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ABSTRACT 

To achieve high database performance (e.g., high throughput and low latency), a database tuning technique 
is needed to make a database application run faster and respond to end-users on time. Users rely heavily on 
Structure Query Language (SQL) queries to manage and manipulate their data. The complexity of these que-
ries can range from very simple to very complex. Poorly constructed queries usually lead to perfor-
mance problems.  However, the end-user does not know if the SQL statement is poorly written resulting in 
poor database system performance. Therefore evaluating SQL queries can be difficult because there are many 
syntactic structures for equivalent queries. Manual evaluation is far too time-consuming since there are so 
many queries in question.  Several papers have provided hints and tips on writing good SQL queries to 
achieve better performance. However, there is a lack of research on identifying poorly-written SQL queries. 
Therefore, new approaches are needed to automatically identify poorly-written SQL queries, which have to 
rewritten  for faster performance.  In this paper, we propose a classification framework to automatically 
identify well and poorly-written SQL queries. The proposed framework utilizes various machine learning 
algorithms including Decision Trees, k Nearest Neighbours, Support Vector Machine, and Naive Bayes. In 
addition, we identified the key features using two different feature extraction techniques namely TFIDF and 
Count Vectorizer. To effectively evaluate the proposed framework, we used the Delphi technique to manually 
label two different datasets namely (Bombay and ERPNext). The experimental results demonstrate that the 
four machine learning classifiers capable to classify the SQL queries into (well, accepted, and poorly) provide 
promising results in terms of Recall, precision, and F1-score. In both datasets, the Decision Trees classifier 
outperform other classifiers by achieving (90%) on the Bombay Dataset and (84%) on the ERPNext Dataset 
in term of F1-measure. Furthermore, the Count Vectorizer outperforms the TFIDF in predicting poorly writ-
ten queries.Additionally, the proposed framework can serve as a useful tool for database developers and SQL 
programmers for detecting poorly written query, consequently utilized for optimizing SQL query perfor-
mance. 
Keywords: SQL Query, Machine Learning, Classification, Feature Selection, Database Systems 
 
1. INTRODUCTION 

Database management systems (DBMS) are de-
signed to provide timely answers to end-users. The 
basic unit of interaction with end users in SQL que-
ries. End users often expect their queries to return 
results as quickly as possible[1]. However, many 
factors can affect the response time of the database 
systems. One of the famous factors is poorly struc-
tured or poorly written SQL queries. Most of the cur-
rent database systems perform an automatic optimi-
zation for end-users queries. Even though, still, the 
well-written SQL queries outperform poorly written 
ones[2]. For better performance, we need to use 
faster and more efficient queries. 

 

The purpose of performance tuning in a data-
base management system is to maximize throughput 
while minimizing response times, which means us-
ing the least number of resources while providing the 
minimum response times. A database management 
system's performance tuning helps minimize re-
sponse time and achieve optimal cost by optimizing 
performance. With minimal response times and 
maximum throughput, this ensures efficient resource 
utilization. In the same way, The process of tuning 
SQL queries is rewriting them so that they are more 
efficient  [3].  However, end-users are unaware that 
the SQL statement is poorly written and will result 
in poor performance, as well as the reason why this 
happens. 
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As there are several syntactic structures for the 
same query, assessing SQL queries is not an easy 
task. In addition, the manual assessment would be 
far too time-consuming given the number of possible 
syntactical structures of SQL queries. Therefore, an 
automatic classification of SQL queries is an im-
portant approach to the evaluation of SQL queries. 
Several works have discussed and introduced some 
important hints and tips for writing SQL to get better 
performance[2, 4-8] , these hints are summarized in 
table 1.  

 
Table1: Summarization of SQL hints 

No Hint 
1. Use Column Names Instead of * in a SE-

LECT Statement. 
2. Avoid including a HAVING clause in SE-

LECT statements. 
3. Avoid  using unnecessary DISTINCT 

Conditions. 
4. Use WHERE instead of HAVING in Join. 
5. Create joins with INNER JOIN (not 

WHERE). 
6. Avoid nest sub queries. 
7. Use EXISTS instead of DISTINCT.  
8. Try to Use  UNION ALL in place of UN-

ION. 
9. Avoid using OR in join conditions. 

