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ABSTRACT 

Android-based devices are currently a prime target for cyber-attackers. New malware is being developed and 
released, with devastating effects on sensitive information lost and ransom payments. Android developers 
and users continue to look for holistic methods of detecting all types of malware instead of individual ones. 
The aim of this study is to test the combined impact of deep learning (DL) methods on detecting malware 
with multi-attack features on Android devices. A malware multi-attack detector (MMAD) combined DL 
methods: deep neural networks (DNN), recurrent neural networks (RNN), convolutional neural networks 
(CNN), multilayer perceptron’s (MLP), and end-to-end (E2E). Each of these methods detects specific types 
of malware. Different types of malware attacks, including benign ones, were used to train and test the MMAD 
model. Experimental results indicated that the proposed MMAD model was efficient in detecting eleven 
types of malware attacks with a high and constant multi-classification capability. Our results with 96.54% 
accuracy, 95.38% precision, 92.65% recall, and a 94.66 F-score showed that the MMAD approach is 
effective, efficient, and simple to use. 
Keywords:  Android Devices; Malware Multi-Attack Detectors; Deep Learning Methods.  
 
 

1. INTRODUCTION 

Cybersecurity attacks are malicious acts carried out 
by hackers, cyberpunks, crackers, keyloggers, and 
hacktivists with the dangerous intent of stealing 
data, breaching, or interrupting computing systems 
(De Arroyabe et al., 2023) [23]. These 
cybercriminals unleashed attacks using single or 
multiple approaches against a  target device (Shaikh 
& Siponen, 2023) [54]. A malicious cyber-attack 
may steal sensitive information, disable devices, or 
use a compromised computer as a launching pad. 
The attacks include malware, denial of service, man 
in the middle, and injection, which can be difficult 
to detect through simple methods (Florackis et al., 
2023) [27]. 
The most prevalent form of cyberattack is malware. 
Malware is any harmful software, including viruses, 
spyware, trojan horses, worms, backdoors, and 
ransomware (Mijwil et al., 2023) [42]. With mobile 
devices becoming more and more important, 
cybercriminals are concentrating more on them. As 

a result, the range of cyber-attacks aimed at these 
devices has increased nowadays (Aslan et al., 2023) 
[12]. There are various ways to target Android 
devices. This covers potential malicious software, 
network-level intrusions, and the use of mobile OS 
and device susceptibilities of the mother systems 
(Ozdamli et al., 2022 [50] , Yan et al., 2022; Aslan 
et al., 2023) [12]. New malware is being discovered 
every day. Applications for Android are frequently 
used to handle sensitive data, making them major 
targets of malware attacks. 
The increased level of information sharing and open 
interface exposure between ICTs and the public has 
increased malicious assaults in both intra-terminal 
and inter-terminal networks. Service interruptions, 
information outflows, and other problems could 
result from such attacks. Attacks with multiple 
stages are carried out progressively in several steps. 
Each stage of the attack results in the attackers 
learning more about the target system, enabling the 
next stage of the attack (Hu et al., 2022) [22]. In the 
beginning, the attacker tries to gather data and take 
advantage of the target system's vulnerabilities. 
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Subsequently, the attacker tries to sneak inside the 
target system and compromise its resources using 
multi-attack accessibility (Li et al., 2023) [75]. 
Fortifying the Android operating system against 
such cyberattacks is possible using a variety of 
malware detection techniques. These malware 
detection approaches mostly use features contained 
in Android applications (Bhat & Dutta, 2022) [16]. 
The Android defence system is adversely affected 
when the analytics data keeps expanding (Wang et 
al., 2020) [65]. Multi-approach detection with 
improved accuracy considering large data is 
required. 
Deep learning is currently used in cybersecurity to 
protect user privacy, recognize unusual malware, 
and complicate numerous attacks (Xin et al., 2018) 
[69]. It rapidly detects malware in files and keeps 
track of malware risks (Sarker, 2021) [53]. In 
addition to deep learning functions for 
cybersecurity, deep learning algorithms are better at 
detecting and classifying attacks because they are 
independent of any well-known risk patterns. As a 
result, it can perform better than other computing 
methods in terms of accuracy and computing time. 
Deep learning methods can effectively extract the 
data features and apply them to detect malware 
from cyber attackers (Tuor et al., 2017 [61] ; Mijwil 
et al., 2023) [42]. It has been suggested that the 
combination of these deep learning methods can be 
robust and resilient against multiple malware 
detections, particularly from attackers using 
malware with multiple pathways. 
High-potential malware can be difficult to spot for 
two reasons (Akhtar & Feng, 2022) [3]. The first is 
that it can be challenging to tell whether software is 
harmful. The second is that malware employs 
technical techniques to make it more challenging to 
detect. Antivirus software reportedly fails to 
identify 35% of malware (Islam et al., 2023) [32]. 

1.1.  Problem Statement 

There has not been reported information on the 
combination of deep learning methods to detect 
malware with multiple attacks that are difficult to 
discover. Adware, bots, fileless malware, 
keyloggers, mobile malware, ransomware, rootkits, 
spyware, trojans, wiper malware, and worms are 
difficult to detect due to their evasiveness (Tahir et 
al., 2018) [59]. Malware can change into various 
versions or use multiple pathways, which decreases 
the likelihood that they will be detected owing to 
the variances in their signatures (Pai et al., 2022) 
[47]. Some malware executes code that fingerprints 
the environment to avoid detection, while others 
can confuse automated tools' detection algorithms 
due to their multi-attack features (Du et al., 2022) 

[16]. Malware can do this by switching the server it 
uses to avoid being discovered by technology. This 
occurs when malware only operates at specific 
moments or in response to specific user actions, 
allowing it to operate at susceptible times like the 
boot process while dormant the rest of the time, 
masking internal data so that malware cannot be 
found by automated methods (Aldhyani & 
Alkahtani, 2022) [8]. 
information-hiding strategies, such as spyware and 
fileless malware, which runs in memory rather than 
using files and makes use of already-existing 
system tools to commit crimes (Kaushik et al., 
2023) [36], while ransomware can spread via the 
network and files, affecting both software and 
hardware (Zhu et al., 2023) [75]. These attacks have 
increased in frequency recently, accounting for 
33% of malware attacks in 2023, while 493.33 
million ransomware attacks were reported in 2022 
(Neprash et al., 2022 [45] ; Dameff et al., 2023) 
[22]. Over 70% of these attacks are carried out by 
cyber-attackers using multi-attack strategies that 
are difficult to detect (Dameff et al., 2023) [22]. 
Even though these attacks are difficult to carry out, 
they are becoming more common; therefore, a 
robust multi-faceted approach is required to tackle 
this problem. 
The aim of this study is to test the combined impact 
of deep learning methods on detecting malware 
with multi-attack features on Android devices. To 
achieve this, a detection model combining deep 
learning would need to be created to detect attacks 
when the Android system is subject to multiple 
intrusions. 

