputs.
Studies have demonstrated that DNNs outperform
all other models in predicting human perceptual
similarity judgments and accounting for brain
activity in primate sensory cortices (Miikkulainen
et al., 2019; Chen et al., 2020) [41].

2.4.2. Recurrent Neural Network (RNN)

RNN functions better with input, which must be
processed consecutively. The structural properties
are present in the binary indicator vector utilised to
represent Android applications (Kasongo et al.,
2023) [34]. RNNs have the ability to process input
classifications by using their internal state
(memory). They can be used for tasks such as
unsegmented script recognition or speech
recognition (Wilberforce et al., 2023) [67]. RNNs
are also susceptible to issues like the long-term
dependency/vanishing gradient problem, in which
information rapidly decays over time (Zhong et al.,
2023) [74]. In fact, the neuron does not lose weight,
whether it reaches a value of 0 or 1,000,000.
However, since the weight is what stores the
knowledge from the past in this situation, the
preceding condition will not be very instructive (de
Carvalho Junior et al., 2023) [24]. A time-based
approach to FFNN is used by recurrent neural
networks (RNN). The connections in this neural
network span both passes and time, indicating that
it is not stateless (Singh et al., 2023) [57].

2.4.3. Convolutional Neural Network (CNN)

CNN, a subclass of deep neural networks, is
frequently used to examine visual data. They also
have applications for speech recognition, video

Journal of Theoretical and Applied Information Technology
15th January 2024. Vol.102. No 1

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

149

interpretation, malware detection, and natural
language processing. Sharma et al. (2019) [55].
introduce a 1-dimensional CNN-based malware
detection solution that is extremely accurate and
effective. When a binary file is input, the system
determines if it is malicious or benign. The binaries
undergo just a little pre-processing, and network
training is used to uncover characteristics. The
recursive learning process that occurs when a neural
network algorithm identifies malware or develops a
likelihood to render software "infected" The use of
1-dimensional convolutions distinguishes this
method from previous CNN-based systems, and it
provides important advantages for the detector.
Al-Rimy et al. (2020) [10], constructed a TFIDF-
based standard malware detector in order to
compare the proposed CNN detector with advanced
methods. Experiments reveal enhanced accuracy of
the proposed CNN detector while maintaining
comparable training times. On a publicly accessible
dataset of 11130 binaries, the system is also
contrasted with the present embedding-based CNN
detector. The approach performs better than
embedding-based CNN in terms of accuracy and
training time.

2.4.4. Multilayer Perceptron (MLP)

A feedforward artificial neural network class called
a MLP was developed by Ben Abdel Ouahab et al.
(2022) [1][2] for image-based malware
classification, which consists of a number of fully
connected layers. Every additional layer is made up
of a group of nonlinear functions that represent the
weighted total of all the outputs from the layer
before it, all of which are connected. They
experiment with various topologies by altering
hidden layers, neurons, and activation functions in
order to achieve a high degree of accuracy. The
experiment achieved a precision of 97.6%. The
multi-layer perceptron technique is an effective
malware classifier with the chosen
hyperparameters.
Singh and Singh (2020) [56] employed an MLP
model with dynamic characteristics to binary
classify benign and malicious files. The Cuckoo
sandbox is used to execute both malicious and
benign samples in the dynamic analysis
environment. The thorough behavioural reports
produced by Cuckoo Sandbox include a variety of
runtime features such as API calls, registry
modifications, and network activity. These features
are looked at and signified as a feature set for
training. After that, the training feature set is used
to train a multi-layer perceptron model. The multi-
layer perceptron model is trained using various

activation functions, loss functions, and alpha
parameter values in order to create the best malware
classifier. The suggested malware classifier
achieved a binary classification accuracy of 99.2
percent using the Adam loss function.

2.4.5. End-to-end (E2E)

E2E is a subset of DL that eliminates manual feature
engineering by employing DL models to transform
the raw inputs into the required outputs and
predictions (Novikova et al., 2017) [46]. E2E DL
has recently gained a lot of traction in practically all
cutting-edge AI applications. This method has
shown best-in-class results when applied to
malware classification and detection (Almomani et
al., 2023). The domain of virus detection in portable
executables (PE) has demonstrated good potential
for E2E DL architectures (Velasco et al., 2021).
However, the DL classification has been applied
less liberally and not in an E2E way in the case of
Android malware.
An effective end-to-end ransomware detection
system (E2E-RDS) is presented by Almomani et al.
(2023) [9] that fully combines the available
ransomware detection (RD) techniques. As with
static-based RD, E2E-RDS relies on reverse
engineering the ransomware code to parse and
extract the key elements for prediction.
Additionally, just like with vision-based RD, E2E-
RDS can take a ransomware executable, transform
it into an image, and then analyze it. The collected
characteristics from the static-based RD technique
are sent to eight different ML models to evaluate
how well they can detect objects. The binary
executable files of both benign and ransomware
apps are transformed into 2D visual pictures using
the vision-based RD technique. Then, in order to
distinguish between ransomware apps and
legitimate apps, these photos are sent to 19 distinct
CNN models using the significant benefits of fine-
tuning (FT) and transfer learning (TL) techniques.
The primary advantage of the vision-based method
is that it can accurately and efficiently detect and
identify ransomware without the need for data
augmentation or laborious feature extraction
procedures. A recently compiled balanced dataset
made up of 500 benign and 500 ransomware apps
was used to conduct extensive simulations and
performance assessments utilising several
evaluation criteria for the proposed E2E-RDS. The
results show that, in comparison to other evaluated
ML models, the static-based RD technique
employing the Ada Boost model showed high
classification accuracy, reaching 97 percent. While
the classification accuracy of the vision-based RD

Journal of Theoretical and Applied Information Technology
15th January 2024. Vol.102. No 1

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

150

method was high, reaching 99.5% for the FT
ResNet50 CNN model,

2.5. Bagging/ bootstrap aggregation
Multiple iterations of the same deep learning model
are possible. The several iterations with varying
degrees of enhancement can be trained using
various datasets (Bose et al., 2023) [19]. The
bagging method combines various iterations of the
same deep learning models (Zhang et al., 2022)
[72][73]. Bootstrapping and aggregation are
combined to create an ensemble model, hence the
name "bagging." Several bootstrapped subsamples
are taken from an initial sample of data. A training
dataset is randomly sampled and replaced, allowing
for multiple selections of the same data points. The
most effective predictor is created by combining
each subsample with the others using an algorithm
(Zhang et al., 2022) [72][73]. A simple average or
weighted average is used to aggregate several

iterations of the same deep learning model (Malek
et al., 2023) [40]. With the use of this technique, a
new model may be developed that lacks the
confirmation bias that might develop with a single
model, leading to a model that is more precise and
effective (Bose et al., 2023) [19].

3. MATERIALS AND METHODS

3.1 Datasets and Proposed Framework
Android applications balance the collection of
benign and malicious datasets for malware
detection. Data gathering is a sample of the different
malware families found in the wild. Table 1 depicts
sources where APKs are gathered and combined to
provide a comprehensive dataset. Android
programmes are stored in Android Application
Package Kit (APK) archive files and run on the
Android operating system.