10. Avoid functions on the right-hand side of 
the operator. 

11. Remove any redundant mathematics. 

 
There has been limited research on the identifi-

cation of well-written and poorly-written Structured 
Query Language (SQL) queries. Table 1 suggests 
various hints and tips that can be used to evaluate the 
quality of an SQL query, based on the extent to 
which these hints are followed in the written query. 
A well-written query is defined as one that follows a 
large number of hints and tips, while an accepted 
query is defined as one that follows a neutral number 
of hints and tips. A poorly-written query is defined 
as one that follows a small number of hints and tips. 
However, there is currently a lack of research on 
identifying both well-written and poorly-written 
SQL queries. 
 

This paper aims to introduce framework to iden-
tify well-written, accepted, and poorly-written SQL 
queriesusing machine learning classification. The 
proposed framework consists of four main phases: 
manual labeling, preprocessing, training, prediction, 
and evaluation. The Delphi technique is utilized for 
manual labeling, and two different feature extraction 

techniques (TFIDF and Count Vectorizer) are em-
ployed. The classification step includes the compar-
ison of four machine learning algorithms: Decision 
Trees, k Nearest Neighbors, Support Vector Ma-
chines, and Naive Bayes. The experimental results 
on two datasets (Bombay and ERPNext) demon-
strate that these four machine learning classifiers are 
capable of classifying SQL queries into three cate-
gories (well-written, accepted, and poorly-written) 
and provide promising results in terms of recall, pre-
cision, and F1-score. The proposed framework has 
the potential to be valuable for researchers, database 
developers, and SQL programmers in automatically 
evaluating SQL queries and detecting poorly written 
ones. It may also be an essential component of com-
prehensive tools for optimizing SQL query perfor-
mance. This could improve database performance 
and have a positive impact on the field of database 
tuning. 
 

This paper is structured as follows: In Section 2, 
the related works are presented. The methodology is 
described in Section 3. The experimental design and 
datasets used in the study are discussed in Section 4. 
The findings and discussion are presented in Section 
5. The conclusion, which summarizes the key find-
ings of the study and suggests potential avenues for 
future research, is provided in Section 6. 
 
2. RELATED WORKS  

Junior SQL developers and recent IT graduates 
often lack experience in writing effective Structured 
Query Language (SQL) queries. To reduce the costs 
associated with queries (including time, space, and 
complexity), these individuals need to be able to 
write queries that are less expensive or well-struc-
tured. Several methods can be used to find an opti-
mized query, such as hit-and-trial, but developers 
may still produce queries that are costly to execute. 
This highlights the need for more effective ap-
proaches for identifying and improving poorly writ-
ten queries [9].  
 

In a previous study[9], the authors proposed the 
Local Engine for SQL Developer (SLED) as a tool 
for training junior developers in writing efficient 
Structured Query Language (SQL) queries. The 
SLED recommends frequently used or less expen-
sive queries to the developer. As previously men-
tioned, SQL tuning involves rewriting poorly written 
queries to improve their performance. The optimiza-
tion of SQL queries has long been a topic of interest 
in the field of database research [9]. SQL queries can 
be written in various forms that produce the same re-
sult, but with differing costs and performance [10]. 
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One effective way to optimize query performance is 
to write the queries in different structures and com-
pare their read and execution plans [4]. There are 
various techniques that can be used to try to optimize 
database queries[1-5, 11]. Adhering to general tips 
for improving SQL queries will generally lead to im-
proved performance of SQL statements. 
 

