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ABSTRACT 
 

IC50 prediction for neurodegenerative disorders like Amyotrophic Lateral Sclerosis is crucial in biomedical 
studies. Traditional machine learning models that use molecular descriptors and gene expression for 
building IC50 prediction models produce less accuracy and also most of the descriptors created by different 
tools are irrelevant and undefined. In this paper, a Graph Convolutional Neural Network, a deep learning 
algorithm, is employed for constructing a more precise IC50 prediction model. The model leverages the 
structural properties of drug molecules represented in graph format, and incorporates gene expression data 
as global features. So, the model is able to learn drug-gene interactions better. The drug-gene interactivity 
is learned by the model without drug-induced gene expressions as it is not found for most of the diseases. 
The work is implemented with well-known and most relevant 80 drugs related to ALS based on the pIC50 
values of 32 protein targets of ALS disorder. The Canonical Smiles graph and their corresponding IC50 
values of 80 drugs have been derived from the ChEMBL databases. Based on information from the 
Repurposing Hub in the Depmap database gene expression data for drug-related genes connected with 
ALS-related conditions is collected. The predictive results show that the proposed GCNN model with fine-
tuned hyperparameters achieves MAE of 0.18, RMSE of 0.16 and R2 Score of 0.90. 
Keywords: IC50, Gene Expression, Graph Convolutional Neural Network, SMILES, Prediction 
 
1. INTRODUCTION  
 

Lou Gehrig's disease, often known as 
Amyotrophic Lateral Sclerosis (ALS), is a chronic 
neurological disorder which damages the neurons 
that control voluntarily operated muscles [1]. It 
results in progressive paralysis, loss of mobility, 
and lack of muscle strength. The cells in the spinal 
cord and brain are largely impacted by ALS, which 
causes their degradation and mortality. 

Drug discovery and drug design are crucial 
processes in the pharmaceutical industry. Drug 
discovery involves identifying potential drug 
candidates for treating diseases. Drug design 
focuses on rational design of drug molecules to 
interact with specific targets in the body. 
Challenges in drug discovery and design include the 
complexity of diseases, safety concerns, drug 

resistance, and the high cost and time involved [2]. 
The goal of drug development for ALS is to create 
treatments that can halt the progress of the illness, 
reduce symptoms, and enhance the standard of life 
for patients with the condition. 

IC50 enables the identification of promising 
compounds for drug discovery, allowing for the 
optimization of therapeutic effects and the 
prioritization of drug candidates with higher 
potential. The prediction of IC50 values (half-
maximal inhibitory concentration) is a crucial task 
in drug discovery and development. It helps to 
identify the potency of a drug compound in 
inhibiting a specific biological target, such as an 
enzyme or a receptor. Accurate IC50 prediction is 
vital in optimizing lead compounds and prioritizing 
potential drug candidates for further experimental 
validation [3]. 
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A number of biological targets are crucial in the 
progression of Amyotrophic Lateral Sclerosis. 
These targets represent specific chemicals or 
biological pathways that, when disrupted, aggravate 
motor neuron degeneration. Researchers are 
focusing on numerous key targets for ALS 
inhibition, such as Superoxide Dismutase 1 
(SOD1): A significant proportion of cases of 
familial ALS are caused by mutations in the SOD1 
gene. Inhibiting the aberrant activity of the mutant 
SOD1 protein or target pathways interrupted by 
SOD1 failure could be one method for delaying the 
progression of the illness. TDP-43 (TAR DNA-
binding Protein 43), C9orf72 Repeat Expansion, 
FUS (Fused in Sarcoma), Proteostasis, and Protein 
Quality Control, Excitotoxicity of Glutamate, 
Axonal Transport, Mitochondrial Dysfunction, and 
RNA Metabolism with Preprocessing are some of 
the additional disorders.  

Currently, Machine learning and deep learning 
algorithms are extensively utilized in IC50 
prediction due to their ability to analyze complex 
relationships between compound features and their 
corresponding inhibitory concentrations. Machine 
learning algorithms perform extremely well when 
dealing with small sized IC50 prediction datasets 
and avoid overfitting. Machine learning algorithms 
fail when capturing natural properties of drug 
molecules. But Deep Learning algorithms are 
employed when large IC50 datasets in different data 
forms are used in model building. It includes data 
like graphical data, sequential data and image data 
each with its own corresponding algorithms like 
GCNN, GRU and CNN [4]. 

