
Journal of Theoretical and Applied Information Technology
15th May 2023. Vol.101. No 9
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3625

INTEGRATION OF THE MDA APPROACH IN DOCUMENT-
ORIENTED NOSQL DATABASES, GENERATION OF A PSM

MODEL FROM A PIM MODEL

AZIZ SRAI1, FATIMA GUEROUATE2
1ERCI2A, FSTH, Abdelmalek Essaadi University, Tetouan, Morocco

2LASTIMI Laboratory, Superior School of Technologies of Sale, Mohammadia School of engineering,

Mohamed V University city of Rabat, Morocco

E-mail: 1a.srai@uae.ac.ma, 2guerouate@gmail.com

ABSTRACT

The volume of data and its diversity are so important today that is the reason why many relational databases
are unable to handle this type and large volume of data. To respond to this problem, many NoSQL
databases have emerged, such as document-oriented, graph-oriented, key-value-oriented and column-
oriented databases. These databases, which revolve around Big Data, have shown an important power in the
management of big data. The scientific contribution of the work presented in this article is the application
of an MDA approach on a document-oriented approach. We demonstrate the capacity and adaptability of
the model-oriented approach on NoSQL approaches, in particular the document-oriented approach. For the
presentation of this work we started by introducing the context of our studies which is the MDA approach
and the document-oriented approach, then we defined the different metamodels of the sources and targets.
We then introduced the different possible model-to-model and model-to-Text transformations using the
QVTo transformation language. Finally, we presented as result the document-oriented PSM model and the
XMI model generated from the Model to Text transformation with Acceleo. Our motivation for this
contribution comes down to the fact that a minority of authors who integrate the concept of programming
by model.

Keywords: Big Data, MDA approach, NoSQL, QVT, PIM model.

1. INTRODUCTION

The data management landscape has become
extremely rich and complex. The wide variety of
needs of current information systems has led to the
emergence of many heterogeneous data
management solutions. Relational DBMSs are still
widely used but exist alongside a large number of
other so-called NoSQL systems. These NoSQL
systems meet various needs such as reliable storage
systems for masses of data, efficient mechanisms
for their analysis, structures allowing complex data
to be represented flexibly. The data model is one of
the important characteristics of a DBMS and any
type of data management system. NoSQL systems
cover a range of solutions whose data model is not
relational. Their data models are generally
classified into four main families: key-value,
column-oriented, graphs and document-oriented.
This classification is common, but there is no
unique data model definition for each family. There
are few and recent formalization efforts. The

concepts handled in these models are not however
new and take up aspects of other models such as the
relational and its extensions which are not in first
normal form, complex values and object oriented
models. NoSQL systems allow a lot of freedom to
represent data. In general, these systems do not
handle the notion of database schema. We speak of
Schema less system because it is not necessary to
define a data schema before creating the database.
In addition, the structure of the data may be
different even if they are grouped together within
the same collection or table. Type checking is very
basic. For example, in key-value systems, the type
of the value is unknown and may differ completely
from entry to entry. In this work we present an
application of the MDA approach to document-
oriented NoSQL databases more particularly
MongoDB. We approve that this approach is
compatible with this type of database in order to
support its use in this sense. In this article we have
applied model programming on NoSQL databases,
in particular document oriented. The application of

Journal of Theoretical and Applied Information Technology
15th May 2023. Vol.101. No 9
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3626

model programming on this type of databases can
make them independent during the implementation
on a database management system and this is the
main objective of the MDA approach.