Table 1: Android datasets and their sources

S/no. Dataset Description

1 AndroZOO Millions (81,902)

2 CASANDRA 42,910 malware and 44,347 benign

3 AppsApk Repository for Benign samples (126,513)

4 F-Droid Repository for Benign samples (258 packages)

5 APKPure Repository for Benign samples (290,276)

6 DroidFusion 5,560 malwares and 9,476 benign

7 Rmvdroid 9,133 malwares

8 CICInves And Mal2019 426 malwares and 5,065 benign

9 AMD Project 24,553 malwares

10 CICAAGM 250 Adware, 150 General Malwares + 1500 Benign

11 CIC And Mal 2017 4,325 malwares and 6,500 benign

12 Drebin 5540 malwares + 123453 benign

13 AndroOBFS 20,541 data

14 Android Botnet 1936 android botnet

15 ContagioDump 197 malware packages

The proposed framework of this study for malware
detection is displayed in Figure 1. We proposed five
types of data collections based on the deep learning
methods [i.e., malware multi-attack detectors
(MMAD)] used in this study. The MMAD uses
combined detectors comprised of DNN, RNN,
CNN, MLP, and E2E. All five types of datasets
consist of both malware and benign data. The
datasets comprise hidden features and some types
of malware. The datasets for DNN consist of

rootkits, bots, and ransomware; RNN consists of
adware, ransomware, and keyloggers; CNN
consists of spyware, trojans, and mobile malware;
MLP consists of wiper malware and worms; and
E2E consists of fileless malware and worms. These
models are independently trained and then
combined using bagging or bootstrapping
aggregate. The malware analysis is performed using
the combined model, and the mode is used for
detection accuracy.

Journal of Theoretical and Applied Information Technology
15th January 2024. Vol.102. No 1

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

151

Figure 1: Proposed Method Of Malware Detection (MMAD)

Journal of Theoretical and Applied Information Technology
15th January 2024. Vol.102. No 1

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

152

3.2. Models
DNN model
This model estimates the behavior of any function.
The output (y) of a component (i) in layer (l) is
connected to the output (x) of the previous layer (k)
with J outputs via a set of weights (𝑤,), a bias (b)
and f as a non-linear activation function.

DNN = 𝑌ଵ
 = 𝑓 ∑ 𝑤, 𝑥 + 𝑏

ୀଵ

 (1)

RNN model

Input: x(m) is considered as the input to the android
at time m.
Output: o(m) represents the output of the android
connection.
h(t) denotes a hidden state at time m and functions
as “recall” of the android network. h(m) is
computed based on the present input and the prior
time’s hidden state

RNN = h(m) = f [U x(m) + W h(m−1)]
 (2)

The function f is considered as non-linear
conversion including tanh, ReLU, etc. The RNN has
input to hidden networks factorized by a weight
matric U, hidden-to-hidden repeated networks
factorized by a weight matric W, and hidden-to-
output networks factorized by a weight matric V
with all these matrices (U,V,W) are distributed
throughout the time.

CNN model

The convolutional layer is the core building block
of a CNN. The layer's parameters consist of a set of
learnable filters (or kernels), which have a small
receptive field, but extend through the full depth of
the input volume.
The input volume size W, the convolutional layer
neurons' kernel field size K, the stride S, and the
number of zero paddings P on the edge are all
factors that affect the spatial size of the output
volume. Therefore, the number of neurons that "fit"
in a precise volume is:

=
ௐି ା ଶ

ௌ
 + 1 (3)

The neurons cannot be covered to fit over the input
volume symmetrically if this value is not an integer,
indicating that the strides are inappropriate.
Generally, when the stride is S = 1, fixing the zero
padding to be P = (K - 1)/2 ensures that the input
volume and output volume will be the same size
spatially. Conversely, using every single neuron
from the preceding layer is not always necessary.

MLP model
An input, output, and one or more hidden layers—
each with numerous neurons stacked together—
make up a multilayer perceptron. The neurons in a
MLP use an activation function that imposes a
threshold, such as ReLU or sigmoid.

F(x, w) = 𝑥ଵ𝑤ଵ + ⋯ + 𝑥𝑤 (4)
F(x, w) is output, 𝑥ଵ𝑤ଵ is input, and 𝑥𝑤 is the
weights. The activation function is written as

The activation function is represented by the
threshold T. The neuron outputs the value 1 if the
weighted sum of the inputs is greater than 0;
otherwise, the output value is 0. The gradient of the
mean squared error is calculated across all input and
output pairs in each iteration after the weighted
sums have been passed through all layers. Given
that inputs and initial weights are mixed in a

weighted sum and are both subject to the activation
function, MLP falls within the class of feedforward
algorithms. However, the distinction is that each
linear combination is carried over to the following
layer.
The output of each layer's computation and inner
representation of the data are fed to the layer below
it. This passes through all hidden layers and ends at
the output layer.

Journal of Theoretical and Applied Information Technology
15th January 2024. Vol.102. No 1

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

153

E2E model
The target of the replenishment problem is to
establish the finest order quantity, a: f(x) ∈ R at
every specified point, through experimental
features, x.

 𝐿(𝑓(𝑥): 𝑎
∗

ே

ୀଵ

)

where N is the overall number of training data, L is
the loss function described based on the difference
between the model prediction 𝑓(𝑥) and the optimal
order quantity 𝑎

∗. Particularly, when examine
neural network representations of function f.

3.3. Bagging/ bootstrap aggregation Method
Bagging, often referred to as "bootstrap
aggregation," is frequently used to decrease
variance in a dataset. Following the generation of

several data samples, these models are
independently trained for classification, and the
average or regression of those predictions results in
a more accurate estimate. During the combination
operation, bagging greatly lowers an estimate's
variance, improving the estimate's accuracy. Thus,
compared to individual results, the learned results
show more stability. This implies that a number of
models are assembled, increasing the weights of the
inaccurately categorised data in the independent
model with each new model iteration. The
algorithm may more easily focus on the factors that
will help it perform better under this redistribution
of weights. Parallel computations for each model
are performed, and the results are then combined.
For regression problems, the simple average is used
to calculate the final ensemble aggregation, while
for classification problems, the simple majority is
used.

 Classification model for bagging

Train models and print their accuracy

Journal of Theoretical and Applied Information Technology
15th January 2024. Vol.102. No 1

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

154

 Print the mean accuracy

3.4. Training of Models
The models are individually trained and then
combined using bagging. Each model receives
training using a unique dataset, as shown in
Figure 1. The samples are generated by randomly
choosing 2/3 of the replacement samples from the
training sets. The hidden layer's number of
neurons, "nh," and the activation function, "act,"
are the two parameters that must be set for the
model. The following choices for activation
functions are used:
1. Tanh
2. Sigmoid
3. ReLU
4. Tanh with Exponential
5. ReLU with Dropout

Although models are effective deep learning
techniques, they can overfit. Dropout, a method
for resolving this, involves randomly removing
units from the network together with their
incoming and outgoing connections. The
components consequently do not co-adapt much.

3.5. Malware Analysis

This part presents the procedures needed to
transform an executable into a form that may be
used as input by a learning-based algorithm.
Reverse engineering tools are used to convert the
executable from deep learning code to an
interpretable format, from which features are
extracted to provide sequential features for
learning.

3.5.1. Reverse engineering
Reverse engineering is used to decode the binary

instructions and reveal the program's working
logic. A variety of features can be determined by
feeding the samples from the acquired dataset into
the tools for reverse engineering the apks. The
malware analysis is carried out to extract features
from a sparse binary feature matrix, where the
columns are the different features that were
extracted. Dynamic analysis produces a list of
API calls that are made in response to various
system-related operations, including memory,
process, file, and network activity.

3.5.2. Feature extraction
Many features are extracted directly from the .apk
file for more accurate and effective malware
analysis. The following features are collected
from malware analysis for Android applications:
Application components: The four application
components of an Android application are
service, activity, content provider, and broadcast
receiver. Without user input, service components
operate in the background. Interfaces for activity
components are provided. Using content
providers facilitates data exchange between apps.
Broadcast receivers handle system-wide
announcements.
Filtered intents: The Android message
transmission system uses intentions to
communicate among its many parts. The filtered
intents serve as an indication of each component's
operation. Each application component registers
itself to get intents using intent filters.
Data Flow: With reference to handling a large
volume of datasets for data processing on an
Android device, Data Flow Graph is utilised to
perform offline malware detection. They are
therefore less easily regarded as immediate on-

Journal of Theoretical and Applied Information Technology
15th January 2024. Vol.102. No 1

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

155

device detection models.

