
Journal of Theoretical and Applied Information Technology
15th April 2023. Vol.101. No 7
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2540

CREATING THE BEST DIRECTED RANDOM TESTING
METHOD TO MINIMIZE INTERACTIVE FAULTS-

EMPIRICAL PERSPECTIVE

T BALAJI1 , P.RAVI KUMAR2 , M.V.GANESWARA RAO3, GEETHA DEVI APPARI4

 1.Sr.Assistant Professor, Department of Electronics and Communication Engineering, PVP Siddhartha

Institute of Technology, Kanuru, Vijayawada, A.P. India.

2.Associate Professor, Department of Electronics and Communication Engineering, Shri Vishnu Engineering
College for Women, Bhimavaram, AP, India.

3. Associate Professor ,Department of Electronics and Communication Engineering, Shri Vishnu Engineering
College for Women, Bhimavaram, AP, India. 4.Associate Professor, Department of Electronics and

Communication Engineering, PVP Siddhartha Institute of Technology, Kanuru, Vijayawada, A.P. India.

E-mail: balu170882@gmail.com, ravikumar_tnk@svecw.edu.in, mgr_ganesh@svecw.edu.in, geetha.agd@gmail.com

ABSTRACT

Here we are mainly concerning the problem of randomly generated test cases. Randomly generated test
cases will contain some ambiguous test cases, which leads problem at organizational level. A random
algorithm will generate random test cases each time, which will contain some similarity on each time.
Another problem related to random algorithm was of time consuming process. To removing these issues we
proposed our new technique, which will reduce the given drawbacks. We proposed an Adaptive Genetic
Algorithm (AGA) which will provide legal input in each case it applied. Thus the problem of ambiguity
will decrease. In this research, the optimal inputs will be generated based on Adaptive Genetic Algorithm
(AGA) which will reduce the illegal inputs and equivalent inputs. The fault detection rates will be the
fitness of AGA. To reduce the fault proneness, AGA uses the coverage metrics of the test cases
Keywords: Random Testing, Aga, Metrics, Interactive Faults, Empirical Study

1. TECHNICAL DETAILS

Random testing is used as a cost-effective
alternative for assuring the correctness of
interface specifications and assertions. Testing in
general is costly, laborious, time consuming, and
error-prone. However, if fully automated,
random testing can be an effective tool to detect
inconsistencies between a specification and its
implementation, as it eliminates the
subjectiveness in constructing test cases and
increases the variety of input values. Various
techniques used for generating randomly test
cases. Feedback-directed Random Test
Generation [26] which outputs was a test suite
consisting of unit tests for the classes under test.
Passing tests can be used to ensure that code
contracts are preserved across program changes;
failing tests (that violate one or more contract)
point to potential errors that should be corrected.
Random Testing for Object-Oriented Software
[25] used for finding bugs, not only seeded ones,

but also bugs present in widely used, industrial-
grade code. Race Directed Random Testing [24]
of Concurrent Programs used for randomized
dynamic analysis technique that utilizes potential
data race information obtained from an existing
analysis tool to separate real races from false
races without any need for manual inspection
[18,19].
The key idea of our approach is to perform
dynamic testing by generating test cases
randomly. Our test case consists of an optional
receiver object and a list of arguments; the
receiver is an instance of the class under test, and
an argument is either a primitive value or an
object. For an argument of a primitive type, we
select an arbitrary value of that type randomly.
For a class type, we construct a new instance by
invoking a constructor and mutate it by invoking
a sequence of mutation methods. The constructor
and the mutation methods are selected randomly.