2. LITERATURE REVIEW

The work of Bézivin et al. [4] is dedicated to the
application of the MDA approach for the web
services platform. in this work the authors
presented a development of an illustrative example
of e-business based on two different applications of
a Model-Driven Architecture (MDA) approach. In
the first application, the Platform Independent
Model (PIM) is created using the Unified Modeling
Language (UML). This PIM is transformed using
Atlas Transformation Language (ATL) to generate
the Platform Specific Model (PSM) based on three
target platforms: Java, Web service and Java Web
service developer pack (JWSDP). In the second
application, the PIM is created using Enterprise
Distributed Object Computing (EDOC) and
transformed into another PSM based on the same
target platforms.
 The objective of work [1] is to generate a model
respecting the n-tier architecture using the MDA
approach; this model represents an E-learning
application. The authors proposed two metamodels,
a source metamodel based on UML, and a target
metamodel based on an n-tier architecture. The
authors have chosen the QVTo transformation
language to perform all possible transformations
between the two metamodels. The authors in [2],
introduced an MDA approach to generate a PSM
model for EJB platforms. The authors in [3],
introduced a model-based approach for modeling
and generating AJAX applications. The author in
[5] proposes a framework based on OMG’s Model
Driven Architecture. These platform-independent
frameworks specify and classify existing and future
Learning Management Systems (LMS).

According to the analysis of the works cited, we
have found that a majority of authors do not invoke
the interest of applying the MDA approach on
NoSQL platforms via a transformation from a PIM
model to a model PSM or through code generation
through a PSM-to-code transformation. To our
knowledge, we are the first authors to have
proposed a total generation of code for NoSQL
platforms in order to use models independent of all
implementation platforms. No work has presented a
global study to transform a source model (uml
diagram) into a target model (document-oriented
NoSQL databases), i.e. a generation of a document-
oriented NoSQL database through an MDA
approach.

3. METHODOLOGY

The MDA (Model Driven Architecture) was
designed and promoted by the OMG (Object
Management Group). It is the result of the
confrontation of different model-oriented design
approaches and in particular thanks to the advent of
UML. MDA comes in the form of a set of similar
standards (but not co-dependent), used to create a
model and refine it until a finished product is
obtained. In practice, we practice a MDA method
when we define an application using UML
formalism and generating the target code (Java, C
#, or others) then the corresponding executable.
Today, many tools provide such functionality.
Globally, MDA provides the development world
with methods (models and practices) for the
efficient creation of non-platform models and their
reuse. In the perspective of our research on the
construction of mobile collaborative applications,
we propose to study these models and methods.

Figure 1: Diagram summarizing the languages and
methods provided by MDA architecture

The OMG is based on several standards. In the
center is the UML (Unified Modeling Language)
standard, MOF (Meta-Object Facility) and CWM
(Common Warehouse Metamodel). In the next
layer, there is also an XMI (XML Metadata
Interchange) standard, which allows dialogue
between middleware (Java, CORBA, .NET and
web services). The third layer contains the services,
which make it possible to manage events, security,
directories and transactions. Finally, the last layer
offers frameworks specific to the field of
application (Finance, Telecommunications,
Transport, Space, medicine, e-commerce,
manufacturing, etc…).

Journal of Theoretical and Applied Information Technology
15th May 2023. Vol.101. No 9
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3627

3.1 Principles of MDA

MDA's proposal is to define system functionality in
a Platform Independent Model (PIM) using a
specification language, and translate it into a
platform-specific model. -form (PSM: Platform
Specific Model), to finally generate the compliable
(or compiled) code for this platform. The objective
is, from a PIM, to obtain several PSMs for several
platforms.

Figure 2: Diagram representing the MDA approach

The MDA concept therefore proposes an open
approach, which can partly allow the
interoperability of systems and the management of
the plasticity of interfaces. Likewise, working on a
PIM before moving on to PSM makes it easier to
validate a model without being hampered by
platform-specific technical details. Moreover, it is
easier and faster to manage the different
implementations of a system from abstract models
than to work on the code of the implementation.
For the different models of MDA, there are several
standards: the different specification languages are
UML, MOF, XMI, CWM and OCL.

3.2 Model transformation

Model-driven engineering serves as a source for the
automatic generation of all or part of the modeled
system. Model transformation techniques ensure
this generation. Classically, the transformation
follows the diagram shown in Figure below. A
transformation can be seen as a program generating
a model Mb conforming to a metamodel MMb
from a model Ma conforming to a metamodel
MMa. The transformation therefore specifies a set
of relationships between the source and target
metamodels. When metamodels MMa and MMb
refer to two different metamodels, it is called
exogenous transformation. For example,

transforming an XML file into a JSON file.
Otherwise, when MMa and MMb refer to the same
metamodel, the transformations are qualified as
endogenous. For example, the transformation of a
UML model into another UML model.

