
Journal of Theoretical and Applied Information Technology
15th May 2023. Vol.101. No 9
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3615

PREDICTING SQL QUERY QUALITY USING MACHINE
LEARNING TECHNIQUES

MOHAMMED RADI

Department Of Computer Science, Alaqsa University, Gaza,Palestine

E-mail: moh_radi@alaqsa.edu.ps

ABSTRACT

To achieve high database performance (e.g., high throughput and low latency), a database tuning technique
is needed to make a database application run faster and respond to end-users on time. Users rely heavily on
Structure Query Language (SQL) queries to manage and manipulate their data. The complexity of these que-
ries can range from very simple to very complex. Poorly constructed queries usually lead to perfor-
mance problems. However, the end-user does not know if the SQL statement is poorly written resulting in
poor database system performance. Therefore evaluating SQL queries can be difficult because there are many
syntactic structures for equivalent queries. Manual evaluation is far too time-consuming since there are so
many queries in question. Several papers have provided hints and tips on writing good SQL queries to
achieve better performance. However, there is a lack of research on identifying poorly-written SQL queries.
Therefore, new approaches are needed to automatically identify poorly-written SQL queries, which have to
rewritten for faster performance. In this paper, we propose a classification framework to automatically
identify well and poorly-written SQL queries. The proposed framework utilizes various machine learning
algorithms including Decision Trees, k Nearest Neighbours, Support Vector Machine, and Naive Bayes. In
addition, we identified the key features using two different feature extraction techniques namely TFIDF and
Count Vectorizer. To effectively evaluate the proposed framework, we used the Delphi technique to manually
label two different datasets namely (Bombay and ERPNext). The experimental results demonstrate that the
four machine learning classifiers capable to classify the SQL queries into (well, accepted, and poorly) provide
promising results in terms of Recall, precision, and F1-score. In both datasets, the Decision Trees classifier
outperform other classifiers by achieving (90%) on the Bombay Dataset and (84%) on the ERPNext Dataset
in term of F1-measure. Furthermore, the Count Vectorizer outperforms the TFIDF in predicting poorly writ-
ten queries.Additionally, the proposed framework can serve as a useful tool for database developers and SQL
programmers for detecting poorly written query, consequently utilized for optimizing SQL query perfor-
mance.
Keywords: SQL Query, Machine Learning, Classification, Feature Selection, Database Systems

1. INTRODUCTION

Database management systems (DBMS) are de-
signed to provide timely answers to end-users. The
basic unit of interaction with end users in SQL que-
ries. End users often expect their queries to return
results as quickly as possible[1]. However, many
factors can affect the response time of the database
systems. One of the famous factors is poorly struc-
tured or poorly written SQL queries. Most of the cur-
rent database systems perform an automatic optimi-
zation for end-users queries. Even though, still, the
well-written SQL queries outperform poorly written
ones[2]. For better performance, we need to use
faster and more efficient queries.

The purpose of performance tuning in a data-
base management system is to maximize throughput
while minimizing response times, which means us-
ing the least number of resources while providing the
minimum response times. A database management
system's performance tuning helps minimize re-
sponse time and achieve optimal cost by optimizing
performance. With minimal response times and
maximum throughput, this ensures efficient resource
utilization. In the same way, The process of tuning
SQL queries is rewriting them so that they are more
efficient [3]. However, end-users are unaware that
the SQL statement is poorly written and will result
in poor performance, as well as the reason why this
happens.

Journal of Theoretical and Applied Information Technology
15th May 2023. Vol.101. No 9
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3616

As there are several syntactic structures for the
same query, assessing SQL queries is not an easy
task. In addition, the manual assessment would be
far too time-consuming given the number of possible
syntactical structures of SQL queries. Therefore, an
automatic classification of SQL queries is an im-
portant approach to the evaluation of SQL queries.
Several works have discussed and introduced some
important hints and tips for writing SQL to get better
performance[2, 4-8] , these hints are summarized in
table 1.

Table1: Summarization of SQL hints

No Hint
1. Use Column Names Instead of * in a SE-

LECT Statement.
2. Avoid including a HAVING clause in SE-

LECT statements.
3. Avoid using unnecessary DISTINCT

Conditions.
4. Use WHERE instead of HAVING in Join.
5. Create joins with INNER JOIN (not

WHERE).
6. Avoid nest sub queries.
7. Use EXISTS instead of DISTINCT.
8. Try to Use UNION ALL in place of UN-

ION.
9. Avoid using OR in join conditions.

