
Journal of Theoretical and Applied Information Technology
15th April 2023. Vol.101. No 7
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2794

AUTOMATED CHANGE IMPACT ANALYSIS TOOL FOR
SOFTWARE MAINTENANCE PHASE

P JALAJA1, T ADILAKSHMI2

1Assistant Professor, Vasavi College of Engineering, Department of CSE, Telangana, India

2Professor, Vasavi College of Engineering, Department of CSE, Telangana, India

E-mail: 1jalaja.t@staff.vce.ac.in, 2t_adilakshmi@staff.vce.ac.in

ABSTRACT

Often, software projects are enhanced based on clients' requests or companies' policies. This process
happens in the maintenance phase of the project. The maintenance phase of the Software Development Life
Cycle (SDLC) occurs after the product is in production. Maintenance of software can include software
upgrades, repairs, and fixes. The required changes are mentioned in the form of change request (CR) which
is given to the developers who calculate the impact of changes on the software application. The effect must
be assessed without modifying the software application. The change impact analysis is one such way that
helps in assessing the impact.

It takes time for the developer to analyze the change request and the software application to identify the
required changes. In addition, impacts of the changes need to be identified, which requires more time for
the developer. And also there is a high chance of missing the impacts due to manual effort. Rather, we can
use an automated tool that does the change impact analysis within less time and give more accurate results.
The objective of this paper is to develop and test the automated CIA Tool (StaticPy) that performs the
change impact analysis. With the help of the tool developer will have an idea of the changes to be made.
This will reduce the cost and time.

So, this paper proposes a Change Impact Analysis Tool (CIAT) - StaticPy that helps to identify the
impacted files, methods, fields, and elements that are affected because of the proposed changes. CIAT takes
a change request and project repository GitHub link as input. Then the tool does static analysis on the given
repository and forms a data structure. This data structure contains all the details of the impacted elements.
From the data structure, we display the information of affected files, methods, fields, and impacted line
numbers in the files. StaticPy has been developed and tested using four different software applications. The
average accuracy of the tool is 97.8%.

Keywords: Change Impact Analysis, CIA Tool, data structure, static analysis, Tokenizer.

1. INTRODUCTION

According to the Software development life cycle,
once the developed software is tested properly it
goes to production. Once the software is up and
running, it often requires continuous maintenance.
Any software application or product developed will
go through the maintenance phase. Software
developers and programmers perform regular
patches and updates as needed in the maintenance
phase to address the changes in the company's or
client's requirements. Throughout the maintenance
phase, developers address different issues and try to
add or remove certain functionalities in the project.
Software ripples occur when one change impacts at

least one other area of a software system after a
change in one area. Below are the few real
problems.

 Huge manual effort
 High probability of missing the files

due to manual intervention
 Additional efforts by the developers
 Overall reduction of resolved change

Requests.
 Impact to Customer Business value

The CIA tool will help in addressing the client’s
requirements. It helps the developer at the first level

Journal of Theoretical and Applied Information Technology
15th April 2023. Vol.101. No 7
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2795

to have an idea of how many changes are expected
to be made for the given change request.

Unknown effects were found to be the main barrier
to making new changes in a recent survey. [1].

As the file system gets bigger, it gets harder to
manually identify changes' effects. Thus, increasing
the significance of the Change Impact Analysis.
CIAT is a way to predict the possible areas of
effect. For example, the affected files and elements
will be listed. The proposed CIA tool (StaticPy)
will help to identify the affected files, methods, and
lines of code in the file system in most applications.

The proposed tool (StaticPy) works for python,
C++, Java and C applications.

This paper is presented as follows: Section-2
presents the related work; Section-3 describes about
the proposed work, algorithm and the evaluation
metrics. Section-4 shows the experimental results,
Section-5 concludes the proposed work and
Section-6 proposes the future work.

2. RELATED WORK

The following are the Change Impact
Analysis methods already existing.

2.1 Following the edges of the system
dependence graph (SDG) is the method used in
CIA. Nodes representing actual and abstract
program elements are found in an SDG, while
edges are used to encode control and data
dependencies [18]. G (f) is a directed graph of a
function f. It is modeled as a directed graph. Class
members, variables, constants, and other data
components are represented by the nodes. The
edges show how various data components are
related to one another. Configuration-awareness
requires representing the program's variability in
the SDG. It made use of a conditional system
dependence graph (CSDG), a variation of the SDG
that shows variability as presence conditions. The
relationships between classes form a network
graph.