Figure 3: structure of a model transformation

Moreover, during an endogenous transformation, it
is possible that the Ma and Mb models are
identical. There is therefore no creation of the target
model, but updating of the source model. These
transformations are referred to as "in-place",
"update" or "refining mode" transformations.

3.3 ATLAS Transformation Language

ATL is a hybrid transformation language based on
the concept of rules. ATL rules do not rely on graph
patterns for rule activation and effects.ATL rules
declare a set of input elements along with optional
guards on those input elements. This mechanism
allows the fine selection of input elements. Output
elements are declared in a second section of the
rule. This is where the relationships (or bindings)
are declared. These bindings are strongly inspired
by OCL expressions. Bindings are used to calculate
the values of the properties of the target model from
the properties of the source model. Except in
special cases, the source model is only accessible in
read-only mode and the target model is only
accessible in write-only mode. In ATL there are
two main types of rules. Standard rules are
automatically executed for all input combinations
present in the source model. Lazy rules are only
executed when requested by another rule. There are
two types of lazy rules, rules with cache (unique)
and without. A lazy rule's cache allows the same
output item to be returned if the same rule is called
with the same input items multiple times. In
addition to this system of declarative rules, ATL
allows the execution of blocks of imperative code.
These imperative blocks make it easy to specify
transformations that are difficult to express in pure

Journal of Theoretical and Applied Information Technology
15th May 2023. Vol.101. No 9
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3628

declarative ATL. The execution of a transformation
is done by the optional call to a special rule, the
entry point. The algorithm then searches for the
rules applicable to the provided input elements. To
do this, it compares the input elements of the rules
as well as any guards to the elements of the model
and saves the valid combinations. For each of these
combinations, the algorithm creates traceability
links, used to associate each output element with
the corresponding input element(s). Then, the
algorithm creates the corresponding output
elements and executes the bindings to calculate the
value of their properties. Note that the order of
application of the rules is not guaranteed.

3.4 Yet Another Model Transformation
Language

Still based on the concept of rules, Yet Another
Model Transformation Language (YAMTL) is a
recent and powerful approach based on Xtend.
Xtend is a general-purpose programming language
compiled into Java which notably allows the
redefinition of operators that Java does not allow.
Inspired by ATL rules, YAMTL rules are
composed of two same parts. A first declaring a list
of input patterns along with optional filters. A
second part contains the output models as well as
the expressions used to calculate the values of the
properties of the elements of these models. The
main difference with ATL is the syntax used.
YAMTL is limited on this point by the constraints
imposed by Xtend. Indeed, Xtend offers a certain
freedom thanks to mechanisms such as the
redefinition of operators or extension methods, but
does not allow the introduction of new syntax
elements. Rules execution follows an order similar
to that of ATL. The transformation is first
compiled, then an algorithm searches and saves all
the rules that can be applied as well as their source
elements. Then the rules are executed one after the
other creating the elements of the output model.

3.5 QVT language

Query/View/Transformation (QVT) is a standard
defined by the OMG to specify transformations
between models, whose meta model satisfies the
MOF standard. It includes a declarative part and an
imperative part. The declarative part consists of two
parts: a part carrying out the correspondence
between the two models expressed in the standard
MOF named QVTr (relations), and a part which
makes it possible to evaluate conditions on the
elements of our models to make them correspond,

named QVTc (Core). These two parts use OCL
(Object Constraint Language) to define the
matching rules. OCL is a formal language
standardized by the OMG for specifying software
constraints. The imperative part, consisting of
QVTo (operational), makes it possible to extend the
declarative language. Constructs such as for loops
or if conditions are offered there. QVTo also
introduces the use of imperative OCL rules.