3.2. Experiment
The Android application (A) is composed of parts
that connect to the internet at various levels. The
overall behaviour of the Android system is made
up of all of its components, and the malware can
affect its defensive mechanism (Yadav et al.,
2022). In the present study, malware incursions
were efficiently detected using the combined
model.
The combined model was used to perform
malware analysis on the multi attacks. The
Android with malware multi-attack represents the
sensitive API calls, malicious permissions,
privilege escalation attack, component intent
communication, and sending sensitive
information flow. The multi-attack approach's
effect on the Android component is represented
by ∃ComL(L ∈ n):

𝐴𝑛𝑑𝑟𝑜𝑖𝑑 ∺ = ∃𝐶𝑜𝑚𝐿 𝑓𝑒𝑎𝑡𝑢𝑟𝑒

ெ

ୀଵ

∺

= 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 [Ŵ (𝑥ଵ) | W (𝑥ଵ)] |ଵ (feature)A|! Feature

ெ

ୀଵ

where
∑ 𝐴ଵ

ெ
ୀଵ featurej denotes activities of ComL

𝐴ଵ denotes malicious permissions (hidden
malware) targeted at android component
x denotes sensitive information of the component

The malware features were extracted from tests
A1, A2, A3, A4, and A5 (representing Android
devices). The multi-attack model for the AFT was
modelled by:

(1) DNN model is represented by the following
algorithm:

DNN ∺ = [Ŵ (𝑥ଵ) | W (𝑥ଵ)]

(2) RNN model is represented by the following
algorithm:
RNN ∺

= 𝐴ଵ. 𝑓𝑒𝑎𝑡𝑢𝑟𝑒|

ெ

ୀଵ

[Ŵ (𝑥ଵ , 𝑥ଶ) | W (𝑥ଵ , 𝑥ଶ)] | (Ǖψ) 𝐴ଵ

∺ = 𝐴ଵ. 𝑓𝑒𝑎𝑡𝑢𝑟𝑒ଵ + 𝐴ଵ. 𝑓𝑒𝑎𝑡𝑢𝑟𝑒ଶ
 + 𝐴ଵ. 𝑓𝑒𝑎𝑡𝑢𝑟𝑒ଷ| [w (𝑥ଵ) | ѿ
(𝑥ଵ)]. 𝐴ଵ

(3) CNN model is represented by the following
algorithm:

𝐶𝑁𝑁 ∺

= 𝐴ଵ. 𝑓𝑒𝑎𝑡𝑢𝑟𝑒

ெ

ୀଵ

| [Ŵ (𝑥ଵ , 𝑥ଶ) | W (𝑥ଵ , 𝑥ଶ)] | (Ǖψ) 𝐴ଵ

∺ = 𝐴ଵ. 𝑓𝑒𝑎𝑡𝑢𝑟𝑒ଵ + 𝐴ଵ. 𝑓𝑒𝑎𝑡𝑢𝑟𝑒ଶ +
𝐴ଵ. 𝑓𝑒𝑎𝑡𝑢𝑟𝑒ଷ
 + 𝐴ଵ. 𝑓𝑒𝑎𝑡𝑢𝑟𝑒ସ| [w (𝑥ଵ) | ѿ
(𝑥ଵ)]. 𝐴ଵ

(4) MLP model is represented by the following
algorithm:
MLP ∺

= 𝐴ଵ. 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 | [Ŵ (𝑥ଵ , 𝑥ଶ) | W (𝑥ଵ , 𝑥ଶ)] | (Ǖψ) 𝐴ଵ

ெ

ୀଵ

∺ = 𝐴ଵ. 𝑓𝑒𝑎𝑡𝑢𝑟𝑒ଵ + 𝐴ଵ. 𝑓𝑒𝑎𝑡𝑢𝑟𝑒ଶ +
𝐴ଵ. 𝑓𝑒𝑎𝑡𝑢𝑟𝑒ଷ + 𝐴ଵ. 𝑓𝑒𝑎𝑡𝑢𝑟𝑒ସ
 + 𝐴ଵ. 𝑓𝑒𝑎𝑡𝑢𝑟𝑒ହ| [w (𝑥ଵ) | ѿ
(𝑥ଵ)]. 𝐴ଵ

(5) E2E model is represented by the following
algorithm:
E2E ∺

= 𝐴ଵ. 𝑓𝑒𝑎𝑡𝑢𝑟𝑒

ெ

ୀଵ

 | [Ŵ (𝑥ଵ , 𝑥ଶ) | W (𝑥ଵ , 𝑥ଶ)] | (Ǖψ) 𝐴ଵ

∺ = 𝐴ଵ. 𝑓𝑒𝑎𝑡𝑢𝑟𝑒ଵ + 𝐴ଵ. 𝑓𝑒𝑎𝑡𝑢𝑟𝑒ଶ + 𝐴ଵ. 𝑓𝑒𝑎𝑡𝑢𝑟𝑒ଷ
+ 𝐴ଵ. 𝑓𝑒𝑎𝑡𝑢𝑟𝑒ସ + 𝐴ଵ. 𝑓𝑒𝑎𝑡𝑢𝑟𝑒ହ
 + 𝐴ଵ. 𝑓𝑒𝑎𝑡𝑢𝑟𝑒| [w (𝑥ଵ) | ѿ
(𝑥ଵ)]. 𝐴ଵ

The model measures the android behavior of
malware multi attack based on the following:
(1) The behavior of DNN model is shown as:

DNN ∺ = [w (𝑑𝑎𝑡𝑎ଵ) | ѿ (𝑑𝑎𝑡𝑎ଵ)].

(2) The behavior of RNN model is shown as:
RNNmodel ∺ = 𝐴ଵ.AttackerIntent1 + 𝐴ଵ.RNN
+ 𝐴ଵ.filterRNN [w (𝑑𝑎𝑡𝑎ଵ) | ѿ (𝑑𝑎𝑡𝑎ଵ)].𝐴ଵ.

(3) The behavior of CNN model is shown as:
CNNmodel ∺ = 𝐴ଵ.AttackerIntent2 + 𝐴ଵ.CNN +
 𝐴ଵ.filterCNN
+ 𝐴ଵ.HiddenCNN [w (𝑑𝑎𝑡𝑎ଵ) | ѿ (𝑑𝑎𝑡𝑎ଵ)].𝐴ଵ.

(4) The behavior of MLP model is shown as:
MLPmodel ∺ = 𝐴ଵ.AttackerIntent2 + 𝐴ଵ.MLP +
 𝐴ଵ.filterMLP
+ 𝐴ଵ.HiddenMLP1 + 𝐴ଵ.HiddenMLP2 [w
(𝑑𝑎𝑡𝑎ଵ) | ѿ (𝑑𝑎𝑡𝑎ଵ)].𝐴ଵ.

(5) The behavior of E2E model is shown as:
E2Emodel ∺ = 𝐴ଵ.AttackerIntent2 + 𝐴ଵ.E2E +
 𝐴ଵ.filterE2E
+ 𝐴ଵ.HiddenMLP1 + 𝐴ଶ.HiddenMLP2 +

Journal of Theoretical and Applied Information Technology
15th January 2024. Vol.102. No 1

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

156

 𝐴ଷ.HiddenMLP3 [w (𝑑𝑎𝑡𝑎ଵ) | ѿ (𝑑𝑎𝑡𝑎ଵ)].𝐴ଵ.

4. RESULTS
4.1. Bagging/ bootstrap aggregation

The results obtained from bagging and bootstrap
aggregation are presented in Table 2. The bagging
had the maximum accuracy for test data, which is
consistent with the outcomes found in the case of
the bootstrap. Bagging and bootstrapping had the
lowest standard deviation for both training and
test data and an average accuracy rate of more
than 70%. No deep learning approach had an

average prediction accuracy less than 70% for the
three middle layers, while the two middle layers
had an average prediction accuracy greater than
70%. The ratio difference between training and
test data (85% to 15%) in the three and middle
layers had no significant effect on the results, thus
causing no detectible variation in the prediction
accuracy.