10. Avoid functions on the right-hand side of
the operator.

11. Remove any redundant mathematics.

There has been limited research on the identifi-

cation of well-written and poorly-written Structured
Query Language (SQL) queries. Table 1 suggests
various hints and tips that can be used to evaluate the
quality of an SQL query, based on the extent to
which these hints are followed in the written query.
A well-written query is defined as one that follows a
large number of hints and tips, while an accepted
query is defined as one that follows a neutral number
of hints and tips. A poorly-written query is defined
as one that follows a small number of hints and tips.
However, there is currently a lack of research on
identifying both well-written and poorly-written
SQL queries.

This paper aims to introduce framework to iden-
tify well-written, accepted, and poorly-written SQL
queriesusing machine learning classification. The
proposed framework consists of four main phases:
manual labeling, preprocessing, training, prediction,
and evaluation. The Delphi technique is utilized for
manual labeling, and two different feature extraction

techniques (TFIDF and Count Vectorizer) are em-
ployed. The classification step includes the compar-
ison of four machine learning algorithms: Decision
Trees, k Nearest Neighbors, Support Vector Ma-
chines, and Naive Bayes. The experimental results
on two datasets (Bombay and ERPNext) demon-
strate that these four machine learning classifiers are
capable of classifying SQL queries into three cate-
gories (well-written, accepted, and poorly-written)
and provide promising results in terms of recall, pre-
cision, and F1-score. The proposed framework has
the potential to be valuable for researchers, database
developers, and SQL programmers in automatically
evaluating SQL queries and detecting poorly written
ones. It may also be an essential component of com-
prehensive tools for optimizing SQL query perfor-
mance. This could improve database performance
and have a positive impact on the field of database
tuning.

This paper is structured as follows: In Section 2,
the related works are presented. The methodology is
described in Section 3. The experimental design and
datasets used in the study are discussed in Section 4.
The findings and discussion are presented in Section
5. The conclusion, which summarizes the key find-
ings of the study and suggests potential avenues for
future research, is provided in Section 6.

2. RELATED WORKS

Junior SQL developers and recent IT graduates
often lack experience in writing effective Structured
Query Language (SQL) queries. To reduce the costs
associated with queries (including time, space, and
complexity), these individuals need to be able to
write queries that are less expensive or well-struc-
tured. Several methods can be used to find an opti-
mized query, such as hit-and-trial, but developers
may still produce queries that are costly to execute.
This highlights the need for more effective ap-
proaches for identifying and improving poorly writ-
ten queries [9].

In a previous study[9], the authors proposed the
Local Engine for SQL Developer (SLED) as a tool
for training junior developers in writing efficient
Structured Query Language (SQL) queries. The
SLED recommends frequently used or less expen-
sive queries to the developer. As previously men-
tioned, SQL tuning involves rewriting poorly written
queries to improve their performance. The optimiza-
tion of SQL queries has long been a topic of interest
in the field of database research [9]. SQL queries can
be written in various forms that produce the same re-
sult, but with differing costs and performance [10].

Journal of Theoretical and Applied Information Technology
15th May 2023. Vol.101. No 9
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3617

One effective way to optimize query performance is
to write the queries in different structures and com-
pare their read and execution plans [4]. There are
various techniques that can be used to try to optimize
database queries[1-5, 11]. Adhering to general tips
for improving SQL queries will generally lead to im-
proved performance of SQL statements.

To improve the performance of Structured Query
Language (SQL) queries, various studies [1, 2, 5,
12]have applied various query tuning tips and tricks
and presented sets of rules and techniques for opti-
mizing and rewriting poorly written queries. These
studies have used experimental methods to demon-
strate the effectiveness of these approaches in im-
proving SQL performance. Previous research [8, 13]
has utilized machine learning techniques to automat-
ically identify both well-written and poorly-written
code, analyzing students' input to programming
tasks through static code analysis and using three
classification methods (K Nearest Neighbors, Naive
Bayes, and Decision Trees). Based on the static anal-
ysis and available training data, 21 features were se-
lected for classification, and the performance of the
classifiers was evaluated using recall and precision
metrics. The results showed that the classifiers were
better able to recognize well-written code than
poorly-written code, potentially due to the larger
amount of well-written code in the training data.