Some of the below references provide a 
comprehensive literature review on the application 
of graph-based models, such as GCNNs, in drug 
discovery, molecular property prediction, and 
protein-ligand interactions. They establish the 
foundation for integrating drug SMILES graphs and 
gene expression features in our proposed GCNN 
model for IC50 prediction. 

Kearnes et al. [5] explores the use of graph 
convolutional networks (GCNNs) for molecular 
property prediction. It highlights the limitations of 
traditional fingerprint-based approaches and 
demonstrates the advantages of GCNNs in 
capturing structural information and atom 
relationships in molecular graphs. GCNNs operate 
directly on the graph representation of molecules, 
enabling them to consider local and global features. 
They learn from raw molecular graphs without the 
need for handcrafted features, improving predictive 
accuracy of MSE with 0.46 ± 0.08. The research 

highlights the possibilities of GCNNs in 
discovering drugs  through its property prediction 
tasks. 

The MoleculeNet standard is a framework for 
comparing several artificial intelligence models 
used in drug development, according to Wu et al. 
[6]. The paper makes reference to a number of 
datasets, including QM7, QM8, QM9, ESOL, 
FreeSolv, Lipophilicity, and others. It concentrates 
on graphical models, such GCNNs, and evaluates 
how well they perform across a range of tasks. The 
paper addresses the possibility of graphical models 
in accomplishing this and emphasizes the 
significance of precisely predicting molecular 
features, especially IC50 values. It offers a 
thorough overview of the difficulties and 
possibilities in using machine learning with 
molecular data. With these kinds of data, several 
metrics are applied, and GCNN achieves greater 
precision as compared to other machine learning 
models. 

A thorough summary of deep learning models 
used in computational chemical science, notably in 
the field of drug development, is given by Goh et 
al.  [7]. The use of graph convolutional networks 
(GCNNs) as a potent method for generating graph 
representations of drug graphs is highlighted in the 
article. The use of GCNNs is noted for its capacity 
to accurately predict numerous drug properties, 
including IC50 values, by capturing complex 
structural details and atom interactions. The authors 
offer suggestions for possible future advances as 
well as a discussion of the benefits and difficulties 
of using deep learning algorithms in drug design. 

A paper on protein-ligand reactions by Ragoza et 
al. [8] shows the value of convolutional neural 
networks (CNNs) in determining binding capacity 
of medicinal compounds. It explained the manner in 
which CNNs are good at detecting regional trends 
and spatial correlations in complexes made from 
protein-ligand . When compared with the autodock 
vina framework, the CNN model achieves an AUC 
greater than 0.8. When compared with the autodock 
vina framework, the CNN model achieves an AUC 
greater than 0.8. The principles and insights 
presented in this paper can be relevant for 
understanding the application of graph-based 
models in drug discovery.  

Gilmer et al. [9] introduced the concept of neural 
message passing, a framework for combining graph 
neural networks with quantum chemistry data. It 
demonstrates the efficacy of this approach in 
predicting molecular properties, including IC50 
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values, by leveraging the structural information 
encoded in molecular graphs. The study highlights 
the potential of graph-based models for accurate 
and interpretable predictions in drug discovery. The 
QM9 dataset was employed, and it was discovered 
that simultaneously training on all 13 targets 
continuously outpaced training a single model for 
each target. In certain instances, the improvement 
reached 40%. 

In order to predict drug response, Liu et al. [10] 
developed a unique technique that incorporates 
multi-omics data of cancer cells and their drug 
structures.  The DeepCDR composite graph 
convolutional network that the authors propose 
combines a graph convolutional network with 
several subnetworks. The hidden depiction of 
geometrical arrangements between the bonds and 
atoms in drugs is automatically learned by 
DeepCDR, in contrast to past studies that depended 
on manually created drug characteristics. Using the 
CCLE and GDSC datasets, a spearman correlation 
of 0.903 0.004 and an RMSE of 1.058 0.06 were 
achieved. 

