
Journal of Theoretical and Applied Information Technology
15th May 2023. Vol.101. No 9
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3431

 WALL PATTERN DETECTION WITH PRIM’S ALGORITHM
TO CREATE PERFECT RANDOM MAZE

AGNESIA1 , WIRAWAN ISTIONO2
1,2Universitas Multimedia Nusantara, Informatic Department, Scientia Boulevard, Curug Sangereng,

Tangerang, Indonesia

E-mail: 1agnesia@student.umn.ac.id, 2wirawan.istiono@umn.ac.id

ABSTRACT

Replayability is one of the factors that determines how a video game played again by players, with one of
the example is by offering new and unique content into a game. One of the methods that can be used is by
implementing a map generation into the game level via Procedural Content Generation or PCG. With
Prim’s Algorithm as the base of the PCG, this research will design and develop a game with mazes as its
map level. Focusing on their maze generation, this research will also on the result and will try to detect and
display the data of mazes generated, while also trying to determine video game satisfaction from players
that will be playing the game developed via Game User Experience Satisfaction Scale or GUESS. A Detect
Wall Pattern method is developed to detect the pattern of each mazes’ grids, where the data will be
documented and then processed to determine the result of 250 maze generations of mazes with size 2x2,
3x3 and 4x4. Based on the research, MazeGame has succeeded on being developed with PCG feature based
on Prim’s Algorithm. Detect Wall Pattern method has also been developed successfully, where this method
successfully detecting 4 unique patterns for 2x2 size mazes, 79 patterns for 3x3 size mazes, and 243
patterns for 4x4 size mazes from 250 maze generation on each size.

Keywords: Replayability, Procedural Content Generator, Prim’s Algorithm, MazeGame, GUESS, Detect
Wall Pattern

1. INTRODUCTION

 Developments in video games that are in
line with current technological developments
provoke many innovations and new findings in the
world of gaming. This encourage competition in the
gaming industry, where game developers
competing to make games with something unique
enough in them to attract new players [1]. One of
the factors that can determine this is the content in
the game that can be replayed but not monotonous.
Replay ability is an important factor that supports
the value of player satisfaction in the long term
when the game is played [2]. The existence of
several components of the game that are made
uniquely for each gameplay can guarantee a change
in the way each player plays the game and get them
to play the game again. One aspect that can support
the replayability factor of a game is randomization
factor [3], [4]. Games with randomized elements
usually implement these elements on components
that are not too prominent but still change the
gameplay whatever small change it might offer.

Maze Game is a type of game that has a
maze (labyrinth) element in it, usually this type of

game is in the form of games with puzzle,
adventure, and other genres [5], [6]. This type of
game provides several design levels that are used
during gameplay so that players don't get bored
quickly. Game developers usually develop various
new modes and maps periodically with the aim of
adding content for players to prevent boredom on
the gameplay [7]. Maps that are formed usually
have a manual creation system, but sometimes there
are those who use a method to build maps
randomly, using the Procedural Content Generation
method [8].

Procedural Content Generation is a method
of forming a complex game object in a short time
by carrying out procedures that are arranged in such
a way that the resulting design is something as if it
was made manually [9]. Several algorithms can be
used as the basis for creating this Procedural
Content Generation method, with the basic Maze
Generation algorithm is the Depth First Search
Algorithm, then followed by several more complex
algorithms such as Prim's algorithm and Kruskal's
algorithm [10]. Both algorithms are based on the
Minimum Spanning Tree (MST) concept, but the
results from Kruskal's algorithm emphasize

Journal of Theoretical and Applied Information Technology
15th May 2023. Vol.101. No 9
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3432

balanced weighted edges and tends to have a
similar pattern so that it can be solved more easily
[11]. While the results of the maze with Prim's
algorithm can have variations that are much
different from the results of the previous generation
of genes [12], [13].

Based on this knowledge, the design and
development of a 3D Maze Puzzle Game will be
carried out with the game level will be created
Procedural Content Generation method based on
Prim's Algorithm. To see how this method is used
in the User Experience of the designed game, a
survey will be conducted to determine the level of
player satisfaction using the Game User Experience
Satisfaction Scaled (GUESS) survey method. In
addition to testing User Experience, this research
will also search for and display the results of maze
patterns created using the Procedural Content
Generation method. The difference of this research
from previous research as well as the novelty of this
research lies in making a perfect random maze
using Prim's Algorithm, by detecting wall patterns.
The meaning of the perfectly random Maze created
in this research is, that there will always be paths
connected to the destination although the maze
paths are made randomly with many size, and the
next maze path that is generated, it is very rarely
generate same path as before.