Journal of Theoretical and Applied Information Technology
15th April 2023. Vol.101. No 7
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2541

2. INTRODUCTION:

Despite decades of effort to develop

alternative technologies, software testing remains
the primary way to verify the quality of software
systems. However, it remains a labor-intensive,
slow and imperfect process. It is, therefore,
important to consider how testing can be
performed more effectively and at a lower cost
through the use of systematic and automated
methods [23]. The systems are becoming highly
configurable to satisfy the varying needs of users
and customers. Software product lines are hence
becoming a common trend in software
development to reduce cost by enabling
systematic, large-scale reuse. However, high
levels of configurability entail new challenges.
One significant challenge is that many modern
systems are highly configurable; to satisfy wide
variability in needs [17]. For example, in
software applications running on mobile phones,
many features can be configured, such as the
type of phone, operating system, and installed
applications. Each configuration represents a
different product and may exhibit different
failure modes. In industrial systems, there are
typically millions of possible configurations
where possibly only a small subset of
combinations can trigger failures. The question is
how to maximize failure detection when it is not
possible to test all configurations [1].The glance
of some testing functions were describes below.

Random testing is a form of functional
testing that is useful when the time needed to
write and run directed tests is too long or the
complexity. One of the big issues of random
testing is to know when a test fails. Random
testing, an approach in which test inputs are
generated at random (with a probability
distribution that may change as testing proceeds,
and usually with the possibility that inputs may
be generated more than once) and easy-to-use
automatic test generation technique for a wide
variety of software. Random testing is a fast
testing technique, in which test cases are simply
sampled at random from the input domain.
Although RT is often considered a naive testing
strategy, it can be very effective in many testing
scenarios. When the test cases have a variable
length representation, there can be different ways
to sample test cases at random [1]. The goal of
random testing is to produce test failures test
cases in which a program fault (a particular bug,
repaired by a particular fix) induces error in
program state that propagates to observable

output [15]. Recent works on random testing has
focused on strategies for testing interactive
programs, including file systems, data structures
and device drivers. For such programs, a random
test suite is a set of test runs [14]. This testing
was meant for numerical input domain but with
passage of time and emerging different
paradigms the interest in random testing has been
dramatically increased due to the merits it offers.
This matter is clearly evident by various studies
in the literature which apply RT to the area of
their interest [20-22]. Random testing techniques
intuitively can be categorized into pure and
enriched due to the strategies they use for test
input generation and selection [13]. A major
strength with Random Testing is that it is a cost-
efficient method for creating a large number of
diverse test cases that would be expensive to
create manually. Hence it can be efficient on
finding low-frequency faults that non-random
testing might not discover [16].
 Stress testing is subjecting a system to
an unreasonable load while denying it the
resources needed to process that load. The idea
is to stress a system to the breaking point in
order to find bugs that will make that break
potentially harmful. The system is not expected
to process the overload without adequate
resources, but to behave (e.g., fail) in a decent
manner (e.g., not corrupting or losing data).
Bugs and failure modes discovered under stress
testing may or may not be repaired depending
on the application, the failure mode,
consequences, etc. The load in stress testing is
often deliberately distorted so as to force the
system into resource depletion. Stress testing is
the process of determining the ability of a
computer, network, program or device to
maintain a certain level of effectiveness under
unfavorable conditions. The objective of the
stress testing is basically stress the application
and check the applications before it is put in to
the production environment [17]. The process
can involve quantitative tests done in a lab, such
as measuring the frequency of errors or system
crashes. The term also refers to qualitative
evaluation of factors such as availability or
resistance to denial-of-service (DoS) attacks.
Stress testing is often done in conjunction with
the more general process of performance testing.
When conducting a stress test, an adverse
environment is deliberately created and
maintained. A system stress test refers to tests
that put a greater emphasis on robustness,
availability, and error handling under a heavy

Journal of Theoretical and Applied Information Technology
15th April 2023. Vol.101. No 7
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2542

load, rather than on what would be considered
correct behavior under normal circumstances. In
particular, the goals of such tests may be to
ensure the software does not crash in conditions
of insufficient computational resources (such as
memory or disk space), unusually high
concurrency, or denial of service attacks. Test
techniques include, but are not limited to, the
process of executing a program or application
with the intent of finding software bugs (errors or
other defects).

