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ABSTRACT 

 

The recent advancement in data-driven computing technologies in various disciplines has resulted in massive 
dimensional data being collected from multiple information sources. Many machine learning problems 
require processing a large set of features, finding it challenging to analyse the training set and find a suitable 
solution that maximises predictive power for the classifier performance. Therefore, it has become imperative 
to reduce massive features to the most significant ones for accurate data analysis from computation devices 
for predictive purposes. Over the years, researchers have developed several linear dimension reduction 
methods to reduce data dimensionality and identify data points with the highest possible variance. However, 
such techniques could not effectively handle data with a nonlinear relationship among the variables. 
Therefore, this paper presents state-of-the-art nonlinear dimensionality reduction methods for modelling 
complex nonlinear structures. The paper is presented in four folds: The first step involves discussing the most 
used nonlinear dimensionality reduction techniques. Second, a summary of the scope of application areas 
where dimensionality reduction methods have been applied is presented. The third fold compares various 
techniques based on their challenges and advantages. Finally, the performance evaluation of each approach 
in terms of its suitability for various applications will be discussed. The paper concluded that the autoencoder 
is an excellent technique for the dimensionality reduction of nonlinear high-dimensional data based on its 
tendency to accurately reconstruct data if there is a nonlinear connection in the feature space, also acurately 
capture the manifold's topology, and it tends to capture more of the global properties than other global 
techniques. 
 

Keywords: Big Data, Data Analysis, Dimensionality Reduction, Features, Nonlinear Techniques. 
Techniques. 

 
 
1.  INTRODUCTION  
 

Over the recent decades, due to technological 
advancement and digital transformation, the 
volume of data generated from different 
application domains such as education, the world 
wide web, social media, business, medicine and so 
on has continued to increase in size, complexity, 
and dimensionality [1]. Consider a dataset 
represented either as a database table or matrix, 
with each row being a collection of attributes that 
describe a specific instance of something. When 
there are many attributes, the space of distinct 
possible rows increases exponentially. Thus, 
sampling the space gets more challenging the 
higher the dimensionality. In addition, the high 

time complexity of algorithms processing high-
dimensional data may lead to many issues.  

In most cases, machine learning (ML) 
algorithms struggle with massive amounts of data. 
This shortcoming is known as the curse of 
dimensionality. Generally, the performance of ML 
algorithms increases as the number of input 
characteristics reduces due to the elimination of 
redundant features [2],[3],[4]. ML algorithms can 
produce more accurate predictions and efficient 
data analysis with fewer dimensions. Reducing its 
dimensionality is necessary to effectively model 
the massive dimensional data in real-world 
applications [5],[6]. Dimensionality reduction 
(DR) serves as the most popular approach to 
circumvent the curse of dimensionality [7],[8].  
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Data is transformed from a high dimensional 
space to a low dimensional space through DR while 
retaining most of its essential properties [8]. The 
dimensionality curse is usually avoided by 
representing the original data in a low-dimensional 
form that is easy to analyse, process, and visualise 
[9]. The DR is a step in the preprocessing phase of 
data mining and knowledge discovery, which helps 
remove noisy, irrelevant data and redundant 
features from the dataset, decreasing computational 
time, improving algorithm efficiency, and 
identifying data points with the highest possible 
variance [10],[11]. Implementing DR via feature 
extraction and selection reduces the time 
complexity and computational resources and 
improves ML algorithms' overall performance 
[12].  

Depending on the data used, the DR approach 
can be categorised into linear and nonlinear DR. In 
past decades, several linear dimensionality 
reduction techniques (LDRTs) such as Linear 
Discriminant Analysis (LDA) [13], Truncated 
Singular Value Decomposition (TSVD) [14], 
Factor Analysis (FA) [15], and Principal 
Component Analysis (PCA) [16],[17] have been 
used for DR. All these methods could not 
effectively handle data that possess nonlinear 
relationships. However, many nonlinear 
dimensionality reduction techniques (NLDRTs) 
have recently been introduced to handle complex 
nonlinear data. The techniques include Kernel PCA 
[18],[19], Multidimensional Scaling (MDS) [20], t-
distributed Stochastic Neighbour Embedding (t-
SNE) [21], Local Linear Embedding (LLE) 
[22],[23], Isometric mapping (Isomap) [24] and the 
autoencoder [25],[26]. The NLDRTs may offer a 
comparative advantage over the LDRTs because of 
the tendency to characterise the nonlinear manifold 
relationship between data points [27]. Previous 
studies revealed that NLDRTs resulted in better 
dimension reduction, accuracy, and performance 
than the linear methods while experimenting with 
complex machine learning tasks [28].  
The remainder of the paper is organized according 
to the following outline. The description of an 
overview of the field of application of DRTs is 
presented in Section 2. A taxonomy of NLDRTs is 
presented in Section 3 while Section 4 addresses 

the challenges of NLDRTs. Lastly, Section 5 
presents the conclusions. 
 