The system dependency graph extends earlier
dependency representations by including
collections of procedures. Data dependencies are
relationships between program statements that
define data [21]. If a statement in a program returns
a value that is used, directly or indirectly, by
another statement, it is data dependence. Data
dependency graphs are used to represent these
dependencies.

Data flow analysis provides dependency
information about the data movement in the
software system. It made use of a conditional
system dependence graph (CSDG), a variation of
the SDG that shows variability as presence
conditions.

Consider a C program that has four changes as
depicted in Figure. 1

Figure 1: Depicting changes in a C program.

The change history for the functions in the C file
is shown in Figure. 2. It shows what kinds of
changes were made to the file: addition, deletion,
or modification. The dependence graph of
function a() after C3 change is represented in
Figure. 3

Figure 2: Depiction of the change history for the
functions of the example system. The rows correspond to
the functions and the columns to the changes, A,M,D are,
respectively, Added, Modified and Deleted. Exit is not
included because it is a C library function, external to the
system being maintained.

Journal of Theoretical and Applied Information Technology
15th April 2023. Vol.101. No 7
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2796

Figure 3: Dependence graph of a() immediately after
change C3.

The System Dependence graph is also called
Change Impact Graph (CIG) as it represents the
change impact on other functions. Each node in the
CIG can be of any three types mentioned below.
Firstly, Unaffected Node No changes have been
made to this function, nor have the functions it calls
[23]. A Changed type affects other functions in the
source code as a result of the changes made. Lastly,
the Affected type is one whose source code has not
changed, but at least one of its methods has.

2.2 By identifying common modelling and analysis
techniques, the CIA expanded the Karlsruhe
Architectural Maintainability Prediction (KAMP)
approach for architecture-based study of change
impact in many domains. Using a SAMM model
instance, the KAMP Maintainability tool estimates
cost and change effort for a change request [16].
SAMM is an open framework for forming and
implementing software security strategies. To
achieve software goals software architecture plays
an important role. It estimates re-implementation
costs along with re-deployment and upgrade costs
for a given architecture. By using explicit
architecture models, it evaluates maintainability for
concrete change requests [17].

Additionally, it provides guidance in investigating
estimation supports such as code and design
properties, team organization, development
environment, etc. As a second step in calculating
change efforts based on semi-automated work plans
and bottom-up effort estimation. As a software
management and development tool KAMP is
advantageous. Software management like re
implementation, updating, installation is taken into
consideration. The first phase is the top-down
phase, in which the change requests are categorized
into several change tasks and then the bottom-up
phase, in which the effort involved in performing
each change task is estimated. This approach
demonstrates how change effort estimation may be

integrated into a technique for predicting
architectural maintainability, and it forecasts
maintainability using change requests. The
Maintainability Analysis Process has three different
phases as shown below in figure 4[16]. As part of
the preparation phase, a software architect sets up a
description of software architecture for each
architectural alternative. An Architecture Model is
created for each Architecture Alternative.

Figure 4: Architectural maintainability prediction.

The second step of the preparation process is to
describe the proposed change requests. There
should be a name, an explanation of the change
cause and a list of existing architecture elements
affected by the proposed change in the description.
Following this phase is the maintainability phase,
which involves estimating change effort for every
change request and every architecture alternative.
Interpreting the results, comparing calculated
change effort and enriching them are all done in the
Result Interpretation phase. Costs of software re-
development as well as the costs of software
management are considered for estimation.

2.3 Another model of CIA is based on Static
Program Slicing for Industrial Software Systems.
The calculation of static impact takes into account
the static data gathered at compile time [19]. As a
result, the computed set will be bigger than the
calculated set using run-time data. It is a valuable
tool for evaluating the impact of newly committed
changes on a program using static program slicing.
Without executing a program, static program
analysis techniques gather information about the
structure, as well as the run-time behavior of a
program.

Journal of Theoretical and Applied Information Technology
15th April 2023. Vol.101. No 7
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2797

A program slice represents a specific behavior
within a program by reducing the program to a set
of statements (the slice) [7]. With this technique,
only a portion of the program must be changed to
generate a specific program behavior. The goal is
to reduce the effort required to understand and
maintain the program, by only considering a part of
it. The quality and availability of regression tests
are not constraints on static slicing. Different types
of Programs Slicing techniques are: static slicing,
dynamic slicing, simultaneous dynamic slicing,
Quasi static slicing, and Amorphous slicing [22].