3. ORIGIN AND DEFINITION OF THE

PROBLEM

Scalability and effectiveness is an important
problem that needs to be considered while testing
and it is a critical issue in the software industry.
Many studies on real-world software are not so
common and this is in part due to the huge
computational time that is required to carry them
out. The general purpose of random testing is to
generate as many test cases as possible in such a
way that they help uncover as many faults as
many coverage targets as possible. Test cases
trigger failures and do not directly uncover
faults; from a mathematical standpoint we cannot
consider faults as targets. Test cases are chosen
with the constraint that at least one test case is
chosen from each sub-domain. For example,
each functionality of the software can be
considered as a different sub-domain to test.
During the generation of test cases, depending on
the specifics of the partition strategy, had to
generate and run several test cases to verify
whether they belong to partition or not. An
observation showing that many program faults
result in failures in contiguous areas of the input
domain. ART systematically guides, or filters,
randomly generated candidates, to take
advantage of the likely presence of such inputs,
which attempt to improve the failure-detection
effectiveness of random testing. Regions of the
input domain where the software produces
outputs according to specification will also be
contiguous. Therefore, given a set of previously
executed test cases that have not revealed any
failures, new test cases located away from these
old ones are more likely to reveal failures.

4. OBJECTIVES

Our main objective in this paper is to is to
generate as many test cases as possible in such a
way that they help uncover as many faults as

many coverage targets as possible. These test
cases must be valid for each time it generates.
Another objective is to increase scalability and
effectiveness in the era of software testing.

5. REVIEW STATUS OF RESEARCH AND

DEVELOPMENT IN THE SUBJECT

A wide range of research is existing in this field.
Some of the recent national and international
literature is presented here.
Andrea Arcuri and Lionel Briand [1] had
presented several theorems describing the
probability of random testing to detect
interaction faults and compare the results to
combinatorial testing when there are no
constraints among the features that can be part of
a product. For example, random testing becomes
even more effective as the number of features
increases and converges toward equal
effectiveness with combinatorial testing. Given
that combinatorial testing entails significant
computational overhead in the presence of
hundreds or thousands of features, the results
suggest that there were realistic scenarios in
which random testing may outperform
combinatorial testing in large systems.
Furthermore, in common situations where test
budgets are constrained and unlike combinatorial
testing, random testing can still provide
minimum guarantees on the probability of fault
detection at any interaction level. However,
when constraints were presented among features,
then random testing can fare arbitrarily worse
than combinatorial testing.
Tao Yuan and et al [3] proposed Bayesian
methods for planning optimal simple step-stress
accelerated life tests. The Bayesian approach is
an attractive alternative to the maximum
likelihood method when there was uncertainty in
the planning values of the model parameters. The
uncertainty in the planning values was described
by a joint prior distribution of the model
parameters. The optimization criterion is defined
as minimization of the pre-posterior variance of
the logarithm of a quantile life at the normal
stress condition. Two optimization algorithms,
one based on Monte Carlo integration, and the
other based on large-sample approximation, were
developed to find the optimal plans.
Nonparametric kernel smoothing technique was
adopted in both algorithms to reduce the
computational time. The proposed Bayesian
approach was also extended to the design of
three-level step-stress accelerated life tests.

Journal of Theoretical and Applied Information Technology
15th April 2023. Vol.101. No 7
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2543