2.  AN OVERVIEW OF THE FIELDS OF 

APPLICATION OF DIMENSIONALITY 
REDUCTION TECHNIQUES  

 

      Different DRTs and their variations have been 
developed to address numerous issues in the 
computational domains. Each technique solves 
different problems and has its pros and cons [29]. 
This section presents some areas of science or 
technology where high-dimensional data are 
frequently encountered.  
 

2.1. Image Processing 

The steps involved in processing an image are 
acquisition, pre-processing, segmentation, 
representation, and description, followed by 
interpretation and recognition [30]. Digital images 
can be divided into four categories: binary, 
greyscale, indexed, and true colour (RGB) [31]. 
Text, fingerprints, and architectural plans are 
examples of images with binary representations, 
where each pixel is either black or white. Greyscale 
images commonly range in the shade from 0 to 255, 
including X-rays, pictures of printed objects, and 
other images [32]. Furthermore, there are indexed 
graphics that have a colour map attached that lists 
every colour that was used to create the image. 
Finally, true colour, or RGB images, is used to 
describe each pixel's red, green, and blue 
composition. The amount of digital information has 
increased significantly over time. However, 
traditional computer systems often ignore research 
in image databases. This trend has spawned due to 
the enormous quantity of data needed to represent 
images and the difficulty of automatically 
analysing images [33]. 
 

2.2. Data Mining  

Data mining (DM) is the process that 
automatically generates and extracts implicit and 
prospective patterns from large datasets [34]. DM 
can be applied in various areas, e.g. business, 
agriculture, science, and engineering. Much data is 
generated, and there is a need to derive knowledge 
patterns from large information-rich datasets. The 
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data mining task has five primary foci: description, 
prediction, classification, association, and 
clustering [35].  
The current growth of big data, in terms of the size 
of records and features, has created significant 
issues for DM and general data science, despite 
recent technological breakthroughs in data 
processing and computer science [36]. Big data 
generates multidimensional datasets because the 
size of the data seems to be so massive. An 
extensive data set with several dimensions make it 
difficult to analyse or search for patterns in the data. 
Depending on the process one is interested in, high-
dimensional data can be obtained from various 
sources.  
 

2.3. Process of Sensor Arrays   

The sensor array process uses multiple identical 
sensors in various applications [37]. They typically 
gather and process electromagnetic signals in a 
specific geometric pattern. Acoustic arrays, 
antenna arrays, and traditional beamformers are a 
few examples of sensor arrays. One benefit of 
utilizing a sensor array instead of a single sensor is 
that it provides additional dimensions to the 
observation, making it easier to analyse more 
factors and increasing the precision of predictions. 
An array of radio antenna components used for 
beamforming, for example, can raise antenna gain 
in the signal's direction while decreasing the gain 
in other directions to improve the signal-to-noise 
ratio by coherently amplifying the signal. DRTs 
reduce the computational complexity of the 
direction-of-arrival estimate from the sensor arrays 
[38]. DR approaches enable linear transformations 
to convert full-dimension data into a lower-
dimensional space while reducing the required 
computations. 
 

2.4. Multivariable Data Analysis  

Multivariate data analysis is a statistical analysis 
technique that uses more than two dependent 

variables and produces a single result. Since 
everything in the world occurs for various reasons, 
many situations in daily life can serve as real-world 
instances of multivariate equations [39]. This 
explains why multivariate difficulties are prevalent 
in the actual world. For example, depending on the 
season, one can anticipate the weather for any 
given year. Multivariate statistical methods fall 
into two categories: dependency methods, which 
look at cause-and-effect relationships between 
variables, and interdependence methods, which 
examine the cause-and-effect interactions between 
variables [40]. Data with multiple variables have 
moderate to high dimensions, and analysis can be 
challenging (e.g., when using statistical methods); 
reducing the dataset might assist by making it 
easier to analyse [41]. Therefore, DR finds fewer 
variables or removes the least essential variables 
from the multivariable data, removing some noise, 
reducing the model's complexity, and helping to 
mitigate overfitting on the data. 
 