In the existing research irrelevant molecular 
descriptors are used in building machine learning 
based IC50 prediction models. GCNN were used to 
predict IC50 with only structural properties without 
using gene expression. The gene expression used in 
few works with CNN algorithms performs 

classification tasks and does not make accurate 
predictions. Most of the hybrid algorithms that use 
CNN fail to capture its properties completely. In 
this paper, a GCNN [11] based approach for 
developing a more accurate IC50 prediction model 
using chemical and gene expression features is 
proposed. Protein targets of ALS related conditions 
are chosen and their associated drug attributes, gene 
expression data are retrieved from databases. They 
are converted into suitable formats for training and 
building IC50 prediction models. 

2. A GRAPH DATA FOR ALS DRUGS 
 
The graphical representation of ALS drugs is 

modeled through two tasks. The 
Pharmacogenomics collection [12] is the first task 
and featurization is the second. During 
Pharmacogenomics collection, the Canonical 
SMILES, gene expression and IC50 values are 
retrieved from databases with a series of processes 
such as pathway analysis of protein targets, drug 
attributes retrieval, gene expression retrieval. 
Featurization is the process of converting the raw 
data obtained during the Pharmacogenomics 
collection phase into a suitable format that can be 
used for model building and analysis. The drug 
attributes are used in the featurization process while 
gene expression is normalized and then featured. 
 
2.1 Pharmacogenomics Collection 
 
   The ALS targets are searched in the UniProt [13] 
database and retrieved. Through pathway analysis it 
is found that all the thirty-two protein targets are 
observed in ALS disease. The protein targets are 
mapped with ChEMBL [14] databases for finding 
the drug attributes associated with 32 ALS targets. 
From the identified drugs, most relevant and 
approved drugs are selected. Around 80 drugs are 
considered in this study. The process of the 
Pharmacogenomics collection is depicted in Figure 

1 and explained below. 
 
   Protein target pathway analysis identifies drugs 
and their targets related to ALS. A list of 32 ALS-
associated protein targets is obtained from UniProt 
based on their relevance to ALS pathology. 
Mapping these targets with ChEMBL enables to 
identify associated drugs and similar proteins. The 
pathway analysis for few drug targets in 
Amyotrophic Lateral Sclerosis disease is given in 
Table 1. 

Figure 1: Pharmacogenomics Collection Process. 
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Table 1: Pathway Analysis of few ALS drug Targets. 

 
Drug 

Target 
Drug 
Name 

 

Pathway Analysis 
Term Adjus

ted P-
value 
(lowe

r) 

Eff
ect 
siz
e 

(lar
ger
) 

KCNK10, 
SLC7A11, 

SCN9A 

Riluzole 
[15] Ferroptosis 

0.0164
98 

0.2
5 

SLC6A4, 
ANO1, 
HTR2B 

Fluoxeti
ne [16] 

Serotonergi
c synapse 

0.0005
67 

0.66
667 

KCNH1, 
HTR7, 

HTR1D, 
DRD1, 

GRIN2B 

Haloperi
dol [17] 

Neuroactive 
ligand-
receptor 

interaction 

8.70E-
06 

0.8 

TRPC5, 
ADRA1A, 
SMPD1, 
DRD1, 

CALM1 

Chlorpr
omazine 

[18] 

Calcium 
signaling 
pathway 

0.0004
11 

0.6 

S1PR1; 
S1PR5 

Fingoli
mod 
[19] 

Neuroactive 
ligand-
receptor 

interaction 

0.0004
27 

1.0 

The drug attributes are retrieved by collecting 

drug SMILES and pIC50 values from ChEMBL 
database. Drug SMILES provide a concise and 
standardized way to represent the structure of a 
drug molecule using a specific set of characters. 
pIC50 is a measure of the potency or inhibitory 
activity of a drug compound. It represents the 
negative logarithm of base 10 of the concentration 
of a drug required to inhibit a target by 50%. The 
pIC50 value is commonly used in pharmacology 
and drug discovery to quantify and compare the 
potency of different compounds. A higher pIC50 
value indicates a higher potency, as it corresponds 
to a negative logarithm for inhibitory activity. 