To improve the performance of Structured Query 
Language (SQL) queries, various studies [1, 2, 5, 
12]have applied various query tuning tips and tricks 
and presented sets of rules and techniques for opti-
mizing and rewriting poorly written queries. These 
studies have used experimental methods to demon-
strate the effectiveness of these approaches in im-
proving SQL performance. Previous research [8, 13] 
has utilized machine learning techniques to automat-
ically identify both well-written and poorly-written 
code, analyzing students' input to programming 
tasks through static code analysis and using three 
classification methods (K Nearest Neighbors, Naive 
Bayes, and Decision Trees). Based on the static anal-
ysis and available training data, 21 features were se-
lected for classification, and the performance of the 
classifiers was evaluated using recall and precision 
metrics. The results showed that the classifiers were 
better able to recognize well-written code than 
poorly-written code, potentially due to the larger 
amount of well-written code in the training data. 
 

Other studies have also applied machine learning 
techniques to analyze source code and improve 
software intelligence [13, 14]. The authors [13]  have 
studied the performance of six classification 
methods, notably the DTree and stochastic gradient 
descent (SGD) classifiers with thirteen NASA 
metric data program (MDP) datasets. The study used 
a set of software metrics as criteria for classifying 
software. Several derived measures have been used 
in the study to assess the classification method, 
including F-measure, recall, precision, accuracy, and 
the Matthew correlation coefficient (MCC). 

 
The authors [14]tend to analyze the source code 

using machine learning techniques to increase the 
intelligence of the software and make the best use of 
modern architectures. The findings demonstrate that 
applying machine learning models in the source code 
to automatically choose the best energy scaling 
construction is practical and can be used in the 
context of auto-system configuration for energy 
minimization. In addition, machine learning was 
used to classify an error message generated by a 
Static Code Analysis (SCA) tool as true-positive, 
false-positive, or false-negative.The study by [15]. 

study mainly used measurement metrics to compare 
the performance of four classifiers, more specifically 
SVM, KNN, Random Forests, and Repeated 
Incremental Pruning to Produce Error Reduction 
(RIPPER) over eight datasets using 22 features 
Selected Software Engineering Metrics.  

 
To the best of our knowledge, this is the first 

study utilized machine learning algorithms for 
predicting sql query quality. In this study, the use of 
several machine learning algorithms is proposed for 
the automatic identification of well-written and 
poorly-written SQL queries. The algorithms 
employed in this study include k-nearest neighbors, 
decision trees, support vector machines, and Naive 
Bayes. Additionally, the key features that can be 
used to determine the quality of these queries are 
identified. 
 
3. METHODOLOGY 

This section is introducing the components of the 
proposed framework for classifying SQL queries. 
The framework consists of four main components: 
manual query labeling, query pre-processing 
(parsing), model training, and prediction & 
evaluation. The steps involved in each of these 
components are illustrated in Figure 1. 

 
 

Figure 1: Query classification Framework overview. 
 
3.1 Manual Labeling Phase  
 

To obtain labeled data for the supervised learning 
approach, we used the Delphi technique to manually 
classify the SQL queries into two classes: Well and 
Poor. The Poor queries were then further divided 
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into two subclasses: Poor and Accepted. The Delphi 
technique [16]is a method for structuring group 
communication, capturing judgments from areas 
with incomplete research evidence, and resolving 
differences of opinion. The group for this study 
included five university lecturers, database 
developers, and database administrators. 

 
In the first round, the SQL queries from the two 

datasets were sent to the experts, who were asked to 
classify them into the given classes. The data from 
the first round was collected, analyzed, and reduced 
by determining the SQL queries that received a 
common class from the majority of the 15 experts. 
The final label for these determined SQL queries 
was then determined and they were excluded from 
the next round. 

 
In the second round, the remaining SQL queries 

were sent to the same experts with statistical 

information about the responses from the first round. 
The experts were then asked to reclassify each query 
based on the given statistical information. The data 
from the second round was collected, and the 
common class for each SQL query was considered 
as the final label. 