1.2.  Contribution 

The contribution of this work includes: 
i. We have proposed combined deep learning 

methods, including DNN, RNN, CNN, MLP, and 
E2E models, in a structured manner for malware 
detection. 

ii. Each model detects some specific types of malware, 
followed by aggregate detection for a holistic 
analysis of the multiple attacks. 

iii. The model was trained and tested using datasets 
including multi malicious attack types instead of 
single dataset, making it capable of recognizing any 
combination of attacks and categorizing each 
clearly. 

iv. Holistic detection of malware using holistic deep 
learning approaches 
 

2. RELATED WORKS 
2.1.  Cybersecurity  

Cyber-attacks and data breaches can affect any 
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network and Android devices. Attacks can 
potentially completely damage the Android system, 
and sensitive information can be lost (Abdel 
Ouahab et al., 2022) [1][2]. Information theft, 
monetary gain, espionage, or sabotage are a few 
examples of the attacker's motivations (Mijwil et 
al., 2023) [42]. 
Bhandari et al. (2023) [14] used distributed deep 
neural network-based middleware for cyber-attacks 
detection in the smart IoT ecosystem. The deep 
neural network (DNN) model used in IoT devices is 
subjected to performance and concurrency testing 
in order to confirm the viability of in-production 
deployment. On each of the used datasets, the ML 
models were able to show nearly 93 percent 
detection accuracy and a 92 percent f1-score. The 
models' output demonstrates that the system 
properly and effectively detects malware and 
attacks in smart environments. 
An Android malware detection model called 
RHSODL-AMD is presented by Albakri et al. 
(2023) [7]. The method described comprises 
identifying the Application Programming Interface 
(API) calls and the most important permissions, 
which produces effective differentiation between 
legitimate software and malicious software. As a 
result, a strategy called RHSO-FS was developed to 
enhance the classification outcomes. The Adamax 
optimizer with attention recurrent autoencoder 
(ARAE) model is also used to identify malware on 
Android. The RHSODL-AMD technique's 
experimental validation on the Andro-AutoPsy 
dataset demonstrates its promising performance, 
with a maximum accuracy of 99.05 percent. 
The Optimal Ensemble Learning Approach for 
Cybersecurity (AAMD-OELAC) method is 
presented by Alamro et al. (2023) [5]. The 
automatic classification and identification of 
Android malware is the primary goal of the AAMD-
OELAC method. The AAMD-OELAC technique 
uses three machine learning (ML) models—the 
kernel extreme learning machine (KELM), 
regularised random vector functional link neural 
network, and least square support vector machine—

for the identification of Android malware 
(RRVFLN). Last, the hunter-prey optimization 
(HPO) method is used to tune the three DL models' 
parameters for better malware detection outcomes. 
The simulation results demonstrated how AAMD-
OELAC technology outperforms other currently 
employed techniques.  
Abdel Ouahab et al. (2022) [1][2],  proposed an 
intelligent cybersecurity framework specialized in 
malware attacks in a layered architecture. The 
framework core layer processes unknown datasets 
of harmful software after receiving the unknown 
malware and using the malware visualisation 
approach. The algorithms K-Nearest Neighbor, 
Decision Tree, and Random Forest are used to 
group malware data into families. The suggested 
Intelligent Cybersecurity Framework is 
implemented in an intuitive graphic user interface. 
The random forest method performs the 
classification task with the highest level of 
precision (97.6%). 

2.2.  Malware Attacks on Android 

The most frequent type of threat to Android is 
malware. Android malware is defined as malware 
that particularly targets the Android operating 
system and damages or steals data from mobile 
devices running Android (Bhat & Dutta, 2022 [16] 
; Albakri et al., 2023) [7]. Malware can also 
sneakily install itself without the user's knowledge 
or agreement by exploiting flaws in operating 
systems or web browsers (Da Costa & Moia, 2012). 
Once installed, malware has the ability to track user 
activity, communicate sensitive information to the 
attacker, help the perpetrator breach other network 
targets, and even make the user's device a member 
of a botnet that the attacker uses for nefarious 
purposes (Varlioglu et al., 2022) [62]. Trojans, 
spyware, adware, ransomware, worms, botnets, and 
backdoors are the classifications given to these 
malware (Gibert et al., 2020; Mahdavifar et al., 
2020) [39]. Malware is typically categorised by 
researchers into sub-types, as shown in Table 1. 
 

Table 1: categorisation of malwares and their target 

effect 
Type Target Effect Real-World example Reference 

Ransomware Prevents the victim from 
accessing data until the ransom is 
paid  

RYUK Dameff et al. 
(2023)[22] 

Fileless 
Malware 

Alters native OS files  Astaroth Varlioglu et al. 
(2022) [62] 
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Spyware Gathers information on user task 
without the user's awareness  

DarkHotel Qabalin et al. 
(2022) [49] 

Adware Operates undesirable ads Fireball Alani et al. (2022) 
[6] 

Trojans Masquerades itself as wanted 
code 

Emotet Kanaker et al. 
(2022) [33] 

Worms Replicates itself to spread within 
a network  

Stuxnet Pan et al. (2022) 
[48] 

Rootkits Provides hackers access to a 
victim's device remotely.  

Zacinlo Mohammadzad & 
Karimpour (2023) 
[44] 

Keyloggers Observes user's keystrokes  Olympic Vision Bhardwaj & 
Goundar (2020) 
[15] 

Bots Unleashes a massive barrage of 
attacks  

Echobot Alahmadi et al. 
(2020) [4] 

MobileMalware Infects mobile devices Triada Kouliaridis et al. 
(2020); Sallow et 
al. (2020) [37] 

Wiper Malware Erases user information in a way 
that makes it unrecoverable.  

WhisperGate Revay (2022) [51] 

 
2.3.  Multi-attack 

Hu et al. (2022) [22], proposed a detection system 
for intrusions involving diverse combinations of 
attacks with multi-classification capacity based on 
the mosaic-coded convolution neural network. The 
one-dimensional CAN ID was transformed into a 
mosaic-like two-dimensional data grid for the CNN 
in order to efficiently extract the data characteristics 
and preserve the temporal relationships between the 
CAN IDs. They trained and tested the model using 
four different attack types in all feasible 
combinations. In order to simplify the model, the 
autoencoder was also utilised to decrease the data's 
dimensionality. The proposed method was 
successful in detecting all forms of attack 
combinations and had a high and stable multi-
classification capacity. 
Li et al. (2023) [75] use a CNN based on an auto-
encoder to accomplish multi-attack detection, 
which ensures the detection accuracy of multi-
attacks with the multiple classification function. 
They assessed the system using four different types 
of actual ICT attack data and four popular IDS 
techniques, and we showed that our framework 
outperformed all benchmarks in terms of accuracy, 
recall, precision, and F1-score. The finding showed 
a significant step toward developing an IDS that can 

identify multi-attacks in both intra-terminal and 
inter-terminal networks. 
A framework for multiple strategy combinations is 
presented by Wang et al. (2020) [65]. Five different 
static feature types were used to categorise Android 
applications. They employ three filter-based feature 
selection techniques to obtain the top-k features that 
are most informative in order to increase 
classification accuracy and decrease overfitting. 
The applications represented by the feature subsets 
are then fed into five classification algorithms to 
create classifiers. Finally, the classification 
outcomes were estimated using either hard voting 
or soft voting. The experimental findings 
demonstrate that the method can achieve above 98 
percent accuracy, precision, recall, and F-score. The 
technology offers the highest malware detection 
rate of 98.75 percent when compared to other 
approaches currently in use. 
The method proposed by Da Costa and Moia (2023) 
[21] for detecting Android malware consists of a 
collection of specific-type detectors, each of which 
does a multi-stage analysis based on rules and ML 
techniques at various stages of the application cycle 
(before and after its installation). The strategy also 
differs from cutting-edge solutions in that it is non-
invasive because it uses a method to get application 
functionalities without violating the licences and 
conditions of use of those programmes. The 
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findings showed that the concept offers a better 
identification method and is three times faster and, 
in some situations, ten times less CPU-intensive 
than other methods for classifying applications. 
A multi-tiered feature selection technique is 
presented by Bhat and Dutta (2022) [16] , and it was 
used to find important features that will help 
malware detection methods be more accurate. To 
classify the chosen feature set, the proposed method 
uses five ML algorithms. The best static feature set 
(OSFS) and most significant features (MIFs) are 
determined by each ML method. Random Forest 
classification, which has a 96.28 percent accuracy 
rate, is the result of rigorous testing and research.  
A Multi-level Anomaly Detector for Android 
Malware (MADAM) was proposed by Dini et al. 
(2012) [20]. MADAM uses ML techniques to 
discriminate between normal and dangerous actions 
while simultaneously monitoring Android at the 
kernel and user levels to find true malware 
infections. The first version of MADAM can 
recognise a variety of genuine malware that has 
been observed in the wild. Due to the limited 
number of false positives produced after the 
learning phase, MADAM has no impact on the 
usage of the device. 
 

