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ABSTRACT 

 
The durability, reliability, and longevity of the roadway and surface of logging roads, as well as the quality 
and efficiency of their construction, largely depend on the heat and mass transfer processes, which occur 
inevitably during their construction and operation. The depth of theoretical research on heat and mass transfer 
processes and the degree of its practical utilization in road construction are determined mainly by the 
reliability of methods of determination and knowledge of thermal and moisture properties of highway soils 
and surface layers. In this connection, substantiation of methods for the assessment and study of the thermal 
and moisture characteristics of soils is a relevant task in the construction of roads in general and logging 
roads in particular. Thus, the study aims to develop an intelligent information system to address the processes 
of heat and mass transfer processes in soils for different calculation schemes in computer-aided design 
systems for logging roads. The developed heat and mass transfer calculation schemes enable the analysis of 
heat diffusion and moisture migration, as well as their mutual impact on each other. Based on the analysis of 
the considered physical nature of heat and mass exchange processes, the study offers a hypothesis on the heat 
and mass transfer processes occurring in the construction and operation of roads that can be studied via 
samples in compliance with the conditions of unambiguity, which allows determining the heat and mass 
transfer processes in soils. A general structural scheme for the study of heat and mass transfer properties of 
soils is developed, which makes it possible to substantiate the most rational methods of measuring moisture, 
thermal fluxes, coefficients of heat and temperature conductivity, moisture conductivity, and the 
thermogradient coefficient. 

Keywords: Soil, Moisture, Heat Flux, Thermal Conductivity, Moisture Conductivity. 
 
1. INTRODUCTION  
 

Heat and mass transfer that occurs in roadbeds 
or highway soils during the performance of 

technological operations has a significant impact on 
the efficiency and quality of road construction 
processes and the durability, longevity, and 
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performance parameters of logging roads of various 
categories. 

Under the effects of mechanical and natural 
factors in the processed layers of soil or roadbed, 
complex interrelated physical processes occur: 
heating – cooling, moistening – drying, freezing – 
thawing, decompression – compression, heaving – 
sludge. 

Roadway soils are complex dynamic disperse 
systems. During the construction and operation of a 
logging road, irreversible thermodynamic processes 
take place in the soils, accompanied by phase 
transformations and heat and moisture transfer. The 
intensity of these processes is conditioned by a 
variety of factors, including the presence and 
capacity of moisture sources, air temperature 
fluctuations, wind speed, air moisture, and the 
physical and mechanical properties of soils [1]. Soils 
can be moistened by precipitation, groundwater, 
water vapor contained in the pores of soils, or water 
from side ditches. Roadway soils can be considered 
water-saturated capillary-porous bodies. The 
properties of water in soils and its phase composition 
depend on the amount of water, its temperature, and 
the granulometric composition of the soils. 

When modeling and forecasting energy and 
mass transfer, as a rule, numerical integration of the 
partial differential equations describing these 
processes is performed [2-4]. The solution to these 
problems is associated with the study of the 
dynamics of heat and moisture transfer, as well as 
salt transfer, coupled with heat and moisture transfer 
in the soil, the surface air, etc. To perform the 
respective calculations, it is necessary to set several 
constants characterizing the architectonics of the 
crop and soil or their physical parameters, as well as 
the initial state of the system – temperature and 
moisture profile, salt concentration profile, etc. [5-
7]. 

Direct measurement of most of these values in 
laboratory or field conditions is not possible [8], and 
the need to assess them leads to solving the so-called 
inverse problems of mathematical physics [9-12]. 
More specifically, this gives rise to two classes of 
objectives – identification of model parameters and 
assessment of the initial state of the system based on 
the results of indirect measurements [13-16]. 

The solution to many practical tasks in the 
construction of logging roads requires knowledge of 
the thermal and moisture properties of soils [17]. 
Among such tasks are, for example, the calculation 
of moisture transfer in the roadbed at different 
periods of the year; calculation of the depth of 
freezing and defrosting of the roadbed; 
determination of the optimal length of leveling and 

compression of roadbed soils; study of the processes 
of soils mixing with binders, etc. 

To systematize the methods of measuring 
thermal and moisture properties, it is expedient to 
distinguish between two types of heat and mass 
transfer: operational and technological. Operational 
heat and mass transfer considers various heat and 
moisture processes of operated forestry roads and is 
aimed at substantiation of standards for the operation 
and design of the roadbed and road surface. 

Technological heat and mass transfer covers a 
wider range of processes accompanied by 
temperature and moisture changes in many 
technological operations, such as moistening, 
drying, grinding, transportation, compaction, 
leveling, and mixing of soils and materials. The 
problem of constructing observable systems in 
moisture and heat transfer models has several 
features. The conditions of strong sparsity of the 
transition matrix of the differential equations 
determining the dynamics of transfer processes in 
the soil cause weak information links between 
individual components of the system state vector and 
possibly require more measurements for the system 
to be observable. Yet the great labor intensity or 
simple impossibility of observing individual 
components of the vector of state (water potential 
and soil temperature) [2,4,10] entails the need to 
minimize the volume of input measurement data that 
provides the observability of the discrete system. 

The novelty of this study consists in the 
development of a general structural scheme for the 
study of heat and mass transfer properties of soils, 
which makes it possible to substantiate the most 
rational methods of measuring moisture, thermal 
fluxes, coefficients of heat and temperature 
conductivity, moisture conductivity, and the 
thermogradient coefficient. 

The study aims to develop an intelligent 
information system to address the processes of heat 
and mass transfer processes in soils for different 
calculation schemes in computer-aided design 
systems for logging roads. The research questions 
were as follows: 

1. What is the physical essence of heat and mass 
transfer in the layers of the roadway under 
construction or operation? 

2. What calculation schemes for the heat and 
mass transfer processes of the studied samples 
should be developed? 

3. What are the analytical solutions for various 
calculation schemes and boundary conditions? 
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2. METHODS 
 

In this paper, we develop a general method for 
constructing observable discrete systems with 
minimal input data. It is shown that the observability 
conditions of the direct and inverse systems are 
identical if they exist. Based on the results, we 
investigate the observability conditions for discrete 
systems with a tridiagonal transition matrix. 

In roadbed soils, moisture is transferred from 
higher potential to lower. Under capillary and 
osmotic forces in isothermal conditions, the moisture 
tends to spread evenly over the entire volume. 
Moisture and heat transfer potentials can be 
expressed as: 

 

𝑃௛ = −
ଵ

௧
𝛻ଶ𝑡; 𝑃௠ = −𝛻ଶ𝐹 +

ி

௧
𝛻ଶ𝑡  (1) 

 

where 𝛻ଶ=
డమ

డ௭మ – the Laplace operator; 

F=
డி

డఔ
 – free energy potential F in the direction of the 

generalized coordinate 𝜈 of substance mass. 
It follows from equation (1) that moisture 

transfer in soils occurs due to the presence of the 
potential gradient of vapor transfer 𝛻P, liquid 
moisture transfer with changes in the temperature 
field proceeds by the same laws – it migrates from 
warm to cold places. 