Other studies have also applied machine learning
techniques to analyze source code and improve
software intelligence [13, 14]. The authors [13] have
studied the performance of six classification
methods, notably the DTree and stochastic gradient
descent (SGD) classifiers with thirteen NASA
metric data program (MDP) datasets. The study used
a set of software metrics as criteria for classifying
software. Several derived measures have been used
in the study to assess the classification method,
including F-measure, recall, precision, accuracy, and
the Matthew correlation coefficient (MCC).

The authors [14]tend to analyze the source code

using machine learning techniques to increase the
intelligence of the software and make the best use of
modern architectures. The findings demonstrate that
applying machine learning models in the source code
to automatically choose the best energy scaling
construction is practical and can be used in the
context of auto-system configuration for energy
minimization. In addition, machine learning was
used to classify an error message generated by a
Static Code Analysis (SCA) tool as true-positive,
false-positive, or false-negative.The study by [15].

study mainly used measurement metrics to compare
the performance of four classifiers, more specifically
SVM, KNN, Random Forests, and Repeated
Incremental Pruning to Produce Error Reduction
(RIPPER) over eight datasets using 22 features
Selected Software Engineering Metrics.

To the best of our knowledge, this is the first

study utilized machine learning algorithms for
predicting sql query quality. In this study, the use of
several machine learning algorithms is proposed for
the automatic identification of well-written and
poorly-written SQL queries. The algorithms
employed in this study include k-nearest neighbors,
decision trees, support vector machines, and Naive
Bayes. Additionally, the key features that can be
used to determine the quality of these queries are
identified.

3. METHODOLOGY

This section is introducing the components of the
proposed framework for classifying SQL queries.
The framework consists of four main components:
manual query labeling, query pre-processing
(parsing), model training, and prediction &
evaluation. The steps involved in each of these
components are illustrated in Figure 1.

Figure 1: Query classification Framework overview.

3.1 Manual Labeling Phase

To obtain labeled data for the supervised learning
approach, we used the Delphi technique to manually
classify the SQL queries into two classes: Well and
Poor. The Poor queries were then further divided

Journal of Theoretical and Applied Information Technology
15th May 2023. Vol.101. No 9
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3618

into two subclasses: Poor and Accepted. The Delphi
technique [16]is a method for structuring group
communication, capturing judgments from areas
with incomplete research evidence, and resolving
differences of opinion. The group for this study
included five university lecturers, database
developers, and database administrators.

In the first round, the SQL queries from the two

datasets were sent to the experts, who were asked to
classify them into the given classes. The data from
the first round was collected, analyzed, and reduced
by determining the SQL queries that received a
common class from the majority of the 15 experts.
The final label for these determined SQL queries
was then determined and they were excluded from
the next round.

In the second round, the remaining SQL queries

were sent to the same experts with statistical

information about the responses from the first round.
The experts were then asked to reclassify each query
based on the given statistical information. The data
from the second round was collected, and the
common class for each SQL query was considered
as the final label.

For the third-round questionnaire, statistical

summaries, medians, and ranges of responses from
the previous questionnaire were provided for the
SQL queries. The experts were again asked to rate
the final label (from the first and second rounds) on
a 5-point Likert scale. The SQL queries with an
average label of less than 3 were excluded from the
dataset. Table 2 presents a sample of the poorly
written queries resulting from the manual labeling
using the Delphi technique concerning the violated
hints presented in Table 1.

Table 2: Sample Of The Badly Written Queries

No Query Violated hints

1.

select id, name,time_slot_id, semester, a year from student natural join
takes natural join section) select id, name from try group by id,
name,time_slot_id, semester, year having count(*)>1;

2,4,6,

2. select t1.account, sum(t1.debit) - sum(t1.credit) as balance,
sum(t1.debit_in_account_currency)- m(t1.credit_in_account_currency) as
balance_in_account_currency from `tabGL Entry` t1, `tabAccount` t2
where t1.account = t2.name and t2.root_type = 'Expense' and t2.docstatus
< 2 and t2.company = '_Test Company' and t1.posting_date between '2017-
01-01' and '2017-02-09' group by t1.account having sum(t1.debit) >
sum(t1.credit) limit 1;

2,4,10

3.