2. LITERATURE STUDY

Procedural Content Generation (PCG) is
way to produce unique game content each time the
instance is run, so the results will be ranged from
slightly to significantly different for each player
[9]. Procedural Content Generation refers to the
algorithm used to create content and can reduce the
workload of game design and development. Some
of the methods created have become common
methods used in the gaming industry, although they
are still applied to specific contexts and game
elements in a game [14], [15]. In making game
elements such as level design, or in the example of
this research a maze, Procedural Content
Generation will use maze generation algorithms,
where one of the algorithms that can be
implemented in this method is Prim's Algorithm.

With Prim's Algorithm, the
implementation of Procedural Content Generation
in creating a maze will start by creating a grid that
will become the 'floor' of the maze (maze cell).
Then a function will be carried out to initialize the
parts that will be part of the maze, either as a wall
of the maze (maze wall) or as a path of the maze
(maze passage) [13].

Maze generation algorithm has several
algorithms that can be used in the application of the
method. The differences that these algorithms have
are the length, shape, and number of corridors of
the results created during the implementation of the
difficulty, efficiency and comprehensive level of
the algorithm. In this game that will be made, the
algorithm chosen is Prim's Algorithm [14]. Prim's
Algorithm is an algorithm that is usually used to
find the Minimum Spanning Tree (MST) on a
graph. This algorithm will look for a subset of
edges on each vertex and will look for the smallest
number of combinations.

3. METHODOLOGY

The research methodology that used in this study
is the Procedural Content Generation method based
on Prim's Algorithm. The steps taken in this
research are in six steps, namely, literature study,
analysis and design, implementation and
development, testing, evaluation and
documentation.

The initial step in this research is a literature
study, where at this stage, research on the theory
and methods needed and used during game design
and development will be carried out. The materials
sought are in-depth knowledge of the
implementation of the Procedural Content
Generation method, video game concepts, Prim's
Algorithm, enemy AI and behaviors, and others.

The next proceed is analysis and design, where at
the game design stage, steps are carried out to
analyze and summarize all the required game
elements, both formal and dramatic elements.
Besides that, the concepts such as flowchart
planning, procedural content generation method
design, player behaviour, level objectives, mockup
design, and game assets planning will also be
carried out. Then the next step is the
implementation and development step, where the
prim's algorithm will be used to generate the perfect
maze. The experiment will be carried out using the
Unity Game Engine. Beside that a copy of the
project is also made to carry out maze generation
aimed at collecting data on the implementation of
the Detect Wall Pattern method.

The next step is testing, where at this stage, the
finished maze project will be tested in the testing
phase. The testing phase is carried out by searching
and displaying the results of maze patterns made by
doing maze generations in large numbers, and
looking for the presence or absence of similar
mazes when generation is carried out. The results of
the maze generation will be compared with data on

Journal of Theoretical and Applied Information Technology
15th May 2023. Vol.101. No 9
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3433

the number of possible spanning trees to be formed
on the n x n grid to find out whether the resulting
unique maze will exceed the spanning tree limit
that is possible to form on the n x n grid. After The
testing maze generation phase is carried out, other
testing is also carried out involving several
respondents, then the respondents will be given an
online questionnaire based on questions based on
the Game User Experience Satisfaction Scale
(GUESS).

Based on the test results, both from the
questionnaire that has been distributed and also
through searching for unique maze results made by
doing maze generation, the next stage that will be
carried out is evaluating game results.
Questionnaire results will be collected, calculated,
and concluded to calculate the value of video game
satisfaction with the Game User Experience
Satisfaction Scales (GUESS) [16]. In addition,
maze generation results will be searched and
displayed after generating a large number. Then
documentation is carried out during the research,
where the documentation process is carried out in
an appropriate manner. Documentation results will
be in the form of code snippets, search results, and
attachments to the results of the GUESS survey of
respondents.

In the Generate Map procedure in the
experiment, there are several functions involved in
implementing Procedural Content Generation based
on Prim's Algorithm into Maze Game. The figure 1
to figure 7 shows a flowchart for the Generate Map
function in Maze Game.