Figure 4: Relationships between QVT metamodels

3.6 Incremental transformation of models

Classic transformations process the entire source
model to create a target model that conforms to the
transformation specification. This operation can be
costly when the source model is composed of a
large number of elements, or when the
transformation requires costly operations in terms
of computation time. This computational cost is not
problematic in the case of models that change little.
However, if many modifications are applied to
elements of the source model, then it may be worth
using an incremental transformation approach. The
idea behind incremental model transformation is to
only apply the transformation to source elements
that have changed since the last run. This reduces
the time required to apply the transformation to the
updated model. Moreover, updating the target
model when modifications are detected on the
source model allows to preserve the identity of the
elements of the target model. This is particularly
the case when the target model is a graphical model
presented to the user. In this case, it is important
that the changes made to the source model are
applied quickly to the target model. Moreover, here
it is better to update the visual elements presented
to the user rather than having to completely replace
them with each change.

3.7 Bidirectional model transformation

During a model transformation, the target model is
calculated from the source model. Ideally only one
model is modified (the source), so recomputing a
new target (or calculating a set of changes to apply)

Journal of Theoretical and Applied Information Technology
15th May 2023. Vol.101. No 9
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3629

is possible using the classical or incremental
approaches. A classic example of bidirectional
transformation is generating code from a model. It
is not uncommon for the generated code to have to
be manually modified to add missing features or
optimize the code. However, if the model used to
generate the code is modified, it is necessary to
regenerate the code. A classic approach would
ignore code changes and overwrite them with the
new version. This behavior is not satisfactory.
Another example is the problem of updating views
in a database. A view in a database is a virtual table
corresponding to the result of a query. These views
are useful for more finely controlling access to data.
Most database management systems (DBMSs) only
allow read access to views. Some DBMS allow
inserting, deleting or modifying records of the
view, but in very limited contexts.

3.7 NoSQL databases

The term NoSQL refers to a type of database
management systems that goes beyond the
relational systems associated with the SQL
language by accepting more complex data
structures. According to their physical models, the
DBs managed by these systems fall into four
categories: columns, documents, graphs and key-
value. Each of them offering specific features. For
example, in a document-oriented DB like
MongoDB, data is stored in tables whose rows can
be nested. This data organization is coupled with
operators that allow access to nested data. The
choice of the DBMS category most suited to a
given application is linked to the nature of the
processing (queries) applied to the data. But this
choice is not exclusive since, in each category,
DBMSs can provide all types of processing,
sometimes at the cost of a certain heaviness or more
extensive programming.

3.7.1 Column-oriented model

The column-oriented model is a structured model
where data is organized into families of columns,
which is equivalent to the concept of a table in the
relational model. Rows have an identifier called
row key and are composed of a set of values; each
is associated with a column. Thus, the search for a
value amounts to going through the sequence: line
key -> family of columns -> column.
Although the column-oriented model is close to the
relational model, the organization of data in the two
models is different. In contrast to what is found in a
relational DB where the columns are static and

present in each row, in a column-oriented DB the
columns are dynamic and appear only in the rows
concerned. In other words, each line has a different
number of columns and new columns can be added
to it at any time, thus gaining in extensibility at the
data model level.In addition, the column-oriented
model has the advantage of improving storage
efficiency and avoiding space consumption
compared to the relational model. Indeed, due to
their design by block allocation, in a relational
DBMS, an empty column will still consume space.
In a column-oriented DBMS, the storage cost of an
empty column is 0. Cassandra, HBase and
Accumulo are examples of DBMSs where data is
stored in a column-oriented model.

3.7.2 Document-oriented model

Data in a document-oriented model is organized
into collections of documents. A document is
identified by a key to which corresponds an
aggregate of key-value pairs which can be ranked.
This means that the value can itself contain one or
more key-value pairs. Within the same collection,
the documents can be of different structures. In
other words, the pairs used to define the documents
of a collection are not necessarily the same. In
addition, like other NoSQL models, the document-
oriented model is flexible, we can add pairs each
time a new document is inserted.

Figure 5: Document Oriented NoSQL Databases

Document-oriented DBMSs, such as MongoDB,
couchDB, and couchDB server, provide advanced
functionality for document manipulation. With the
data model nesting principle they adopt (the
document-oriented model), we can model the data
in such a way that it supports more advanced
querying features, such as the ability to manipulate
the document content (full-text search).