2.4.  Deep Learning Methods  

Android devices and network resources are harmed 
by malicious malware. Many deep learning 
algorithms are used for malware detection. Neural 
networks and other deep learning methods have 
recently been used in many different fields. The 
detection of Android malware has been effectively 
accomplished using deep learning models 
(Mahdavifar et al., 2020) [39]. The architectures 
utilise the unique characteristics of the domains 
they are used in to increase classification accuracy 
(Kaushik et al., 2022) [35]. 
 

2.4.1. Deep Neural Network (DNN) 

Malware classification can be done using deep 
neural networks (DNNs), which are based on 
standard feed-forward neural network design (He et 
al., 2022). DNNs are usually feed-forward networks 
(FFNNs), in which data goes from the input layer to 
the output layer without going backward and the 
links between the layers are only ever in the forward 
direction (Singh et al., 2023) [57]. DNNs can be 
used to detect malware at different levels and are 
widely used in applications that require safety. 
DNNs have a huge number of parameters that are 
tuned by the training process in addition to an 
architecture that shares certain similarities with 

conventional software programmes (Miikkulainen 
et al., 2019) [41]. Any strategy for testing DNNs 
must take into account the special characteristics of 
DNNs, such as the semantic relationship between 
layers, the ReLU (Rectified Linear Unit) activation 
functions, and the syntactic connections between 
neurons in adjacent layers (Chen et al., 2020) [41]. 

 
DNNs are computational models made up of 
numerous small processing units (similar to 
neurons) stacked in interconnected layers and 
operating concurrently (Wichmann & Geirhos, 
2023). Simple neural networks include two levels: 
an input layer and an output layer. Deep neural 
networks have multiple layers stacked on top of 
each other. Training is the process through which a 
DNN learns certain tasks and determines the 
strength of connections between its units (Thakkar 
& Lohiya, 2023). The trained DNN is then used to 
carry out the identical task on brand-new inputs. 
Studies have demonstrated that DNNs outperform 
all other models in predicting human perceptual 
similarity judgments and accounting for brain 
activity in primate sensory cortices (Miikkulainen 
et al., 2019; Chen et al., 2020) [41]. 
 

2.4.2. Recurrent Neural Network (RNN) 

RNN functions better with input, which must be 
processed consecutively. The structural properties 
are present in the binary indicator vector utilised to 
represent Android applications (Kasongo et al., 
2023) [34]. RNNs have the ability to process input 
classifications by using their internal state 
(memory). They can be used for tasks such as 
unsegmented script recognition or speech 
recognition (Wilberforce et al., 2023) [67]. RNNs 
are also susceptible to issues like the long-term 
dependency/vanishing gradient problem, in which 
information rapidly decays over time (Zhong et al., 
2023) [74]. In fact, the neuron does not lose weight, 
whether it reaches a value of 0 or 1,000,000. 
However, since the weight is what stores the 
knowledge from the past in this situation, the 
preceding condition will not be very instructive (de 
Carvalho Junior et al., 2023) [24]. A time-based 
approach to FFNN is used by recurrent neural 
networks (RNN). The connections in this neural 
network span both passes and time, indicating that 
it is not stateless (Singh et al., 2023) [57]. 
 

2.4.3. Convolutional Neural Network (CNN) 

CNN, a subclass of deep neural networks, is 
frequently used to examine visual data. They also 
have applications for speech recognition, video 
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interpretation, malware detection, and natural 
language processing. Sharma et al. (2019) [55]. 
introduce a 1-dimensional CNN-based malware 
detection solution that is extremely accurate and 
effective. When a binary file is input, the system 
determines if it is malicious or benign. The binaries 
undergo just a little pre-processing, and network 
training is used to uncover characteristics. The 
recursive learning process that occurs when a neural 
network algorithm identifies malware or develops a 
likelihood to render software "infected" The use of 
1-dimensional convolutions distinguishes this 
method from previous CNN-based systems, and it 
provides important advantages for the detector. 
Al-Rimy et al. (2020) [10], constructed a TFIDF-
based standard malware detector in order to 
compare the proposed CNN detector with advanced 
methods. Experiments reveal enhanced accuracy of 
the proposed CNN detector while maintaining 
comparable training times. On a publicly accessible 
dataset of 11130 binaries, the system is also 
contrasted with the present embedding-based CNN 
detector. The approach performs better than 
embedding-based CNN in terms of accuracy and 
training time. 
 

2.4.4. Multilayer Perceptron (MLP)  

A feedforward artificial neural network class called 
a MLP was developed by Ben Abdel Ouahab et al. 
(2022) [1][2] for image-based malware 
classification, which consists of a number of fully 
connected layers. Every additional layer is made up 
of a group of nonlinear functions that represent the 
weighted total of all the outputs from the layer 
before it, all of which are connected. They 
experiment with various topologies by altering 
hidden layers, neurons, and activation functions in 
order to achieve a high degree of accuracy. The 
experiment achieved a precision of 97.6%. The 
multi-layer perceptron technique is an effective 
malware classifier with the chosen 
hyperparameters. 
Singh and Singh (2020) [56] employed an MLP 
model with dynamic characteristics to binary 
classify benign and malicious files. The Cuckoo 
sandbox is used to execute both malicious and 
benign samples in the dynamic analysis 
environment. The thorough behavioural reports 
produced by Cuckoo Sandbox include a variety of 
runtime features such as API calls, registry 
modifications, and network activity. These features 
are looked at and signified as a feature set for 
training. After that, the training feature set is used 
to train a multi-layer perceptron model. The multi-
layer perceptron model is trained using various 

activation functions, loss functions, and alpha 
parameter values in order to create the best malware 
classifier. The suggested malware classifier 
achieved a binary classification accuracy of 99.2 
percent using the Adam loss function. 
 

2.4.5. End-to-end (E2E)  

E2E is a subset of DL that eliminates manual feature 
engineering by employing DL models to transform 
the raw inputs into the required outputs and 
predictions (Novikova et al., 2017) [46]. E2E DL 
has recently gained a lot of traction in practically all 
cutting-edge AI applications. This method has 
shown best-in-class results when applied to 
malware classification and detection (Almomani et 
al., 2023). The domain of virus detection in portable 
executables (PE) has demonstrated good potential 
for E2E DL architectures (Velasco et al., 2021). 
However, the DL classification has been applied 
less liberally and not in an E2E way in the case of 
Android malware. 
An effective end-to-end ransomware detection 
system (E2E-RDS) is presented by Almomani et al. 
(2023) [9] that fully combines the available 
ransomware detection (RD) techniques. As with 
static-based RD, E2E-RDS relies on reverse 
engineering the ransomware code to parse and 
extract the key elements for prediction. 
Additionally, just like with vision-based RD, E2E-
RDS can take a ransomware executable, transform 
it into an image, and then analyze it. The collected 
characteristics from the static-based RD technique 
are sent to eight different ML models to evaluate 
how well they can detect objects. The binary 
executable files of both benign and ransomware 
apps are transformed into 2D visual pictures using 
the vision-based RD technique. Then, in order to 
distinguish between ransomware apps and 
legitimate apps, these photos are sent to 19 distinct 
CNN models using the significant benefits of fine-
tuning (FT) and transfer learning (TL) techniques. 
The primary advantage of the vision-based method 
is that it can accurately and efficiently detect and 
identify ransomware without the need for data 
augmentation or laborious feature extraction 
procedures. A recently compiled balanced dataset 
made up of 500 benign and 500 ransomware apps 
was used to conduct extensive simulations and 
performance assessments utilising several 
evaluation criteria for the proposed E2E-RDS. The 
results show that, in comparison to other evaluated 
ML models, the static-based RD technique 
employing the Ada Boost model showed high 
classification accuracy, reaching 97 percent. While 
the classification accuracy of the vision-based RD 
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method was high, reaching 99.5% for the FT 
ResNet50 CNN model, 
 

2.5.  Bagging/ bootstrap aggregation  
Multiple iterations of the same deep learning model 
are possible. The several iterations with varying 
degrees of enhancement can be trained using 
various datasets (Bose et al., 2023) [19]. The 
bagging method combines various iterations of the 
same deep learning models (Zhang et al., 2022) 
[72][73]. Bootstrapping and aggregation are 
combined to create an ensemble model, hence the 
name "bagging." Several bootstrapped subsamples 
are taken from an initial sample of data. A training 
dataset is randomly sampled and replaced, allowing 
for multiple selections of the same data points. The 
most effective predictor is created by combining 
each subsample with the others using an algorithm 
(Zhang et al., 2022) [72][73]. A simple average or 
weighted average is used to aggregate several 

iterations of the same deep learning model (Malek 
et al., 2023) [40]. With the use of this technique, a 
new model may be developed that lacks the 
confirmation bias that might develop with a single 
model, leading to a model that is more precise and 
effective (Bose et al., 2023) [19]. 
 