Figure 1: Maze Generation Flowchart

Figure 1 shown flowchart for Maze

Generation. This function begins by determining
the size of the maze that is generated, according to
the difficulty selected by the user. After that,
instantiate the first maze cell, which will later

become the spawn point for the game object player.
After that, according to the number of maze cells
that generated, maze cells will be created via the
Instantiate Next Maze Cell function. After the
Maze Cell has been initialized along with the maze
wall and maze passage in it, Maze Generation is
finished, and will continue to other parts of the
gameplay flowchart.

Figure 2: Maze Generation – Instantiate 1st Maze Cell

Flowchart

Figure 2 shown the flowchart for the

instantiate of the first maze cell in the maze
generation. In this step, a boolean variable isFirst
will be set to true before a random coordinate is
retrieved and the Create Cell function is executed.
Maze cells that have been created will be added to a
MazeCell List to be used when initializing
components from other mazes such as maze walls
and maze passages.

Journal of Theoretical and Applied Information Technology
15th May 2023. Vol.101. No 9
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3434

Figure 3: Maze Generation – Instantiate Maze Cells

The flowchart in Figure 3 shows the Maze
Cell Instantiate function in Maze Generation. After
selecting the last maze cell in the list, the maze cell
will be checked whether it has finished initializing
the position of the maze wall or the possible maze
passage in that cell. If the maze cell has finished
initializing, the maze cell will be deleted from ist
and this function will finish with a return. If the
maze cell has not finished initializing, the maze cell
will check the condition of the neighbouring maze
cells that are 4-adjacent to the maze cell. An
iCoordinate variable will be created which contains
the maze cell coordinates which add a random
direction to the 4-adjacent position with the maze
cell, if the icoordinate is outside the maze size, that
means the initial maze cell is on the edge of the
maze, and the function will only form a maze wall
as the border of the maze. If iCoordinate is in the
maze range, it will be checked whether the maze
cell position already has a maze cell or not. If a new
cell maze has not been formed, Create Cell and
Create Maze Passage will be performed on the
maze cell neighbour. If a new maze cell has been
formed, the Create Wall function will be
performed.

Figure 4: Maze Generation – Create Cell Flowchart

The flowchart in Figure 4 is a flowchart

for the Create Maze Cell function in Maze
Generation. For this function, the boolean variable
isFirst is checked whether it contains a true or false
value. If isFirst is true, then the maze cell to be
initialized is the maze cell that contains the game
object player spawner. If isFirst is false, the maze
cell to be initialized is a normal maze cell. After the
maze cell is initialized, the coordinates, name and
position of the maze cell will be determined
according to the value of the given variable.

Figure 5: Maze Generation – Create Passage Flowchart

The flowchart in Figure 5 is a flowchart
for the Create Maze Passage function in Maze
Generation. Maze passage is part of a maze that
does not contain a maze wall or is just an ordinary
road in a maze. In this function the maze passage
will be initialized in a maze cell, then the position,
direction and parent of the maze passage will be
determined. After that, a new maze passage will be
initialized in the maze cell and the position,
direction and parent will be determined, where the

Journal of Theoretical and Applied Information Technology
15th May 2023. Vol.101. No 9
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3435

direction specified this time is the opposite
direction from the previous maze passage.

Figure 6: Maze Generation – Create Wall Flowchart

The flowchart in Figure 6 is a flowchart

for the Create Maze Wall function in Maze
Generation. In this function the maze wall will be
initialized in a maze cell, then the position,
direction and parent of the maze wall will be
determined. After that, will be check the weight or
mazecell neighbor of the maze cell with the 4-
adjacent specified in the maze cell neighbor. If the
weight is empty, a new maze wall will be initialized
and placed in the same position and parent, but in
the opposite direction.

There are also several series of functions
designed to determine the wall position that each
cell will have in the maze, where the data will be
stored for the purposes of searching for maze
generation results using Procedural Content
Generation based on Prim's Algorithm as shown in
Figure 7.

Figure 7: Detect Wall Pattern Method Flowchart

The flowchart in Figure 7 is a flowchart

for commands used to search, analyze and store
data on the number and position patterns of walls in
each box in the maze generation results. The results
of the analysis are stored in a comma-separated
values file (.csv) which can then be processed in the
form of a spreadsheet.

4. RESULT AND DISCUSSION

Figure 9 shows the implementation of
prims algorithm to generate the maze in the game
forms.