Gene expression data associated with the 80 
drugs of ALS are collected from the DepMap [20] 
database.  DepMap is a comprehensive resource 
that provides genomic and transcriptomic data, 
including gene expression profiles, for a wide range 
of disease-related cell lines. The query is submitted 
to the DepMap database, specifying ALS-related 
cell lines in PRISM Drug repurposing hub. 
Therefore, the gene expression data contains 
information about the expression levels of specific 
genes in ALS-related cell lines treated with the 
selected drug SMILES. It signifies how cancer gene 
expressions are related to neuroinflammation in 
ALS and applied on drug repurposing from cancer 
to ALS [21]. The drugs are repurposed based on the 
PRISM Drug repurposing hub in Depmap. A 
sample gene expression data corresponding to 
Dalfampridine drug in heatmap format is given in 

Figure 2: Sample Gene Expression Data of Dalfampridine Drug 
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Figure 2. 

A complete approach of combining protein target 
pathway analysis and ChEMBL mapping is used to 
find candidate drugs and their targets. The gene 
expression is finally collected for drug targets. The 
three procedures above assist in gathering data - 
drug SMILES, pIC50 values and gene expression of 
drug targets on 80 drugs.  The description of a few 
drug samples are shown in Table 2.  

 
Table 2: Description of Drug Samples 
. 

Drug 
Target 

No. 
of 

cell-
lines 

Drug 
Name 

Drug 
SMILES 

PI
C5
0 

KCNK10, 
SLC7A11, 

SCN9A 

25 
 

Riluzole  Nc1nc2ccc(
OC(F)(F)F)

cc2s1 

6 

SLC6A4, 
ANO1, 
HTR2B 

28 
 

Fluoxeti
ne  

CNCCC(Oc
1ccc(C(F)(F
)F)cc1)c1cc

ccc1 

6.3
018
99 

KCNH1, 
HTR7, 

HTR1D, 
DRD1, 

GRIN2B 

40 
 

Haloperi
dol  

O=C(CCCN
1CCC(O)(c
2ccc(Cl)cc2
)CC1)c1ccc(

F)cc1 

8.2
487
21 

TRPC5, 
ADRA1A, 
SMPD1, 
DRD1, 

CALM1 

34 
 

Chlorpr
omazine  

CN(C)CCC
N1c2ccccc2
Sc2ccc(Cl)c

c21 

6.3
458
23 

S1PR1; 
S1PR5 

46 Fingoli
mod  

CCCCCCC
Cc1ccc(CC
C(N)(CO)C

O)cc1 

7 

 

As a result, the Pharmacogenomics collection 

phase yields the gene expression and drug SMILES 
relevant to 80 drugs of ALS disease, which will 
then be transformed into an adjacency matrix. The 
adjacency matrix is created through featurization, 
which is described below. 

2.2 Featurization 
  Drug SMILES are transformed into feature 

vectors during the featurization process and the 
gene expressions are normalized.  The Drug 
SMILES and gene expression together are 
converted into feature vectors. The process is 
looped for all drug SMILES and their 
corresponding gene expression to create an 
extended adjacency matrix [22]. This adjacency 
matrix is finally passed to GCNN for training. 
Figure 3 depicts adjacency matrix creation for a 
single molecule. 

A molecular graph for each drug is constructed 
where atoms are nodes, and bonds are edges. Each 
node is associated with a set of features, which can 
include atom type, hybridization state, chirality and 
formal charge. Each edge has features such as bond 
type and bond order. A node feature vector is 
created for each atom in the molecular graph with 
encoded characteristics of atom such as atom type, 
hybridization state, chirality and formal charge. 
Bond attributes including bond type, bond order is 
used to create edge feature vectors.  

For example, consider the Dalfampridine 
molecule. The feature vector construction [23] for 
this molecule having three atoms Nitrogen (N), 
Carbon (C), and Hydrogen (H) is given in Table 3 
and Table 4. In the node feature vectors, each 
element represents a different atom type in the order 
of [C, N, O, S, H, Other]. In the edge feature vector, 
the first element is bond order, second element is 
source atom type and third element is target atom 
type. So, the vector is composed of [Bond order, 

Figure 3: Extended Adjacency Matrix Creation 
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source atom type, target atom type]. 