Throughout the year, the temperature and 
moisture of roadbed soils are constantly fluctuating. 
Therefore, the transfer of moisture in soils can be 
examined as a process that occurs under the 
combined potential of 𝛻P and 𝛻W. 

Proceeding from the examination of the 
physical nature of heat and mass transfer, as well as 
scientific research, diffusion processes in soils can 
be presented as density potentials. According to 
several sources [18-20], energy potential gradient 
q=-K𝛻𝐸, where K – energy (E) potential 
conductivity coefficient. As applied to this formula, 
we present the flows 𝑞௠ of moisture as 𝑞௡ – vapor 
and 𝑞 ௙ – fluid in soils as follows: 

 
𝑞௠ = −𝜆𝛻𝑡 = −𝑎𝑐𝑠𝛻𝑡  (2) 

 
𝑞௙ = −𝜆௙𝛻𝑊௙ = −𝑎௙𝑠𝛻𝑊௙  (3) 

 
𝑞௙ = −𝑎௙𝑠𝛻𝑊௙ − 𝑎௙𝑏௙𝑠𝛻𝑡  (4) 

 
𝑞௩ = −𝑎௩𝑠(𝛻𝑎௩ + 𝑏௩𝛻𝑡)  (5) 

 
𝑞௩ = −𝜆௩𝛻 𝑃 = −𝑎௩𝑠𝛻𝑑௩  (6) 

 
𝑞௩ = −𝑎௩𝑏௩𝑠𝛻𝑡  (7) 

 
where 𝜆 – coefficient of thermal conductivity of 
soils, W/(m.K); 
c – specific heat capacity, J/(kg.K); 
s – soil density, kg/m3; 
𝜆௙ – liquid phase migration proportionality 
coefficient, kg/(m.s); 
𝑎௙  – moisture conductivity coefficient of liquid 
moisture phase, m2/s; 
 

𝑎 =
ఒ೚

௝
  (8) 

 

𝑏௙ = ቀ
డௐ೑

డ௧
ቁ 𝑊  (9) 

 
𝜆௩ – water vapor diffusion proportionality 
coefficient, kg/(m.Pa.s); 
𝑎௩ – vapor conductivity coefficient, m2/s; 
 

𝑎 =
ఒೡ

௟௝
  (10) 

 
𝑏௩ – thermogradient diffusion coefficient of water 
vapor, 1/K; 
 

𝑏௩ = 𝑙 ቀ
డ௉

డ௧
ቁ 𝑡  (11) 

 
where l – specific moisture capacity, i.e. the amount 
of vapor required to increase the partial vapor 
pressure of 1 kg of soil by 1 Pa; 
𝑑 – water vapor moisture capacity. 

The expressions demonstrate the basic laws of 
heat and mass transfer in the soil samples. 

 
3. RESULTS 
 

Based on the analysis of the system of heat and 
mass transfer processes in the roadbed soils, the 
mathematical model can be represented by the 
following system: 

 
డ௧

డఛ
= 𝑖

డమ௧

డ௭మ + 𝑘
డௐ

డ௧
  (12) 

 
డௐ

డఛ
= 𝑖ଵ

డమௐ

డ௭మ + 𝑖ଵ𝑘ଵ
డమ௧

డ௭మ  (13) 

 
where t – temperature, K; 
W – moisture in fractions of a unit; 
𝜏 – time, s; 
z – variable coordinate by depth, m; 
a – temperature-conductivity coefficient, m2/s; 
b – coefficient of heat transfer due to phase 
transformation of moisture, K; 
𝑏ଵ – thermogradient coefficient, 1/K. 
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Coefficient 𝑎ଵ accounts for the moisture 
conductivity of two-phase moisture and can be 
expressed as: 

 
𝑎ଵ =

௔೚

ଵିఌ
  (14) 

 
where 𝜀 – phase transformation criterion for the 
condensation of water vapor into the liquid phase. 

Thermogradient coefficient 𝑏ଵ, similarly to (9), 
can be presented as: 

 

𝑏ଵ =
ఋௐ

ఋ௧
  (15) 

 
Heat transfer coefficient due to phase 

transformations for thawed soils: 
 

𝑏 =
ఌఘ೙

௖
  (16) 

 
where 𝜌௡ – latent heat of vaporization, J/kg; 
c – specific heat capacity of thawed soils, J/(kg.K). 

Equations (12) and (13) describe the laws of 
heat and moisture migration in the roadbed. These 
include coefficients a, 𝑎ଵ, b, and 𝑏ଵ characterizing 
heat and mass transfer processes in the roadbed. 

These properties of soils can be determined with 
undisturbed structures. It is difficult to determine the 
heat and mass transfer properties of soils in field 
conditions because it involves very complex and 
time-consuming studies. The known express 
methods still produce significant errors in 
measurements. Experimental determination of heat 
and mass transfer properties of soils on samples 
allows one to widely use the arsenal of physical 
converters of heat and moisture processes into 
multiparameter electric signals. Therefore, the 
greatest interest at present lies in the study of heat 
and mass transfer properties of roadbed soils on 
samples under laboratory conditions [21]. 

When examining heat and mass transfer 
properties on samples based on (12) and (13), it is 
necessary to justify the conditions of unambiguity 
that allow one to simulate heat and mass transfer in 
soils to the greatest extent. For this purpose, it is 
necessary to substantiate the form and properties of 
samples, as well as the initial and boundary 
conditions of heat and mass transfer. 

In theory and research practice, heat and mass 
transfer properties are typically studied based on 
samples in the form of plates and shafts. For these 
forms of samples, there is the greatest variety of 
calculation schemes and analytical solutions. This is 
especially true in the theory of heat and mass 
transfer. The choice of the plate and shaft shape 
depends primarily on the guaranteed directionality 

of heat and moisture diffusion in the body under 
study, i.e. the created directionality of gradients. 

If the law of distribution of heat and moisture 
along the sample is homogeneous and linear, then it 
is recommended to take a sample in the form of a 
plate, which reduces the test time and increases the 
reliability of the obtained results. If the sample has a 
nonlinear field, it is advisable to use a shaft-shaped 
sample. 

In the study of samples by mathematical 
modeling using (12) and (13), it is required to specify 
heat and mass transfer properties with linear or 
nonlinear laws of their change throughout the 
sample. In the practice of studying capillary-porous 
bodies, the samples are generally taken from 
homogeneous materials [21,22]. 

The initial and boundary conditions in the 
studies are different depending on the calculation 
schemes and the conditions of temperature 
stabilization, thermal fluxes, and moisture at the 
edges of the samples. 

The present study considers the following 
calculation schemes: 

1. Complex heat and mass transfer in the sample 
(equations 12 and 13). This scheme is the most 
common. The moisture content of the samples is 
within 𝑊௠௚ < 𝑊 < 𝑊௦௔௧ , and the temperature is 
𝑡௜ < 𝑡 < 𝑡ఋ, where 𝑡ఋ – maximum regular 
temperature of roadbed soil. Scheme 1 allows us to 
analyze simultaneously heat diffusion and moisture 
migration, as well as their general influence on each 
other, and to determine the real water-heat regime of 
the soil most completely. However, the study of heat 
and mass transfer properties based on this scheme is 
difficult. 