Table 2: Prediction accuracy (the ratio of training
and test data is 85% to 15%) of the combined deep
learning methods.

 Data Ratio of
Training
and Test

Data
(%)

Accuracy ratio of
training data

Accuracy ratio of
test data

Area
under
the
curve

 Method Average
(%)

standard
deviation

Average
(%)

standard
deviation

 Bagging Normalized 85:15 73.58 1.45 70.98 1.55 0.877

 Bootstrap Normalized 85:15 70.66 1.23 69.65 1.43 0.834

 Data Ratio of
Training
and Test
Data
(%)

Accuracy ratio of
training data

Accuracy ratio of
test data

Area
under
the
curve

Model Method Activation
function

Middle
layer

Average
(%)

standard
deviation

Average
(%)

standard
deviation

DNN Tanh 3 Normalized 85:15 69.22 1.59 70.75 1.45 0.861

RNN Tanh or sigmoid 3 Normalized 85:15 69.47 1.38 70.55 1.31 0.863

CNN ReLU 3 Normalized 85:15 61.99 1.50 60.89 0.99 0.958

MLPs ReLU 3 Normalized 85:15 66.78 1.49 65.80 1.70 0.911

E2E ReLU 3 Normalized 85:15 67.89 2.02 70.00 1.60 0.850

DNN Tanh with Exponential 2 Normalized 85:15 70.77 1.67 69.45 1.50 0.858

RNN Tanh with Exponential 2 Normalized 85:15 70.11 1.41 70.35 0.95 0.871

CNN ReLU with Dropout 2 Normalized 85:15 70.23 2.08 70.66 1.40 0.801

MLPs ReLU with Dropout 2 Normalized 85:15 70.91 1.08 69.85 1.64 0.809

E2E ReLU with Dropout 2 Normalized 85:15 70.00 1.42 70.25 0.98 0.872

4.2. The Model

A MMAD detector can be installed on an Android
device once it has been correctly constructed.
MMAD can work with one or more detectors, each
of which is designed to find specific types of
malware in applications (see Figure 1). Figure 2
depicts the complete MMAD workflow with
numerous detectors based on the specificity of the
deep learning methods. The MMAD detectors
installed on the device receive the application as
input. We underline that all of the detectors function
in parallel to assess a particular malware attack.

Given that the detectors are run in sequence,
MMAD is first provided as input for Detector 1.
Detector 1 gathers an initial collection of features
relevant to the specific analysis of the target
malware using native Android components. The
detector then conducts an analysis of the APK file
to detect relevant malware. In a successful situation,
the application is sent to Detector 1's deep analysis
component to continue the analysis. The APK is
sent to the next detector (Detector 2), which
continues the process using its unique set of rules
(algorithms) and components, comparing them to a
potential new set of features extracted from the
APK. If no malicious malware is detected, the

Journal of Theoretical and Applied Information Technology
15th January 2024. Vol.102. No 1

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

157

analysis is deemed safe, and the APK can now be
loaded on the device without further delay.

Figure 2: The Malware Multi-Attack Detectors (MMAD)

4.3. Multi-attack layer Detections

Table 3 displays the MMAD one hidden layer
detection for diverse size ranges from 56 neurons to
254 neurons. The analysis using layer sizes more
than 254 neurons was not tested because there were
only 389 different malware attacks. As the
embedding size was maintained at 56, any hidden
layer with less than 56 neurons was not assessed. In

order to evaluate any configuration with more than
one hidden layer in subsequent rounds, the hidden
layer size that indicated equivalent performance
with the fewest neurons was fixed as the upper cap.
This layer appeared to detect lesser numbers of
malware despite the presence of many neurons.

Table 3: MMAD one hidden layer detection

Journal of Theoretical and Applied Information Technology
15th January 2024. Vol.102. No 1

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

158

Conf. ID Input Output Hidden
Layer Size

Embedding
Dimension

Learning
rate

Detection
level

Number of
Malware

1 33.67 70.23 [139] 254 85.016 60.79 389

2 32.52 71.19 [139] 200 85.017 60.50 290

3 33.15 70.35 [139] 190 85.015 60.79 248

4 33.89 70.17 [139] 250 85.018 60.79 376

5 35.60 70.58 [125] 190 85.017 60.79 248

6 33.91 71.99 [125] 184 85.018 60.79 66

7 34.08 70.45 [125] 120 85.018 60.79 113

8 33.73 70.65 [72] 70 85.016 60.79 53

9 35.11 72.12 [72] 85 85.018 60.79 133

10 34.66 70.20 [65] 65 85.018 60.50 178

11 33.94 71.33 [65] 80 85.019 60.78 101

12 33.94 71.33 [56] 90 85.018 60.78 112

13 33.94 71.33 [56] 100 85.019 60.78 188

Table 4 presents the results of MMAD two-hidden-
layer detections. In the second phase, MMAD was
tested for two hidden layers. Data complexity and
linearity contribute to the DL method's ideal
performance on the training datasets. Layer sizes
beyond 139 neurons were not considered since the
requirement for a single hidden layer within the size
of a hidden layer is more indicative of the linearity

of the two-hidden layer. The first hidden layer's size
varies between 139 and 56, while the second hidden
layer's size could vary between 139 and 72. The
MMAD gradually reduced the data dimension
cardinality.

Table 4: MMAD Two-Hidden-Layer Detections

Conf. ID Input Output Hidden
Layer Size

Embedding
Dimension

Learning
rate

Detection
level

Number of
Malware

14 33.89 70.17 [139, 139] 74 85.011 75.21 1173

15 35.60 70.58 [139, 72] 74 85.010 75.65 956

16 33.91 71.99 [125, 65] 74 85.019 75.68 1160

17 34.08 70.45 [125, 56] 74 85.021 75.90 1098

18 33.73 70.65 [72, 56] 74 85.025 75.31 981

19 35.11 72.12 [65, 56] 74 85.021 75.45 879

We examined numerous configurations with three
hidden layers of various sizes in the third iteration
of the MMAD detection. Table 5 presents the
results of MMAD three-hidden-layer detection. The

results showed consistency and higher performance
than one hidden layer and two hidden layers. It was
robust in detecting higher-level multi-attack
malware. The limitations for the first hidden layer's
maximum number of layers and any future hidden

Journal of Theoretical and Applied Information Technology
15th January 2024. Vol.102. No 1

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

159

layers' equivalent constraints remained the same as
in the second iteration. The MMAD with more than
three hidden layers was not analysed because none
of these configurations outperformed some other

configurations with only two hidden layers that
were evaluated in earlier iterations.

Table 5: MMAD three-hidden-layer detection

Conf. ID Input Output Hidden
Layer Size

Embedding
Dimension

Learning
rate

Detection
level

Number of
Malware

20 33.89 70.17 [139, 72, 56] 74 85.042 90.82 1540

21 35.60 70.58 [139, 125, 72] 74 85.042 90.77 1413

22 33.91 70.99 [139, 125, 65] 74 85.041 90.46 1608

23 34.08 70.45 [139, 65, 56] 74 85.045 90.12 1371

24 33.73 70.65 [139, 72, 65] 74 85.043 90.19 1447

4.4. MMAD Detection Accuracies and performances

The MMAD was subjected to experiments with
various numbers of hidden layers and various sizes
of each of these hidden layers to determine their
accuracy in detecting malware. Table 6 presents the
results of the MMAD accuracies based on their
optimal hidden layers. According to the results, all
the hidden layers produced higher accuracies with
optimal F1, which indicated better performance of
the MMAD in detecting malware. There were no

significant variations between the DL methods in
terms of accuracy. Based on 1 to 3 hidden layers
with 56 to 139 neurons per hidden layer, MMAD
was able to detect the multi-attacks with accuracy.
We were able to avoid evaluating many
configurations that were less likely to yield better
outcomes than similar configurations that also had
lower hidden outlays.