 
For the third-round questionnaire, statistical 

summaries, medians, and ranges of responses from 
the previous questionnaire were provided for the 
SQL queries. The experts were again asked to rate 
the final label (from the first and second rounds) on 
a 5-point Likert scale. The SQL queries with an 
average label of less than 3 were excluded from the 
dataset. Table 2 presents a sample of the poorly 
written queries resulting from the manual labeling 
using the Delphi technique concerning the violated 
hints presented  in Table 1. 
  

 
Table 2: Sample Of The Badly Written Queries 

No Query Violated hints 

1.  
 
 

select id, name,time_slot_id, semester, a year from student natural join 
takes natural join section) select id, name from try group by id, 
name,time_slot_id, semester, year having count(*)>1; 

2,4,6, 

2.  select t1.account, sum(t1.debit) - sum(t1.credit) as balance, 
sum(t1.debit_in_account_currency)- m(t1.credit_in_account_currency) as 
balance_in_account_currency from `tabGL Entry` t1, `tabAccount` t2 
where t1.account = t2.name and t2.root_type = 'Expense' and t2.docstatus 
< 2 and t2.company = '_Test Company' and t1.posting_date between '2017-
01-01' and '2017-02-09' group by t1.account having sum(t1.debit) > 
sum(t1.credit) limit 1; 

2,4,10 

3.  
 
 

select distinct bom_item.parent from `tabBOM Item` bom_item where 
bom_item.bom_no = 'BOM-_Test FG Item 2-001' and bom_item.docstatus 
= 1 and exists (select * from `tabBOM` where name = bom_item.parent 
and docstatus = 1 and is_active = 1; 

3,6,7 
 
 

4.  
 

select course_id,count(distinct id) from takes group by course_id union 
select course_id, credits from course where course_id not in (select 
course_id from takes); 

3,6,7,8 
 

5.  
 
 

select distinct course_id,title from section natural join course where 
semester='spring' and year=2010 and course_id not in (select distinct 
course_id from prereq); 

3,5,6,7 
 

6.  
 
 

select * from (select distinct course_id from teaches where year=2010) 
arbit1 join (select distinct course_id from prereq) arbit2 on 
arbit1.course_id=arbit2.course_id; 

1,3,6,7 
 

7.  
 
 

select id, name from student where id in (select distinct s.id from (select * 
from takes natural join section ) s,(select * from takes natural join section 
) t where s.id=t.id and s.time 
_slot_id = t.time_slot_id and s.course_id <> t.course_id); 

 
1,3,5,6,7 

  



Journal of Theoretical and Applied Information Technology 
15th May 2023. Vol.101. No 9 
© 2023 Little Lion Scientific  

 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
3619 

 

 

3.2 Pre-Processing Phase  
 

Data pre-processing is an essential step in 
any data mining procedure, as it can improve 
classification results in some cases [6]. This step 
includes input data cleaning, which involves 
eliminating SQL queries that contain syntactical 
errors. To identify such errors, the Mozilla query 
parser is used. The second step is tokenization, 
which involves breaking up SQL statements into 
words, symbols, or other elements called tokens. 
This process is important because it helps to extract 
the relevant features from the SQL queries. 

 
3.3 Feature Extraction  

The purpose of the feature selection step is to ob-
tain the most informative set of features that can be 
used to enhance the classifier efficiency. Since Each 
SQL query is a list of words, in this case determining 
which terms in the query are most distinguishing for 
that query can be considered an informative feature. 
However,  machines are unable to process text data 
in its raw form. To make the text understandable to 
machines, it must first be converted into a format that 
can be easily interpreted by computers (this is what 
Natural Language Processing does). Term Fre-
quency-Inverse Document Frequency (TF-IDF) and 
Bag-of-Words (Bow) are two popular methods for 
converting text sentences into numerical vectors. For 
extracting query features, both TF-IDF and Bow 
have been utilized. The TF-IDF consists of two 
parts. First TF estimates how important a term or to-
ken is in a query. The more occurrence of a term in 
a query the more important it is. The TF is just as 
you do for the count vector of term occurrences in a 
query. (Formally TF defined in equation 1) First, the 
frequency 𝑓 ,  of each term occurring in the query 

is counted. Note that if the term 𝑡 does not appear in 
the text of the query, then 𝑓 ,  is zero. The term fre-

quency of each term𝑡  of each query q is computed 
as such: 
 