 
3. TAXONOMY OF NONLINEAR 

DIMENSIONALITY REDUCTION 
TECHNIQUES  
 

     This section introduces various classifications 
of NLDRTs with their respective subclasses and 
examples of popular algorithms. The NLDRTs 
transform and use the most relevant feature 
combinations, reducing space and times demands. 
Fig. 1 shows a taxonomy subdividing the NLDRTs 
as follows: (1) Preserving global properties 
techniques seek to retain the global properties of 
the given data from its original higher dimensional 
space into the lower dimensional space, (2) global 
alignment of the nonlinear models which compute 
several local nonlinear models and align the 
nonlinear models globally, and (3) preserving local 
properties attempt to keep local properties of the 
higher dimensional space into the low-dimensional 
representation.
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Fig. 1. Taxonomy Of Nonlinear Dimensionality Techniques 

3.1. Preserving Global Properties  

     This type of NLDRT attempts to retain the 
global properties of the data set. The four 
categories of preserving global properties are (1) 
Unfolding, (2) Distance preservation, (3) Kernel-
based, and (4) Neural networks. This subsection 
discusses all six techniques under the respective 
subclasses of preserving global properties 
techniques.  

3.1.1. Maximum Variance Unfolding   

       Maximum Variance Unfolding (MVU), 
previously referred to as Semidefinite Embedding, 
is a semidefinite programming method that reduces 
the large dimensionality of vectorial input 
nonlinearly by learning the kernel matrix [42]. By 
creating a neighbourhood on the data (similar to 
Isomap) and keeping pairwise distances in the 
resulting graph, MVU learns the kernel matrix. In 
contrast to the Isomap approach, which retains 
geodesic distances, the MVU method learns the 

data from similarities. MVU preserves local 
distances and angles between the pairs of all 
neighbours of each data point in the data set. To 
increase the Euclidean distance between the data 
points (i.e., with the condition that the local 
geometric of the data manifold is not deformed), 
MVU restricts the distance in the neighbourhood 
graph to remain unchanged [27]. By maximizing 
the variance of the embeddings while keeping the 
original data's local distances, MVU effectively 
reduces the data's dimensionality and produces a 
low-dimensional representation. Each data point 
𝑥௜, and its 𝑘 nearest neighbours 𝑋௜௝  (𝑗 =

1, 2, … , 𝑘) are initially connected by MVU to 
construct a neighbourhood graph, 𝐺. With the 
constraint that the distances within the 
neighbourhood graph 𝐺 be retained, MVU aimed 
to maximise the sum of the squared Euclidean 
distance between the various data points. 
 
 



Journal of Theoretical and Applied Information Technology 
30th April 2023. Vol.101. No 8 
© 2023 Little Lion Scientific  

 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
2964 

 

3.1.2. Multidimensional Scaling  

      Multidimensional scaling (MDS) is the NLDRT 
used when there is a difference between the paired 
distances in the original space and the pairwise 
distances in the low-dimensional space [43]. When 
lowering nonlinear data's dimensionality, MDA 
ensures that the distances between instances are 
retained. MDA attempts to decrease the 
dimensionality of nonlinear data while maintaining 
the distances between instances. Metric and non-
metric MDS algorithms are available. The 
distinctions between both originate from the kinds 
of data they are intended to deal with, even though 
both seek to discover the optimum lower-
dimensional representation of high-dimensional 
data. 

Suppose the pairwise distance between two 
points is known. In that case, MDS will retain it by 
projecting the points into a low-dimension space, 
preserving the pairwise distances there as near as 
possible to the pairwise distances in the original 
space. Using data on interpoint distances creates a 
configuration of points in Euclidean space [44]. 
MDS comes in two forms, and they share the same 
fundamental ideas. The metrics and calculations are 
utilized to account for the difference. The MDS 
input is the distance matrix representing the 
separations between object pairs. The distance 
between data points in the reduced dimension 𝑑௜௝ , 

which is nearly equivalent to the real distance 
according to the distance matrix 𝑑௜௝ , is represented 

by the distance matrix in the needed dimension. A 
linear (classical/metric) or monotonic connection 
can exist between actual data distances and 
discrepancies (non-metric). The conventional 
approach is the best alternative when the distance 
matrix correctly represents the Euclidean distance 
between two locations. Non-metric MDS does 
NLDR by using distances that can be understood in 
an ordinal manner. The method's efficacy is 
estimated based on the discrepancy between actual 
and anticipated distances. 