Table 6: The MMAD accuracies based on their
optimal hidden layers

Conf.
ID

Hidden Layer
Size

Accuracy
(Th=0.5)

Optimal F1 DNN
Accuracy
@ F1

RNN
Accuracy
@ F1

CNN
Accuracy
@ F1

MLP
Accuracy
@ F1

E2E
Accuracy
@ F1

1 [139] 0.844 0.231 0.641 0.673 0.516 0.635 0.581

2 [125] 0.714 0.233 0.639 0.672 0.515 0.633 0.585

3 [72] 0.852 0.233 0.674 0.675 0.517 0.637 0.572

4 [65] 0.747 0.200 0.674 0.663 0.552 0.574 0.552

5 [56] 0.874 0.237 0.675 0.678 0.564 0.634 0.459

6 [65, 65] 0.614 0.252 0.645 0.677 0.538 0.644 0.558

7 [125, 125] 0.844 0.241 0.646 0.681 0.551 0.646 0.551

8 [139, 139] 0.843 0.251 0.644 0.675 0.585 0.644 0.553

9 [125, 125, 125] 0.848 0.212 0.652 0.588 0.533 0.651 0.544

10 [65, 65, 65] 0.838 0.214 0.652 0.588 0.411 0.646 0.562

11 [125, 125, 125,
125]

0.837 0.289 0.614 0.601 0.489 0.586 0.499

12 [72, 72, 72, 72] 0.837 0.211 0.658 0.592 0.517 0.657 0.529

Journal of Theoretical and Applied Information Technology
15th January 2024. Vol.102. No 1

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

160

13 [125, 125, 65,
65]

0.836 0.216 0.651 0.688 0.436 0.649 0.515

14 [65, 65, 65, 65] 0.836 0.226 0.675 0.588 0.437 0.645 0.561

15 [56, 56, 56, 56] 0.846 0.239 0.614 0.635 0.503 0.686 0.584

We carried out additional performance analysis to
further validate MMAD detection efficiency. These
statistics and the accuracy assessment of the
validation data serve as the measures for evaluating
MMAD performance. Table 7 displays the results
of the detection efficiency of MMAD. The MMAD
for static and active based on DL produced 96.54%
accuracy (average). The 3-hidden layer
outperformed the 2-hidden layer in all parameters.
Additionally, all detectors used performed
efficiently with excellent F-score values. The

MMAD classification system efficiently
distinguished between benign and malware, as well
as the types of malware, with high accuracies and
precisions across all neurons. The class
probabilities and a threshold of 0.5 were used to
differentiate between the classification and the
validation accuracy. With average results of
96.54% accuracy, 95.38% precision, 92.65% recall,
and a 94.66 F-score, the MMAD proved to be
efficient and robust.

Table 7: Detection efficiency of MMAD

MMAD
Classification

System

Extracted
Features

Detection No. of
neurons

Ac
c.

Pr
ec.

Re
call

F-
scor

e Ben
ign

Mal
ware

Types of Malware

DNN [139, 56] Static only 614 927 Rootkits, bots,
ransomware

[72,72] 95.
79

95.
39

89.
57

92.3
1

RNN [139, 56] Active
only

614 927 Ransomware,
adware,
keyloggers

[72,64] 94.
6

95.
59

88.
25

91.9
9

CNN [139, 56] Static &
Active

614 927 Spyware, trojans,
mobile malware

[72,64] 94.
76

95.
78

88.
76

92.7

MLPs [139, 56] Static
(opcode)

660 1,10
0

Wiper malware,
worms

[72,56] 94.
37

95.
56

87.
9

92.9

E2E [139, 56] Static only 652 1,01
7

Fileless malware,
worms

[72,56] 95.
21

96.
02

89.
08

92.2
5

DNN [139, 125,
72]

Active
(sys. Calls)

4,1
38

7,84
0

Rootkits, bots,
ransomware

[139,13
9,139]

98.
65

95.
96

93.
11

98.6
8

RNN [139, 125,
72]

Active
only

4,1
38

7,84
0

Ransomware,
adware,
keyloggers

[139,13
9,139]

97.
99

94.
08

97.
17

95.3
3

CNN [139, 125,
72]

Static &
Active

4,1
38

7,84
0

Spyware, trojans,
mobile malware

[139,12
5,139]

97.
42

95.
36

97.
21

96.1
1

MLPs [139, 125,
72]

Active
only

4,1
38

7,84
0

Wiper malware,
worms

[139,13
9,72]

98.
01

94.
9

97.
25

96.5
6

E2E [139, 125,
72]

Static &
Active

4,1
38

7,84
0

Fileless malware,
worms

[139,13
9,64]

98.
55

95.
11

98.
15

97.8
1

Average 96.
54

95.
38

92.
65

94.6
6

Journal of Theoretical and Applied Information Technology
15th January 2024. Vol.102. No 1

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

161

The impact of increasing the training epoch count
was then investigated. Table 8 displays the result of
increasing the number of epochs in MMAD. The
default setting of 100 epochs was increased to 1000
epochs. This is because the 1,000 epochs imply that

the entire dataset flows through the MMAD model,
which runs through it 1.000 times. The training
accuracy showed higher accuracy and performance
with more than 1000 epochs.

Table 8: Impact Of Increasing The Number Of Epochs In MMAD

Conf.
ID

MMAD Hidden
Layer Size

MMAD
Epochs

MMAD
AUC

Accuracy
(Th=0.5)

FPR
(Th=0.5)

16 [72, 72, 72, 72] 100 0.787 0.766 0.221

17 [72, 72, 72, 72] 1000 0.949 0.764 0.219

Note: AUC = Area Under Curve; FPR = False
positive rate; Th = threshold (0.5)

The optimizer algorithm is crucial for analysing
training's efficiency and efficacy (as measured by
performance indicators). This is done to ensure the
MMAD model's validation. We tested a few DL

optimizer techniques (Wang et al., 2019) [64].
Adadelta was the standard optimizer algorithm
used. In addition, we tested the adam and rmsprop
optimizers (Solanke & Patnaik, 2020; Wu et al.,
2022) while maintaining the other parameters. The
result showed higher accuracies and a lower FPR.

Table 9: Impact of alteration in optimizer of MMAD

Conf. ID MMAD Hidden Layer
Size

MMAD
Epochs

MMAD
Optimizer

MMAD
AUC

Acc
(Th = 0.5)

FPR
(Th = 0.5)

18 [72, 72, 72, 72] 1000 adadelta 0.936 0.844 0.125

19 [72, 72, 72, 72] 1000 adam 0.931 0.846 0.128

20 [72, 72, 72, 72] 1000 rmsprop 0.927 0.830 0.126

Note: AUC = Area Under Curve; FPR = False
positive rate; Th = threshold (0.5)

Batch size is another hyperparameter that is directly
related to both efficacy and efficiency. The standard
batch size obtained was greater than 1,500 with
consistent accuracies. We experimented with
various batch sizes in the following iteration, as

indicated in Table 10. Therefore, about six steps of
training passes were carried out for each epoch for
about 81902 training records. There was accuracy
in the learning rate and a low FPR, which indicates
the robustness of the MMAD model.