3.7.3 Graph-oriented model

Journal of Theoretical and Applied Information Technology
15th May 2023. Vol.101. No 9
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3630

The graph-oriented model is not new because it
uses a model called “network model” created in the
1970s by Charles Bachman within the CODASYL
consortium which also led to the creation of the
COBOL language. We can also consider that
knowledge representation models, thesauri and
ontologies defined by different formats such as
OWL (Ontology Web Language) and RDF
(Resource Description Framework) are specialized
graph-oriented data models. This model is based on
the notion of graph in the mathematical sense to
store and process information. This model
structures the data in the form of a graph. That is to
say a set of nodes that can be linked together by
arcs. The nodes represent the entities, they can be
compared to the documents of the document-
oriented model. A node is defined by one or more
labels, a sort of type if we can say so, and includes
properties in the form of key/value pairs.

3.7.4 NoSQL key-value database

This specific type of NoSQL database uses the key-
value method and stores collections of many key-
value pairs in memory, on hard disk or on SSDs.
Each record corresponds to a set of key-value pairs.
A key is made up of a primary key, the unique
identifier of the record (or of a row), then secondary
keys or attributes associated with values. Values
can be any kind of object, a file, a number or string,
or even some other key-value pair, in which case
the database structure becomes more complex.
Unlike relational databases, key-value DBMSs do
not have a specific structure. RDBMSs store data in
tables where each column is linked to different
variables. Keys can have any name, but since this is
the only way to retrieve the values associated with
them, they should be named strategically. Key
names can range from simple numbering to specific
descriptions of the value that will follow. A key-
value database can be compared to a dictionary or a
directory. Dictionaries have words acting as keys
and their meanings acting as values.

3.8 Source and Target Metamodels
In our MDA approach, we opted for modeling
approaches to generate the document oriented
NoSQL database. These approaches require a
source meta-model and a target meta-model. In this
section, we present the different meta-classes that
make up the UML class diagram source meta-
model and the document-oriented NoSQL target
meta-model. The process of transforming the UML
source model into a document-oriented target
model.

3.8.1 UML source Metamodel

Figure 6. illustrates the simplified UML source
meta-model based on packages including
operations, associations and classes. Those classes
are composed of properties with parameters.

Figure 6: UML source meta-model
3.8.2 Document oriented target Metamodel

Figure 7. Illustrates the simplified Document target
meta-model:

Figure 7: Document target meta-model

4. RESULTS AND DISCUSSIONS

4.1 Transformations rules M2M and M2T

Figure 8. Illustrates the transformation rules M2M
and M2T:

Journal of Theoretical and Applied Information Technology
15th May 2023. Vol.101. No 9
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3631

Figure 8: Transformation rules M2M and M2T

To validate our transformation rules, we conducted
several tests. After applying the transformation on
the UML source model, we generated the
document-oriented PSM target model (see Figure
9).

Journal of Theoretical and Applied Information Technology
15th May 2023. Vol.101. No 9
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3632

Figure 9: Document-Oriented MongoDB PSM

5. CONCLUSION

In this article, we proposed an MDA approach to
migrate a UML class diagram representing a
relational database to a document-oriented
database. The transformation rules were developed
using QVT. This work should be extended to allow
the generation of other NoSQL solutions such as
key-value-oriented and column-oriented solutions.
Through this work we have validated the validity
and performance of the MDA approach today, we
can say that the application of such an approach in
the context of Big Data is very important and also a
current research axis. Our contribution in this work
concerns the two types of model transformations, a
model to model transformation with the QVTo
model transformation language, this transformation
represents a vertical transformation from the PIM to
the PSM. Another important transformation that we
carried out is the model to text transformation, this
transformation was provided by the Acceleo tool, it
is a transformation from a PSM to code. The
contribution we presented is rich and represents a
basis for other authors but for the moment does not
cover all aspects of NoSQL databases, it remains as
a perspective for future work.

REFERENCES:

 [1] A. Srai, F. Guerouate, N. Berbiche, H. Drissi,

“Generated PSM Web Model for E-learning
Platform Respecting n-tiers Architecture,”
International Journal of Emerging Technologies
in Learning (iJET), vol. 12, no. 10, pp. 212-220,
2017.