 

3.1.3. T-distributed Stochastic Neighbour 
Embedding   

T-distributed Stochastic Neighbour Embedding 
(t-SNE) is an unsupervised manifold algorithm that 
was introduced by [45]. It is an excellent NLDRT 

for visualising high-dimensional data by assigning 
a position to each data point in a two- or three-
dimensional map [46]. The t-SNE is an improved 
variation of SNE that has a long-tailed distribution 
and is useful for embedding high-dimensional data 
for visualization in a two- or three-dimensional 
low-dimensional space [47]. The t-SNE 
specifically represents each high-dimensional 
object by a two- or three-dimensional point, 
intending to model comparable objects by nearby 
points and dissimilar objects, with a high 
likelihood, by distant points [48]. The t-SNE 
technique consists of two main steps. In the first 
step, t-SNE creates a probability distribution 
between pairs of high-dimensional objects, giving 
more probability to similar objects and less 
probability to dissimilar ones. The second step 
involved defining a comparable probability 
distribution over the points in the low-dimensional 
map, where t-SNE minimizes the Kullback-Leibler 
divergence between the two distributions about the 
positions of the points in the map [49]. Even though 
t-SNE plots frequently seem to display clusters, the 
parameterisation employed can have a significant 
impact on the visual clusters; hence, a detailed 
understanding of the t-SNE parameters is 
necessary [50]. 

The conditional probability 𝑃௝|௜, defined as it is 

expressed in Equation (1), expresses how similar 
data points 𝑥௝  to data point 𝑥௜ are: 

 

             𝑃௝|௜ =
௘௫௣(

షቛೣ೔షೣೕቛ
మ

మ഑భ
మ )

∑ ௘௫௣(
షฮೣ೔షೣೖฮ

మ

మ഑భ
మ )ೖಯ೔

                 (1)                                       

The probability in the original space is expressed 
in Equation (2)  

              𝑃௝|௜ =  
(௉೔|ೕା ௉ೕ|೔)

ଶ௡
                          (2)                                                       

where n is the data set's size.  

 

3.1.4.  Isometric Mapping   

     Isometric mapping (Isomap) is a nonlinear 
technique used for DR based on the spectral 
principle that preserves geodesic distances in lower 
dimensions. Through isometric mapping, Isomap 
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performs NLDR. It is a refinement of Kernel PCA 
or MDS [44]. A neighbourhood network is 
established in the initial step. Then, using graph 
distance, it tries to determine the estimated geodesic 
distance between each pair of locations. The low 
dimensional embedding of the data set is discovered 
in the third stage, which decomposes the 
eigenvalues of the geodesic distance matrix. Isomap 
does not over-emphasize the space between 
clusters, in contrast to t-SNE. Thus, it produces 
more suitable distance measures between various 
classes to analyse different trajectories that 
ordinarily do not fit into a traditional cluster. In 
nonlinear data, geodesic distances are superior to 
Euclidean distances in terms of accuracy and 
reduction in dimensionality. Furthermore, nonlinear 
interactions between cells are preserved via Isomap. 

3.1.5. Diffusion Map   

Coifman and Lafon developed the DR 
algorithm known as the Diffusion map [51]. When 
employing a diffusion map, a data set is converted 
into a family of embeddings in Euclidean space. 
These embeddings are typically low-dimensional, 
and their coordinates may be calculated using the 
eigenvectors and eigenvalues of a diffusion 
operator on the data. In a diffusion map, low-
dimensional data is often embedded in higher-
dimensional spaces [50]. The data is located on a 
possible non-linear geometric structure or 
manifold. Diffusion distance computation is 
computationally intensive. It is feasible to map data 
points into Euclidean space using the diffusion 
metric. The Euclidean distance takes the place of 
the diffusion distance in the data space in this new 
diffusion space. [52]. A diffusion map reorganises 
data by mapping coordinates between data and 
diffusion space. To minimise dimensionality, one 
need to take advantage of it. In the new space, 
diffusion maps and distances preserve the inherent 
geometry of data sets and are measured on a lower-
dimensional structure, so data points will require 
fewer coordinates. 