Table 10: Impact of alteration in MMAD batch size
Conf.
ID

MMAD Hidden
Layer Size

MMAD
Batch Size

MMAD
Optimizer

MMAD
AUC

Learni
ng
rate

Acc
(Th = 0.5)

FPR
(Th =
0.5)

21 [72, 72, 72, 72] 2097 rmsprop 0.911 0.001
1

0.775 0.123

22 [72, 72, 72, 72] 2310 rmsprop 0.909 0.001
7

0.770 0.128

Journal of Theoretical and Applied Information Technology
15th January 2024. Vol.102. No 1

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

162

23 [72, 72, 72, 72] 1585 rmsprop 0.825 0.001
4

0.765 0.131

Note: FPR = False positive rate; Th = threshold
(0.5)

5. DISCUSSION

Our findings demonstrate the importance of
combined DL methods to improve malware multi-
attack detection (MMAD) on Android-based
devices. To the best of our knowledge, MMAD is
the first model to combine highly sensitive DL
methods for Android with the capability of
detecting various types of malware. Interestingly, it
is vital to explain how the user can differentiate
between a true intrusion and a false positive, which
may be a concern. Following the MMAD learning
phase, sporadic false positives decrease in
frequency, and occasionally, detection may be
linked to them. In reality, every type of malware
that has been evaluated demonstrates aggressive
tendencies that result in repeated and multiple
detections within the third hidden layer of neurons.
This framework might be extended to the automatic
management of rare false positives or to guide the
user via a smart learning phase so MMAD can
rapidly learn during the detection process. When an
attack is initiated on the Android device as a result
of a new installation, the MMAD can be used to
initiate a new learning period for detection. Thus,
this is the way forward for modern cybersecurity
toward Android devices.
The level of detection techniques and detection
outcomes is superior to those of earlier android
anomaly-based detection systems (Dini et al., 2012
[25]; Da Costa and Moia, 2023 [21] ; Islam et al.,
2023) [32]. It is crucial to note that, in contrast to
past methods (Wang et al., 2020) [65] , the MMAD
model performs multi-attack detection at multi-
levels with specific target malware identifications.
This technique may be more successful at detecting
rapid Android behavioural changes. For instance, it
may be possible to mislead malicious application-
specific controls through MMAD hidden-layer
detections based on DL methods when used
independently, but they function robustly together
to detect multiple malwares.
Our results with 96.54% accuracy, 95.38%
precision, 92.65% recall, and a 94.66 F-score
showed that the MMAD approach is effective,
efficient, and simple to use to detect eleven types of
malware. These malwares are used in multi-attacks
or combinatorially with high aggressive intent to

hijack, harm, or steal information from Android
devices. The validation tests demonstrated that the
MMAD approach is capable of effectively
identifying the security concerns associated with
multi-attacks, such as the transfer of sensitive data
and components. The validation tests recognize the
components, malicious permissions, sensitive API
calls, and the intent filter using the detection
method proposed (Solanke & Patnaik, 2020 [58];
Wu et al., 2022) [68]. However, these methods do
not allow for the detection of sensitive information
transfers. In order to provide adequate model
coverage to activate malicious behaviours during
the active analysis of Android apps, test input
creation is required. MMAD can use a variety of
test input generation techniques, including static,
active (malicious with dynamism), etc. The static
approach is the most well-liked approach to input
creation and has been heavily utilised by
researchers (Alzaylaee et al., 2020; Almomani et
al., 2023 [9]; Singh et al., 2023) [57].

6. 6. CONCLUSION

This work provides MMAD as a framework that
combines DL, including DNN, RNN, CNN, MLP,
and E2E, for malware multi-attack detection on
Android devices. First, MMAD was combined
using bagging/bootstrap. Second, diverse datasets
from diverse sources containing both malware and
benign sources were used to model MMAD. Third,
the model was trained, followed by malware
detection and analysis. The experimental results
showed that MMAD had 96.54% accuracy and
95.38% precision in detecting different types of
malware. This supports precisely locating malicious
attacks with a minimum FPR. We showed that
MMAD performed efficiently in terms of accuracy
at three-hidden-layer detection. The results clearly
showed that MMAD achieved great accuracy,
outperforming the DL methods individually. To the
best of our knowledge, MMAD is the first model to
combine highly sensitive DL methods for Android
with the ability to detect different types of malware.
Moreover, MMAD significantly reduced the
number of FPRs by three times during simultaneous
malware detection.
A future study should include a thorough analysis
of the effects of concept drift on the classification
of Android malware as well as modifications to the
threshold in MMAD. The possibility of self-

Journal of Theoretical and Applied Information Technology
15th January 2024. Vol.102. No 1

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

163

adaptation for MMAD could be investigated as a
way to boost the effectiveness of DL approaches for
Android malware detection. Ant colony, or greedy
algorithm, can be used as a replacement for batch
so that it can automatically adapt to malware multi-
attack development and population drift. Using
additional DL, such as radial basis function
networks (RBFNs), self-organizing maps (SOMs),
and long short-term memory networks (LSTMs), to
carry out more thorough detection would be an easy
way to extend the MMAD model in this direction.

REFERENCES

[1] Abdel Ouahab IB, Bouhorma M, El Aachak L,
Boudhir AA. Towards a new cyberdefense
generation: proposition of an intelligent
cybersecurity framework for malware attacks.
Recent Advances in Computer Science and
Communications (Formerly: Recent Patents on
Computer Science). 2022 Oct 1;15(8):1026-42.

[2] Abdel Ouahab IB, Bouhorma M, El Aachak L,
Boudhir AA. Towards a new cyberdefense
generation: proposition of an intelligent
cybersecurity framework for malware attacks.
Recent Advances in Computer Science and
Communications (Formerly: Recent Patents on
Computer Science). 2022 Oct 1;15(8):1026-42.

[3] Akhtar MS, Feng T. Malware Analysis and
Detection Using Machine Learning Algorithms.
Symmetry. 2022 Nov 3;14(11):2304.

[4] Alahmadi BA, Mariconti E, Spolaor R,
Stringhini G, Martinovic I. BOTection: Bot
detection by building Markov Chain models of
bots network behavior. InProceedings of the
15th ACM Asia Conference on Computer and
Communications Security 2020 Oct 5 (pp. 652-
664).

[5] Alamro H, Mtouaa W, Aljameel S, Salama AS,
Hamza MA, Othman AY. Automated Android
Malware Detection Using Optimal Ensemble
Learning Approach for Cybersecurity. IEEE
Access. 2023 Jul 11.

[6] Alani MM, Awad AI. AdStop: Efficient flow-
based mobile adware detection using machine
learning. Computers & Security. 2022 Jun
1;117:102718.

[7] Albakri A, Alhayan F, Alturki N, Ahamed S,
Shamsudheen S. Metaheuristics with Deep
Learning Model for Cybersecurity and Android
Malware Detection and Classification. Applied
Sciences. 2023 Feb 8;13(4):2172.

[8] Aldhyani TH, Alkahtani H. Attacks to
automatous vehicles: A deep learning algorithm
for cybersecurity. Sensors. 2022 Jan

4;22(1):360.
[9] Almomani I, Alkhayer A, El-Shafai W. E2E-

RDS: Efficient End-to-End Ransomware
Detection System Based on Static-Based ML
and Vision-Based DL Approaches. Sensors.
2023 May 4;23(9):4467.

[10] Al-Rimy BA, Maarof MA, Alazab M, Alsolami
F, Shaid SZ, Ghaleb FA, Al-Hadhrami T, Ali
AM. A pseudo feedback-based annotated TF-
IDF technique for dynamic crypto-ransomware
pre-encryption boundary delineation and
features extraction. IEEE Access. 2020 Jul
29;8:140586-98.

[11] Alzaylaee MK, Yerima SY, Sezer S. DL-Droid:
Deep learning based android malware detection
using real devices. Computers & Security. 2020
Feb 1;89:101663.

[12] Aslan Ö, Aktuğ SS, Ozkan-Okay M, Yilmaz
AA, Akin E. A comprehensive review of cyber
security vulnerabilities, threats, attacks, and
solutions. Electronics. 2023 Mar
11;12(6):1333..

[13] Ben Abdel Ouahab I, Elaachak L, Bouhorma M.
Image-based malware classification using
multi-layer perceptron. InNetworking,
Intelligent Systems and Security: Proceedings of
NISS 2021 2022 (pp. 453-464). Springer
Singapore.

[14] Bhandari G, Lyth A, Shalaginov A, Grønli TM.
Distributed Deep Neural-Network-Based
Middleware for Cyber-Attacks Detection in
Smart IoT Ecosystem: A Novel Framework and
Performance Evaluation Approach. Electronics.
2023 Jan 6;12(2):298.