3. MATERIALS AND METHODS 

3.1 Datasets and Proposed Framework 
Android applications balance the collection of 
benign and malicious datasets for malware 
detection. Data gathering is a sample of the different 
malware families found in the wild. Table 1 depicts 
sources where APKs are gathered and combined to 
provide a comprehensive dataset. Android 
programmes are stored in Android Application 
Package Kit (APK) archive files and run on the 
Android operating system. 
 

Table 1:   Android datasets and their sources 

S/no. Dataset Description  

1 AndroZOO  Millions (81,902) 

2 CASANDRA 42,910 malware and 44,347 benign  

3 AppsApk Repository for Benign samples (126,513) 

4 F-Droid  Repository for Benign samples (258 packages) 

5 APKPure  Repository for Benign samples (290,276) 

6 DroidFusion  5,560 malwares and 9,476 benign 

7 Rmvdroid  9,133 malwares 

8 CICInves And Mal2019  426 malwares and 5,065 benign

9 AMD Project  24,553 malwares

10 CICAAGM  250 Adware, 150 General Malwares + 1500 Benign

11 CIC And Mal 2017  4,325 malwares and 6,500 benign

12 Drebin  5540 malwares + 123453 benign

13 AndroOBFS  20,541 data

14 Android Botnet  1936 android botnet

15 ContagioDump  197 malware packages

 
The proposed framework of this study for malware 
detection is displayed in Figure 1. We proposed five 
types of data collections based on the deep learning 
methods [i.e., malware multi-attack detectors 
(MMAD)] used in this study. The MMAD uses 
combined detectors comprised of DNN, RNN, 
CNN, MLP, and E2E. All five types of datasets 
consist of both malware and benign data. The 
datasets comprise hidden features and some types 
of malware. The datasets for DNN consist of 

rootkits, bots, and ransomware; RNN consists of 
adware, ransomware, and keyloggers; CNN 
consists of spyware, trojans, and mobile malware; 
MLP consists of wiper malware and worms; and 
E2E consists of fileless malware and worms. These 
models are independently trained and then 
combined using bagging or bootstrapping 
aggregate. The malware analysis is performed using 
the combined model, and the mode is used for 
detection accuracy.
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Figure 1: Proposed Method Of Malware Detection  (MMAD) 
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3.2. Models 
DNN model 
This model estimates the behavior of any function. 
The output (y) of a component (i) in layer (l) is 
connected to the output (x) of the previous layer (k) 
with J outputs via a set of weights (𝑤,), a bias (b) 
and f as a non-linear activation function. 

DNN = 𝑌ଵ
 = 𝑓 ∑ 𝑤, 𝑥 + 𝑏


ୀଵ   

 (1) 
 

RNN model 

Input: x(m) is considered as the input to the android 
at time m. 
Output: o(m) represents the output of the android 
connection.  
h(t) denotes a hidden state at time m and functions 
as “recall” of the android network. h(m) is 
computed based on the present input and the prior 
time’s hidden state 

RNN = h(m) = f [U x(m) + W h(m−1)] 
 (2) 

The function f is considered as non-linear 
conversion including tanh, ReLU, etc. The RNN has 
input to hidden networks factorized by a weight 
matric U, hidden-to-hidden repeated networks 
factorized by a weight matric W, and hidden-to-
output networks factorized by a weight matric V 
with all these matrices (U,V,W) are distributed 
throughout the time. 
 
CNN model 

The convolutional layer is the core building block 
of a CNN. The layer's parameters consist of a set of 
learnable filters (or kernels), which have a small 
receptive field, but extend through the full depth of 
the input volume. 
The input volume size W, the convolutional layer 
neurons' kernel field size K, the stride S, and the 
number of zero paddings P on the edge are all 
factors that affect the spatial size of the output 
volume. Therefore, the number of neurons that "fit" 
in a precise volume is:  

= 
ௐି ା ଶ 

ௌ
 + 1   (3) 

The neurons cannot be covered to fit over the input 
volume symmetrically if this value is not an integer, 
indicating that the strides are inappropriate. 
Generally, when the stride is S = 1, fixing the zero 
padding to be P = (K - 1)/2 ensures that the input 
volume and output volume will be the same size 
spatially. Conversely, using every single neuron 
from the preceding layer is not always necessary.  
 
MLP model 
An input, output, and one or more hidden layers—
each with numerous neurons stacked together—
make up a multilayer perceptron. The neurons in a 
MLP use an activation function that imposes a 
threshold, such as ReLU or sigmoid.  

F(x, w) =  𝑥ଵ𝑤ଵ + ⋯ +  𝑥𝑤  (4) 
F(x, w) is output, 𝑥ଵ𝑤ଵ is input, and 𝑥𝑤 is the 
weights. The activation function is written as 

 

 
The activation function is represented by the 
threshold T. The neuron outputs the value 1 if the 
weighted sum of the inputs is greater than 0; 
otherwise, the output value is 0. The gradient of the 
mean squared error is calculated across all input and 
output pairs in each iteration after the weighted 
sums have been passed through all layers. Given 
that inputs and initial weights are mixed in a 

weighted sum and are both subject to the activation 
function, MLP falls within the class of feedforward 
algorithms. However, the distinction is that each 
linear combination is carried over to the following 
layer. 
The output of each layer's computation and inner 
representation of the data are fed to the layer below 
it. This passes through all hidden layers and ends at 
the output layer.  
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E2E model 
The target of the replenishment problem is to 
establish the finest order quantity, a: f(x) ∈ R at 
every specified point, through experimental 
features, x.  

 𝐿(𝑓(𝑥): 𝑎
∗

ே

ୀଵ

) 

where N is the overall number of training data, L is 
the loss function described based on the difference 
between the model prediction 𝑓(𝑥) and the optimal 
order quantity 𝑎

∗. Particularly, when examine 
neural network representations of function f.  
 
3.3. Bagging/ bootstrap aggregation Method 
Bagging, often referred to as "bootstrap 
aggregation," is frequently used to decrease 
variance in a dataset. Following the generation of 

several data samples, these models are 
independently trained for classification, and the 
average or regression of those predictions results in 
a more accurate estimate. During the combination 
operation, bagging greatly lowers an estimate's 
variance, improving the estimate's accuracy. Thus, 
compared to individual results, the learned results 
show more stability. This implies that a number of 
models are assembled, increasing the weights of the 
inaccurately categorised data in the independent 
model with each new model iteration. The 
algorithm may more easily focus on the factors that 
will help it perform better under this redistribution 
of weights. Parallel computations for each model 
are performed, and the results are then combined. 
For regression problems, the simple average is used 
to calculate the final ensemble aggregation, while 
for classification problems, the simple majority is 
used. 