This scheme is common in the construction of 
the roadbed and various conditions of its operation. 
It applies to the analysis of the water-heat regime of 
the roadbed in winter and summer periods, the 
analysis of properties during the mixing of soils with 
binders, during compaction of freezing soils, during 
the transportation of soils, and other cases. 

2. Heat transfer without mass transfer. This 
scheme is typical for the study of heat diffusion with 
low moisture content in samples (W< 𝑊௠௚), in the 
study of heat and mass transfer properties on plates, 
on samples from sandy and debris soils, as well as in 
the study of the properties of road surface layers 
made of crushed gravel, gravel, and other materials. 

The mathematical model for the second 
calculation scheme: 

 
డ௧

డఛ
= 𝑎

డమ௧

డ௭మ  (17) 
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In road construction, this scheme is used when 
calculating heat treatment of soils, freezing soils 
when entering water-saturated strata, and mixing 
soils of low moisture with binders [12]. 

3. Mass transfer without heat transfer. This 
scheme is typical for the study of heat and mass 
transfer properties in the presence of significant 
moisture gradients during isothermal moisture 
exchange when layers with different moisture 
content are in contact, as well as in the case of rapid 
and intensive moistening. 

Such a process is described by the following 
boundary conditions: 

 
t(z, 0)=𝑡௜௡; 0 ≤ 𝑧 ≤ 𝑙  (18) 

 
𝑡(0, 𝜏) = 𝑡௜௡ + 𝑚ଵ𝜏; 𝑚ଶ <  𝑚ଵ  (19) 
 

𝑡(𝑙, 𝜏) = 𝑡௜௡ + 𝑚ଶ𝜏;  0 ≤ 𝜏 ≤ 3,6 ∙ 10ଷ𝑐  (20) 
 

𝑊(𝑧, 0) = 𝑊௜௡;  𝑚ଷ > 𝑚ସ (21) 
 

𝑊(0, 𝜏) = 𝑊௜௡ − 𝑚ଷ𝜏  (22) 
 

𝑊(𝑙, 𝜏) = 𝑊௜௡ + 𝑚ସ𝜏  (23) 
 
Systems (12) and (13) were solved under 

boundary conditions (21). Substituting the second 
equation of the system (21) in the first, we receive: 

 
డ௧

డఛ
= 𝑎

డమ௧

డ௭మ + 𝑎ଵ𝑏ଵ𝑏
డమ௧

డ௭మ + 𝑏𝑎ଵ
డమௐ

డ௭మ   (24) 

 
డௐ

డఛ
= 𝑎ଵ𝑏ଵ

డమ௧

డ௭మ + 𝑎ଵ
డమௐ

డ௭మ   (25) 

 
Applying the new functions: 
 

T=t-𝑡௡; 𝑊ଵ = 𝑊 − 𝑊௜௡ (26) 
 
The vector of variables and the matrix of 

coefficients of the equation system (54) is as follows: 
 

X=|𝑇 𝑊ଵ |;  𝐴 = |𝑖 + 𝑎ଵ𝑏ଵ𝑏 𝑎ଵ𝑏𝑎𝑖ଵ𝑏ଵ 𝑎ଵ | (27) 
 
Let us write the system (24) in matrix form: 
 

𝜕𝑋

𝜕𝜏
= 𝐴

𝜕ଶ𝑋

𝜕𝑧ଶ
 (28) 

 
X(z, 0)=0; X(0,𝜏)=|𝑚ଵ𝜏 − 𝑚ଷ𝜏 |; 𝑋(𝑙, 𝜏) = |𝑚ଶ𝜏 𝑚ସ𝜏 | (29) 

 
Reducing matrix A to a diagonal matrix S: 
 

S=BA𝐵ିଵ = |𝜆ଵ0 0𝜆ଶ | = ቚ0.5[ 𝑎 + 𝑎ଵ𝑏ଵ𝑏 + 𝑎ଵ + ඥ(𝑎 + 𝑎ଵ𝑏ଵ𝑏 + 𝑎ଵ)ଶ − 4𝑎ଵ𝑎  0 0.5[ 𝑎 +

𝑎ଵ𝑏ଵ𝑏 + 𝑎ଵ − ඥ(𝑎 + 𝑎ଵ𝑏ଵ𝑏 + 𝑎ଵ)ଶ − 4𝑎ଵ𝑎  ቚ 
(30) 

 
where 𝜆ଵ and 𝜆ଶ – the eigenvalues of matrix A. 

 

𝜆ଵ = 0.5[ 𝑎 + 𝑎ଵ𝑏ଵ𝑏 + 𝑎ଵ + ඥ(𝑎 + 𝑎ଵ𝑏ଵ𝑏 + 𝑎ଵ)ଶ − 4𝑎ଵ𝑎 > 0 (31) 
 

𝜆ଶ = 0.5[ 𝑎 + 𝑎ଵ𝑏ଵ𝑏 + 𝑎ଵ − ඥ(𝑎 + 𝑎ଵ𝑏ଵ𝑏 + 𝑎ଵ)ଶ − 4𝑎ଵ𝑎 > 0 (32) 
 

B=ቮ
ఒభି௔

ට(ఒభି௔భ)మ ା௔భ
మ௕మ

 
ఒమି௔

ට(ఒమି௔భ)మ ା௔భ
మ௕మ

 
௔భ௕

ට(ఒభି௔భ)మ ା௔భ
మ௕మ

 
௔భ௕

ට(ఒమି௔భ)మ ା௔భ
మ௕మ

 ቮ = |𝑏ଵଵ 𝑏ଵଶ 𝑏ଶଵ 𝑏ଶଶ | (33) 

 

𝐵ିଵ = ቮ
ට(ఒభି௔భ)మ ା௔భ

మ௕మ

ఒభିఒమ
 
(௔భିఒమ)ට(ఒభି௔భ)మ ା௔భ

మ௕మ

(ఒభିఒమ)௔భ௕
 

ට(ఒమି௔భ)మ ା௔భ
మ௕మ

ఒభିఒమ
 

(ఒభି௔భ)ට(ఒమି௔భ)మ ା௔భ
మ௕మ

(ఒభିఒమ)௔భ௕
 ቮ= 

|𝑏ଵଵ
ᇱ  𝑏ଵଶ

ᇱ  𝑏ଶଵ
ᇱ  𝑏ଶଶ

ᇱ  | 

(34) 

 
Let us introduce the notations: 
 

𝑑ଵ = ට(𝜆ଵ − 𝑎ଵ)ଶ + 𝑎ଵ
ଶ𝑏ଶ (35) 

 

𝑑ଶ = ට(𝜆ଶ − 𝑎ଵ)ଶ + 𝑎ଵ
ଶ𝑏ଶ (36) 