Effects of prior and sample size on the optimal
plans are also investigated. Results indicated that
both the prior, and the sample size affect the
optimal Bayesian plans. And under certain
conditions, the Bayesian approach, and the
maximum likelihood approach provided very
similar optimal plans.
Andrea Arcuri et al. [2] have analyzed the debate
about random testing. Novel results addressing
general questions about random testing are also
presented, such as how long random testing
needs, on average, to achieve testing targets, how
does it scale, and how likely is it to yield similar
results if we rerun it on the same testing problem
(predictability). Due to its simplicity that makes
the mathematical analysis of random testing
tractable, we provide precise and rigorous
answers to these questions. Results show that
there are practical situations in which random
testing is a viable option. Their theorems were
backed up by simulations and shown how they
can be applied to most types of software and
testing criteria.
Wu. J [4] has discussed the general nature of the
hardware-failure-software anomaly - system
failure flow-down. It will then describe
techniques that exist for system software testing
and will highlight extensions of these techniques
to focus on an effective and comprehensive
software testing that includes performance
prediction and hardware failure fault tolerance.
The end result was a suite of test methods that,
when properly applied, offer a systematic and
comprehensive analysis of prime software
behaviors under a range of hardware field failure
conditions.
James H. Andrews and et al. [5] had described
that the Nighthawk, a system which uses a
genetic algorithm (GA) to find parameters for
randomized unit testing that optimize test
coverage. Designing GAs is somewhat of a black
art. Therefore they used a feature subset
selection (FSS) tool to assess the size and
content of the representations within the GA.
Using that tool; it can reduce the size of the
representation substantially while still achieving
most of the coverage found using the full
representation. Reduced GA achieved almost the
same results as the full system, but in only 10 per
cent of the time. These results suggested that
FSS could significantly optimize Meta heuristic
search-based software engineering tools. Future
work includes the integration into Nighthawk of
useful facilities from past systems, such as
failure-preserving or coverage-preserving test

case minimization, and further experiments on
the effect of program options on coverage and
efficiency. They also wish to integrate a feature
subset selection learner into the GA level of the
Nighthawk algorithm for dynamic optimization
of the GA.
Vahid Garousi [6] have approached on Genetic
algorithms (GAs) which have been applied
previously to UML-driven stress test
requirements generation with the aim of
increasing chances of discovering faults relating
to network traffic in distributed real-time
systems. However, since evolutionary algorithms
are heuristic, their performance can vary across
multiple executions, which may affect robustness
and scalability. So he presented the design and
technical detail of a UML-driven, GA-based
stress test requirements generation tool, together
with its empirical analysis. The main goal was to
analyze and improve the applicability, efficiency,
and effectiveness and also to validate the design
choices of the GA used in the tool. Findings of
the empirical evaluation revealed that the tool
was robust and reasonably scalable when it was
executed on large-scale experimental design
models. The study also revealed the main
bottlenecks and limitations of the tools, In
addition, issues specific to stress testing, While
the use of evolutionary algorithms to generate
software test cases had been widely reported, the
extent, depth, and detail of the empirical findings
presented in this paper are novel and suggest that
the proposed approach was effective and
efficient in generating stress test requirements.
Jianhui Jiang and Jipeng Huang [9] had proposed
a technique to determine the test case in stress
testing arena of software testing. Stress testing
plays a key role during the system testing phase,
this paper provided a model based on the
interaction between different modules in the
system, which can help to analyze how the
primary input of the stress testing influences
each module in the system. This model can be
helpful when designing test cases and analyzing
the bottleneck of the whole system.
V. Garousi [8] have experimented with a stress
testing methodology to detect network traffic
related Real-Time (RT) faults in Distributed
Real-Time Systems (DRTSs) based on the
design UML models. The stress methodology,
referred to as Time-Shifting Stress Test
Methodology (TSSTM), aimed at increasing
chances of discovering RT faults originating
from network traffic overloads in DRTSs. In
reality, however, the timing information of