 Classification model for bagging 

 
 

Train models and print their accuracy 
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 Print the mean accuracy 

 
3.4. Training of Models 
The models are individually trained and then 
combined using bagging. Each model receives 
training using a unique dataset, as shown in 
Figure 1. The samples are generated by randomly 
choosing 2/3 of the replacement samples from the 
training sets. The hidden layer's number of 
neurons, "nh," and the activation function, "act," 
are the two parameters that must be set for the 
model. The following choices for activation 
functions are used: 
1. Tanh 
2. Sigmoid 
3. ReLU 
4. Tanh with Exponential  
5. ReLU with Dropout 

Although models are effective deep learning 
techniques, they can overfit. Dropout, a method 
for resolving this, involves randomly removing 
units from the network together with their 
incoming and outgoing connections. The 
components consequently do not co-adapt much.  
 
3.5. Malware Analysis 

This part presents the procedures needed to 
transform an executable into a form that may be 
used as input by a learning-based algorithm. 
Reverse engineering tools are used to convert the 
executable from deep learning code to an 
interpretable format, from which features are 
extracted to provide sequential features for 
learning.  
 
3.5.1. Reverse engineering 
Reverse engineering is used to decode the binary 

instructions and reveal the program's working 
logic. A variety of features can be determined by 
feeding the samples from the acquired dataset into 
the tools for reverse engineering the apks. The 
malware analysis is carried out to extract features 
from a sparse binary feature matrix, where the 
columns are the different features that were 
extracted. Dynamic analysis produces a list of 
API calls that are made in response to various 
system-related operations, including memory, 
process, file, and network activity. 
 
3.5.2. Feature extraction 
Many features are extracted directly from the .apk 
file for more accurate and effective malware 
analysis. The following features are collected 
from malware analysis for Android applications:  
Application components: The four application 
components of an Android application are 
service, activity, content provider, and broadcast 
receiver. Without user input, service components 
operate in the background. Interfaces for activity 
components are provided. Using content 
providers facilitates data exchange between apps. 
Broadcast receivers handle system-wide 
announcements. 
Filtered intents: The Android message 
transmission system uses intentions to 
communicate among its many parts. The filtered 
intents serve as an indication of each component's 
operation. Each application component registers 
itself to get intents using intent filters. 
Data Flow: With reference to handling a large 
volume of datasets for data processing on an 
Android device, Data Flow Graph is utilised to 
perform offline malware detection. They are 
therefore less easily regarded as immediate on-
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device detection models.  
 
3.2. Experiment 
The Android application (A) is composed of parts 
that connect to the internet at various levels. The 
overall behaviour of the Android system is made 
up of all of its components, and the malware can 
affect its defensive mechanism (Yadav et al., 
2022). In the present study, malware incursions 
were efficiently detected using the combined 
model. 
The combined model was used to perform 
malware analysis on the multi attacks. The 
Android with malware multi-attack represents the 
sensitive API calls, malicious permissions, 
privilege escalation attack, component intent 
communication, and sending sensitive 
information flow. The multi-attack approach's 
effect on the Android component is represented 
by ∃ComL(L ∈ n): 

𝐴𝑛𝑑𝑟𝑜𝑖𝑑 ∺ =  ∃𝐶𝑜𝑚𝐿  𝑓𝑒𝑎𝑡𝑢𝑟𝑒

ெ

ୀଵ

 

∺ 

=  𝑓𝑒𝑎𝑡𝑢𝑟𝑒 [Ŵ (𝑥ଵ) | W (𝑥ଵ)] |ଵ (feature)A|! Feature  

ெ

ୀଵ

 

where 
∑ 𝐴ଵ

ெ
ୀଵ  featurej denotes activities of ComL 

𝐴ଵ denotes malicious permissions (hidden 
malware) targeted at android component 
x denotes sensitive information of the component 
 
The malware features were extracted from tests 
A1, A2, A3, A4, and A5 (representing Android 
devices). The multi-attack model for the AFT was 
modelled by: 
 
(1) DNN model is represented by the following 
algorithm: 

DNN ∺ = [Ŵ (𝑥ଵ) | W (𝑥ଵ)] 
 
(2) RNN model is represented by the following 
algorithm: 
RNN ∺ 

=  𝐴ଵ. 𝑓𝑒𝑎𝑡𝑢𝑟𝑒| 

ெ

ୀଵ

[Ŵ (𝑥ଵ , 𝑥ଶ) | W (𝑥ଵ , 𝑥ଶ)] | (Ǖψ) 𝐴ଵ 

∺ = 𝐴ଵ. 𝑓𝑒𝑎𝑡𝑢𝑟𝑒ଵ + 𝐴ଵ. 𝑓𝑒𝑎𝑡𝑢𝑟𝑒ଶ 
  + 𝐴ଵ. 𝑓𝑒𝑎𝑡𝑢𝑟𝑒ଷ| [w (𝑥ଵ) | ѿ 
(𝑥ଵ)]. 𝐴ଵ 
 
(3) CNN model is represented by the following 
algorithm: 

𝐶𝑁𝑁 ∺ 

=   𝐴ଵ. 𝑓𝑒𝑎𝑡𝑢𝑟𝑒  

ெ

ୀଵ

| [Ŵ (𝑥ଵ , 𝑥ଶ) | W (𝑥ଵ , 𝑥ଶ)] | (Ǖψ) 𝐴ଵ 

∺ = 𝐴ଵ. 𝑓𝑒𝑎𝑡𝑢𝑟𝑒ଵ + 𝐴ଵ. 𝑓𝑒𝑎𝑡𝑢𝑟𝑒ଶ + 
𝐴ଵ. 𝑓𝑒𝑎𝑡𝑢𝑟𝑒ଷ 
  + 𝐴ଵ. 𝑓𝑒𝑎𝑡𝑢𝑟𝑒ସ| [w (𝑥ଵ) | ѿ 
(𝑥ଵ)]. 𝐴ଵ  
 
(4) MLP model is represented by the following 
algorithm: 
MLP ∺ 

=  𝐴ଵ. 𝑓𝑒𝑎𝑡𝑢𝑟𝑒  | [Ŵ (𝑥ଵ , 𝑥ଶ) | W (𝑥ଵ , 𝑥ଶ)] | (Ǖψ) 𝐴ଵ 

ெ

ୀଵ

 

∺ = 𝐴ଵ. 𝑓𝑒𝑎𝑡𝑢𝑟𝑒ଵ + 𝐴ଵ. 𝑓𝑒𝑎𝑡𝑢𝑟𝑒ଶ + 
𝐴ଵ. 𝑓𝑒𝑎𝑡𝑢𝑟𝑒ଷ + 𝐴ଵ. 𝑓𝑒𝑎𝑡𝑢𝑟𝑒ସ 
  + 𝐴ଵ. 𝑓𝑒𝑎𝑡𝑢𝑟𝑒ହ| [w (𝑥ଵ) | ѿ 
(𝑥ଵ)]. 𝐴ଵ 
 
(5) E2E model is represented by the following 
algorithm: 
E2E ∺ 

=   𝐴ଵ. 𝑓𝑒𝑎𝑡𝑢𝑟𝑒

ெ

ୀଵ

 | [Ŵ (𝑥ଵ , 𝑥ଶ) | W (𝑥ଵ , 𝑥ଶ)] | (Ǖψ) 𝐴ଵ 

∺ = 𝐴ଵ. 𝑓𝑒𝑎𝑡𝑢𝑟𝑒ଵ + 𝐴ଵ. 𝑓𝑒𝑎𝑡𝑢𝑟𝑒ଶ + 𝐴ଵ. 𝑓𝑒𝑎𝑡𝑢𝑟𝑒ଷ 
+ 𝐴ଵ. 𝑓𝑒𝑎𝑡𝑢𝑟𝑒ସ + 𝐴ଵ. 𝑓𝑒𝑎𝑡𝑢𝑟𝑒ହ 
  + 𝐴ଵ. 𝑓𝑒𝑎𝑡𝑢𝑟𝑒| [w (𝑥ଵ) | ѿ 
(𝑥ଵ)]. 𝐴ଵ 
 
The model measures the android behavior of 
malware multi attack based on the following:  
(1) The behavior of DNN model is shown as: 

DNN ∺ = [w (𝑑𝑎𝑡𝑎ଵ) | ѿ (𝑑𝑎𝑡𝑎ଵ)]. 
 