 

3.1.6. Kernel PCA   

PCA has been an excellent technique for 
modelling linear features in high-dimensional data. 
However, many high-dimensional data sets are 

nonlinear [53]. Therefore, PCA cannot correctly 
model the dispersion of the data since high 
dimensional data is approximately near a nonlinear 
manifold. Consequently, kernel PCA was designed 
as one of the algorithms to model NLDR. With the 
kernel in kernel PCA, principal space components 
in the high dimensional feature space could be 
computed efficiently with the input space of some 
nonlinear mapping [54]. 

Kernel PCA is a nonlinear normal PCA that uses 
kernels [55]. When dealing with nonlinear data sets, 
kernel PCA performs effectively where the normal 
PCA cannot function. In Kernel PCA, the data is 
processed first by a kernel function and then 
projected onto a new, higher-dimensional feature 
space where the classes remain linearly separable. 
The data would then be projected back into a lower-
dimensional space by the algorithm using the 
standard PCA. In this manner, Kernel PCA converts 
nonlinear data into a lower-dimensional data space 
that can be used with linear classifiers. 

Kernel PCA addresses this issue by using a 
nonlinear mapping function (i.e., a kernel) to 
transform the data into a higher-dimensional feature 
space, where the data may become more separable. 
The principal components are then computed in this 
feature space, rather than the original input space. 
The kernel function measures the similarity 
between pairs of data points in the input space and 
maps them to a new feature space. The mapping is 
chosen so that the inner products of the transformed 
data correspond to the similarity measures in the 
input space [56]. 

The kernel matrix 𝐾 of the datapoints 𝑥௜ is 
computed via Kernel PCA. The kernel matrix's 
entries are described by 

              𝑘௜௝ = 𝑘(𝑋௜ , 𝑋௝)                          (3)                                                       

where every function that results in a positive-
semidefinite kernel 𝑘 is a candidate for the role of 
kernel function 𝑘. 

3.1.7. Autoencoder   

An autoencoder (AE) is an unsupervised 
artificial neural network (ANN) that learns how to 
effectively compress and encode data before 
reconstructing the data from the compressed, 
encoded version to a representation that is 
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comparable to the original input [57],[58]. The goal 
of the autoencoder is to minimize the 
reconstruction error between the original input and 
the reconstructed output. By doing so, the 
autoencoder learns to extract meaningful features 
from the input data and use them to reconstruct it 
[59]. AEs have become increasingly popular in 
recent years due to their ability to learn useful 
representations of data in an unsupervised manner, 
without requiring labelled training data [60]. 

A schema of the typical diagram of an AE is 
illustrated in Fig. 2. The AE has three essential 
parts: an encoder, a code and a decoder. The input 
passes through the encoder part, which then 
compresses and stores it in the code layer, and then 

the decoder decompresses it back to its original 
state. In order for an autoencoder to work properly, 
its output must be nearly identical to its input. The 
AE has been of great importance in ML because of 
its promptness to train networks to eliminate noise 
from input data and reconstruct their input data. 
The AE layers may not necessarily be symmetrical 
in the sense of weight matrices or activation 
functions [28]. The basic AE is the foundation for 
more complex architectures that perform feature 
extraction and classification. AEs have been 
recently employed as one of the nonlinear feature 
methods and have resulted in better DR accuracy 
performance than other DRTs [28]. 

 

 

Fig. 2. Schema Of A Basic Autoencoder 

 
The input to the autoencoder is a vector 𝑥 ∈

 𝑅ௗ೥. The latent variable single hidden layer of the 
encoder and the reconstruction of the inputs back 
from the latent space is given by equations (4) and 
(5): 
 

    𝑧 =  𝑓ௗ(𝑊ௗ𝑥 +  𝑏ௗ)             (4)                                                                                                                              

   𝑥ො =  𝑓௘(𝑊௘𝑧 + 𝑏௘)              (5)                                                                                                                                       

where 𝑥, and 𝑥ො ∈  ℝ௡ denote the input and output, 
f represents the activation function, 𝑧 denotes the 
hidden layer, 𝑊ௗ and 𝑊௘ represent the weights of 
the hidden and output layers, and the biases of the 
two layers are indicated by 𝑏ௗ and 𝑏௘  respectively. 

 

3.2. Global Alignment of Nonlinear Models  

        Global Alignment of nonlinear models 
performs global alignment of nonlinear models by 
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combining and computing several locally nonlinear 
models. A significant example of this class is LLC, 
which preserved the neighbourhood mapping of 
high dimensional observation to low dimensional 
vector using a global cost function with an 
analytical solution. 
 