select distinct bom_item.parent from `tabBOM Item` bom_item where
bom_item.bom_no = 'BOM-_Test FG Item 2-001' and bom_item.docstatus
= 1 and exists (select * from `tabBOM` where name = bom_item.parent
and docstatus = 1 and is_active = 1;

3,6,7

4.

select course_id,count(distinct id) from takes group by course_id union
select course_id, credits from course where course_id not in (select
course_id from takes);

3,6,7,8

5.

select distinct course_id,title from section natural join course where
semester='spring' and year=2010 and course_id not in (select distinct
course_id from prereq);

3,5,6,7

6.

select * from (select distinct course_id from teaches where year=2010)
arbit1 join (select distinct course_id from prereq) arbit2 on
arbit1.course_id=arbit2.course_id;

1,3,6,7

7.

select id, name from student where id in (select distinct s.id from (select *
from takes natural join section) s,(select * from takes natural join section
) t where s.id=t.id and s.time
_slot_id = t.time_slot_id and s.course_id <> t.course_id);

1,3,5,6,7

Journal of Theoretical and Applied Information Technology
15th May 2023. Vol.101. No 9
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3619

3.2 Pre-Processing Phase

Data pre-processing is an essential step in
any data mining procedure, as it can improve
classification results in some cases [6]. This step
includes input data cleaning, which involves
eliminating SQL queries that contain syntactical
errors. To identify such errors, the Mozilla query
parser is used. The second step is tokenization,
which involves breaking up SQL statements into
words, symbols, or other elements called tokens.
This process is important because it helps to extract
the relevant features from the SQL queries.

3.3 Feature Extraction

The purpose of the feature selection step is to ob-
tain the most informative set of features that can be
used to enhance the classifier efficiency. Since Each
SQL query is a list of words, in this case determining
which terms in the query are most distinguishing for
that query can be considered an informative feature.
However, machines are unable to process text data
in its raw form. To make the text understandable to
machines, it must first be converted into a format that
can be easily interpreted by computers (this is what
Natural Language Processing does). Term Fre-
quency-Inverse Document Frequency (TF-IDF) and
Bag-of-Words (Bow) are two popular methods for
converting text sentences into numerical vectors. For
extracting query features, both TF-IDF and Bow
have been utilized. The TF-IDF consists of two
parts. First TF estimates how important a term or to-
ken is in a query. The more occurrence of a term in
a query the more important it is. The TF is just as
you do for the count vector of term occurrences in a
query. (Formally TF defined in equation 1) First, the
frequency 𝑓 , of each term occurring in the query

is counted. Note that if the term 𝑡 does not appear in
the text of the query, then 𝑓 , is zero. The term fre-

quency of each term𝑡 of each query q is computed
as such:

𝑇𝐹 , =
𝑓 ,

𝑚𝑎𝑥𝑓
 (1)

where 𝑚𝑎𝑥𝑓𝑞 indicates the maximum term fre-
quency of all terms that appear in the query. The sec-
ond part is that IDF is calculated by taking the total
number of queries in the corpus and dividing it by
the number of queries where the term appears. (For-
mally IDF defined in equation 2)

𝐼𝐷𝐹 = 𝑙𝑜𝑔
|𝑄|

|𝑄 |
 (2)

Where |𝑄| is the total number of queries, and |𝑄𝑡 | is
the number of queries where the term t appears. By
using the IDF of the formula, terms with greater im-
portance get more weight and terms with less im-
portance get fewer weight terms with more im-
portance are given more weight, and terms with less
importance are given less weight. The result of this
step is a vector of integers presenting the TF-IDF of
each query. Comparatively, the bag-of-words ap-
proach (BoW) also well-known as Count Vectorizer
considers each word count as a feature. Bags-of-
words are representations of text that illustrate the
occurrence of words within a text. In this approach,
two things are involved: first, a vocabulary of known
words, and second, a measure of the count of their
presence. During this process, any information about
the order or structure of words in the text is dis-
carded. It only cares if known words appear in the
text, not where they appear.