Table 3: Node Feature Vector Description 
 

Node Hybridiz
ation 

chiralit
y 

Formal 
charge 

vector 

N sp2 None 0 [0,1,0,0
,0,0] 

C sp2 None 0 [1,0,0,0
,0,0] 

H None None 0 [0,0,0,0
,1,0] 

 
Table 4: Edge Feature Vector Description 
 

Edge Bond Type Bond 
Order 

vector 

NC single 0 [0,0,1]  

CC double 1 [1,1,1] 

CC single 0 [0,1,1] 

 

Gene expression data corresponding to each drug 
is normalized using Min-Max normalization and 
added to the feature vector corresponding to the 
drug SMILES graph as a global feature. These 
global features are updated concurrently with the 
node and edge features in each graph convolutional 

layer and are added as an additional feature 
dimension to any node in the graph. Gene 
expression data is utilized as a general feature to 
describe the impact of a certain gene on the drug's 
activity.  Each drug SMILES is provided with its 

corresponding gene expression data as global 
feature vector. 

Finally, the node feature, edge feature and global 
feature vectors are transformed into a single 
adjacency matrix. Each row and column of the 
matrix represents an atom in the molecule, and the 
entries in the matrix indicate whether there is a 
bond between the corresponding atoms. The 
adjacency matrix is generated for all molecules and 
they are combined and padded with the largest atom 
number size. This extended adjacency matrix 
represents graphical data for all 80 drugs and it is 
used by GCNN architecture to build an IC50 
prediction model. 

3. IC50 PREDICTION MODEL BUILDING 
 

  The GCNN layers perform graph convolutions to 
propagate information through the drug graph, 
capturing local structural patterns. The global gene 
expression features are added to each drug 
separately as each drug has a unique gene 
expression. The combined features are then fed into 
fully connected layers for building the IC50 
prediction model. This model integrates both 
structural and gene expression information to 
enhance the predictive performance for IC50 
values. The GCNN model for IC50 prediction takes 
drug SMILES as input in graph format along with 

gene expression as global features. The drug 
molecules are represented as graphs, capturing the 
topological information of atoms and bonds. IC50 
Prediction model building process is shown in 
Figure 4. 

Figure 4: IC50 Prediction Model Building Process 
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  An extended adjacency matrix is typically used 
to define the graph's structure. Graph convolution, 
which involves gathering data from nearby nodes 
for each node in the graph, is the fundamental 
operation of a GCNN. By taking into account the 
features of its neighbors, a graph convolutional 
layer creates new feature vectors for each node. The 
adjacency matrix of the graph is used to identify 
adjacent nodes. Using methods like weighted 
summation or attention processes, the properties of 
nearby nodes are combined. The new feature 
vectors for each node are then computed from the 
aggregated data using learnable parameters such as 
weights and biases. In order to introduce non-
linearity, the updated feature vectors of the nodes 
are typically passed via activation functions like 
ReLU. The updated feature matrix corresponding to 
the new feature vectors for the nodes is the GCNN 
layer's final output. This updated feature matrix is 
used for IC50 prediction by GCNN. 

Thus, the IC50 prediction model is built with 
hyperparameters tuning and k-fold cross validation 
and trained with an extended adjacency matrix. The 
hyperparameters like filter size, learning rate and 
optimizer plays an important role in model 
building. In convolutional neural networks, the 
filter size refers to the dimensions of the filter used 
to slide over the input data. It determines the 
receptive field, impacting what features the network 
can learn from the input. Learning rate is a 
hyperparameter that controls the step size during 
the optimization process of training a machine 
learning model. It influences the rate at which the 
model's parameters are updated to minimize the 
loss function. An optimizer is used to update the 
model's parameters during training to minimize the 
loss function. K-fold cross-validation is used to 
assess the performance and generalization ability of 
a GCNN based IC50 prediction model. The typical 
choice for k is 7 here. The model is evaluated for its 
prediction efficiency using metrics MAE, RMSE, 
R2 Score. 

4. EXPERIMENTS AND RESULTS 
 
DeepChem [24, 25] serves as a front-end 

framework specialized for cheminformatics and 
drug discovery tasks, while TensorFlow is the 
backend framework responsible for the actual 
computation and execution of the models. The 
IC50 prediction model has been built by 
implementing GCNN using Python and training 
the extended adjacency matrix of Drug SMILES 
and gene expression. The experiment is carried 
out for various epoch sizes and by setting other 

hyperparameters as shown below in Table 5. The 
output layer is designed with one unit and hidden 
layers and GCNN layers are defined with 32 
units. Adam optimizer is used here to reduce the 
error and increase efficiency. 