Journal of Theoretical and Applied Information Technology
15th April 2023. Vol.101. No 7
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2544

messages is not always available and precise.
TSSTM might generate imprecise and not
necessarily maximum stressing test cases in the
presence of such time uncertainty and, thus, it
might not be very effective in revealing RT
faults. To address the above limitation of
TSSTM, he presented a modified testing
methodology which can be used to stress test
systems when the timing information of
messages is imprecise or unpredictable. The
stress test results of applying the new test
methodology to a prototype DRTS indicate that,
in the presence of uncertainty in timing
information of messages, the new methodology
is more effective in detecting RT faults when
compared to our previous methodology.
Daning Hu and et al [7] had challenged in stress
testing is to model and calibrate “exceptional but
plausible” scenarios in which macroeconomic
shocks may cause contagious bank failures that
may lead to the breakdown of a banking system.
Presently, existing stress testing methods mainly
focus on modeling single or multiple risk factors
through a “static snapshot” of the banking
systems. However, real-world bank crisis
scenarios are much more dynamic such that
different event occurrence sequences may have
different impacts on individual banks and
banking systems. For purposes of predicting
contagious bank failures in stress testing, they
proposed the use of event-driven process chains
in modeling bank failure scenarios. They refer to
this approach as Banking Event-driven Scenario-
oriented Stress Testing (or simply the BESST
approach). They also compare the pros and cons
of the BESST approach with two existing
approaches in an example scenario.
EduardasBareiša and et al [10], have
experimented the possibilities of application of
random generated test sequences for at-speed
testing of non-scan synchronous sequential
circuits. Research showed that relatively long
random test sequences exhibit better transition
fault coverage than tests produced by
deterministic ATPG tools. So they proposed an
approach for dividing of long test sequences into
sub-sequences. The application of the presented
approach allows increasing the fault coverage of
the initial random generated test sequence,
minimizing the length of the test by eliminating
sub-sequences that don’t detect new faults and
determining, for particular circuit, the required
length of the test sub- sequence which can be
used for further construction of the test. The

provided experimental results demonstrate the
effectiveness of the proposed approach.
Johannes Elmsheuser and et al. [11] have
proposed Hammer Cloud which is one such tool
for stress testing service which is used by central
operations teams, regional coordinators, and
local site admins to submit arbitrary number of
analysis jobs to a number of sites, maintain at a
steady-state a predefined number of jobs running
at the sites under test, produce web-based reports
summarizing the efficiency and performance of
the sites under test, and present a web-interface
for historical test results to both evaluate
progress and compare sites. Hammer Cloud was
built around the distributed analysis framework
Ganga, exploiting its API for grid job
management. Hammer Cloud had been employed
by the ATLAS experiment for continuous testing
of many sites worldwide, and also during large
scale computing challenges such as STEP'09 and
UAT'09, where the scale of the tests exceeded
10,000 concurrently running and 1,000,000 total
jobs over multi-day periods. In addition,
Hammer Cloud was being adopted by the CMS
experiment; the plugin structure of Hammer
Cloud allows the execution of CMS jobs using
their official tool (CRAB).
Bo Zhou and et al [12] have described a
probabilistic approach to finding failure-causing
inputs based on Bayesian estimation. According
to their probabilistic insights of software testing,
the test case generation algorithms were
developed by Markov chain Monte Carlo
(MCMC) methods. Dissimilar to existing
random testing schemes such as adaptive random
testing; their approach can also utilize the prior
knowledge on software testing. They have
introduced a distance-based conditional
probability of correlation between two test cases
and the proposed algorithm can be applicable on
the input domain where a distance (metric)
function is defined. In experiments, they
compare effectiveness of our MCMC-based
random testing with both ordinary random
testing and adaptive random testing in real
program sources. These results indicated the
possibility that MCMC-based random testing can
drastically improve the effectiveness of software
testing.
Reza MeimandiParizi and et al. [13] had
proposed a preliminary approach to automated
random testing of aspect-oriented programs,
which are becoming an important part of
software engineering theory and practice. They
also survey of applicable testing techniques and

Journal of Theoretical and Applied Information Technology
15th April 2023. Vol.101. No 7
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2545

discussion of established testing methods in both
area of Aspect-Oriented Programming (AOP)
and Random Testing (RT). Besides, they
developed an AspectJ automated random testing
tool based on the proposed approach in order to
firstly put into practice the entire process of
automated AOP random testing and secondly to
be easily used in their experimental for
evaluating the effectiveness of the proposed
approach. The future work for their work
includes: assessing the effectiveness and
reliability of the proposed strategy, discovering
the applicability of the ART notion to the aspects
, designing the corresponding metric model
(distance measure), comparing effectiveness of
random testing and adaptive random testing for
evolving the proposed strategy towards a more
mature and effective one.