2.3.1 Static slicing

In terms of program reachability, static slicing can
be expressed using a program dependency graph.
Using the slice, all PDG verticals from which the
given criterion can be reached are considered.
Starting at the slicing criterion, a backward
traversal of the program’s control flow graph
(CFG) or PDG is performed to gather statements
and control predicates. Forward slices represent the
set of statements that depend on the slicing
criterion, with each statement being "dependent"
on it. Using this tool, we can predict what changes
will be brought about by the slicing criteria in that
program.

2.3.2 Dynamic Slicing

 Statements in static slices do not influence the
values of variables in the execution. A program's
execution may be affected by the value inputted.
When the program is running, the input it received
is inspected, but just the statement that caused the
failure is looked at. Variables that may be affected
by statements can be found using dynamic
analysis. It benefits from managing arrays and
pointers in real time. Dynamic slicing treats each
array element independently, whereas static slicing
treats each array element as an array as a whole.

2.3.3 Simultaneous Dynamic Slicing

A New slicing technique combines test case slicing
with program slicing. In simultaneous dynamic
program slicing, a set of test cases is applied
simultaneously to the dynamic slicing technique,
yielding executable slices valid only for a single
parameter [22].

2.3.4 Quasi static slicing

A hybrid slicing technique is a combination of
static and dynamic slicing. It is called Quasi static
slicing. While static slicing analyzes the code
during compile time without knowing the input

variables, dynamic slicing analyzes the code at run
time. Practically, quasi slicing analyzes the code
without knowing the input variables.

2.3.5 Amorphous Slicing

By syntax-preserving slicing techniques, the
program statements are discarded based on the
slicing criteria and the syntax remains unchanged
despite slicing. By contrast, amorphous slicing
involves any program statement.

In comparison to all other slicing techniques the
slices formed are very small.

 There are two main types of program slicing: static
program slicing or dynamic program slicing, which
removes statements that have no effect on a certain
point of interest. There are two fundamental static
analysis-based program slicing approaches.
Backward slicing was proposed by Weiser.
Control-flow graphs (CFGs) are used for backward
slicing analysis, which identifies areas of a
program that contain bugs to assist developers. As
a result of backward-slicing developers can locate
the parts of their program that contain bugs by
analyzing control-flow graphs (CFGs).

Similarly forward slicing was proposed by Horwitz
et al. Instead of slicing a CFG, they slice its
dependency graphs. Executable slices are
syntactically correct slices that produce executable
programs that exhibit a portion of the original
program's behavior. All statements and language
constructs in P that may affect the values of
variables in V at location L are considered
backward slices of P. Figures, for example,
represent the location of the program (L, V) as a
forward slice of P [20]. The backward slice in
relation to the slicing criterion is shown below (3,
z).In debugging, backward slicing can identify
statements that cause a particular error state, while
forward slicing can identify the code that may
change.

Figure 5: Original Program

Journal of Theoretical and Applied Information Technology
15th April 2023. Vol.101. No 7
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2798

Figure 6: Backward slicing on (3,z)

Figure 7: Forward slicing on (3,z)

The following is the list of existing Change Impact
Analysis tools.

Figure 8: Tool support for change impact analysis

technique

There are some tools that operate on the version
history and few tools which work only for a
particular language.
For example, ROSE is a tool that operates on the
version history, and is able to detect coupling
between items based on the version history. After
an initial change, the ROSE tool can predict the
location which needs to be changed. But if we need
to make any code changes which were not
addressed previously, it is difficult for the tool to
predict the accurate results. The accuracy of ROSE
is more than 70% [26]. StaticPy does not require
any version history to perform impact analysis. It
will work for any type of change.

3. PROPOSED METHODOLOTY

Problem Statement: To develop an automated CIA
Tool (StaticPy) that helps to identify the impacted
files, methods, and fields that are affected due to
the proposed changes.

In this section will discuss the proposed work,
proposed algorithm and the evaluation metrics
used.

3.1. Proposed Work

There are three ways to do CIAT. They are as
follows:
(1) Regular Expressions
(2) Tokenizer
(3) Abstract Syntax Tree (AST)

In this proposed work, Tokenizer is chosen among
the three because of the following reasons:
i) Regular expressions can be difficult to
write correctly and maintain for different language
files because each language has different syntax
and semantics.
ii) In Regular expressions, it is next to
impossible to detect edge cases in all
circumstances.
iii) In AST, it only works for Python, and it
also requires syntactically valid Python (with a few
minor exceptions).
iv) Tokenizer can work with incomplete or
invalid Python.
v) Using Tokenizer edge cases can be
avoided.