Table 5: Hyperparameters Setting for GCNN Model 
 

GCNN MODEL 
Epoch  500 

GCNN layer 1 

Filter size 32 

Learning rate 0.001 

Output size  1 

Optimizer  Adam 

k-fold 7 

 

The iteration of training the GCNN network 
starts from epoch 10 and converges with epoch 
500 at fold 7. The outcomes of the GCNN 
prediction with regard to MAE, RMSE, and R2 
Score over several epochs are observed and 
shown below. The highest accuracy produced by 
GCNN is R2 Score of 0.90 with loss percentages 
of 0.18 by MAE and 0.16 by RMSE. The error 
functions MAE, RMSE, and R2 Score are 
calculated for each epoch in the intervals of 100. 
The accuracy and error rate gradually shows 
improvement and finally produces maximum 
accuracy with respect to R2 score and minimum 
error values with respect to MAE and RMSE. 
The maximum value is recorded as 0.51 and 
0.403 respectively by MAE and RMSE. 
Similarly, the maximum accuracy produced by 
R2 Score is 0.90 which signifies 90 percent of 
accuracy and the minimum accuracy is 0.43 at 
epoch 100. The Performance Results of GCNN 
based IC50 Prediction Model using Drug 
SMILES and gene expression is shown in Table 
6 and depicted in Figure 5. 

Table 6: Performance Results of GCNN based IC50 
Prediction Model for Various Epochs 
 

Epoch MAE RMSE R2 Score 
100 0.51 0.403 0.43 

200 0.38 0.32 0.53 

300 0.36 0.30 0.58 

400 0.35 0.25 0.65 

500 0.18 0.16 0.90 
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In our previous work, a GCNN model was built 
with drug SMILES alone. The iteration of training 
the GCNN network started from epoch 10 and 
converged with epoch 500. The outcomes of the 
GCNN prediction with regard to MAE, RMSE, and 
R2score over several epochs were observed and 
reproduced here in Table 7 and Figure 6. The 
highest accuracy produced by GCNN was 0.73 by 
R2 Score, with loss percentages of 0.31 by MAE 
and 0.21 by RMSE. The error functions MAE, 
RMSE, and R2 score were calculated for each 
epoch in the intervals of 100. The accuracy and 
error rate gradually showed improvement and 
finally produced maximum accuracy with respect to 
R2 score and minimum error values with respect to 
MAE and RMSE. The minimum MAE and RMSE 
was recorded as 0.25 and 0.211 while the maximum 
value was recorded as 0.41 and 0.303 respectively. 
Similarly, the maximum accuracy produced by R2 
score was 0.73 which signifies 73 percent of 
accuracy and the minimum accuracy was 0.42 at 
epoch 100. 

Table 7: Performance Results of GCNN based IC50 
Prediction Model Built with Drug SMILES 
 

Epoch MAE RMSE R2 Score 
100 0.41 0.303 0.42 

200 0.36 0.31 0.52 

300 0.35 0.29 0.54 

400 0.32 0.24 0.63 

500 0.31 0.21 0.73 

 

 

 

 

The performance of the GCNN based IC50 
prediction model built with Drug SMILES and gene 
expression is compared with the performance of the 
GCNN IC50 prediction model trained only with 
Drug SMILES. The highest accuracy is achieved at 
Epoch 500. GCNN using Drug SMILES and gene 
expression obtains an R2 score of 0.90, RMSE of 
0.16 and MAE of 0.18. GCNN using drug SMILES 
obtains R2 score of 0.73, RMSE of 0.2 and MAE of 
0.3. Thus, from the results GCNN using Drug 
SMILES and gene expression achieves more 
accuracy than GCNN using drug SMILES alone.  
The comparative results are also given in Table 8 
and Figure 7. 