(2) The behavior of RNN model is shown as: 
RNNmodel ∺ = 𝐴ଵ.AttackerIntent1 + 𝐴ଵ.RNN 
+ 𝐴ଵ.filterRNN [w (𝑑𝑎𝑡𝑎ଵ) | ѿ (𝑑𝑎𝑡𝑎ଵ)].𝐴ଵ. 
 
(3) The behavior of CNN model is shown as: 
CNNmodel ∺ = 𝐴ଵ.AttackerIntent2 + 𝐴ଵ.CNN + 
 𝐴ଵ.filterCNN 
+ 𝐴ଵ.HiddenCNN [w (𝑑𝑎𝑡𝑎ଵ) | ѿ (𝑑𝑎𝑡𝑎ଵ)].𝐴ଵ. 
 
(4) The behavior of MLP model is shown as: 
MLPmodel ∺ = 𝐴ଵ.AttackerIntent2 + 𝐴ଵ.MLP + 
 𝐴ଵ.filterMLP 
+ 𝐴ଵ.HiddenMLP1 +  𝐴ଵ.HiddenMLP2 [w 
(𝑑𝑎𝑡𝑎ଵ) | ѿ (𝑑𝑎𝑡𝑎ଵ)].𝐴ଵ. 
 
(5) The behavior of E2E model is shown as: 
E2Emodel ∺ = 𝐴ଵ.AttackerIntent2 + 𝐴ଵ.E2E + 
 𝐴ଵ.filterE2E 
+ 𝐴ଵ.HiddenMLP1 +  𝐴ଶ.HiddenMLP2 + 
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 𝐴ଷ.HiddenMLP3 [w (𝑑𝑎𝑡𝑎ଵ) | ѿ (𝑑𝑎𝑡𝑎ଵ)].𝐴ଵ. 
 

4. RESULTS 
4.1.  Bagging/ bootstrap aggregation 

The results obtained from bagging and bootstrap 
aggregation are presented in Table 2. The bagging 
had the maximum accuracy for test data, which is 
consistent with the outcomes found in the case of 
the bootstrap. Bagging and bootstrapping had the 
lowest standard deviation for both training and 
test data and an average accuracy rate of more 
than 70%. No deep learning approach had an 

average prediction accuracy less than 70% for the 
three middle layers, while the two middle layers 
had an average prediction accuracy greater than 
70%. The ratio difference between training and 
test data (85% to 15%) in the three and middle 
layers had no significant effect on the results, thus 
causing no detectible variation in the prediction 
accuracy. 
 
Table 2: Prediction accuracy (the ratio of training 
and test data is 85% to 15%) of the combined deep 
learning methods.  

   Data Ratio of 
Training 
and Test 

Data 
(%) 

Accuracy ratio of 
training data 

Accuracy ratio of 
test data 

Area 
under 
the 
curve 

 Method  Average 
(%) 

standard 
deviation 

Average 
(%) 

standard 
deviation 

 Bagging  Normalized 85:15 73.58 1.45 70.98 1.55 0.877 

 Bootstrap  Normalized 85:15 70.66 1.23 69.65 1.43 0.834 

   Data Ratio of 
Training 
and Test 
Data 
(%) 

Accuracy ratio of 
training data 

Accuracy ratio of 
test data 

Area 
under 
the 
curve 

Model Method Activation 
function 

Middle 
layer 

Average 
(%) 

standard 
deviation 

Average 
(%) 

standard 
deviation 

DNN Tanh 3 Normalized 85:15 69.22 1.59 70.75 1.45 0.861 

RNN Tanh or sigmoid 3 Normalized 85:15 69.47 1.38 70.55 1.31 0.863 

CNN ReLU 3 Normalized 85:15 61.99 1.50 60.89 0.99 0.958 

MLPs ReLU 3 Normalized 85:15 66.78 1.49 65.80 1.70 0.911 

E2E  ReLU 3 Normalized 85:15 67.89 2.02 70.00 1.60 0.850 

DNN Tanh with Exponential  2 Normalized 85:15 70.77 1.67 69.45 1.50 0.858 

RNN Tanh with Exponential  2 Normalized 85:15 70.11 1.41 70.35 0.95 0.871 

CNN ReLU with Dropout 2 Normalized 85:15 70.23 2.08 70.66 1.40 0.801 

MLPs ReLU with Dropout 2 Normalized 85:15 70.91 1.08 69.85 1.64 0.809 

E2E  ReLU with Dropout 2 Normalized 85:15 70.00 1.42 70.25 0.98 0.872 

 
4.2.  The Model 

A MMAD detector can be installed on an Android 
device once it has been correctly constructed. 
MMAD can work with one or more detectors, each 
of which is designed to find specific types of 
malware in applications (see Figure 1). Figure 2 
depicts the complete MMAD workflow with 
numerous detectors based on the specificity of the 
deep learning methods. The MMAD detectors 
installed on the device receive the application as 
input. We underline that all of the detectors function 
in parallel to assess a particular malware attack.  

Given that the detectors are run in sequence, 
MMAD is first provided as input for Detector 1. 
Detector 1 gathers an initial collection of features 
relevant to the specific analysis of the target 
malware using native Android components. The 
detector then conducts an analysis of the APK file 
to detect relevant malware. In a successful situation, 
the application is sent to Detector 1's deep analysis 
component to continue the analysis. The APK is 
sent to the next detector (Detector 2), which 
continues the process using its unique set of rules 
(algorithms) and components, comparing them to a 
potential new set of features extracted from the 
APK. If no malicious malware is detected, the 
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analysis is deemed safe, and the APK can now be 
loaded on the device without further delay. 

 

 
Figure 2: The Malware Multi-Attack Detectors (MMAD) 

4.3.  Multi-attack layer Detections 

Table 3 displays the MMAD one hidden layer 
detection for diverse size ranges from 56 neurons to 
254 neurons. The analysis using layer sizes more 
than 254 neurons was not tested because there were 
only 389 different malware attacks. As the 
embedding size was maintained at 56, any hidden 
layer with less than 56 neurons was not assessed. In 

order to evaluate any configuration with more than 
one hidden layer in subsequent rounds, the hidden 
layer size that indicated equivalent performance 
with the fewest neurons was fixed as the upper cap. 
This layer appeared to detect lesser numbers of 
malware despite the presence of many neurons. 
 
Table 3: MMAD one hidden layer detection 
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Conf. ID Input Output Hidden 
Layer Size 

Embedding 
Dimension 

Learning 
rate 

Detection 
level 

Number of 
Malware 

1 33.67 70.23 [139] 254 85.016 60.79 389 

2 32.52 71.19 [139] 200 85.017 60.50 290 

3 33.15 70.35 [139] 190 85.015 60.79 248 

4 33.89 70.17 [139] 250 85.018 60.79 376 

5 35.60 70.58 [125] 190 85.017 60.79 248 

6 33.91 71.99 [125] 184 85.018 60.79 66 

7 34.08 70.45 [125] 120 85.018 60.79 113 

8 33.73 70.65 [72] 70 85.016 60.79 53 

9 35.11 72.12 [72] 85 85.018 60.79 133 

10 34.66 70.20 [65] 65 85.018 60.50 178 

11 33.94 71.33 [65] 80 85.019 60.78 101 

12 33.94 71.33 [56] 90 85.018 60.78 112 

13 33.94 71.33 [56] 100 85.019 60.78 188 

 
Table 4 presents the results of MMAD two-hidden-
layer detections. In the second phase, MMAD was 
tested for two hidden layers. Data complexity and 
linearity contribute to the DL method's ideal 
performance on the training datasets. Layer sizes 
beyond 139 neurons were not considered since the 
requirement for a single hidden layer within the size 
of a hidden layer is more indicative of the linearity 

of the two-hidden layer. The first hidden layer's size 
varies between 139 and 56, while the second hidden 
layer's size could vary between 139 and 72. The 
MMAD gradually reduced the data dimension 
cardinality. 
 