𝑇𝐹 , =
𝑓 ,

𝑚𝑎𝑥𝑓
                                (1) 

 
 
where 𝑚𝑎𝑥𝑓𝑞 indicates the maximum term fre-
quency of all terms that appear in the query. The sec-
ond part is that IDF is calculated by taking the total 
number of queries in the corpus and dividing it by 
the number of queries where the term appears. (For-
mally IDF defined in equation 2) 

𝐼𝐷𝐹 = 𝑙𝑜𝑔
|𝑄|

|𝑄 |
                               (2) 

Where |𝑄| is the total number of queries, and |𝑄𝑡 | is 
the number of queries where the term t appears. By 
using the IDF of the formula, terms with greater im-
portance get more weight and terms with less im-
portance get fewer weight terms with more im-
portance are given more weight, and terms with less 
importance are given less weight. The result of this 
step is a vector of integers presenting the TF-IDF of 
each query. Comparatively, the bag-of-words ap-
proach (BoW) also well-known as Count Vectorizer 
considers each word count as a feature. Bags-of-
words are representations of text that illustrate the 
occurrence of words within a text. In this approach, 
two things are involved: first, a vocabulary of known 
words, and second, a measure of the count of their 
presence. During this process, any information about 
the order or structure of words in the text is dis-
carded. It only cares if known words appear in the 
text, not where they appear. 

 
3.4 Classification  

The task of predicting a class label for input is 
essentially a classification problem. Part of this 
research is to divide the SQL class into three 
categories: well-written queries, accepted queries, 
and poorly written queries. According to this model, 
unseen SQL is classified into three predefined 
categories based on the predictions of the model. The 
classification process usually consists of two phases 
the training phase and the prediction phase. In the 
training phase, the data is decomposed into a set of 
features based on feature generation models, such as 
the vector space model for text data. The next 
subsection presents the feature extraction method 
used in this study. As stated earlier, the classification 
approach is regarded as a modeling problem where a 
class label is predicated on a given example of input 
data. Class labels usually string values, in our case. 
“well-written” “poor-written,” and “accepted”. 
These ordinal data labels have to be encoded to a 
unique ordinal integer value, e.g., “well-written” =2, 
“accepted “=1, and “poor-written” =0 before being 
provided to the classifier. In a situation of classifying 
a set of SQL queries into three groups, a binary 
classifier is needed for this task. The classifier is 
processed to predict a discrete probability 
distribution of an example belonging to a specific 
class. In this study, the most popular machine 
learning classifiers include Logistic Regression, k 
Nearest Neighbours, Decision Trees, Support Vector 
Machine, and Naive Bayes[11]. are separately 
utilized in the proposed query classification 
Framework. 

 
3.5 Evaluation 
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The well-known standard evaluation metrics 

Precision, Recall, and F-score are used on the test set 
to report the performance of each classifier on the 
dataset. The detailed calculation of the used matrices 
is given as follows: 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =              (3) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =               (4) 

 
 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
×

             (5) 

 
Where P is the Positive predicted value, N is the 
Negative predicted value, TP stands for the True 
Positive predicted value, TN is the True Negative 
predicted value, FP stands for the False Positive 
predicted value and  FN is the False Negative 
predicted value. 

 
4. EXPERIMENTAL RESULTS AND 

DISCUSSIONS  

This set of experiments aims to evaluate the 
classification performance of various machine 
learning techniques in categorizing SQL queries as 
well-written or poorly-written and to identify the 
most suitable feature for classification. The results of 
these experiments will provide insight into the 
effectiveness of different machine learning 
algorithms and feature extraction techniques in this 
task. 
 