 
Then matrices B and 𝐵ିଵ can be presented as: 
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B=ቚ
ఒభି௔భ

ௗభ
 

ఒమି௔భ

ௗమ
 
௔భ௕భ

ௗభ
 

௔భ್

ௗమ
 ቚ (37)  

 

𝐵ିଵ = ቤ
𝑑ଵ

𝜆ଵ − 𝜆ଶ

 
(𝑎ଵ − 𝜆ଶ)𝑑ଵ

(𝜆ଵ − 𝜆ଶ)𝑎ଵ𝑏
 

𝑑ଶ

𝜆ଵ − 𝜆ଶ

 
(𝜆ଵ − 𝑎)𝑑ଶ

(𝜆ଵ − 𝜆ଶ)𝑎ଵ𝑏
 ቤ (38) 

 
Now we introduce a new vector 𝛾 = 𝐵𝑋. 
Then equation (29) takes the form: 
 

B
డ௑

డఛ
=

డమ௑

డ௭మ  (39) 

or 
 

B
డ௑

డఛ
 = BA𝐵ିଵ𝐵

డమ௑

డ௭మ  (40) 

 
Under boundary conditions: 

 
𝛾(𝑧, 0) = 0 (41) 

 
𝛾(0, 𝜏) = 𝐵|𝑚ଵ𝜏 − 𝑚ଷ𝜏 | (42) 

 
𝛾(𝑙, 𝜏) = 𝐵|𝑚ଶ𝜏 𝑚ସ𝜏 | (43) 

 
The solution of equation (40) under boundary 

conditions (42) is as follows: 

 

𝛾(𝑧, 𝜏) =
2𝑆𝜋

𝑙ଶ
෍ 𝑛 exp ቈ

𝑆𝑛ଶ𝜋ଶ𝜏

𝑙ଶ
቉ 𝑆𝑖𝑛

𝜋𝑛𝑧

𝑙
х න 𝑒𝑥𝑝

𝑆𝑛𝜋ଶ𝜂

𝑙ଶ
[𝛾(0, 𝜏) − (−1)௡

ఛ

଴

ஶ

ଵ

𝛾(𝑙, 𝜏)]𝑑𝜂 (44) 

 
From this: 
 
 

𝛾(𝑧, 𝜏) =
2

𝜋
෍

𝑆𝑖𝑛
𝜋𝑛𝑧

𝑙
𝑛

𝑆 ቈ
𝜏

𝑆
−

𝑙ଶ

𝑆ଶ𝜋ଶ𝑛ଶ
−

𝑙ଶexp (−𝑆𝜋ଶ𝑛ଶ(𝑙ଶх𝜏)

𝑆ଶ𝜋ଶ𝑛ଶ
቉ ∙ 𝐵 ∙ 𝑀 

ஶ

ଵ

 (45) 

 
 

where 
 

M=|𝑚ଵ  − (−1)௡𝑚ଶ  − 𝑚ଷ  − (−1)௡𝑚ସ | (46) 
 

From this we find vector X=𝐵ିଵ𝛾 and the 
components of X – temperature t in K and moisture 
W in %. 

The final expression for the temperature field in 
the sample, considering the moisture transfer, is: 

 
 

t(z,𝜏) = 𝑡н +
ଶ

గ
∑

ௌ௜௡
ഏ೙೥

೗

௡(ఒభିఒమ)
{ቂ𝜏 −

௟మ

గమ௡మఒభ
ቀ1 + exp ቀ−

ఒభగమ௡మ

௟మ 𝜏ቁቁቃ ∙ [(𝜆ଵ − 𝑎ଵ)(𝑚ଵ −ஶ
ଵ

(−1)௡ 𝑚ସ)] + ቂ𝜏 −
௟మ

గమ௡మఒమ
∙ ቀ1 + exp ቀ−

ఒమగమ௡మ

௟మ 𝜏ቁቁቃ х[(𝑎ଵ − 𝜆ଶ)(𝑚ଵ − (−1)௡𝑚ଶ) −

(௔భିఒమ)ௗభ

ௗమ
(𝑚ଷ + (−1)௡𝑚ସ)]} 

(47) 

 
The final expression for the moisture field in the 

sample is: 
 

𝑊(𝑧, 𝜏) = 𝑊௡ +
2

𝜋
෍

𝑆𝑖𝑛
𝜋𝑛𝑧

𝑙
𝑛(𝜆ଵ − 𝜆ଶ)

{ቈ𝜏 −
𝑙ଶ

𝜋ଶ𝑛ଶ𝜆ଵ

ቆ1 + exp ቆ−
𝜆ଵ𝜋ଶ𝑛ଶ

𝑙ଶ
𝜏ቇቇ቉ ∙ [

𝑑ଶ(𝜆ଵ − 𝑎ଵ)

𝑑ଵ(𝜆ଵ − 𝜆ଶ)
(𝑚ଵ

ஶ

ଵ

− (−1)௡𝑚ଶ) − (𝜆ଶ − 𝑎ଵ)х(𝑚ଷ + (−1)௡𝑚ସ)]

+ ቈ𝜏 −
𝑙ଶ

𝜋ଶ𝑛ଶ𝜆ଵ

ቆ1 + exp ቆ−
𝜆ଶ𝜋ଶ𝑛ଶ

𝑙ଶ
𝜏ቇቇ቉ х[

(𝜆ଵ − 𝑎)𝑑ଶ

𝑑ଵ

∙ (𝑚ଵ − (−1)௡𝑚ଶ) + (𝜆ଵ − 𝑎)(𝑚ଷ + (−1)௡𝑚ସ)]} 

(48) 
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The obtained analytical expressions satisfy 
boundary conditions (21). The accuracy of their 
solution is also confirmed by the analysis of 
dimensionality. 

Consider another solution to the problem for 
scheme 1. When investigating heat and mass 
transferring properties on shafts thermally insulated 
from the cold end, the scheme can be presented in 
the form of a semi-isolated shaft. 

Let us consider the solution of (12) and (13) 
without considering thermal-moisture conductivity 
(i.e., without the second member of the right-hand 
side of (13). Such a scheme is applicable when 
determining the heat and mass transfer properties of 
samples with increased initial moisture (𝑊 ≥
0.65 𝑊𝑖). 

In this case, the boundary conditions can be 
written as: 

 

𝑡(𝑧, 0) = 𝑡௜௡; 𝑡(0, 𝜏) = 𝑡௜௡ + 𝑚ଵ𝜏; 
డ௧

డ௭
|𝑧 = 𝑙 = 0 (49) 

 

𝑊(𝑧, 0) = 𝑊௜௡;  𝑊(0, 𝜏) = 𝑊௜௡ − 𝑚ଶ𝜏; 
𝜕𝑊

𝜕𝑧
|𝑧 = 𝑙 = 0 (50) 

 
Now we introduce the variable: 
 
𝑉(𝑧, 𝜏) = 𝑊(𝑧, 𝜏) − (𝑊௜௡ − 𝑚ଶ𝜏) (51) 

 
Substituting (51) and (50) into (13), we obtain 

an inhomogeneous equation with new boundary 
conditions: 

 
𝜕𝑉

𝜕𝜏
= 𝑎ଵ

𝜕ଶ𝑉

𝜕𝑧ଶ
+ 𝑚ଶ (52) 

 

𝑉(𝑧, 0)=0; 𝑉(0, 𝜏)=0; 
డ௏

డ௭
|𝑧 = 𝑙 = 0 (53) 

 

where 𝑎ଵ =
௔೑

ଵିఌ
 – moisture conductivity coefficient 

of two-phase moisture. 
 