 
Table 4: MMAD Two-Hidden-Layer Detections  

Conf. ID Input Output Hidden 
Layer Size 

Embedding 
Dimension 

Learning 
rate 

Detection 
level 

Number of 
Malware 

14 33.89 70.17 [139, 139] 74 85.011 75.21 1173 

15 35.60 70.58 [139, 72] 74 85.010 75.65 956 

16 33.91 71.99 [125, 65] 74 85.019 75.68 1160 

17 34.08 70.45 [125, 56] 74 85.021 75.90 1098 

18 33.73 70.65 [72, 56] 74 85.025 75.31 981 

19 35.11 72.12 [65, 56] 74 85.021 75.45 879 

 
We examined numerous configurations with three 
hidden layers of various sizes in the third iteration 
of the MMAD detection. Table 5 presents the 
results of MMAD three-hidden-layer detection. The 

results showed consistency and higher performance 
than one hidden layer and two hidden layers. It was 
robust in detecting higher-level multi-attack 
malware. The limitations for the first hidden layer's 
maximum number of layers and any future hidden 
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layers' equivalent constraints remained the same as 
in the second iteration. The MMAD with more than 
three hidden layers was not analysed because none 
of these configurations outperformed some other 

configurations with only two hidden layers that 
were evaluated in earlier iterations. 
 
Table 5: MMAD three-hidden-layer detection 

Conf. ID Input Output Hidden 
Layer Size 

Embedding 
Dimension 

Learning 
rate 

Detection 
level 

Number of 
Malware 

20 33.89 70.17 [139, 72, 56] 74 85.042 90.82 1540 

21 35.60 70.58 [139, 125, 72] 74 85.042 90.77 1413 

22 33.91 70.99 [139, 125, 65] 74 85.041 90.46 1608 

23 34.08 70.45 [139, 65, 56] 74 85.045 90.12 1371 

24 33.73 70.65 [139, 72, 65] 74 85.043 90.19 1447 

 
4.4.  MMAD Detection Accuracies and performances 

The MMAD was subjected to experiments with 
various numbers of hidden layers and various sizes 
of each of these hidden layers to determine their 
accuracy in detecting malware. Table 6 presents the 
results of the MMAD accuracies based on their 
optimal hidden layers. According to the results, all 
the hidden layers produced higher accuracies with 
optimal F1, which indicated better performance of 
the MMAD in detecting malware. There were no 

significant variations between the DL methods in 
terms of accuracy. Based on 1 to 3 hidden layers 
with 56 to 139 neurons per hidden layer, MMAD 
was able to detect the multi-attacks with accuracy. 
We were able to avoid evaluating many 
configurations that were less likely to yield better 
outcomes than similar configurations that also had 
lower hidden outlays. 
 
Table 6: The MMAD accuracies based on their 
optimal hidden layers 

Conf. 
ID 

Hidden Layer 
Size 

Accuracy 
(Th=0.5) 

Optimal F1 DNN 
Accuracy 
@ F1 

RNN 
Accuracy 
@ F1 

CNN 
Accuracy 
@ F1 

MLP 
Accuracy 
@ F1 

E2E 
Accuracy 
@ F1 

1 [139] 0.844 0.231 0.641 0.673 0.516 0.635 0.581 

2 [125] 0.714 0.233 0.639 0.672 0.515 0.633 0.585 

3 [72] 0.852 0.233 0.674 0.675 0.517 0.637 0.572 

4 [65] 0.747 0.200 0.674 0.663 0.552 0.574 0.552 

5 [56] 0.874 0.237 0.675 0.678 0.564 0.634 0.459 

6 [65, 65] 0.614 0.252 0.645 0.677 0.538 0.644 0.558 

7 [125, 125] 0.844 0.241 0.646 0.681 0.551 0.646 0.551 

8 [139, 139] 0.843 0.251 0.644 0.675 0.585 0.644 0.553 

9 [125, 125, 125] 0.848 0.212 0.652 0.588 0.533 0.651 0.544 

10 [65, 65, 65] 0.838 0.214 0.652 0.588 0.411 0.646 0.562 

11 [125, 125, 125, 
125] 

0.837 0.289 0.614 0.601 0.489 0.586 0.499 

12 [72, 72, 72, 72] 0.837 0.211 0.658 0.592 0.517 0.657 0.529 
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13 [125, 125, 65, 
65] 

0.836 0.216 0.651 0.688 0.436 0.649 0.515 

14 [65, 65, 65, 65] 0.836 0.226 0.675 0.588 0.437 0.645 0.561 

15 [56, 56, 56, 56] 0.846 0.239 0.614 0.635 0.503 0.686 0.584 

 
We carried out additional performance analysis to 
further validate MMAD detection efficiency. These 
statistics and the accuracy assessment of the 
validation data serve as the measures for evaluating 
MMAD performance. Table 7 displays the results 
of the detection efficiency of MMAD. The MMAD 
for static and active based on DL produced 96.54% 
accuracy (average). The 3-hidden layer 
outperformed the 2-hidden layer in all parameters. 
Additionally, all detectors used performed 
efficiently with excellent F-score values. The 

MMAD classification system efficiently 
distinguished between benign and malware, as well 
as the types of malware, with high accuracies and 
precisions across all neurons. The class 
probabilities and a threshold of 0.5 were used to 
differentiate between the classification and the 
validation accuracy. With average results of 
96.54% accuracy, 95.38% precision, 92.65% recall, 
and a 94.66 F-score, the MMAD proved to be 
efficient and robust. 
 
Table 7: Detection efficiency of MMAD  

MMAD 
Classification 

System 

Extracted 
Features 

Detection No. of 
neurons 

Ac
c. 

Pr
ec. 

Re
call 

F-
scor

e Ben
ign 

Mal
ware 

Types of Malware 

DNN [139, 56] Static only 614 927 Rootkits, bots, 
ransomware 

[72,72] 95.
79 

95.
39 

89.
57 

92.3
1 

RNN [139, 56] Active 
only 

614 927 Ransomware, 
adware, 
keyloggers 

[72,64] 94.
6 

95.
59 

88.
25 

91.9
9 

CNN [139, 56] Static & 
Active 

614 927 Spyware, trojans, 
mobile malware 

[72,64] 94.
76 

95.
78 

88.
76 

92.7 

MLPs [139, 56] Static 
(opcode) 

660 1,10
0 

Wiper malware, 
worms 

[72,56] 94.
37 

95.
56 

87.
9 

92.9 

E2E [139, 56] Static only 652 1,01
7 

Fileless malware, 
worms 

[72,56] 95.
21 

96.
02 

89.
08 

92.2
5 

DNN [139, 125, 
72] 

Active 
(sys. Calls) 

4,1
38 

7,84
0 

Rootkits, bots, 
ransomware 

[139,13
9,139] 

98.
65 

95.
96 

93.
11 

98.6
8 

RNN [139, 125, 
72] 

Active 
only 

4,1
38 

7,84
0 

Ransomware, 
adware, 
keyloggers 

[139,13
9,139] 

97.
99 

94.
08 

97.
17 

95.3
3 

CNN [139, 125, 
72] 

Static & 
Active 

4,1
38 

7,84
0 

Spyware, trojans, 
mobile malware 

[139,12
5,139] 

97.
42 

95.
36 

97.
21 

96.1
1 

MLPs [139, 125, 
72] 

Active 
only 

4,1
38 

7,84
0 

Wiper malware, 
worms 

[139,13
9,72] 

98.
01 

94.
9 

97.
25 

96.5
6 

E2E [139, 125, 
72] 

Static & 
Active 

4,1
38 

7,84
0 

Fileless malware, 
worms 

[139,13
9,64] 

98.
55 

95.
11 

98.
15 

97.8
1 

Average      96.
54 

95.
38 

92.
65 

94.6
6 
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The impact of increasing the training epoch count 
was then investigated. Table 8 displays the result of 
increasing the number of epochs in MMAD. The 
default setting of 100 epochs was increased to 1000 
epochs. This is because the 1,000 epochs imply that 

the entire dataset flows through the MMAD model, 
which runs through it 1.000 times. The training 
accuracy showed higher accuracy and performance 
with more than 1000 epochs. 
 