Table 8: Comparative Results of IC50 Prediction Models 
based on Two Datasets 
 

Dataset MAE RMSE R2 
Score 

Drug SMILES and 
Gene Expressions 

0.18 0.16 0.90 

Drug SMILES 0.3 0.2 0.73 

 

Figure 5: Performance Results of GCNN based IC50 
Prediction Model using Drug SMILES and Gene 

Expression 

Figure 7: Comparative Results of IC50 Prediction Models 
Based on Two Datasets 

Figure 6: Performance Results of GCNN based IC50 
Prediction Model using drug SMILES 
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4.1 Method Contrast 
 

The adopted methodology distinguishes the 
proposed work from existing literature. In the 
present literature, only gene expressions or drug 
SMILES are used to determine IC50. However, in 
our technique, both were taken into account and fed 
into the model to precisely learn drug-gene 
interactions. CNN [26] has been used to estimate 
binding affinity in a few studies using protein 
structures and drug pictures. While most studies 
focus on binding affinity, our methodology focuses 
on gene expression and IC50 prediction. The 
approach utilized in our study was principally 
compared to DRUGGCN [27], which uses drug-
induced gene expression to determine IC50. As 
assessment metrics in DRUGGCN RMSE, Pearson 
Correlation Coefficient (PCC) and Spearman's 
Rank Correlation Coefficient (SCC) are utilized, 
whereas in the proposed methodology in this paper 
better metrics are considered. 

Several other publications [28] have used data 
obtained from the Genomics of Drug Sensitivity in 
Cancer (GDSC) dataset to create complex 
networks. Given a novel cell line, these models are 
used for predicting the cell line's reaction to the 
evaluated GDSC medicines. In a similar way 
provided a novel medication, these models are 
used to assess the probable response of tested 
GDSC cell lines to this drug. The model classifies 
the cell lines as resistant or sensitive to drugs 
incorporated which is a classification problem 
whereas other method uses pathway analysis to find 
sensitive genes and cell lines of drugs therefore 
giving high results with different metrics. 

The majority of the research focuses on cancer 
pathology [29, 30] and does not take into 
consideration mutations in diseases such as 
Amyotrophic Lateral Sclerosis. However, previous 
research has addressed all data types, involving 
copy number variation and mutation data. Various 
models, such as heterogeneous models and 
transformer models, have been developed and 
employed in the available literature. However, all of 
these models contribute to cancer disease and have 
not been tested on neurological disorders or other 
pathologies. Our findings demonstrate that IC50 
may be predicted using mutations in any disorder 
like ALS. 

The main disadvantage of adopting drug-induced 
gene expressions is that disease gene expressions 
must also be considered if they are included. The 
main assumption is that drug-induced gene 

expression should reverse illness expression, which 
is not accomplished in many models [ 31, 32]. 

Finally, the proposed GCNN model using Drug 
SMILES and gene expression demonstrates 
improved IC50 prediction performance. By 
integrating the structural information encoded in 
drug SMILES graphs and the contextual influence 
of gene expression patterns the model captures the 
complex relationships between drugs and gene 
expression profiles, resulting in enhanced predictive 
accuracy. The quantification of certain structural 
and gene expression characteristics that 
substantially contribute to IC50 is made possible 
with feature selection. The model's ability to make 
accurate predictions also implies that it has learned 
meaningful representations of drug-gene 
interactions.  The integration of gene expression 
data as global features enriches the predictive 
capabilities of the model. The GCNN recognition 
rate supports the model's ability to forecast IC50. 
When compared with other Machine learning or 
deep learning algorithms, the GCNN based IC50 
prediction model captures the natural depiction of 
drug molecules effectively. 

5. CONCLUSION 
 

A novel GCNN architecture for building an IC50 
prediction model by integrating drug SMILES in 
graph format with gene expression as global 
features has been proposed in this paper. The model 
leverages the power of graph convolutional 
networks (GCNNs) to capture the structural 
information and relationships within drug 
molecules represented as graphs. The UniProt, 
ChEMBL and DepMap databases have been used in 
this study. The drug SMILES and gene expression 
data, which have been collected for 80 drugs are 
featurized and used as an adjacency matrix for 
training the GCNN. The GCNN has been 
implemented with the Deepchem framework and 
the experiments were carried out with proper setting 
of hyperparameters. The IC50 prediction model has 
been tested for its efficiency with standard metrics 
and produced promising results in predicting IC50 
values. In future the same study can be done with 
EC50, or half-maximal effective concentration. 
EC50 [33] is used to explore drug induction effect 
while IC50 capture inhibitory effect of a drug. This 
holistic approach enhances understanding of the 
factors influencing IC50 values and enables more 
accurate predictions, thus facilitating the process of 
drug discovery and development. 
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