3.4 Classification

The task of predicting a class label for input is
essentially a classification problem. Part of this
research is to divide the SQL class into three
categories: well-written queries, accepted queries,
and poorly written queries. According to this model,
unseen SQL is classified into three predefined
categories based on the predictions of the model. The
classification process usually consists of two phases
the training phase and the prediction phase. In the
training phase, the data is decomposed into a set of
features based on feature generation models, such as
the vector space model for text data. The next
subsection presents the feature extraction method
used in this study. As stated earlier, the classification
approach is regarded as a modeling problem where a
class label is predicated on a given example of input
data. Class labels usually string values, in our case.
“well-written” “poor-written,” and “accepted”.
These ordinal data labels have to be encoded to a
unique ordinal integer value, e.g., “well-written” =2,
“accepted “=1, and “poor-written” =0 before being
provided to the classifier. In a situation of classifying
a set of SQL queries into three groups, a binary
classifier is needed for this task. The classifier is
processed to predict a discrete probability
distribution of an example belonging to a specific
class. In this study, the most popular machine
learning classifiers include Logistic Regression, k
Nearest Neighbours, Decision Trees, Support Vector
Machine, and Naive Bayes[11]. are separately
utilized in the proposed query classification
Framework.

3.5 Evaluation

Journal of Theoretical and Applied Information Technology
15th May 2023. Vol.101. No 9
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3620

The well-known standard evaluation metrics

Precision, Recall, and F-score are used on the test set
to report the performance of each classifier on the
dataset. The detailed calculation of the used matrices
is given as follows:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = (3)

𝑅𝑒𝑐𝑎𝑙𝑙 = (4)

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
×

 (5)

Where P is the Positive predicted value, N is the
Negative predicted value, TP stands for the True
Positive predicted value, TN is the True Negative
predicted value, FP stands for the False Positive
predicted value and FN is the False Negative
predicted value.

4. EXPERIMENTAL RESULTS AND

DISCUSSIONS

This set of experiments aims to evaluate the
classification performance of various machine
learning techniques in categorizing SQL queries as
well-written or poorly-written and to identify the
most suitable feature for classification. The results of
these experiments will provide insight into the
effectiveness of different machine learning
algorithms and feature extraction techniques in this
task.

4.1 Dataset

In this study two commonly used datasets in
query research issues are chosen, which are Bombay
[17] and ERPNext [18]. The Bombay dataset
consists of SQL queries from students enrolled in an
undergraduate database course offered by IIT
Bombay from 2015 to 2017. The ERPNext queries,
on the other hand, are from the ERPNext software
system, an end-to-end business information
management solution. The queries were collected by
running the test suites of the ERPNext system and
evaluating the generated database logs.

To improve the quality of the two datasets, the

cleansing process removes queries with syntactical
errors that do not pass the SQL parsing process, as
well as duplicate queries.

Table 3 shows a statistical summary of the
individual record queries and the number of queries
selected in our experiments. While table4 and table
5 show the statistical summary of the output of the
manual labeling process.

4.2 Experiment Setting

To evaluate the performance of the machine
learning classifiers, a well-established backtesting
method called k-fold cross-validation [7] The first
step is to apply k-fold cross-validation (with k=5) by
dividing the dataset into subsets. Each dataset
(subset) is divided into two subsets: Training and
Testing. The training subsets are organized by
randomly selecting 80% of the dataset and 20% is
considered the testing subset. Hence, the training set
was used to fit the classification model, while the
testing set was used to evaluate the fit of the model

The experiments were conducted in two sets: one
set for two class labels (well and poor) and another
set for three class labels (well, accepted, and poor).
Each set of experiments was run on two datasets.
Four different machine learning classifiers were
compared, and the effectiveness of each classifier
was assessed based on the comparison of their
accuracy using precision, recall, and F1-score
metrics. The experiments were conducted using two
different features: the first set used TFIDF features
and the second set used count vector Bow features.
Detailed experimental results are presented in the
following section.

Table 3. Datasets statistics summarization

Dataset

Total
number
of
queries

Number
of
parsable
queries

Number
of
distinct
query
strings

Correct
query

IIT
Bombay 982 934 629 479

ERPNext 18,454 17,761 1,631 1,517

Table 4. Binary manual labeling Datasets statistics
summarization

Dataset
Correct
query

Well Poor

IIT
Bombay 479 120 359

ERPNext 1,517 1,127 390

Journal of Theoretical and Applied Information Technology
15th May 2023. Vol.101. No 9
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3621

4.3 Results And Discussions

This section presents the experimental results in
terms of classification accuracy using the evolution
metrics Recall, Precision, and F1-Measure. For the
classification of the experimental datasets, the most
popular machine learning classifiers were trained,
including Decision Trees (DTC), k Nearest
Neighbours (KNN), Support Vector Machine
(SVM), and Naive Bayes (NB).