4.1 Dataset  

In this study two commonly used datasets in 
query research issues are chosen, which are  Bombay 
[17] and ERPNext [18]. The Bombay dataset 
consists of SQL queries from students enrolled in an 
undergraduate database course offered by IIT 
Bombay from 2015 to 2017. The ERPNext queries, 
on the other hand, are from the ERPNext software 
system, an end-to-end business information 
management solution. The queries were collected by 
running the test suites of the ERPNext system and 
evaluating the generated database logs. 

 
To improve the quality of the two datasets, the 

cleansing process removes queries with syntactical 
errors that do not pass the SQL parsing process, as 
well as duplicate queries.  
 

Table 3 shows a statistical summary of the 
individual record queries and the number of queries 
selected in our experiments. While table4 and table 
5 show the statistical summary of the output of the 
manual labeling process.  

 
4.2 Experiment Setting  

To evaluate the performance of the machine 
learning classifiers, a well-established backtesting 
method called k-fold cross-validation [7] The first 
step is to apply k-fold cross-validation (with k=5) by 
dividing the dataset into subsets. Each dataset 
(subset) is divided into two subsets: Training and 
Testing. The training subsets are organized by 
randomly selecting 80% of the dataset and 20% is 
considered the testing subset. Hence, the training set 
was used to fit the classification model, while the 
testing set was used to evaluate the fit of the model 

 

The experiments were conducted in two sets: one 
set for two class labels (well and poor) and another 
set for three class labels (well, accepted, and poor). 
Each set of experiments was run on two datasets. 
Four different machine learning classifiers were 
compared, and the effectiveness of each classifier 
was assessed based on the comparison of their 
accuracy using precision, recall, and F1-score 
metrics. The experiments were conducted using two 
different features: the first set used TFIDF features 
and the second set used count vector Bow features. 
Detailed experimental results are presented in the 
following section. 

 

Table 3. Datasets statistics summarization 

Dataset  

Total 
number 
of 
queries 

Number 
of 
parsable 
queries 

Number 
of 
distinct 
query 
strings 

Correct 
query  

IIT 
Bombay 982 934 629 479 

ERPNext 18,454 17,761 1,631 1,517 

Table 4. Binary manual labeling Datasets statistics 
summarization 

Dataset  
Correct 
query  

Well  Poor  

IIT 
Bombay 479 120 359 

ERPNext 1,517 1,127 390 
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4.3 Results And Discussions 

This section presents the experimental results in 
terms of classification accuracy using the evolution 
metrics Recall, Precision, and F1-Measure. For the 
classification of the experimental datasets, the most 
popular machine learning classifiers were trained, 
including Decision Trees (DTC),  k Nearest 
Neighbours (KNN), Support Vector Machine 
(SVM), and Naive Bayes (NB).  

The classification results using two class labels 
(Poor, Well)for the ERPNext query dataset are 
shown in Table 6 and the results for the Bombay 
dataset are shown in Table 7. Sorting the 
performance of the classifiers with TFIDF and Bow 
count vectorizer features in terms of recall, DTC 
ranks first in classifying queries into poorly written 
and well-written categories and SVM is better than 
the others. However, looking at the accuracy metrics 
for each category, this is not necessarily the case. 
Since the F-score measures the balance of precision 
and recall, a higher value of the F-score means better 
performance. Therefore, the weighted accuracy is 
considered by taking the average of all classes in that 
case ("Poor",  "Well") of the proportion of correct 
predictions in that class (i.e., the number of correctly 
predicted instances in that class divided by the total 
number of objects in that class). When considering 
the weighting accuracy in terms of F-score, both 
DTC and SVM achieved the best result in each case. 

  
Table 6. ERPNext dataset results. 