𝑉(𝑧, 𝜏) = ෍ 𝑉௡(𝜏) ∙ 𝑆𝑖𝑛
(2𝑛 + 1)𝜋𝑧

2𝑙

ஶ

଴

 (54) 

 
Solution (54) satisfies boundary conditions 

under any 𝑉௡(𝜏). Substituting (54) into equation 
(52), we obtain: 

 
 

෍ 𝑉௡
н(𝜏) +

ஶ

଴

𝑎ଵ[
(2𝑛 + 1)𝜋

2𝑙
]ଶ ∗ 𝑆𝑖𝑛

(2𝑛 + 1)𝜋

2𝑙
= 𝑚ଶ (55) 

 
For condition (55) to be met, it is necessary that: 
 

𝑉௡
ᇱ(𝜏) + 𝑎ଵ[

(2𝑛 + 1)

2𝑙
]ଶ𝑉௡(𝜏) =

2𝑚ଶ

𝑙
න 𝑆𝑖𝑛

௟

଴

(2𝑛 + 1)𝜋

2𝑙
𝑧𝑑𝑧

= −
2𝑚ଶ

𝑙
𝐶𝑜𝑠

(2𝑛 + 1)𝜋

2𝑙
∙

2𝑙

(2𝑛 + 1)𝜋
|଴

௟ =
4𝑚ଶ

(2𝑛 + 1)𝜋
 

(56) 

 
𝑉௡

ᇱ(𝜏)|ఛୀ଴ = 0 (57) 
 

The solution of the system of equations (56)-
(57) is as follows: 

 

𝑉௡(𝜏) =
4𝑚ଶ

(2𝑛 − 1)𝜋
න exp {[−

ఛ

଴

𝑎ଵ

(2𝑛 + 1)ଶ𝜋ଶ

4𝑙ଶ
](𝜏 − 𝜏ᇱ)}𝑑𝜏

=
16𝑚ଶ𝑙ଶ

(2𝑛 + 1)ଷ𝜋ଷ𝑎
{1 − exp [−𝑎ଵ

(2𝑛 + 1)ଶ𝜋ଶ𝜏

4𝑙ଶ
]} 

(58) 

 
From expression (50) we have: 
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𝑉(𝜏, 𝑧) =
16𝑚ଶ𝑙ଶ

𝑎ଵ𝜋ଷ
෍

1 − exp ൤−
𝑎ଵ𝜏(2𝑛 + 1)ଶ𝜋ଶ

4𝑙ଶ ൨

(2𝑛 + 1)ଷ

ஶ

଴

∙ 𝑆𝑖𝑛
(2𝑛 + 1)𝜋𝑧

2𝑙
 (59) 

 
Substituting (59), we obtain an expression to 

calculate the moisture field: 
 

𝑊(𝑧, 𝜏) = 𝑊н − 𝑚ଶ𝜏 +
16𝑚ଶ𝑙ଶ

𝑎ଵ𝜋ଷ
෍

1 − exp ൤−𝑎ଵ
(2𝑛 + 1)ଶ𝜋ଶ𝜏

4𝑙ଶ ൨

(2𝑛 + 1)ଷ

ஶ

଴

∙  𝑆𝑖𝑛
(2𝑛 + 1)𝜋𝑧

2𝑙
 (60) 

 
Rate of change in moisture  

 

𝜕𝑊

𝜕𝑡
= −𝑚ଶ +

4𝑚ଶ

𝜋
෍

exp ൤−𝑎ଵ
(2𝑛 + 1)ଶ𝜋ଶ

4𝑙ଶ 𝜏൨

(2𝑛 + 1)

ஶ

଴

∙  𝑆𝑖𝑛
(2𝑛 + 1)𝜋𝑧

2𝑙
 (61) 

 
Substituting (61) in (12) and using the boundary 

conditions (26), we obtain: 
 

𝜕𝑡

𝜕𝜏
= 𝑎

𝜕ଶ𝑡

𝜕𝑧ଶ
+ 𝑏[𝑓(𝑧, 𝜏) − 𝑚ଶ] (62) 

 

𝑡(𝑧, 0) = 𝑡௜௡;  𝑡(0, 𝜏) = 𝑡௜௡ + 𝑚ଵ𝜏; 
𝜕𝑡

𝜕𝑧
|௭ୀ௟

= 0 
(63) 

 
where 

 

𝑓(𝑧, 𝜏) =
4𝑚ଶ

𝜋
෍

exp ൤−
𝑎ଵ𝜏(2𝑛 + 1)ଶ𝜋ଶ

2𝑙
൨

2𝑛 + 1

ஶ

଴

∙  𝑆𝑖𝑛
(2𝑛 + 1)𝜋𝑧

2𝑙
 (64) 

 
To solve equation (62), we introduce the 

variable: 
 

𝑉(𝑧ଵ, 𝜏) = 𝑡(𝑧, 𝜏) − (𝜏௜௡ + 𝑚ଵ𝜏) (65) 
 
Then we receive: 

 
𝜕𝑉

𝜕𝜏
− 𝑎

𝜕ଶ𝑉

𝜕𝑧ଶ
= [𝑓(𝑧, 𝜏) − 𝑚ଶ]𝑏 − 𝑚ଵ (66) 

 

𝑉(𝑧, 0) = 0;  𝑉(0, 𝜏) = 0; 
𝜕𝑉

𝜕𝑧
|௭ୀ௟ = 0 (67) 

 

The solution to the problem (66) and (67) is 
found in the following form: 

 
V=𝑉ଵ + 𝑉ଶ (68) 

 
where 𝑉ଵ – solution for (66) and (67) with 𝑚ଵ =
𝑚ଶ = 0; 
𝑉ଶ – under 𝑓(𝑧, 𝜏)=0. 