Figure 8: MazeGame Preview

Figure 8 shows the screenshots taken as

the results of development of MazeGamze. In
MazeGame, there are 3 difficulties, Easy mode,
Medium mode, and Hard mode. With each
difficulty, the size of the maze will increase
accordingly, with 3 x 3 maze in Easy mode, 5 x 5 in
Medium mode, and 8 x 8 in Hard mode.

MazeGame is a single player, 3D game in
which the player’s objective is to get to the highest
score possible before the time runs out. As the

Journal of Theoretical and Applied Information Technology
15th May 2023. Vol.101. No 9
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3436

players collects more score, the time will also
increase for a fraction to prolong the gameplay.

Table 1: Spanning Tree Number for n x n Grid.

n x n grid Spanning Trees
1x1 1
2x2 4
3x3 192
4x4 100352
5x5 557568000

Table 1 shows the data found about the

possible spanning tree possible in n x n grid [12].
With this information, we can convert the number
as the possible maze created in n x n grid, as the
maze created is a spanning tree result. With that
information, there will be testing phase using maze
with the generation of 250 mazes with the size of
2x2, 3x3 and 4x4 to determine whether the Detect
Wall Pattern method is successfully developed

Figure 9: Maze’s Coordinate of 2x2, 3x3 and 4x4 size.

Figure 9 shows the positions and

coordinates for the maze cells in a maze with maze
sizes of 2x2, 3x3, and 4x4 for each maze generation
performed. This coordinate data will be collected
and compiled in the Detect Wall Pattern Method
before a function will be carried out to detect the
number of maze walls and direction in each
existing maze cell.

Figure 10: Maze Wall Pattern result for the method

Figure 10 shows a sequence of patterns on

the maze wall that can be generated on every maze
cell during the maze generation. The pattern is
arranged based on the number of maze walls and

the position of the maze walls owned by the maze
cell. Once the pattern of a maze cell is determined,
the data will be entered into a comma-separated
value (csv) file in the order that corresponds to the
coordinates of the maze cell in the maze generated
by the maze.

Figure 11: Detect Wall Pattern Method Steps

Figure 11 shows the simplified explanation

on how Detect Wall Pattern method works. The
coordinate of a maze cell will be determined,
alongside that the number of maze wall on the cell
will be counted. Depending on their position, there
will be a number set on the maze cell as the result
that will be written down into the maze data. This
will be iterated until all maze cells are determined,
and then will be re-iterated until all 250 mazes’ data
have been written down. The result will be then
processed on a spreadsheet and will be determined
how many unique mazes are generated on the 250
generation on each mazes size.

Table 2: Detect Wall Pattern Result
 Numbers maze

pattern
Duplicates

250 Mazes (2x2)
Generated

1 66
2 64
1 56

With total of 4 unique mazes generated

250 mazes (3x3)
Generated

1 9
1 8
5 7
4 6
6 5

12 4
17 3
12 2
21 0

With total of 79 unique mazes generated
250 mazes (4x4)

Generated
7 2

236 0
With total of 243 unique mazes generated

Table 2 shows the final result of Detect Wall

Pattern method that was implemented on the maze
generation. By comparing the calculation results
with the data on Table 2, it can be determined that
this method can detect 4 unique patterns in the 2x2
maze size according to the number that should be in
250 maze generation, at least 79 unique mazes with
3x3 maze; which are below the 192 patterns in the

Font: Times
Size: 9 pt
Style: italics

Journal of Theoretical and Applied Information Technology
15th May 2023. Vol.101. No 9
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3437

data, and there are at least 243 unique mazes
generated from the 4x4 mazes generated; which are
far from the amount of data, 100352. From the
results obtained, it is evident that the generated
maze produces maze data that is in accordance with
the number of unique patterns that should be or
below the limit of the possible pattern.

Evaluating the level of video game satisfaction
on MazeGame is done by doing a playtest and
filling out a questionnaire with the GUESS scale as
a form of review from MazeGame. The
questionnaire mentioned was made through Google
Form which contains 2 sections. The first section
contains questions about general information of the
respondents (name and email), and some brief
questions about gameplay on MazeGame. Section 2
contains 37 questions from GUESS based on
subscales that can be assessed in MazeGame,
Usability/Playability, Play Engagement,
Enjoyment, Audio Aesthetic, Personal
Gratification, and Visual Aesthetic. The playtest
was closed with 36 respondent data collected and
from the answers obtained, an evaluation was
carried out.