 
TFIDF 

CountVector-
izer 

Poor Well Poor Well 

DTC 

precision 0.76 0.92 0.74 0.92 
Recall 0.76 0.92 0.77 0.91 

F1-score 0.76 0.92 0.76 0.91 
        

KNN 

precision 0.67 0.83 0.75 0.89 

recall 0.44 0.93 0.67 0.92 

F1-score 0.53 0.87 0.71 0.91 
        

SVM 

precision 0.96 0.86 0.79 0.91 

recall 0.55 0.99 0.72 0.93 
F1-score 0.70 0.92 0.75 0.92 

        

NB 

precision 0.38 0.86 0.39 0.87 

recall 0.73 0.59 0.75 0.59 

F1-score 0.50 0.70 0.51 0.70 
 
Consequently, Table 7 presents the result 

achieved by each classifier in the Bombay queries 
dataset. The results are somehow similar to the 
ERPNext dataset, the result shows that the DTC, and 
SVM achieved the best performance and KNN is 
better than NB. 

 
As shown in table 6, and table 7  the 4 machine 

learning classifiers provide a hopeful result in 
identifying well, accepted, and poorly written SQL 
queries in terms of recall, precision, and F1 score. 
However, in the case of using TFIDF as numerical 
features for modeling the SQL query code better 
accuracy is achieved in predicting well and accepted 
written SQL queries. In contrast, the count vectorizer 
feature shows better performance when predicting 
Poorly-written ones. In conclusion, the experiments 
show that using machine learning models to 
automatically classify SQL queries is feasible and 
has the potential to be used in the context of 
comprehensive tools to optimize SQL query 
performance. 

Table 7. Bombay dataset results. 

 
TFIDF 

CountVec-
torizer 

Poor Well Poor Well 

DTC 

precision 0.97 0.90 1 0.80 
Recall 0.97 0.93 0.92 0.99 

F1-score 0.97 0.91 0.96 0.89 
        

KNN 

precision 0.92 0.84 0.75 0.26 
recall 0.95 0.74 0.63 0.93 

F1-score 0.93 0.79 0.68 0.31 
        

SVM 

precision 0.90 0.89 1 0.85 
recall 0.97 0.68 0.94 0.99 

F1-score 0.93 0.77 0.97 0.92 
        

NB 

precision 0.98 0.83 0.95 0.83 
recall 0.94 0.93 0.94 0.84 

F1-score 0.96 0.88 0.94 0.84 

 
Table 5. Ternary  manual labeling Datasets statistics 

summarization 

Dataset  
Correct 
query  

Well  
accepted 

Poor  

IIT 
Bombay 479 120 

182 
177 

ERPNext 1,517 1127 326 64 
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The classification results using the three-class 
label for the ERPNext query dataset are shown in 
Table 8 and the results for the Bombay dataset are 
shown in Table 9.  
 

DTC ranks first in classifying queries into poor,  
Accepted, and well-written categories followed by 
SVM, KNN, and NB. For the  ERPNext dataset, 

DTC apple detects the poorly written query more ac-
curately than other classifiers where it achieves 0.84 
and 0.77 F1-score using CountVectorizer and TFIDF 
respectively. However, for the Bombay dataset DTC 
apple detects the poorly written query more accu-
rately than other classifiers where it achieves a 0.9 
F1-score using CountVectorizer. Moreover, DTC 
and SVM perform better than others with a 0.86 F1-
score using TFIDF. 
 

Table 8. ERPNext dataset results. 

 TFIDF CountVectorizer 

Poor Accepted Well Poor Accepted Well 

DTC 
Precision 0.74 0.76 0.92 0.82 0.72 0.92 

Recall 0.81 0.72 0.93 0.86 0.71 0.92 

F1-score 0.77 0.74 0.92 0.84 0.71 0.92 

                

KNN 
Precision 0.65 0.64 0.82 0.9 0.72 0.89 

Recall 0.57 0.38 0.92 0.59 0.67 0.92 

F1-score 0.61 0.48 0.87 0.72 0.7 0.91 

                

SVM 
Precision 0.9 0.98 0.86 0.83 0.75 0.91 

Recall 0.56 0.52 0.99 0.81 0.68 0.94 

F1-score 0.69 0.68 0.92 0.82 0.72 0.92 

                