[15] Bhardwaj A, Goundar S. Keyloggers: silent
cyber security weapons. Network Security. 2020
Feb;2020(2):14-9.

[16] Bhat P, Dutta K. A multi-tiered feature selection
model for android malware detection based on
Feature discrimination and Information Gain.
Journal of King Saud University-Computer and
Information Sciences. 2022 Nov 1;34(10):9464-
77.

[17] Bhavitha S, Rao MC, Nancharaiah P, Suhasini
S. Continuous Digital System Analysis in
different System Softwares Using Keyloggers to
Validate the need of Security. In2023
International Conference on Computer
Communication and Informatics (ICCCI) 2023
Jan 23 (pp. 1-7). IEEE.

[18] Bhavitha S, Rao MC, Nancharaiah P, Suhasini
S. Continuous Digital System Analysis in
different System Softwares Using Keyloggers to
Validate the need of Security. In2023
International Conference on Computer

Journal of Theoretical and Applied Information Technology
15th January 2024. Vol.102. No 1

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

164

Communication and Informatics (ICCCI) 2023
Jan 23 (pp. 1-7). IEEE.

[19] Bose SS, Natarajan R, HL G, Flammini F,
Praveen Sundar PV. Iterative Reflect Perceptual
Sammon and Machine Learning-Based Bagging
Classification for Efficient Tumor Detection.
Sustainability. 2023 Mar 4;15(5):4602.

[20] Chen Y, Xie Y, Song L, Chen F, Tang T. A
survey of accelerator architectures for deep
neural networks. Engineering. 2020 Mar
1;6(3):264-74.

[21] Da Costa L, Moia V. A Lightweight and Multi-
stage Approach for Android Malware Detection
using Non-invasive Machine Learning
Techniques. IEEE Access. 2023 Jul 18.

[22] Dameff C, Tully J, Chan TC, Castillo EM,
Savage S, Maysent P, Hemmen TM, Clay BJ,
Longhurst CA. Ransomware attack associated
with disruptions at adjacent emergency
departments in the US. JAMA network open.
2023 May 1;6(5):e2312270-.

[23] De Arroyabe IF, Arranz CF, Arroyabe MF, de
Arroyabe JC. Cybersecurity capabilities and
cyber-attacks as drivers of investment in
cybersecurity systems: A UK survey for 2018
and 2019. Computers & Security. 2023 Jan
1;124:102954.

[24] de Carvalho Junior A, Angelico BA, Justo JF, de
Oliveira AM, da Silva Filho JI. Model reference
control by recurrent neural network built with
paraconsistent neurons for trajectory tracking of
a rotary inverted pendulum. Applied Soft
Computing. 2023 Jan 1;133:109927.

[25] Dini G, Martinelli F, Saracino A, Sgandurra D.
MADAM: a multi-level anomaly detector for
android malware. In International Conference
on Mathematical Methods, Models, and
Architectures for Computer Network Security
2012 Oct 17 (pp. 240-253). Berlin, Heidelberg:
Springer Berlin Heidelberg.

[26] Du J, Raza SH, Ahmad M, Alam I, Dar SH,
Habib MA. Digital Forensics as Advanced
Ransomware Pre-Attack Detection Algorithm
for Endpoint Data Protection. Security and
Communication Networks. 2022 Jul 6;2022:1-6.

[27] Florackis C, Louca C, Michaely R, Weber M.
Cybersecurity risk. The Review of Financial
Studies. 2023 Jan 1;36(1):351-407.

[28] Gibert D, Mateu C, Planes J. The rise of machine
learning for detection and classification of
malware: Research developments, trends and
challenges. Journal of Network and Computer
Applications. 2020 Mar 1;153:102526.

[29] He Z, Rezaei A, Homayoun H, Sayadi H. Deep
neural network and transfer learning for

accurate hardware-based zero-day malware
detection. InProceedings of the Great Lakes
Symposium on VLSI 2022 2022 Jun 6 (pp. 27-
32).

[30] Hu R, Wu Z, Xu Y, Lai T, Xia C. A multi-attack
intrusion detection model based on Mosaic
coded convolutional neural network and
centralized encoding. Plos one. 2022 May
5;17(5):e0267910.

[31] Hu R, Wu Z, Xu Y, Lai T. Multi-attack and
multi-classification intrusion detection for
vehicle-mounted networks based on mosaic-
coded convolutional neural network. Scientific
Reports. 2022 Apr 15;12(1):6295.

[32] Islam R, Sayed MI, Saha S, Hossain MJ, Masud
MA. Android malware classification using
optimum feature selection and ensemble
machine learning. Internet of Things and Cyber-
Physical Systems. 2023 Jan 1;3:100-11.

[33] Kanaker H, Karim NA, Awwad SA, Ismail NH,
Zraqou J. Trojan Horse Infection Detection in
Cloud Based Environment Using Machine
Learning. International Journal of Interactive
Mobile Technologies. 2022 Dec 15;16(24).

[34] Kasongo SM. A deep learning technique for
intrusion detection system using a Recurrent
Neural Networks based framework. Computer
Communications. 2023 Feb 1;199:113-25.

[35] Kaushik D, Garg M, Gupta A, Pramanik S.
Application of machine learning and deep
learning in cybersecurity: An innovative
approach. InAn Interdisciplinary Approach to
Modern Network Security 2022 May 2 (pp. 89-
109). CRC Press.

[36] Kaushik P. Unleashing the Power of Multi-
Agent Deep Learning: Cyber-Attack Detection
in IoT. International Journal for Global
Academic & Scientific Research. 2023 Jun
30;2(2):23-45.

[37] Kouliaridis V, Barmpatsalou K, Kambourakis
G, Chen S. A survey on mobile malware
detection techniques. IEICE Transactions on
Information and Systems. 2020 Feb
1;103(2):204-11.

[38] Li B, Hu W, Qu X, Li Y. A Novel Multi-Attack
IDS Framework for Intelligent Connected
Terminals Based on Over-the-Air Signature
Updates. Electronics. 2023 May
17;12(10):2267.

[39] Mahdavifar S, Kadir AF, Fatemi R, Alhadidi D,
Ghorbani AA. Dynamic android malware
category classification using semi-supervised
deep learning. In2020 IEEE Intl Conf on
Dependable, Autonomic and Secure
Computing, Intl Conf on Pervasive Intelligence

Journal of Theoretical and Applied Information Technology
15th January 2024. Vol.102. No 1

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

165

and Computing, Intl Conf on Cloud and Big
Data Computing, Intl Conf on Cyber Science
and Technology Congress
(DASC/PiCom/CBDCom/CyberSciTech) 2020
Aug 17 (pp. 515-522). IEEE.

[40] Malek NH, Yaacob WF, Wah YB, Md Nasir SA,
Shaadan N, Indratno SW. Comparison of
ensemble hybrid sampling with bagging and
boosting machine learning approach for
imbalanced data. Indones. J. Elec. Eng. Comput.
Sci. 2023 Jan;29:598-608.

[41] Miikkulainen R, Liang J, Meyerson E, Rawal A,
Fink D, Francon O, Raju B, Shahrzad H,
Navruzyan A, Duffy N, Hodjat B. Evolving
deep neural networks. InArtificial intelligence
in the age of neural networks and brain
computing 2019 Jan 1 (pp. 293-312). Academic
Press.

[42] Mijwil M, Salem IE, Ismaeel MM. The
Significance of Machine Learning and Deep
Learning Techniques in Cybersecurity: A
Comprehensive Review. Iraqi Journal For
Computer Science and Mathematics. 2023 Jan
7;4(1):87-101.

[43] Mijwil M, Unogwu OJ, Filali Y, Bala I, Al-
Shahwani H. Exploring the Top Five Evolving
Threats in Cybersecurity: An In-Depth
Overview. Mesopotamian journal of
cybersecurity. 2023 Mar 6;2023:57-63..