The classification results using two class labels
(Poor, Well)for the ERPNext query dataset are
shown in Table 6 and the results for the Bombay
dataset are shown in Table 7. Sorting the
performance of the classifiers with TFIDF and Bow
count vectorizer features in terms of recall, DTC
ranks first in classifying queries into poorly written
and well-written categories and SVM is better than
the others. However, looking at the accuracy metrics
for each category, this is not necessarily the case.
Since the F-score measures the balance of precision
and recall, a higher value of the F-score means better
performance. Therefore, the weighted accuracy is
considered by taking the average of all classes in that
case ("Poor", "Well") of the proportion of correct
predictions in that class (i.e., the number of correctly
predicted instances in that class divided by the total
number of objects in that class). When considering
the weighting accuracy in terms of F-score, both
DTC and SVM achieved the best result in each case.

Table 6. ERPNext dataset results.

TFIDF

CountVector-
izer

Poor Well Poor Well

DTC

precision 0.76 0.92 0.74 0.92
Recall 0.76 0.92 0.77 0.91

F1-score 0.76 0.92 0.76 0.91

KNN

precision 0.67 0.83 0.75 0.89

recall 0.44 0.93 0.67 0.92

F1-score 0.53 0.87 0.71 0.91

SVM

precision 0.96 0.86 0.79 0.91

recall 0.55 0.99 0.72 0.93
F1-score 0.70 0.92 0.75 0.92

NB

precision 0.38 0.86 0.39 0.87

recall 0.73 0.59 0.75 0.59

F1-score 0.50 0.70 0.51 0.70

Consequently, Table 7 presents the result

achieved by each classifier in the Bombay queries
dataset. The results are somehow similar to the
ERPNext dataset, the result shows that the DTC, and
SVM achieved the best performance and KNN is
better than NB.

As shown in table 6, and table 7 the 4 machine

learning classifiers provide a hopeful result in
identifying well, accepted, and poorly written SQL
queries in terms of recall, precision, and F1 score.
However, in the case of using TFIDF as numerical
features for modeling the SQL query code better
accuracy is achieved in predicting well and accepted
written SQL queries. In contrast, the count vectorizer
feature shows better performance when predicting
Poorly-written ones. In conclusion, the experiments
show that using machine learning models to
automatically classify SQL queries is feasible and
has the potential to be used in the context of
comprehensive tools to optimize SQL query
performance.

Table 7. Bombay dataset results.

TFIDF

CountVec-
torizer

Poor Well Poor Well

DTC

precision 0.97 0.90 1 0.80
Recall 0.97 0.93 0.92 0.99

F1-score 0.97 0.91 0.96 0.89

KNN

precision 0.92 0.84 0.75 0.26
recall 0.95 0.74 0.63 0.93

F1-score 0.93 0.79 0.68 0.31

SVM

precision 0.90 0.89 1 0.85
recall 0.97 0.68 0.94 0.99

F1-score 0.93 0.77 0.97 0.92

NB

precision 0.98 0.83 0.95 0.83
recall 0.94 0.93 0.94 0.84

F1-score 0.96 0.88 0.94 0.84

Table 5. Ternary manual labeling Datasets statistics

summarization

Dataset
Correct
query

Well
accepted

Poor

IIT
Bombay 479 120

182
177

ERPNext 1,517 1127 326 64

Journal of Theoretical and Applied Information Technology
15th May 2023. Vol.101. No 9
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3622

The classification results using the three-class
label for the ERPNext query dataset are shown in
Table 8 and the results for the Bombay dataset are
shown in Table 9.

DTC ranks first in classifying queries into poor,
Accepted, and well-written categories followed by
SVM, KNN, and NB. For the ERPNext dataset,

DTC apple detects the poorly written query more ac-
curately than other classifiers where it achieves 0.84
and 0.77 F1-score using CountVectorizer and TFIDF
respectively. However, for the Bombay dataset DTC
apple detects the poorly written query more accu-
rately than other classifiers where it achieves a 0.9
F1-score using CountVectorizer. Moreover, DTC
and SVM perform better than others with a 0.86 F1-
score using TFIDF.

Table 8. ERPNext dataset results.