 

3.2.1 Local Linear Embedding     

     Local Linear Embedding (LLE) aims to 
preserve the local structure of high-dimensional 
data in a lower-dimensional space [61]. LLE was 
introduced by Sam T. Roweis and Lawrence K. 
Saul in a paper titled "Nonlinear Dimensionality 
Reduction by Locally Linear Embedding" in 2000 
[62]. The method involves first defining a 
neighbourhood around each data point in the high-
dimensional space. The neighbourhood is defined 
by selecting the k nearest neighbours of each point, 
where k is a user-defined parameter. LLE then 
seeks to find a lower-dimensional representation of 
the data that preserves the pairwise relationships 
between the neighbours within each 

neighbourhood [63]. 
      To achieve this, LLE constructs a weight 
matrix W that describes the linear relationships 
between neighbouring points, and then seeks a low-
dimensional embedding Y that minimizes the 
reconstruction error of the data points from their 
weighted linear combination in the low-
dimensional space [64]. However, LLE has some 
limitations. It can be computationally expensive for 
large datasets, and its performance can be sensitive 
to the choice of the neighbourhood size parameter 
[45]. Also, LLE assumes that the data lies on a low-
dimensional manifold, which may not be true for 
some datasets [65]. 
       A global alignment of the nonlinear models is 
carried out following the computation of many 
locally nonlinear models by [66]. This procedure 
consists of two steps: first, using the Expectation 
Maximization (EM) method, a variety of local 
nonlinear models are built on the data; second, the 
local nonlinear models are aligned to create the 
low-dimensional data representation using a 
variation of Local Linear Coordination (LLE). 
       Overall, while LLE is a powerful method for 
preserving local structure in high-dimensional data, 

it is important to consider its limitations and use it 
appropriately. For example, LLE may be best 
suited for smaller datasets where the 
neighbourhood size can be more carefully tuned 
and where the data is more likely to lie on a low-
dimensional manifold. 

3.3. Preserving Local Properties   

      Preserving local properties is the class of 
NLDRTs that attempts to maintain the data's local 
properties. The three classes of preserving local 
properties are (1) Reconstruction weights, (2) 
Neighbourhood graph Laplacian, (3) and Local 
tangent space. This section discusses all three 
techniques under the respective subclasses of 
preserving local properties techniques. 
 

3.3.1. Local Linear Embedding   

       Local Linear Embedding (LLE) is a technique 
for unsupervised learning that creates low-
dimensional embeddings from high-dimensional 
inputs, connecting each training instance to its 
nearest neighbour [67]. LLE, Isomap, and MVU all 
create graph representations of the data points, 
which makes them comparable. Unlike Isomap, 
LLE does not require locally linear fits to pairwise 
distance estimates from nonlinear structures [68]. 
To identify nonlinear structures in high-
dimensional data, LLE takes advantage of the local 
symmetries of linear reconstruction. LLE does not 
use local minima and converts its input to a single 
low-dimensional global coordinate system [67]. If 
the input data is in the form of 𝑑-dimensional 

vectors �⃗�௜ the neighbours of each data point, �⃗�௜ are 
first calculated via LLE. A locally linear area of the 
manifold, defined by the points and their 
neighbours, allows for reconstructing each data 
point from its neighbours. The reconstruction 
errors can be measured using equation (6): 

 

           𝜖(𝑊) =  ∑ (ห𝑌ሬ⃗௜ −  ∑ 𝑊௜௝�⃗�௝௝ ห)ଶ
௜         (6)                                    

where 𝑊௜௝ is the weight that describes the 

contribution of the 𝑗௧௛ data point to the 𝑖௧௛ 
reconstruction. By calculating the dimensional 

coordinates of 𝑌ሬ⃗௜ that minimize the cost function, 

the data vector �⃗�௜  is  transformed into a low-
dimensional space 
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           Φ(𝑊) =  ∑ (ห�⃗�௜ −  ∑ 𝑊௜௝�⃗�௝௝ ห)ଶ.௜      (7)                                   

The low-dimensional vectors  𝑌ሬ⃗௜  are best 
reconstructed by the weights, by minimizing the 
cost function in equation (7). 

The local neighbourhoods of data points are 
used to calculate the reconstruction weights, whilst 
eigen decomposition is used to get the low-
dimensional embedding. Finally, the eigenvectors 
are used to compute each dimension in the reduced 
dimension space iteratively. 