Thus, in this paper tokenizer is chosen for its
benefits and usability for all the languages.

3.2. Proposed Algorithm

Input: change ticket, GitHub repository link of the
application
Output Objectives:
i) Affected file names
ii) Affected elements in the files
iii) Line numbers of affected lines

Journal of Theoretical and Applied Information Technology
15th April 2023. Vol.101. No 7
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2799

ALGORITHM

Input:

TokenList1: List of tokens generated from
restructured data using the Treebank tokenizer
function.

TokenList2: List of keywords extracted from the
Yake tool from a ticket raised by the user.

Output:
 ResultArray: list of affected elements from
the given ticket.

Algorithm:
 LineNumber: =1
D[] empty dictionary
ResultArray[]
ForEach word : File.Line do:
 If (word==’\n’) do:
 LineNumber: +=1
 Else If word in TokenList1 do:
 D[word]:=D.get(word,[]).add(LineNumber)
 End If
End For
ForEach keyword: TokenList2 do:
 Temp: =D.get(keyword)
 ResultArray.add (Temp)
End For
Display (ResultArray)

The following diagram shows the overview of the
proposed methodology.

Figure 9: Overview of proposed methodology

1. To get started with the tool, you need to install
all the required packages and modules.

2. Then the repository is cloned from the given
GitHub link.

3. Then restructure the cloned files by changing the
self, this, etc. with their respective class name. For
this go through the file and find all the places
where the class keyword exists. Then the algorithm
checks the text to the right of it and extracts the
class name. Then in the code following the location
where the class keyword is found i.e., in the
entirety of that class, we replace the self (for
python), this (for C++, java) etc. with the extracted
class name.

4. In order to prevent the CIA from evaluating the
remarks, the data has now been reorganized by
eliminating them. This step must be done without
modifying the total length of the code. For this
each file is checked for comments with the help of
regex. As there are 2 types of comments in all the
major languages. They are: Single line comments
and multi-line comments. Both these comments are
identified and replaced with an unused symbol
without altering the number of lines in the file.

5. Then restructure the data by removing the
unwanted symbols, which may cause unwanted
results while creating the data structure. For this, a
regex is used to find these symbols and replace
them with an identifiable and unused token.

6. Now tokenize these files and find the spans of
each token. For this Treebank tokenizer is used.
The StaticPy tool uses regular expressions to
tokenize the given content in the file. It assumes
that the text has already been split into sentences.

i. It treats punctuation as a separate token.

ii. It splits at a full stop at the end of
sentence.

iii. When there are commas between quotes,
spaces must come after them.

Tree Bank Tokenizer is imported into the project
from nltk module of Python.

Figure 10: TreeBank Tokenizer Examples

Journal of Theoretical and Applied Information Technology
15th April 2023. Vol.101. No 7
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2800

7. The number lines for these tokens are calculated.
For this, the number of new line characters in the
file before the token is calculated. With the help of
this, you can get the line number of the token.

8. Then the algorithm starts filling the data
structure which is a dictionary with key value
pairs. The keys are tokens, and values are their
spans in the entire file. Here in a repository,
different files can have the same token, so the
algorithm is designed to also add the filename
along with the span to individually identify them.

9. Next find all the related elements of these
tokens. For this go to the span location by
traversing through the dictionary then check if
that’s a valid location and then check for its
references, assignments, etc. which all get affected
based on the change of this token and add them as
values to the token in the data structure along with
their line number and file name.

10. Then the algorithm takes the change ticket, for
the ticket given assuming the person issuing the
ticket has basic knowledge of the code base. For
example, these tickets can be considered as Jira
tickets. Now, we need to extract keywords from the
ticket. For keyword extraction yake keyword
extractor is used.

3.2.1. YAKE

It stands for yet another keyword extractor. It is an
unsupervised automatic keyword extraction
algorithm that is very efficient at extracting
meaningful keywords in a corpus. It works by
giving probability to each word, which depicts how
meaningful the word is. The lower the probability,
the better the chances that the word is meaningful.
It doesn't depend on corpus nor does it need to be
trained on a particular set of documents. It follows
a 5-step process [2] which is depicted below:

Figure 11: Process of Yake

11. Then, using global data structure, perform a
breadth-first search to find all references to
keywords in all the project's files and store the
results in a result array.

12. Step-11 is repeated for all the extracted
keywords and updates the result array.

13. Finally, the affected elements from the result
array are displayed.

3.3 Evaluation Metrics

The following is the confusion matrix [1, 3] used to
calculate the Evaluation metrics- Accuracy,
Precision and Recall.