By analogy with the solution of the system (28) 
and (29), we have: 

 

𝑉ଶ (𝑧, 𝜏) = −
16(𝑚ଶ𝑏 + 𝑚ଵ)𝑙ଷ

𝑎𝜋ଷ
∙ ෍

1 − exp ൤−𝑎ଵ
(2𝑛 + 1)ଶ𝜋ଶ

4𝑙ଶ 𝜏൨

(2𝑛 + 1)ଷ
∙

ஶ

଴

𝑆𝑖𝑛
(2𝑛 + 1)𝜋𝑧

2𝑙
 (69) 

 

𝑉ଵ(𝑧, 𝜏) = ෍ 𝑉௡ଵ(𝜏)

ஶ

଴

∙ 𝑆𝑖𝑛
(2𝑛 + 1)𝜋𝑧

2𝑙
 (70) 

 
Substituting it into equation (66) with 𝑚ଵ =

𝑚ଶ = 0, we obtain: 
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෍ 𝑉௡ଵ(𝜏)

ஶ

଴

+ а
(2𝑛 + 1)ଶ𝜋ଶ

4𝑙ଶ
𝑉௡ଵ(𝜏)𝑆𝑖𝑛

(2𝑛 + 1)𝜋𝑧

2𝑙

= ෍
4𝑚ଶ𝑏

(2𝑛 + 1)𝜋
exp [−

𝑎(2𝑛 + 1)ଶ𝜋ଶ

4𝑙ଶ
𝜏]𝑆𝑖𝑛

(2𝑛 + 1)𝜋𝑧

2𝑙

ஶ

଴

 

(71) 

 
This equality is only possible if: 
 

𝑉௡ଵ(𝜏) + 𝑎
(2𝑛 + 1)ଶ𝜋ଶ

4𝑙ଶ
𝑉௡ଵ(𝜏) =

4𝑚ଶ𝑏

(2𝑛 + 1)𝜋
∙ 𝑒𝑥𝑝 [−𝑎ଵ

(2𝑛 + 1)ଶ𝜋ଶ

4𝑙ଶ
𝜏] (72) 

 
It follows from the initial condition that: 
 

𝑉௡ଵ(𝜏)|ఛୀ଴ = 0 (73) 
 

The solution of the system (72) and (73) is the 
function: 

 

𝑉௡ଵ(𝜏) =
4𝑚ଶ𝑏

(2𝑛 + 1)𝜋
∙ න exp [−

ఛ

଴

𝑎ଵ

(2𝑛 + 1)ଶ𝜋ଶ

4𝑙ଶ
𝜏ᇱ] ∙ exp [−а

(2𝑛 + 1)ଶ𝜋ଶ

4𝑙ଶ
(𝜏 − 𝜏ᇱ)]𝑑𝜏ᇱ

= −
16𝑚ଶ𝑏𝑙ଶ

(𝑎ଵ − 𝑎)(2𝑛 + 1)ଷ𝜋ଷ
∙ {exp ቈ−𝑎ଵ

(2𝑛 + 1)ଶ𝜋ଶ

4𝑙ଶ
𝜏቉

− exp [− а
(2𝑛 + 1)ଶ𝜋ଶ

4𝑙ଶ
𝜏]} 

(74) 

 
Substituting (74) and (70), we have: 
 

𝑉ଵ(𝑧, 𝜏) = −
16𝑚ଶ𝑏𝑙ଶ

(𝑎ଵ − 𝑎)𝜋ଷ
෍

1

(2𝑛 + 1)ଷ
∙ ቊexp ቈ−

𝑎ଵ(2𝑛 + 1)ଶ𝜋ଶ

4𝑙ଶ
𝜏቉ − exp ቈ−

𝑎(2𝑛 + 1)ଶ𝜋ଶ

4𝑙ଶ
𝜏቉ቋ

ஶ

଴

∙ 𝑆𝑖𝑛
(2𝑛 + 1)𝜋𝑧

2𝑙 
 

(75) 

 
Using (66) and (68), we finally obtain from the 

calculation of heat and mass transfer in the sample: 
 

𝑡(𝑧, 𝜏) = 𝑡н + 𝑚ଵ𝜏 −
16𝑙ଶ

𝑎𝜋ଷ
෍

1

(2𝑛 + 1)ଷ
{

𝑚ଶ𝑏

𝑎ଵ − 𝑎
∙ exp [−

ஶ

ଵ

𝑎ଵ(2𝑛 + 1)𝜋ଶ

4𝑙ଶ
𝜏] + (−

𝑚ଶ𝑏

𝑎ଵ − 𝑎

−
𝑚ଶ𝑏 + 𝑚ଵ

𝑎
) ∙ [− 

𝑎(2𝑛 + 1)𝜋ଶ

4𝑙ଶ
𝜏] +

𝑚ଶ𝑏 + 𝑚ଵ

𝑎
} ∙ 𝑆𝑖𝑛

(2𝑛 + 1)𝜋𝑧

2𝑙 
 

(76) 

 
 

where 𝑏 =
ఌఘ೙

௖
. 

Now we will consider the solution of (12) and 
(13) without considering the second member of the 

right-hand side of (12) under boundary conditions 
(26). 

Omitting the intermediate solutions, we have 
expressions for calculating the temperature field: 

 
 

𝑡(𝑧, 𝜏) = 𝑡н + 𝑚ଵ𝜏 − −
16𝑙ଶ

𝑎𝜋ଷ
෍

1

(2𝑛 + 1)ଷ
∙ ቊ1 − exp ቈ−

𝑎(2𝑛 + 1)ଶ𝜋ଶ

4𝑙ଶ
𝜏቉ቋ ∙ 𝑆𝑖𝑛

(2𝑛 + 1)𝜋𝑧

2𝑙 

ஶ

ଵ

 (77) 
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𝑊(𝑧, 𝜏) = 𝑊н − 𝑚ଶ𝜏 +
16𝑙ଶ

𝑎𝜋ଷ
෍

1

(2𝑛 + 1)ଷ
∙ {exp [−

ஶ

ଵ

𝑎(2𝑛 + 1)𝜋ଶ

4𝑙ଶ
𝜏] ∙

𝑎ଵ𝑚ଵ𝑏

𝑎 − 𝑎ଵ

− (𝑚ଶ +
𝑚ଵ𝑏ଵ𝑎ଵ

𝑎 − 𝑎ଵ

)

∙ −exp [−
𝑎(2𝑛 + 1)ଶ𝜋ଶ

4𝑙ଶ
𝜏] + 𝑚ଵ𝑏ଵ + 𝑚ଶ} ∙ 𝑆𝑖𝑛

(2𝑛 + 1)𝜋𝑧

2𝑙 
 

(78) 

 
Let us consider solutions to the problem of the 

scheme without mass transfer. 
We solve the equation: 
 

𝜕𝑡

𝜕𝜏
= 𝑎

𝜕ଶ𝑡

𝜕𝑧ଶ
 (79) 

 
under the following boundary conditions: 

 
{𝑡(𝑧, 0) = 𝑡௜௡ 0 ≤ 𝑧 ≤ 𝑙 𝑡(0, 𝜏) = 𝑡௜௡ +  𝑡(𝑙, 𝜏) = 𝑡௜௡ + 𝑚ଶ𝜏 0 ≤ 𝜏 ≤ 3.6 ∙ 10ଷ𝑐 𝑚ଵ𝜏 𝑚ଶ <  𝑚ଵ  (80) 

 
We introduce a new function T(z,𝜏) = 𝑡(𝑧, 𝜏) −

𝑡௜௡. 
Then we have the following equation with new 

boundary conditions: 
 