Table 8: Impact Of Increasing The Number Of Epochs In MMAD 

Conf. 
ID 

MMAD Hidden 
Layer Size 

MMAD 
Epochs 

MMAD 
AUC 

Accuracy 
(Th=0.5) 

FPR 
(Th=0.5) 

16 [72, 72, 72, 72] 100 0.787 0.766 0.221 

17 [72, 72, 72, 72] 1000 0.949 0.764 0.219 

Note: AUC = Area Under Curve; FPR = False 
positive rate; Th = threshold (0.5)  
 
The optimizer algorithm is crucial for analysing 
training's efficiency and efficacy (as measured by 
performance indicators). This is done to ensure the 
MMAD model's validation. We tested a few DL 

optimizer techniques (Wang et al., 2019) [64]. 
Adadelta was the standard optimizer algorithm 
used. In addition, we tested the adam and rmsprop 
optimizers (Solanke & Patnaik, 2020; Wu et al., 
2022) while maintaining the other parameters. The 
result showed higher accuracies and a lower FPR. 
 

 
Table 9: Impact of alteration in optimizer of MMAD 

Conf. ID MMAD Hidden Layer 
Size 

MMAD 
Epochs 

MMAD 
Optimizer 

MMAD 
AUC 

Acc 
(Th = 0.5) 

FPR 
(Th = 0.5) 

18 [72, 72, 72, 72] 1000 adadelta 0.936 0.844 0.125 

19 [72, 72, 72, 72] 1000 adam 0.931 0.846 0.128 

20 [72, 72, 72, 72] 1000 rmsprop 0.927 0.830 0.126 

Note: AUC = Area Under Curve; FPR = False 
positive rate; Th = threshold (0.5) 
 
Batch size is another hyperparameter that is directly 
related to both efficacy and efficiency. The standard 
batch size obtained was greater than 1,500 with 
consistent accuracies. We experimented with 
various batch sizes in the following iteration, as 

indicated in Table 10. Therefore, about six steps of 
training passes were carried out for each epoch for 
about 81902 training records. There was accuracy 
in the learning rate and a low FPR, which indicates 
the robustness of the MMAD model. 
 
 
 

Table 10: Impact of alteration in MMAD batch size  
Conf. 
ID 

MMAD Hidden 
Layer Size 

MMAD 
Batch Size 

MMAD 
Optimizer 

MMAD 
AUC 

Learni
ng 
rate 

Acc 
(Th = 0.5) 

FPR 
(Th = 
0.5) 

21 [72, 72, 72, 72] 2097 rmsprop 0.911 0.001
1 

0.775 0.123 

22 [72, 72, 72, 72] 2310 rmsprop 0.909 0.001
7 

0.770 0.128 
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23 [72, 72, 72, 72] 1585 rmsprop 0.825 0.001
4 

0.765 0.131 

Note: FPR = False positive rate; Th = threshold 
(0.5) 
 

5. DISCUSSION 

Our findings demonstrate the importance of 
combined DL methods to improve malware multi-
attack detection (MMAD) on Android-based 
devices. To the best of our knowledge, MMAD is 
the first model to combine highly sensitive DL 
methods for Android with the capability of 
detecting various types of malware. Interestingly, it 
is vital to explain how the user can differentiate 
between a true intrusion and a false positive, which 
may be a concern. Following the MMAD learning 
phase, sporadic false positives decrease in 
frequency, and occasionally, detection may be 
linked to them. In reality, every type of malware 
that has been evaluated demonstrates aggressive 
tendencies that result in repeated and multiple 
detections within the third hidden layer of neurons. 
This framework might be extended to the automatic 
management of rare false positives or to guide the 
user via a smart learning phase so MMAD can 
rapidly learn during the detection process. When an 
attack is initiated on the Android device as a result 
of a new installation, the MMAD can be used to 
initiate a new learning period for detection. Thus, 
this is the way forward for modern cybersecurity 
toward Android devices. 
The level of detection techniques and detection 
outcomes is superior to those of earlier android 
anomaly-based detection systems (Dini et al., 2012 
[25]; Da Costa and Moia, 2023 [21] ; Islam et al., 
2023) [32]. It is crucial to note that, in contrast to 
past methods (Wang et al., 2020) [65] , the MMAD 
model performs multi-attack detection at multi-
levels with specific target malware identifications. 
This technique may be more successful at detecting 
rapid Android behavioural changes. For instance, it 
may be possible to mislead malicious application-
specific controls through MMAD hidden-layer 
detections based on DL methods when used 
independently, but they function robustly together 
to detect multiple malwares. 
Our results with 96.54% accuracy, 95.38% 
precision, 92.65% recall, and a 94.66 F-score 
showed that the MMAD approach is effective, 
efficient, and simple to use to detect eleven types of 
malware. These malwares are used in multi-attacks 
or combinatorially with high aggressive intent to 

hijack, harm, or steal information from Android 
devices. The validation tests demonstrated that the 
MMAD approach is capable of effectively 
identifying the security concerns associated with 
multi-attacks, such as the transfer of sensitive data 
and components. The validation tests recognize the 
components, malicious permissions, sensitive API 
calls, and the intent filter using the detection 
method proposed (Solanke & Patnaik, 2020 [58]; 
Wu et al., 2022) [68]. However, these methods do 
not allow for the detection of sensitive information 
transfers. In order to provide adequate model 
coverage to activate malicious behaviours during 
the active analysis of Android apps, test input 
creation is required. MMAD can use a variety of 
test input generation techniques, including static, 
active (malicious with dynamism), etc. The static 
approach is the most well-liked approach to input 
creation and has been heavily utilised by 
researchers (Alzaylaee et al., 2020; Almomani et 
al., 2023 [9]; Singh et al., 2023) [57]. 
 

6. 6. CONCLUSION 

This work provides MMAD as a framework that 
combines DL, including DNN, RNN, CNN, MLP, 
and E2E, for malware multi-attack detection on 
Android devices. First, MMAD was combined 
using bagging/bootstrap. Second, diverse datasets 
from diverse sources containing both malware and 
benign sources were used to model MMAD. Third, 
the model was trained, followed by malware 
detection and analysis. The experimental results 
showed that MMAD had 96.54% accuracy and 
95.38% precision in detecting different types of 
malware. This supports precisely locating malicious 
attacks with a minimum FPR. We showed that 
MMAD performed efficiently in terms of accuracy 
at three-hidden-layer detection. The results clearly 
showed that MMAD achieved great accuracy, 
outperforming the DL methods individually. To the 
best of our knowledge, MMAD is the first model to 
combine highly sensitive DL methods for Android 
with the ability to detect different types of malware. 
Moreover, MMAD significantly reduced the 
number of FPRs by three times during simultaneous 
malware detection. 
A future study should include a thorough analysis 
of the effects of concept drift on the classification 
of Android malware as well as modifications to the 
threshold in MMAD. The possibility of self-
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adaptation for MMAD could be investigated as a 
way to boost the effectiveness of DL approaches for 
Android malware detection. Ant colony, or greedy 
algorithm, can be used as a replacement for batch 
so that it can automatically adapt to malware multi-
attack development and population drift. Using 
additional DL, such as radial basis function 
networks (RBFNs), self-organizing maps (SOMs), 
and long short-term memory networks (LSTMs), to 
carry out more thorough detection would be an easy 
way to extend the MMAD model in this direction. 
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