 TFIDF CountVectorizer

Poor Accepted Well Poor Accepted Well

DTC
Precision 0.74 0.76 0.92 0.82 0.72 0.92

Recall 0.81 0.72 0.93 0.86 0.71 0.92

F1-score 0.77 0.74 0.92 0.84 0.71 0.92

KNN
Precision 0.65 0.64 0.82 0.9 0.72 0.89

Recall 0.57 0.38 0.92 0.59 0.67 0.92

F1-score 0.61 0.48 0.87 0.72 0.7 0.91

SVM
Precision 0.9 0.98 0.86 0.83 0.75 0.91

Recall 0.56 0.52 0.99 0.81 0.68 0.94

F1-score 0.69 0.68 0.92 0.82 0.72 0.92

NB
Precision 0.21 0.38 0.85 0.22 0.38 0.86

Recall 0.56 0.6 0.63 0.59 0.6 0.63

F1-score 0.31 0.47 0.73 0.32 0.46 0.73

Table 9. Bombay dataset results

 TFIDF CountVectorizer

Poor Accepted Well Poor Accepted Well

DTC
Precision 0.86 0.84 0.92 0.88 0.9 0.86

Recall 0.86 0.86 0.9 0.92 0.8 0.96

F1-score 0.86 0.85 0.91 0.9 0.85 0.91

KNN
Precision 0.8 0.73 0.83 0.7 0.5 0.26

Recall 0.86 0.72 0.75 0.33 0.59 0.39

F1-score 0.83 0.73 0.79 0.45 0.54 0.31

SVM
Precision 0.81 0.76 0.89 0.87 0.88 0.87

Recall 0.92 0.76 0.72 0.89 0.78 0.99

F1-score 0.86 0.76 0.8 0.88 0.83 0.93

NB
Precision 0.94 0.61 0.84 0.97 0.62 0.8

Recall 0.36 0.92 0.96 0.5 0.88 0.86

F1-score 0.52 0.73 0.9 0.66 0.73 0.83

Journal of Theoretical and Applied Information Technology
15th May 2023. Vol.101. No 9
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3623

The results of the experiments indicate that the
decision tree classifier (DTC) with CountVectorizer
features performs better than the other classifiers in
both two-class and three-class cases for both
datasets.

The obtained promising result indicate that the
proposed framework is effectively able to detect
poorly written SQL query. These promising results
of the proposed farmwork encourage the researchers,
database developers, and SQL programmers to use
the farmwork to detect the poorly written SQL
query. Moreover, the proposed farmwork could be
an important component of complete tool for
optimizing the performance of SQL query.

5. CONCLUSION

The management and manipulation of data in a
DMS rely heavily on SQL queries. However,
poorly constructed SQL queries cause performance
problems. In this study, we proposed a framwork
for evaluating SQL query quality using machine
learning. In this sudy, the effectiveness of various
machine learning classifiers in the classification of
SQL queries into three categories: well-written,
accepted, and poorly written was investigated. The
most popular machine learning classifiers used
included k- Nearest Neighbours, Decision Trees,
Support Vector Machine, and Naive Bayes.
different features, such as term frequency, inverse
document frequency, and bag-of-words count
vector, were utilized in the training and evaluation
of the classifiers. The results of the experiments,
conducted on two different datasets, demonstrated
that the Decision Trees and Support Vector
Machine classifiers showed promising results in the
classification of SQL queries based on recall,
precision, and F1-score. In comparison, the Naive
Bayes and k Nearest Neighbours classifiers did not
perform as well. Moreover, the overall result shows
that the bag-of-words count vectorizer performs
better in predicting poorly written queries. This
finding is significant as it can aid in the
development of more efficient and effective
databases by allowing developers to identify and
improve upon poorly written queries that may
negatively impact performance. Future research
could focus on exploring different features of SQL
queries to improve classification accuracy. Also
may test the proposed framwork with wide range of
data set. It would also be beneficial to investigate

the use of other classification techniques, such as
Deep Reinforcement Learning, in the prediction of
the quality of SQL queries. Finally, The proposed
framework has the potential to serve as a valuable
tool for researchers, database developers, and SQL
programmers, as it offers an automated means of
evaluating SQL queries and detecting poorly
written ones. The framework's application as an
essential component of comprehensive tools for
optimizing SQL query performance is also
noteworthy, as it has the potential to significantly
enhance database performance. By improving the
efficiency of database tuning, the framework could
have a positive impact on the field of database
optimization, thereby contributing to the
advancement of the domain.