[2] A. Srai, F. Guerouate, N. Berbiche, H. Drissi,
“MDA Approach for EJB Model,” 6th IEEE
International Conference on Multimedia
Computing and Systems (ICMCS’18).
DOI:10.1109/ICMCS.2018.8525924.

[3] Gharavi, V., Mesbah, A., Deursen, A. V.,
“Modelling and Generating AJAX

Applications: A Model-Driven Approach,”
Proceeding of the7th International Workshop on
Web-Oriented Software Technologies, New
York, USA (Page: 38, Year of publication:
2008, ISBN: 978-80-227-2899-7).

[4] J. Bezivin; S. Hammoudi; D. Lopes; F. Jouault,
Applying MDA approach for Web service
platform, Proceedings. Eighth IEEE
International Enterprise Distributed Object
Computing Conference, 2004. EDOC 2004,
Monterey, CA, USA,
DOI: 10.1109/EDOC.2004.1342505.

[5] Kurillova, Model Driven E-Learning Platform
Integration, Proceedings of the EC-TEL 2007
PROLEARN Doctoral Consortium, Crete,
Greece, September 18, 2007.

[6] X. Zhang et al., A Model Driven Architecture
Approach for Developing E-Learning Platform,
(Eds.): Edutainment 2010, LNCS 6249, pp.
111-122,2010.

[7] Aziz Srai, Fatima Guerouate, Hilal Drissi
Lahsini, Generated Psm Multi-Layered Model
Using Mda Approach, International Journal of
Engineering and Advanced Technology
(IJEAT) ISSN: 2249 – 8958, Volume-8 Issue-4,
April 2019.

[8] Essebaa, I. , Chantit, S. QVT Transformation
Rules to Get PIM Model from CIM Model,
Europe and MENA Cooperation Advances in
Information and Communication Technologies,
pp.195-207, January 2017. DOI: 10.1007/978-
3-319-46568-5_20

[9] Rhazali, Y. , Hadi, Y. and Mouloudi A. , Model
Transformation with ATL into MDA from CIM
to PIM Structured through MVC, Procedia
Computer Science 83:1096-1101 December
2016. DOI: 10.1016/j.procs.2016.04.229.

[10] Roubi, S. , Erramdani, M. and Mbarki, S.
Model Driven Architecture as an Approach for
Modeling and Generating Graphical User
Interface. Proceedings of the Mediterranean
Conference on Information & Communication
Technologies 2015, pp.651-656. DOI:
10.1007/978-3-319-30298-0_72

[11] Mbarki, S. and Rahmouni, M. Combining
UML class and activity diagrams for MDA
generation of MVC 2 web applications.
International Review on Computers and
Software (I.RE.CO.S), 8(4):949-957 · April
2013.

[12] rédéric J., & Ivan, K. (2006). Transforming
models with ATL. Proceedings of MoDELS
2005 Workshops, LNCS 3844, (pp. 128 – 138),
Springer-Verlag Berlin Heidelberg.

Journal of Theoretical and Applied Information Technology
15th May 2023. Vol.101. No 9
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3633

[13] Czarnecki, K., Helsen, S., Classification of
Model Transformation Approaches, in online
proceedings of the 2nd OOPSLA’03 Workshop
on Generative Techniques in the Context of
MDA. Anaheim, October, 2003.

[14] Li, Y., Gai, K., Qiu, L., Qiu, M., & Zhao, H.
(2017). Intelligent cryptography approach for
secure distributed big data storage in cloud
computing. Information Sciences, 387, 103-115.

[15] Mpinda, S. A. T., Maschietto, L. G., &
Bungama, P. A. (2015). From relational
database to columnoriented nosql database:
Migration process. International Journal of
Engineering Research & Technology (IJERT),
4, 399-403.

[16] Karnitis, G., & Arnicans, G. (2015, June).
Migration of relational database to document-
oriented database: structure denormalization
and data transformation. In Computational
Intelligence, Communication Systems and
Networks (CICSyN), 2015 7th International
Conference on (pp. 113-118). IEEE.

[17] Daniel, G., Sunyé, G., & Cabot, J. (2016,
November). UMLtoGraphDB: mapping
conceptual schemas to graph databases. In
International Conference on Conceptual
Modeling (pp. 430-444). Springer, Cham