 Based on the data collected, it was noted that 18
out of 36 respondents were more likely to play or
prefer to play Medium difficulty on MazeGame. In
addition, 10 out of 36 respondents chose Easy
difficulty, and 8 out of 36 respondents chose Hard
difficulty. 26 out of 36 respondents liked the
MazeGame difficulty mode variation. 24 out of 36
like maze generation in gameplay, and 20 out of 36
respondents like the replayability factor given by
maze generation and difficulty in MazeGame. 16
out of 36 respondents liked the UI appearance on
MazeGame, with 14 out of 36 respondents liked the
Audio Game and 11 out of 36 respondents liked the
MazeGame Visual Game. For another additional
opinion by respondents, 1 respondent added the
name MazeGame as one of the things they like
about MazeGame. 11 out of 36 respondents stated
that difficulty mode and maze generation are still
not sufficient as factors for the replayability of
MazeGame. 9 out of 36 respondents did not like
Visual Games and 5 out of 36 respondents did not
like Audio Games. 6 out of 36 respondents did not
like the look of the MazeGame UI or thought the
navigation from MazeGame was still too confusing.
7 of 36 respondents considered the results of maze
generation to make gameplay too difficult, and 6 of
36 respondents considered that difficulty mode
makes gameplay between too difficult, too easy, or
does not change the game experience they have. In
addition, some additional opinions from other
respondents are that there is no option to adjust

game audio, lack of variations such as the
implementation of buffs or nerfs during gameplay,
timers that are too fast, and color selection (visuals)
in gameplay. In addition, 2 out of 36 respondents
chose to answer 'nothing' in what they disliked in
MazeGame.

 The questionnaire in section 1 has
questions regarding suggestions that can be given to
MazeGame. From the answers, the suggestions
given include improvements to the UI, game
visuals, game audio, difficulty, and gameplay. The
most dominant suggestion regarding UI and
navigation is about the placement of the How to
Play button which is too easy to miss if the player
doesn't pay attention in the Main Menu. For Game
Visuals, respondents suggested a variety of colors
or materials for existing mazes, game object players
and pellets to reduce monotonous gameplay.
Control on Game Audio is also recommended, so
that respondents can adjust the volume of the audio
(BGM and SFX). The implementation of enemy
and obstacle is also suggested as a form of adding
replayability into the gameplay, along with
suggestions to provide buffs and nerfs in the maze
during gameplay to increase or decrease the level of
difficulty in the gameplay. In addition, respondents
also gave suggestions to add game modes in
MazeGame and add competitive game modes with
other players. At the end of section 1, 18 stated that
there was a possibility to play MazeGame again, 9
stated that they would play MazeGame again, 8
chose neutral, and 1 stated that they might not play
MazeGame again.

Table 3: Guess Result
Subscale Result

Usability/Playability 88.13% (Very Good)
Pay Engrossment 60.12% (Pretty Good)

Enjoyment 73.02% (Good)
Audio Aesthetic 80.75% (Good)

Personal Gratification 78.77% (Good)
Visual Aesthetic 80.16% (Good)
GUESS Result 76.82% (Good)

Based on the result on Table 3 and from

the data collected at the section 2 of the
questionnaire it is concluded that the
Usability/Playability construct has the highest value
of 88.13% and the Play Engagement construct has
the lowest value of 60.12%. With a value of
76.82% as the final result of game user satisfaction,
which is calculated through the results of the
questionnaire, it can be judged that MazeGame gets
the 'Good' predicate on the GUESS scale.

Journal of Theoretical and Applied Information Technology
15th May 2023. Vol.101. No 9
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3438

ACKNOWLEDGEMENT

Thank you to the Universitas Multimedia
Nusantara, Indonesia which has become a place for
researchers to develop this journal research.
Hopefully, this research can make a major
contribution to the advancement of technology in
Indonesia.

REFERENCES:
[1] A. W. Istiono and A. Waworuntu, “What

element that influence preschool and elementary
school children to enjoy playing education
games ?,” International Journal of Advanced
Studies, vol. 9, no. 12, pp. 9–13, 2021.