6. IMPORTANCE OF THE PROPOSED

PROPOSAL IN THE CONTEXT OF
CURRENT STATUS

Our proposal is important in the field of random
software test case generation. Our proposal can
reduce the ambiguity of randomly generated test
cases. It will provide a valid test case for each
time test cases will generate. Another importance
is to reduce the fault proneness it will use uses
the coverage metrics of the test cases.

7. PROPOSED METHODOLOGY

Software testing is large and diverse field,
reflecting the different requirements that
software artifacts must satisfy (robustness,
efficiency, functional correctness, backward
compatibility, usability, etc.), the different
activities involved in testing (writing down
requirements, designing test plans, creating test
cases, executing test cases, checking results,
isolating errors) and the different levels at which
software can be tested (e.g. unit vs. system
testing). Random testing generates test inputs
randomly from the input space of the software
under test. The fundamental feature of a random
test generation technique is that it generates test
inputs at random from a grammar or some other
formal artifact describing the input space. The
main disadvantage of random testing is 1)
lengthy test case generation 2) it gives equivalent
inputs for test cases 3) it creates many illegal
inputs. In order to overcome these issues, we will
propose an optimal directed random testing
technique for reducing the faults. In this

research, the optimal inputs will be generated
based on Adaptive Genetic Algorithm (AGA)
which will reduce the illegal inputs and
equivalent inputs. The fault detection rates will
be the fitness of AGA. To reduce the fault
proneness, AGA uses the coverage metrics of the
test cases. Our proposed methodology will
prunes the input space by combining the
previous input with the current one. The
proposed part will be implemented in JAVA.

8. EXPECTED OUTCOMES

The Adaptive Genetic Algorithm (AGA) will
reduce the illegal inputs and equivalent inputs of
randomly generated test cases. This will remove
the ambiguity of randomly generated test cases.
Output produced by Adaptive Genetic Algorithm
will be legal and can be further used for analysis
purpose.

REFERENCE

[1] Andrea Arcuri, Iqbal.M.Z. and Lionel

Briand, "Formal Analysis of the Probability
of Interaction Fault Detection Using
Random Testing", IEEE Transactions on
software engineering, vol.38, September
2012.

[2] Andrea Arcuri and Lionel Briand, "Random
Testing: Theoretical Results and Practical
Implications", IEEE transactions on
Software Engineering, vol. 38, no. 2, April
2012.

[3] Tao Yuan, Xi Liu and Way Kuo, "Planning
Simple Step-Stress Accelerated Life Tests
Using Bayesian Methods", IEEE
Transactions on Reliability, Volume: 61,Pp:
254 - 263, March 2012.

[4] Wu, J."Stress testing software to determine
fault tolerance for hardware failure and
anomalies", AUTOTESTCON, 2012 IEEE,
Sept. 2012.

[5] James H. Andrews, Tim Menzies,
Memberand Felix C.H. Li , “Genetic
Algorithms for Randomized Unit Testing”,
IEEE transactions on software engineering,
vol. 37, no. 1, february 2011

[6] Vahid Garousi, “A Genetic Algorithm-
Based Stress TestRequirements Generator
Tooland Its Empirical Evaluation”, IEEE
transactions on software engineering, vol.
36, no. 6, December 2010.

[7] Daning Hu, J.Leon Zhao and Zhimin Hua,
"Banking Event Modeling and Simulation in

Journal of Theoretical and Applied Information Technology
15th April 2023. Vol.101. No 7
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2546

Scenario-Oriented Stress
Testing",springer,Volume 108,pp 379-389,
2012

[8] V. Garousi, “Traffic-Aware Stress Testing
of Distributed Real-Time Systems Based on
UML Models in the Presence of Time
Uncertainty,” Proc. IEEE Int’l Conf.
Software Testing, Verification,and
Validation, pp. 92-101, 2008.