𝜕𝑇

𝜕𝜏
= 𝑎

𝜕ଶ𝑇

𝜕𝑧ଶ
 (81) 

 
{𝑇(𝑧, 0) = 0 𝑇(0, 𝜏) =  𝑇(𝑙, 𝜏) = 𝑚ଶ𝜏 𝑚ଵ𝜏 (82) 

 
The solution to equation (81) is found as: 

 

T=
ଶ௔గ

௟మ
∑ 𝑛 exp ቂ−

௔௡మగమ

௟మ 𝜏ቃ ∙ 𝑠𝑖𝑛
గ௡௭

௟
∙ ∫ 𝑒𝑥𝑝

௔௡మగమ

௟మ 𝜆 ∙ [
ఛ

଴
ஶ
ଵ 𝑚ଵ𝜆 − (−1)௡𝑚ଶ𝜆]𝑑𝜆 =

ଶ௔

௟మ
∑ exp ቂ−

௔௡మగమ

௟మ 𝜏ቃ ∙ ∫ 𝑒𝑥𝑝
௔௡మగమ

௟మ

ఛ

଴
ஶ
ଵ 𝜆𝑑𝜆 =

ଶ௟మ

௔గయ
∑

௠భି(ିଵ)೙௠మ

௡య 𝑠𝑖𝑛
గ௡௭

௟
∙ [

௔௡మగమ

௟మ 𝜏 − 1 +ஶ
ଵ

exp (−
௔௡మగమ

௟మ 𝜏)] 

(83) 

 
From this: 
 

t(z, 𝜏) =  𝑡н +
ଶ௟మ

௔గయ
∑

௠భି(ିଵ)೙௠మ

௡య 𝑠𝑖𝑛ஶ
ଵ

గ௡௭

௟
∙ [

௔௡మగమ

௟మ 𝜏 − 1 + exp ቀ−
௔௡మగమ

௟మ 𝜏ቁ] (84) 

 
Since the series in the right part of equality (81) 

satisfies the conditions of Leibniz's theorem about 
alternating series, the remainder of the series does 

not exceed the absolute value of the first of the 
discarded members, i.e: 

 

ฬ𝑅௡ ൬
𝑙

2
, 𝜏൰ฬ =

2𝑙ଶ

𝑎𝜋ଷ
න

𝑚ଵ − (−1)௡𝑚ଶ

𝑛ଷ
ቈ
𝑎𝑛ଶ𝜋ଶ

𝑙ଶ
𝜏 − 1 + exp ቆ−

𝑎𝑛ଶ𝜋ଶ

𝑙ଶ
𝜏ቇ቉

ାஶ

௞ୀ௡ାଵ

≤
2𝑙ଶ

𝑎𝜋ଷ

𝑚ଵ − (−1)௡𝑚ଶ

𝑛ଷ
∙ ቈ

𝑎(𝑛 + 1)ଶ𝜋ଶ

𝑙ଶ
𝜏 − 1 + exp ቆ−

𝑎(𝑛 + 1)ଶ𝜋ଶ

𝑙ଶ
𝜏ቇ቉ 

(85) 

 
Let us estimate the ratio of the sum of all 

members of the series, starting from the second to 
the first member of this series. Given (85), we have: 

 

𝑅(
𝑙
2

, 𝜏)

2𝑙ଶ

𝑎𝜋ଷ (𝑚ଵ + 𝑚ଶ)[
𝑎𝜋ଶ

𝑙ଶ 𝜏 − 1 +𝑒𝑥𝑝 𝑒𝑥𝑝 ൬−
𝑎𝜋ଶ𝜏

𝑙ଶ ൰ ]
≤

1

27

[
9𝜋ଶ𝑎

𝑙ଶ 𝜏 − 1 +𝑒𝑥𝑝 𝑒𝑥𝑝 ൬−
9𝜋ଶ𝑎

𝑙ଶ 𝜏൰ 

[
𝜋ଶ𝑎

𝑙ଶ 𝜏 − 1 +𝑒𝑥𝑝 𝑒𝑥𝑝 ൬−
𝜋ଶ𝑎

𝑙ଶ 𝜏൰ ≤ 𝜀 
 (86) 

 
Since: 
 

𝜋ଶ𝑎

𝑙ଶ
𝜏 −

1

9
+𝑒𝑥𝑝 𝑒𝑥𝑝 ቆ−

9𝜋ଶ𝑎

𝑙ଶ
𝜏ቇ  <

𝜋ଶ𝑎𝜏

𝑙
− 1 +𝑒𝑥𝑝 𝑒𝑥𝑝 ቆ−

𝑎𝜋ଶ𝜏

𝑙ଶ
ቇ (87) 
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ଽ[
ഏమೌ

೗మ ఛି
భ

వ
ା௘௫௣ି

వഏమೌ

೗మ ఛ]

ഏమೌ

೗మ ఛିଵା௘௫௣ (ି
ೌഏమ

೗మ ఛ)
< 9  (88) 

 

Thus, 𝜀 =
ଵ

ଷ
 and, accordingly: 

 
ோభ(

೗

మ
,ఛ)

మ೗మ

ಲഏయ(௠భା௠మ)[
ೌഏమ

೗మ ఛିଵି௘௫௣௘௫௣ ൬ି
ೌഏమ

೗మ ఛ൰ ]
   (89) 

 

To estimate the error allowed when replacing 
the sum of series (83) by its partial sum in other 

points 𝑥 ≠
௟

ଶ
, we use Abel's test. When approaching 

the ends of the interval 0 ≤ 𝑥 ≤ 𝑙 estimation of the 
remainder of the series using Abel's test becomes 
unsuitable. 

To evenly estimate the remainder of the series 
over the entire interval 0 ≤ 𝑥 ≤ 𝑙, we use a different 
method: 

 

𝑅௡(𝑧, 𝜏) = ቚ
ଶ௟మ

௔గయ
∑

௠భି(ିଵ)ೖ௠మ

௞య [
௔௞మగమ

௟మ
ஶ
௞ୀ௡ାଵ 𝜏 − 1 + exp ቀ−

௔௞మగమ

௟మ 𝜏ቁቃ ቚ∙ 𝑆𝑖𝑛
గ௞௭

௟
≤

ଶ௟మ

௔గయ
∑

௠భି(ିଵ)ೖ௠మ

௞య ቂ
௔௞మగమ

௟మ 𝜏 − 1 + exp ቀ−
௔௞మగమ

௟మ 𝜏ቁቃ <
ଶ௟మ

௔గయ ∫
௠భା௠మ

௫య ∙ [
௔గమ

௟మ 𝜏
ାஶ

஺೙

ஶ
௞ୀ௡ାଵ ∙ 𝑥ଶ − 1 +

exp ቀ−
௔గమ

௟మ 𝜏𝑥ଶቁቃ 𝑑𝑥 =
ଶ௟మ

௔గ
(𝑚ଵ + 𝑚ଶ) ∫

ଵ

క
∙ [𝜉ଶ − 1 + exp(−𝜉ଶ)]𝑑𝜉 =

ାஶ

஺೙

ଶ௟మ

௔గ
(𝑚ଵ +

𝑚ଶ) ∫ [
ାஶ

஺೙
𝜉 −

ଵ

క
+

ୣ୶୮൫ିకమ൯

క
]𝑑𝜉  

(90) 

 
where 

 