Figure 12: Confusion Matrix

A measurement, calculation or specification is
accurate if the result conforms to the standard or
value required.

A precision can be defined as the percentage of
predicted positive cases that are correctly classified
as positives

Journal of Theoretical and Applied Information Technology
15th April 2023. Vol.101. No 7
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2801

 This is a measure of what proportion of actual
positive cases are correctly classified as positive.

4. RESULTS AND DISCUSSIONS

The values TP, TN, FP, FN are calculated as
follows:

 TP (True Positive): If the tool predicts a line
number to be affected which is actually been
affected when validated manually.

TN (True Negative): Consider a case as TN when a
line number predicted by a tool is not affected and
the line number is actually not affected when
verified manually.

FP (False Positive): Consider a case as FP when a
line number predicted by the tool is affected, and
the line number is actually not affected when
verified manually.

FN (False Negative): Consider a case as FN when
a line number predicted by the tool is not affected,
and the line number is actually affected when
verified manually.

i) Number guessing game written in Python

ii) Library Management System written in

 Python.

iii) A Book Reader App written in C++.

iv) Text Based Adventure Game written in

 Java.

While testing the StaticPy tool, the results were
calculated using the tool and verified with the
manually calculated results.

The following is an example (snippet) showing
how the Accuracy is calculated in the number
guess game for tickets having the data "Change
lower."

Using these standards as metrics, the results for the
following projects are calculated:

Figure 13: Application – Code snippet

The tool predicted 1 TP, 27 TN, 1 FP, and 0 FN
values, as seen in the image above.

In the above Code Snippet, shown in figure. 13,

 Due to the absence of information on the
'lower' attribute, Line-1 is TN.

 Line-4 refers to TP as we have information
about the 'lower' attribute.

 Line-8 is FP since it contains information on
lower attributes, but it's misleading because we
are trying to change the value of only the lower
attribute.

 Other than that, all lines are TN, since there is
no information about 'lower attribute' in them.

The output given by the developed tool for input
ticket “change lower” is as follows:

Figure 14: Output of Developed CIA Tool for give code

snippet depicting elements, files and lines affected.

Journal of Theoretical and Applied Information Technology
15th April 2023. Vol.101. No 7
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2802

Various tickets are tested for each of the above-
mentioned four applications to evaluate their
metrics.

Fig. 15 The image below shows the True Positive
(TP), True Negative (TN), False Positive (FP),
False Negative (FN) and the Accuracy for different
tickets raised on the Number Guess Game
application.

 TP TN FP FN ACCURACY

Change
limit

3 25 1 0 0.965

Change
lower

1 27 1 0 0.965

Change
upper

1 27 1 0 0.965

Change
randint

2 27 0 0 1

Figure 15: Metrics for number guess game tickets.

The below graph Fig. 16 shows the Accuracy of
the tickets mentioned in Fig. 15. The average
accuracy is 97.3%.

Figure 16: Accuracy graph for number guess
application.

The True Positive (TP), False Positive (FP), True
Negative (TN), False Negative (FN) and the
Accuracy of different tickets are calculated for the
Book Reader application.

The below figure shows the metrics calculated for
the Book Reader application.

TICKET/REQ TP TN F
P

FN ACCUR
ACY

Change the
setter’s name

1 666 4 0 0.994

Update GetBook
Method in
BookReadingSess
ion Class

1 657 13 0 0.98

Update Next Page
Method
BookingReadingS
ession Class

1 658 12 0 0.9806

Change var.pages
and recheck code

3 666 2 0 0.997

Figure 17: Metrics for book reader application.

The below graph shows the accuracy of the Book
Reader Application for the tickets mentioned in
Fig. 17.

Figure 18: Accuracy graph for book reader application.

The average accuracy for Book Reader Application
is 98.7%.

The accuracy calculated for the Library
Management Application using the True Positive
(TP), True Negative (TN), False Positive (FP), and
False Negative (FN) for various tickets is shown in
the figure below (Fig. 19).

TICKET/
REQ

TP T
N

FP FN ACCURACY

Increase
fine by
50%

1 3
8
0

7 0 0.97

Change
the
usernam
e

3

9
4
0

6 0 0.99

Increase
interest
counter
by 2

1 3
8
4

3 0 0.992

Change
value of
day as
previous
day

2 3
7
9

7 0 0.98

Figure 19: Metrics for library management application.