[44] Mohammadzad M, Karimpour J. Using rootkits
hiding techniques to conceal honeypot
functionality. Journal of Network and Computer
Applications. 2023 May 1;214:103606.

[45] Neprash, Hannah T., Claire C. McGlave, Dori
A. Cross, Beth A. Virnig, Michael A. Puskarich,
Jared D. Huling, Alan Z. Rozenshtein, and
Sayeh S. Nikpay. "Trends in ransomware
attacks on US hospitals, clinics, and other health
care delivery organizations, 2016-2021."
In JAMA Health Forum, vol. 3, no. 12, pp.
e224873-e224873. American Medical
Association, 2022.

[46] Novikova J, Dušek O, Rieser V. The E2E
dataset: New challenges for end-to-end
generation. arXiv preprint arXiv:1706.09254.
2017 Jun 28.

[47] Pai V, Rao AS, Devidas, Prapthi B. An
Intelligent Behavior-Based System to
Recognize and Detect the Malware Variants
Based on Their Characteristics Using Machine
Learning Techniques. InInternational
Conference on Advanced Network
Technologies and Intelligent Computing 2022
Dec 22 (pp. 73-88). Cham: Springer Nature
Switzerland.

[48] Pan, X., Yamaguchi, S., Kageyama, T., &
Kamilin, M. H. B. (2022). Machine-learning-
based white-hat worm launcher in botnet
defense system. International Journal of
Software Science and Computational
Intelligence (IJSSCI), 14(1), 1-14.

[49] Qabalin MK, Naser M, Alkasassbeh M. Android
spyware detection using machine learning: a
novel dataset. Sensors. 2022 Aug
2;22(15):5765.

[50] Ozdamli, F., Ababneh, M., Karagozlu, D., &
Aljarrah, A. (2022). Development and Testing
of Performance Scale Application as an
Effective Electronic Tool to Enhance Students’
Academic Achievements. Electronics, 11(23),
4023.

[51] Revay G. An Overview of the Increasing Wiper
Malware Threat. Threat Research. FortiGuard
Labs. April 28, 2022.

[52] Sallow AB, Sadeeq M, Zebari RR, Abdulrazzaq
MB, Mahmood MR, Shukur HM, Haji LM. An
investigation for mobile malware behavioral and
detection techniques based on android platform.
IOSR Journal of Computer Engineering (IOSR-
JCE). 2020;22(4):14-20.

[53] Sarker IH. Deep cybersecurity: a comprehensive
overview from neural network and deep
learning perspective. SN Computer Science.
2021 May;2(3):154.

[54] Shaikh FA, Siponen M. Information security
risk assessments following cybersecurity
breaches: The mediating role of top
management attention to cybersecurity.
Computers & Security. 2023 Jan 1;124:102974..

[55] Sharma A, Malacaria P, Khouzani MH.
Malware detection using 1-dimensional
convolutional neural networks. In2019 IEEE
European symposium on security and privacy
workshops (EuroS&PW) 2019 Jun 17 (pp. 247-
256). IEEE.

[56] Singh J, Singh J. Malware classification using
multi-layer perceptron model. InInternational
Conference on Innovative Computing and
Communications: Proceedings of ICICC 2020,
Volume 2 2021 (pp. 155-168). Springer
Singapore.

[57] Singh P, Borgohain SK, Sarkar AK, Kumar J,
Sharma LD. Feed-forward deep neural network
(FFDNN)-based deep features for static
malware detection. International Journal of
Intelligent Systems. 2023 Feb 20;2023.

[58] Solanke AV, Patnaik GK. Intrusion detection
using deep learning approach with different
optimization. International Journal for Research
in Applied Science and Engineering

Journal of Theoretical and Applied Information Technology
15th January 2024. Vol.102. No 1

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

166

Technology. 2020;8(5):128-34.
[59] Tahir R. A study on malware and malware

detection techniques. International Journal of
Education and Management Engineering. 2018
Mar 1;8(2):20.

[60] Thakkar A, Lohiya R. Fusion of statistical
importance for feature selection in Deep Neural
Network-based Intrusion Detection System.
Information Fusion. 2023 Feb 1;90:353-63.

[61] Tuor A, Kaplan S, Hutchinson B, Nichols N,
Robinson S. Deep learning for unsupervised
insider threat detection in structured
cybersecurity data streams. arXiv preprint
arXiv:1710.00811. 2017 Oct 2.

[62] Varlioglu S, Elsayed N, ElSayed Z, Ozer M. The
dangerous combo: Fileless malware and
cryptojacking. SoutheastCon 2022. 2022 Mar
26:125-32.

[63] Velasco L, Signorelli M, De Dios OG,
Papagianni C, Bifulco R, Olmos JJ, Pryor S,
Carrozzo G, Schulz-Zander J, Bennis M,
Martinez R. End-to-end intent-based
networking. IEEE communications Magazine.
2021 Oct;59(10):106-12.

[64] Wang W, Zhao M, Wang J. Effective android
malware detection with a hybrid model based on
deep autoencoder and convolutional neural
network. Journal of Ambient Intelligence and
Humanized Computing. 2019 Aug 1;10:3035-
43.

[65] Wang Z, Han X, Kong W, Piao Y, Hou G,
Watanabe M, Fukuda A. A Multi-Strategy
Combination Framework for Android Malware
Detection Based on Various Features. In2020
International Symposium on Theoretical
Aspects of Software Engineering (TASE) 2020
Dec 11 (pp. 193-200). IEEE.

[66] Wichmann FA, Geirhos R. Are Deep Neural
Networks Adequate Behavioral Models of
Human Visual Perception?. Annual Review of
Vision Science. 2023 May 26;9.

[67] Wilberforce T, Alaswad A, Garcia–Perez A, Xu
Y, Ma X, Panchev C. Remaining useful life
prediction for proton exchange membrane fuel
cells using combined convolutional neural
network and recurrent neural network.
International Journal of Hydrogen Energy. 2023
Jan 1;48(1):291-303.

[68] Wu H. Mask classification using deep learning
methods. InInternational Conference on Cloud
Computing, Performance Computing, and Deep
Learning (CCPCDL 2022) 2022 Oct 13 (Vol.
12287, pp. 504-509). SPIE.

[69] Xin Y, Kong L, Liu Z, Chen Y, Li Y, Zhu H,
Gao M, Hou H, Wang C. Machine learning and

deep learning methods for cybersecurity. Ieee
access. 2018 May 15;6:35365-81.

[70] Yadav CS, Singh J, Yadav A, Pattanayak HS,
Kumar R, Khan AA, Haq MA, Alhussen A,
Alharby S. Malware analysis in iot & android
systems with defensive mechanism. Electronics.
2022 Jul 28;11(15):2354.

[71] Yan S, Ren J, Wang W, Sun L, Zhang W, Yu Q.
A Survey of Adversarial Attack and Defense
Methods for Malware Classification in Cyber
Security. IEEE Communications Surveys &
Tutorials. 2022 Nov 28..

[72] Zhang T, Fu Q, Wang H, Liu F, Wang H, Han
L. Bagging-based machine learning algorithms
for landslide susceptibility modeling. Natural
hazards. 2022 Jan;110(2):823-46.

[73] Zhang T, Quevedo RP, Wang H, Fu Q, Luo D,
Wang T, de Oliveira GG, Guasselli LA, Renno
CD. Improved tree-based machine learning
algorithms combining with bagging strategy for
landslide susceptibility modeling. Arabian
Journal of Geosciences. 2022 Jan;15(2):183.

[74] Zhong Z, Gao Y, Zheng Y, Zheng B, Sato I.
Real-world video deblurring: A benchmark
dataset and an efficient recurrent neural
network. International Journal of Computer
Vision. 2023 Jan;131(1):284-301.

[75] Zhu HJ, Li Y, Wang LM, Sheng VS. A Multi-
Model Ensemble Learning Framework for
Imbalanced Android Malware Detection. Expert
Systems with Applications. 2023 Jul 20:120952.