 

3.3.2. Laplacian Eigenmaps    

        Laplacian Eigenmaps (LE) locate a low-
dimensional data representation while maintaining 
the manifold's local attributes [69]. Pairwise 
distances between close neighbours determine local 
attributes in LE. By minimising the distances 
between each data point and its k nearest 
neighbours, LE is used to represent the data in a 
low-dimensional manner. This is done in a weighted 
way so that the distance between a data point and its 
first nearest neighbour in a low-dimensional data 
representation affects the cost function more than 
the distance between the data point and its second 
nearest neighbour [68]. The minimisation of the 
cost function is referred to as an eigenproblem in 
spectral graph theory. 

Every data point 𝑥௜ in the neighbourhood graph 
G created by the LE algorithm is connected to its 𝑘 
closest neighbours. The weight of each edge 
connecting G points 𝑥௜  and 𝑥௝ in graph 𝐺 is 

calculated using the Gaussian kernel function, 
resulting in a sparse adjacency matrix 𝑊. The cost 
function minimized in calculating the low-
dimensional representations is given by equation 
(8): 

 

          ∅(𝑌) =  ∑ ฮ𝑦௜ − 𝑦௝ฮ
ଶ

𝑤௜௝௜௝               (8)                                          

where the large weight 𝑤௜௝ in the cost function 

correspond to small distances between high-
dimensional data point 𝑥௜ and 𝑥௝ .  

3.3.4 Hessian Local Linear Embedding   

       Hessian Local Linear Embedding (HLLE) is a 
variant technique of LLE and is based on sparse 
matrix techniques [70]. It is an extension of the 

Linear Local Embedding (LLE) algorithm that 
aims to preserve the local geometric structure of the 
data. Compared to LLE, it typically produces 
outcomes of a significantly higher quality. 
Unfortunately, it is unsuitable for heavily sampled 
manifolds because of its expensive processing 
complexity. 
       The HLLE algorithm is based on the idea that 
the local geometric structure of the data can be 
approximated by the Hessian matrix, which 
measures the curvature of the data manifold. The 
Hessian matrix is used to compute a set of weights 
that are used to reconstruct each data point as a 
linear combination of its nearest neighbours. 
       The steps of the HLLE algorithm are as 
follows: 

1. Find the k-nearest neighbours of each data 
point. 

2. Estimate the Hessian matrix for each data 
point using its k-nearest neighbours. 

3. Compute the weights that best reconstruct 
each data point as a linear combination of 
its k-nearest neighbours using the Hessian 
matrix. 

4. Compute the low-dimensional embedding 
of the data using the weights and a sparse 
eigenvalue decomposition. 

       The resulting low-dimensional embedding is a 
smooth approximation of the data manifold that 
preserves the local geometric structure of the data. 
HLLE has been shown to be effective in a wide 
range of applications, including image analysis, 
robotics, and bioinformatics [71]. 

 

3.4 Summary of the Nonlinear Dimensionality 
Reduction Techniques   

       A summary of the characteristics of all the 
NLDRTs is presented in Table 1. Almost all the 
methods reviewed are nonparametric except the 
AE. Although all the techniques proved to be good 
choices, the AE's parametric nature made it an 
excellent method that can be utilised for the DR of 
nonlinear high-dimensional data. The AE has the 
propensity to accurately capture the topology of the 
manifold and tend to capture more global 
properties than other global methods. 
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Preserving local properties is the class of 
NLDRTs that attempts to maintain the data's local 
properties. The three classes of preserving local 
properties are (1) Reconstruction weights, (2) 

Neighbourhood graph Laplacian, (3) and Local 
tangent space. This section discusses all three 
techniques under the respective subclasses of 
preserving local properties techniques. 

 
Table 1: Summary Of The Nonlinear Dimensionality Reduction Techniques 

 

Technique Type Data Types Deterministic Objective Cost Function 

Kernel PCA 
MDS 
LE 
LLE 
MVU 
Autoencoder 
Isomap 
DP 
Hessian LLE 
t-SNE 
LLC 
 

Nonparametric 
Nonparametric 
Nonparametric 
Nonparametric 
Nonparametric 
Parametric 
Nonparametric 
Nonparametric 
Nonparametric 
Nonparametric 
Nonparametric 
 

Vectors 
Distances 
Distance 
Vectors 
Distances 
Vectors 
Distances 
Distances 
Distances 
Distances 
Distances 
 