𝜉 =
𝑥𝜋

𝑙
ඥ𝑎𝜏; (91) 

 

𝐴௡ =
𝜋𝑛

𝑙
√𝑎𝜏. (92) 

 
After integration we receive: 

 

න [

ାஶ

஺೙

𝜉 −
1

𝜉
+

exp(−𝜉ଶ)

𝜉
]𝑑𝜉 = (𝜉ଶ − 𝑙𝑛𝜉|஺೙

ାஶ + න
exp(−𝜉ଶ)

𝜉

ାஶ

஺೙

𝑑𝜉 (93) 

 

න
exp(−𝜉ଶ)

𝜉

ାஶ

஺೙

𝑑𝜉 =
1

2А௡
ଶ

exp(−А௡
ଶ ) + න

exp(−𝜉ଶ)

𝜉ଷ

ାஶ

஺೙

𝑑𝜉 (94) 

 

but ∫
ୣ୶୮൫ିకమ൯

కయ

ାஶ

஺೙
𝑑𝜉 < exp(−А௡

ଶ ) ∫
ௗక

కయ

ାஶ

஺೙
=

ୣ୶୮൫ିА೙
మ ൯

ଶА೙
మ  (95) 

 
Thus, the expression for the uniform estimate of 

the series residual is as follows: 
 

|𝑅௡(𝑥, 𝜏)| <
ଶ௟మ

௔గ
(𝑚ଵ + 𝑚ଶ) 

௘௫௣௘௫௣ ൫ି஺೙
మ ൯ 

ଶ஺೙
మ , (96) 

 
where 
 

𝐴௡ =
𝜋𝑛

𝑙
√𝑎𝜏. (97) 

 
Expression (97) makes it possible to determine 

with a given accuracy the values of temperature t by 
(84). 

The final expression for the moisture field in the 
sample is as follows: 

 

W(z,𝜏)=𝑊н +
ଶ௟మ

аభగయ
∑

௠యି(ିଵ)೙௠ర

௡య
ஶ
ଵ *Sin

గ௡௭

௟
х[

௔௡మగమ

௟మ 𝜏 − 1 + exp ቀ−
௔௡మగమ

௟మ 𝜏ቁ] (98) 

 
4. DISCUSSION 
 

The temperature and moisture of roadbed soil 
change ceaselessly throughout the year. Therefore, 
the transfer of moisture in soils can be considered a 
process under the influence of the combined 
potential of 𝛻P and 𝛻W [23]. Two characteristic 

physical patterns of heat transfer can be 
distinguished in soils. 

Scheme 1. Soil moisture is insignificant 0 <
𝑊 < 𝑊௠௚ (in the range from 0 to 0.3 𝑊௜), 
temperature 𝑡 ≤ 𝑡௜, where 𝑡௜ – ice formation 
temperature; 𝑊௜ – soil yield stress. Relative humidity 
of pore air 𝜑 < 1. The water vapor pressure is less 
than the vapor pressure at full saturation and is a 
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complex function of P=𝑓(𝜑ଵ𝑊ଵ 𝑡), where W – soil 
moisture; t – temperature. 

This scheme is characterized by the following: 
vapor formation; vapor condensation into adsorption 
moisture; the liquid phase of moisture does not 
migrate; thermodiffusion and condensation diffusion 
of unsaturated water vapor take place; heat transfer 
occurs due to conduction, convection, intravapor 
radiation, and phase transformations; ice formation 
is absent; the ground does not freeze and has a 
condensation structure. 

This physical scheme is typical of several 
technological processes: mixing and strengthening 
soils with binders. In road construction, it is 
relatively rare. 

Scheme 2. There are two phases of water in the 
soil: vapor + liquid phase. The moisture content is in 
the range 𝑊௠௚ ≤ 𝑊 < 𝑊௦௔௧ , where 𝑊௦௔௧ – total 
moisture capacity, approximately (0.8-0.9) 𝑊௦௔௧. 
Temperature t< 𝑡௜, 𝜑 = 1, P=𝑃௜௡ , P=𝑓(𝑡), 𝑊 =
𝑓(𝑊௙𝑡), where 𝑊௙ – fluid phase content. 

This scheme is characterized by: vapor 
formation, condensation of vapor into film and 
capillary moisture; thermodiffusion of vapor; liquid 
phase migration due to its concentration potential 
and partially due to thermodiffusion; heat transfer, as 
in the first scheme; ice formation is absent; the 
ground is in the thawed state and has a coagulated 
structure. 

This scheme is the primary one in the 
construction of public roads and logging roads as 
well. It is characteristic of all technological 
processes in which the soil as well as the roadbed 
bed layers are involved. The exception is the roadbed 
layers in the zone of excessive moistening, which is 
a limitation of this study.  

 
5. CONCLUSION 
 

The following conclusions can be made from 
the theoretical research performed. 

1. The physical essence of heat and mass 
transfer in the layers of the roadway under 
construction or operation is considered. Soils are 
complex dynamic disperse systems in which 
irreversible thermodynamic processes take place, 
accompanied by phase transformations and heat and 
moisture transfer. Mass exchange in soils results 
from the presence of a gradient of vapor transfer 
potential, fluid moisture, and a gradient of heat 
potential. Heat transfer occurs due to the heat 
transfer potential. The temperature gradient causes 
additional moisture transfer. 

2. Three calculation schemes for the heat and 
mass transfer processes of the studied samples are 

developed. Calculation scheme 1 reflects complex 
heat and mass transfer; the scheme allows for 
simultaneous analysis of heat diffusion and moisture 
migration, as well as their mutual influence on each 
other. It applies to the analysis of the water-heat 
regime of the roadbed in winter and summer periods; 
when analyzing the properties in the process of 
mixing soils with binders; during the compaction of 
freezing soils; during the transportation of soils, and 
in other cases. Calculation scheme 2 reflects heat 
transfer without mass transfer. The scheme is typical 
in the study of heat diffusion with low moisture 
content in samples. In road construction, the scheme 
is used when calculating the heat treatment of soils, 
when freezing soils, and when mixing low-moisture 
soils with binders. Calculation scheme 3 is 
characteristic of significant moisture gradients in 
isometric moisture transfer and rapid and intensive 
moisture transfer. 

3. Analytical solutions have been obtained for 
various calculation schemes and boundary 
conditions. For calculation scheme 1, the solutions 
for the plate and the semi-organic shaft are derived. 
For calculation schemes 1, 2, and 3, expressions for 
the field of moisture and temperature are obtained. 
The error allowed for the replacement of the series 
sum by its partial sum is evaluated. 

Further research should be aimed at developing 
a scheme that would be characteristic of 
technological processes in which the roadbed layers 
in the zone of excessive moistening are involved. 
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