[9] Jianhui Jiang and Jipeng Huang, "System
Modules Interaction Based Stress Testing
model",IEEE transaction on application
software,March 2011

[10] EduardasBareisa, Vacius Jusas, Kestutis
Motiejunas and Rimantas Seinauskas “the
non-scan delay test enrichment based on
random generated long test sequences”, issn
1392 – 124x information technology and
control, Vol. 39, No. 4, 2010.

[11] Daniel C. van der Ster, Johannes
Elmsheuser, Mario UbedaGarc and Massimo
Paladin, “HammerCloud: A Stress Testing
System for Distributed Analysis”,
International Conference on Computing in
High Energy and Nuclear Physics ,CHEP
2010.

[12] Reza MeimandiParizi, Abdul Azim Abdul
Ghani, Rusli Abdullah, and RodziahAtan,
“On the Applicability of Random Testing
for Aspect-Oriented Programs”,
International Journal of Software
Engineering and its Applications Vol. 3, No.
4, October, 2009

[13] Bo Zhou, Hiroyuki Okamura and Tadashi
Dohi, “Enhancing Performance of Random
Testing Through Markov Chain Monte
Carlo Methods”, IEEE transactions on
computers, journal of latex class files, vol. 6,
no. 1, January 2011.

[14] Alex Groce, Gerard Holzmann, and Rajeev
Joshi, Randomized differential testing as a
prelude to formal verification. In
International Conference on Software
Engineering, pages 621–631, 2007.

[15] James H. Andrews, Alex Groce , Melissa
Weston and Ru-gang Xu, "Random Test
Run Length and Effectiveness", IEEE/ACM
International Conference Automated
Software Eng., pp. 19-28, 2008.

[16] Noah Hojeberg, "Random Tests in a Trading
System",ISSN-1653-5715,2007.

[17] M. Sinnema and S. Deelstra, “Classifying
Variability Modeling Techniques,”
Information and Software Technology, vol.
49, no. 7, pp. 717-739, 2007.

[18] M. Motwani and P. Raghavan, Randomized
Algorithms. Cambridge Univ. Press, 1995.

[19] P. Tonella, “Evolutionary Testing of
Classes,” Proc. ACM Int’l Symp. Software
Testing and Analysis, pp. 119-128, 2004.

[20] M. Harman, “The Current State and Future
of Search Based Software Engineering,”
Proc. Future of Software Eng., pp. 342-
357,2007.

[21] R. Sharma, M. Gligoric, A. Arcuri, G.
Fraser, and D. Marinov,“Testing Container
Classes: Random or Systematic?”
Proc.Fundamental Approaches to Software
Eng., 2011.

[22] D. White, A. Arcuri, and J. Clark,
“Evolutionary Improvement of Programs,”
IEEE Trans. Evolutionary Computation, vol.
15, no. 4,pp. 515-538, Aug. 2011.

[23] Tsong Yueh Chen, Fei-Ching Kuo, Robert
G. Merkel, T.H. Tse; "Adaptive Random
Testing: the ART of Test Case Diversity",
Faculty of Information and Communication
Technologies, Swinburne University of
Technology, John St., Hawthorn 3122,
Australia, 2009.

[24] Koushik Sen, “Race Directed Random
Testing of Concurrent Programs”, ACM,
2008.

[25] Ilinca Ciupa, Andreas Leitner, Manuel
Oriol, Bertrand Meyer, “Experimental
Assessment of Random Testing for Object-
Oriented Software”, ACM, 2007.

[26] Carlos Pacheco, Shuvendu K. Lahiri,
Michael D. Ernst, and Thomas Ball,
“Feedback-directed Random Test
Generation”, 2007.