Yes 
Yes  
Yes 
Yes 
Yes 
No 
Yes 
Yes 
Yes 
No 
Yes 
 

Distance preserving 
Distance preserving 
Topology extraction 
Manifold extraction 
Manifold extraction 
Information preserving 
Manifold extraction 
Manifold extraction 
Manifold extraction 
Manifold extraction 
Manifold extraction 

Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 

 

 
4. CHALLENGES OF NONLINEAR 

DIMENSIONALITY REDUCTION 
TECHNIQUES  
 

LDRTs have some limits and drawbacks 
despite the benefits. There are various challenges 
when transforming high-dimensional data into low-
dimensional data. A significant problem that must 
be resolved is selecting a suitable technique based 
on the type of data [45]. In addition, it is essential 
to establish an effective method to attain the best 
level of accuracy while integrating the output of 
numerous DLRTs. The redundancy level of high-
dimensional data must be determined since they 
have a variety of redundant features. Choosing the 
level of duplication and removing it without 
impairing low-dimensional mapping performance 
becomes difficult. Several NLDRTs offer this 
facility. Despite appearing redundant, some 
characteristics are essential for analysis and 
decision-making [72]. The low-dimensional data 
set that was necessary for the research has the 
potential to lose crucial information. Choosing an 
appropriate NLDRT in such circumstances can be 
challenging. 

Several NLDRTs can improve data processing 
by using a few dimensions [73]. Important 

dimensions may occasionally not be chosen 
throughout the DR process, which harms the 
outcomes. For instance, omitting a trait with a 
lesser value but a significant impact on forecast 
accuracy will result in a poor choice. Most 
NLDRTs require pre-processing because they 
cannot operate with input data directly. 
Normalizing data is necessary to obtain accurate 
results [73].  

Identifying the type of data and features utilized 
for analysis is a crucial consideration. 
Unfortunately, finding the pertinent and essential 
aspects has grown to be difficult. It requires domain 
knowledge and human skills to select ML models 
for classification and obtain the most essential 
characteristics for later processing. Another factor 
that renders the DR application unusable for 
applications requiring interpretation is the 
interpretation of outcomes [8]. 

After using DRTs, it is impossible to keep all of 
the high-dimensional data set information. Finding 
the most pertinent features for processing depends 
on the available data collection and the nature of 
the challenge. Due to the importance of most high-
dimensional attributes for analysis, DR is 
occasionally impossible. The interconnectedness 
of the features is the cause. Dealing with the 
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interdependency of variables is another significant 
problem that must be solved. Numerous DRTs are 
useful for reducing noise and selecting only 
pertinent information for study [8]. Noise levels 
also impact DRT performance. Minor input 
modifications can influence results, which is the 
ultimate factor to be considered. For instance, 
values of a specific variable may be purposefully 
manipulated to extreme highs or lows. 
Inappropriate classification or predictions may 
result from this. Similarly, to this, choosing one 
incorrect feature can produce inaccurate results. 
 
5. CONCLUSION  

 

      DRTs have attracted much attention over the 
past decades due to their application in various 
computing domains, such as face recognition, 
computer vision, pattern recognition, security, 
prediction, and classification. This paper reviews 
the most popular methods and techniques for 
NLDRTs. A thorough analysis of the pros and cons 
of NLDRTs used for data classification and 
visualisation was also discussed. The different 
applications where NLDRTs have been applied 
were also studied. The kind of issue and the 
underlying presuppositions of each approach 
determine which technique is most suitable. 
Comparative analysis of different methods helps in 
understanding the implementation of data analysis 
in a better way. The AE proved to be an excellent 
technique for DR of nonlinear high-dimensional 
data because it tended to capture the manifold's 
topology accurately and tend to capture more of the 
global properties than other global techniques. 

NLDRTs are useful for analyzing high-
dimensional data by projecting it onto a lower-
dimensional space, but they come with several 
challenges. These challenges include 
computational complexity, overfitting, 
hyperparameter tuning, interpretability, limited 
applicability, and limited scalability. Nonlinear 
dimensionality reduction methods involve complex 
computations and can be time-consuming for large 
datasets. They may overfit the noise in the data 
rather than the underlying structure, making 
generalization to new data difficult. Finding 
optimal hyperparameters can be challenging and 
interpreting the resulting low-dimensional 

representations may be difficult. Additionally, 
some methods may not be suitable for all types of 
data, such as data with missing values or outliers, 
and they may not scale well to very large datasets. 

Overall, NLDRTs can be a powerful tool for 
analysing high-dimensional data, but they require 
careful consideration and parameter tuning to 
achieve optimal results. 
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