[2] D. Callele, E. Neufeld, and K. Schneider,
“Emotional requirements in video games,”
Proceedings of the IEEE International
Conference on Requirements Engineering, pp.
299–302, 2006, doi:
10.1109/RE.2006.19.doi:10.1109/RE.2006.19

[3] R. Adellin, C. T. Khuan, and L. D. Gertrude,
“Conceptual Framework Puzzle Game with High
Replayability,” Journal of Physics: Conference
Series, vol. 1228, no. 1, 2019, doi:
10.1088/1742-
6596/1228/1/012070.doi:10.1088/1742-
6596/1228/1/012070

[4] M. Nkadimeng and P. Ankiewicz, “The
Affordances of Minecraft Education as a Game-
Based Learning Tool for Atomic Structure in
Junior High School Science Education,” Journal
of Science Education and Technology, vol. 31,
no. 5, pp. 605–620, 2022, doi: 10.1007/s10956-
022-09981-0.doi:10.1007/s10956-022-09981-0

[5] R. yang and C. He, “Maze Adventure: An
Application of Maze Algorithm in Role-playing
Game Development by Python,” 2022, doi:
10.4108/eai.17-6-
2022.2322876.doi:10.4108/eai.17-6-
2022.2322876

[6] A. Koesnaedi and W. Istiono, “Implementation
Drunkard ’ s Walk Algorithm to Generate
Random Level in Roguelike Games,”
International Journal of Multidisciplinary
Research and Publications, vol. 5, no. 2, pp. 97–
103, 2022, [Online]. Available: Drunkard’s
Walk, Guest User Satisfaction Scale, Procedural
Content Generation, Video game.

[7] B. M. F. Viana and S. R. Dos Santos, “A Survey
of Procedural Dungeon Generation,” Brazilian
Symposium on Games and Digital
Entertainment, SBGAMES, vol. 2019-Octob, pp.
29–38, 2019, doi:
10.1109/SBGames.2019.00015.doi:10.1109/SB
Games.2019.00015

[8] N. Brewer, “Computerized Dungeons and
Randomly Generated Worlds: From Rogue to
Minecraft,” Proceedings of the IEEE, vol. 105,
no. 5, pp. 970–977, 2017, doi:
10.1109/JPROC.2017.2684358.doi:10.1109/JPR
OC.2017.2684358

[9] M. González-Hermida, E. Costa-Montenegro, B.
Legerén-Lago, and A. Pena-Giménez, “Study of
Artificial Intelligent Algorithms Applied in
Procedural Content Generation in Video
Games,” Eludamos: Journal for Computer Game
Culture, vol. 10, no. 1, pp. 39–54, 2020, doi:
10.7557/23.6171.doi:10.7557/23.6171

[10] A. Łukaszewski and Ł. Nogal, “Multi-sourced
power system restoration strategy based on
modified Prim’s algorithm,” Bulletin of the
Polish Academy of Sciences: Technical Sciences,
vol. 69, no. 5, pp. 1–12, 2021, doi:
10.24425/bpasts.2021.137942.doi:10.24425/bpas
ts.2021.137942

[11] Y. Nagata, A. Imamiya, and N. Ono, “A genetic
algorithm for the picture maze generation
problem,” Computers and Operations Research,
vol. 115, p. 104860, 2020, doi:
10.1016/j.cor.2019.104860.doi:10.1016/j.cor.201
9.104860

[12] Paryati and S. Krit, “Utilization of the Prim
Algorithm to Determine the Nearest Path Car
Transportation Problems of Goods Carrier Box,”
ITM Web of Conferences, vol. 43, p. 01005,
2022, doi:
10.1051/itmconf/20224301005.doi:10.1051/itmc
onf/20224301005

[13] A. Łukaszewski, Ł. Nogal, and M. Januszewski,
“The Application of the Modified Prim’s
Algorithm to Restore the Power System Using
Renewable Energy Sources,” Symmetry, vol. 14,
no. 5, 2022, doi:
10.3390/sym14051012.doi:10.3390/sym1405101
2

[14] P. Gabrovsek, “Analysis of Maze Generating
Algorithms,” The IPSI BgD Transactions on
Internet Research, vol. 15, no. 1, pp. 26–33,
2019.

[15] P. H. Kim, J. Grove, S. Wurster, and R. Crawfis,
“Design-centric maze generation,” ACM
International Conference Proceeding Series,
2019, doi:
10.1145/3337722.3341854.doi:10.1145/3337722
.3341854

[16] J. R. Keebler Assoc, W. J. Shelstad, D. C. S.
Google, B. S. Chaparro, and M. H. Phan Google,
“Validation of the GUESS-18: A Short Version
of the Game User Experience Satisfaction Scale
(GUESS),” Journal of Usability Studies, vol. 16,
no. 1, pp. 49–62, 2020.