REFERENCES

[1] S. J. Kamatkar, A. Kamble, A. Viloria, L.
Hernández-Fernandez, and E. G. Cali,
"Database performance tuning and query
optimization." pp. 3-11.

[2] Y. Kornaga, Y. Bazaka, and E. Marienko,
“Ways to optimize SQL queries to improve
database performance in high–load systems,”
Adaptive systems of automatic control, vol. 2,
no. 37, pp. 26-30, 2020.

[3] H. A. Idhaim, “Selecting and tuning the
optimal query form of different SQL
commands,” International Journal of
Business Information Systems, vol. 30, no. 1,
pp. 1-12, 2019.

[4] N. Kumari, “SQL server query optimization
techniques-tips for writing efficient and faster
queries,” International Journal of Scientific
and Research Publications, vol. 2, no. 6, pp.
1-4, 2012.

[5] J. P. T. Habimana, “Query Optimization
Techniques - Tips For Writing Efficient And
Faster SQL Queries,” International Journal
of Scientific Technology Research, vol. 4, pp.
22-26, 2015.

[6] A. Tripathy, A. Agrawal, and S. K. Rath,
“Classification of sentiment reviews using n-
gram machine learning approach,” Expert
Systems with Applications, vol. 57, pp. 117-
126, 2016/09/15/, 2016.

[7] D. A. Ameyaw, Q. Deng, and D. Söffker,
“How to evaluate classifier performance in
the presence of additional effects: A new
POD-based approach allowing certification
of machine learning approaches,” Machine
Learning with Applications, vol. 7, pp.
100220, 2022/03/15/, 2022.

Journal of Theoretical and Applied Information Technology
15th May 2023. Vol.101. No 9
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3624

[8] V. Barstad, M. Goodwin, and T. Gjøsæter,
"Predicting source code quality with static
analysis and machine learning." Norsk IKT-
konferanse for forskning og utdanning.
2014.

[9] S. Z. Barbhuiya, B. Kumar, Z. Azim, and Y.
J. Singh, “Suggestive Local Engine for SQL
Developer: SLED,” ADBU Journal of
Engineering Technology, vol. 4, 2016.

[10] M. Mansoubi, and A. M. Bidgoli,
“Enhancing Performance of Database with
Improving Query automatically,”
International Journal of Scientific and
Research Publications (IJSRP), vol. 6, no. 1,
2016.

[11] R. Kumari, and S. K. Srivastava, “Machine
learning: A review on binary classification,”
International Journal of Computer
Applications, vol. 160, no. 7, 2017.

[12] P. Karthik, G. T. Reddy, and E. K. Vanan,
“Tuning the SQL Query in order to reduce
time consumption,” International Journal of
Computer Science Issues (IJCSI), vol. 9, no.
4, pp. 418, 2012.

[13] N. Patel, A. Mehta, P. Prajapati, and J.
Biskitwala, "Code Buddy: A Machine
Learning-Based Automatic Source Code
Quality Reviewing System." pp. 453-462.

[14] E. Parisi, F. Barchi, A. Bartolini, G.
Tagliavini, and A. Acquaviva, “Source Code
Classification for Energy Efficiency in
Parallel Ultra Low-Power
Microcontrollers,” 2021 Design, Automation
& Test in Europe Conference & Exhibition
(DATE), pp. 878-883, 2021.

[15] E. A. Alikhashashneh, R. R. Raje, and J. H.
Hill, "Using machine learning techniques to
classify and predict static code analysis tool
warnings." pp. 1-8.

[16] P. L. Williams, and C. Webb, “The Delphi
technique: a methodological discussion,”
Journal of advanced nursing, vol. 19, no. 1,
pp. 180-186, 1994.

[17] P. Agrawal, B. Chandra, K. V. Emani, N.
Garg, and S. Sudarshan, "Test Data
Generation for Database Applications." pp.
1621-1624.

[18] J. Castelein, M. Aniche, M. Soltani, A.
Panichella, and A. v. Deursen, “Search-
based test data generation for SQL queries,”
in Proceedings of the 40th International
Conference on Software Engineering,
Gothenburg, Sweden, 2018, pp. 1220–1230.