NB 
Precision 0.21 0.38 0.85 0.22 0.38 0.86 

Recall 0.56 0.6 0.63 0.59 0.6 0.63 

F1-score 0.31 0.47 0.73 0.32 0.46 0.73 
 

Table 9. Bombay dataset results 

 TFIDF CountVectorizer 

Poor Accepted Well Poor Accepted Well 

DTC 
Precision 0.86 0.84 0.92 0.88 0.9 0.86 

Recall 0.86 0.86 0.9 0.92 0.8 0.96 

F1-score 0.86 0.85 0.91 0.9 0.85 0.91 

                

KNN 
Precision 0.8 0.73 0.83 0.7 0.5 0.26 

Recall 0.86 0.72 0.75 0.33 0.59 0.39 

F1-score 0.83 0.73 0.79 0.45 0.54 0.31 

                

SVM 
Precision 0.81 0.76 0.89 0.87 0.88 0.87 

Recall 0.92 0.76 0.72 0.89 0.78 0.99 

F1-score 0.86 0.76 0.8 0.88 0.83 0.93 

                

NB 
Precision 0.94 0.61 0.84 0.97 0.62 0.8 

Recall 0.36 0.92 0.96 0.5 0.88 0.86 

F1-score 0.52 0.73 0.9 0.66 0.73 0.83 
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The results of the experiments indicate that the 
decision tree classifier (DTC) with CountVectorizer 
features performs better than the other classifiers in 
both two-class and three-class cases for both 
datasets. 

The obtained promising result indicate that the 
proposed framework is effectively able to detect 
poorly written SQL query.  These promising results 
of the proposed farmwork encourage the researchers, 
database developers, and SQL programmers to use 
the farmwork to detect the poorly written SQL 
query. Moreover, the proposed farmwork could be 
an important component of complete tool for 
optimizing the performance of SQL query.  

5. CONCLUSION  

The management and manipulation of data in a 
DMS rely heavily on SQL queries. However, 
poorly constructed SQL queries cause performance 
problems.  In this study, we proposed a framwork 
for evaluating SQL query quality using machine 
learning. In this sudy, the effectiveness of various 
machine learning classifiers in the classification of 
SQL queries into three categories: well-written, 
accepted, and poorly written was investigated. The 
most popular machine learning classifiers used 
included k- Nearest Neighbours, Decision Trees, 
Support Vector Machine, and Naive Bayes. 
different features, such as term frequency, inverse 
document frequency, and bag-of-words count 
vector, were utilized in the training and evaluation 
of the classifiers. The results of the experiments, 
conducted on two different datasets, demonstrated 
that the Decision Trees and Support Vector 
Machine classifiers showed promising results in the 
classification of SQL queries based on recall, 
precision, and F1-score. In comparison, the Naive 
Bayes and k Nearest Neighbours classifiers did not 
perform as well. Moreover, the overall result shows 
that the bag-of-words count vectorizer performs 
better in predicting poorly written queries. This 
finding is significant as it can aid in the 
development of more efficient and effective 
databases by allowing developers to identify and 
improve upon poorly written queries that may 
negatively impact performance. Future research 
could focus on exploring different features of SQL 
queries to improve classification accuracy. Also 
may test the proposed framwork with wide range of 
data set. It would also be beneficial to investigate 

the use of other classification techniques, such as 
Deep Reinforcement Learning, in the prediction of 
the quality of SQL queries. Finally, The proposed 
framework has the potential to serve as a valuable 
tool for researchers, database developers, and SQL 
programmers, as it offers an automated means of 
evaluating SQL queries and detecting poorly 
written ones. The framework's application as an 
essential component of comprehensive tools for 
optimizing SQL query performance is also 
noteworthy, as it has the potential to significantly 
enhance database performance. By improving the 
efficiency of database tuning, the framework could 
have a positive impact on the field of database 
optimization, thereby contributing to the 
advancement of the domain. 
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