Journal of Theoretical and Applied Information Technology
15th April 2023. Vol.101. No 7
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2803

The accuracy graph for the Library Management
application is shown in the below graph Fig. 20.

Figure 20: Accuracy graph for library management
application.

The average accuracy for Library Management
Application is 98.3%.

The below figure Fig. 21 shows the accuracy
calculations of the java application which is Text
based Adventure game application.

Ticket/REQ TP TN FP FN ACCURACY

Initialize
position with
100

2 172 3 0 0.983

Initialize the
maxHp to a
random value

2 171 4 0 0.971

Change value of
hpzomb from 7
to 10

1 172 4 0 0.977

Change the atk
and defence
base values to
10

4 165 8 0 0.954

Figure 21: Metrics for text-based adventure game

application

The accuracy of different tickets raised in Java
application is plotted in the following graph.

Figure 22: Accuracy graph for text based adventure
game application

The average accuracy for Text Based Adventure
Game Application is 97.1%.

We determined the accuracy of the developed CIA
tool (StaticPy) by averaging all four applications,
accuracy values that were tested with the
developed tool. The above four were the best
applications that produced the best accuracy
numbers.

The average accuracy of the above applications
tested using developed StaticPy CIA Tool is
97.8%.

5. CONCLUSION

This paper is primarily focused on developing an
automated change impact analysis tool (StaticPy).
The tool was developed and tested using four
different software applications in different
languages. The average accuracy of the tool is
97.8%. StaticPy uses change request (ticket) and
the application repository as input to determine the
impact of the changes on the application. With the
help of the proposed tool the developer will have
an idea about where the changes are expected to be
made, the amount of work to be done for a change
request and plan the work accordingly.

The proposed tool uses Static analysis - tokenizer
concept, and intermediate data structure for change
impact analysis. ROSE and ImpactMiner use static
analysis and dynamic analysis techniques to
determine the impact of code changes on the
system [26-27]. Both the tools apply data mining to
version histories to predict Change impact
Analysis.

The proposed work does static analysis, i.e.,
assuming the project is complete and up and
running. StaticPy is implemented in python3. It
takes the GitHub repository links (the application
link) and change request (ticket) as input. Then it
gives all the affected elements, file names and line
numbers as the output. The accuracy may change
from application to application.

Accuracy was determined by comparing the results
produced by the CIAT with those obtained through
manual testing. The developed tool has been tested
on Python, C++ and Java applications. Comparing
the developed tool with existing tools, the tool was
tested against applications that other papers have
tested. Number guess and a library management
system were the applications. The tool was tested
on the same applications and it produced better
results than the previous ones which had an
average accuracy of 93% and the proposed tool

Journal of Theoretical and Applied Information Technology
15th April 2023. Vol.101. No 7
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2804

(StaticPy) average accuracy is 97.8%. The
proposed tool (StaticPy) can be used to find the
change impact analysis of different languages, for
example- python, C++, Java.

6. FUTURE SCOPE

The CIA Tool developed can be improved by
improving the keyword extraction algorithm.
During the formation of the data structure, using
improved tokenizer and spans can improve
accuracy. In the future if there are better
algorithms, they can help improve accuracy even
more.

Further if there are ways to traverse a GitHub
repository without cloning, then that helps to
decrease the storage space required. Right now,
there is no support for scanning specific parts of
code or specific files against the ticket, which could
also provide that functionality and improve the
features of the tool.
CONFLICTS OF INTEREST

The author(s) declare that there is no conflict of
interest regarding the publication of this paper.

FUNDING STATEMENT

We thank Vasavi College of Engineering
(Autonomous), Hyderabad for the support
extended towards this work.

ACKNOWLEDGMENTS

The paper “Conceptualization, investigation,
methodology, formal analysis, Identification of
software for experimentation, resources,
implementation, validation, writing, original draft
preparation, editing and visualization of the result
have been done by the first author. Reviewing the
work and supervision is done by the second author.

REFERENCES:

[1] Sufyan Basri, Nazri Kama, Roslina Ibrahim and

Saiful Adli Ismail, “A Change Impact Analysis Tool
for Software Development Phase”, Internal Journal
of Software Engineering and its Applications, Vol. 9
No. 9 (2015).

 [2] Maria Kretsoua, Elvira-Maria Arvanitou, Apostolos
Ampatzoglou, Ignatios Deligiannis, Vassilis
C.Gerogiannis, “Change impact analysis: A
systematic mapping study”, Journal of Systems and
Software, ScienceDirect, Volume 174, April 2021,
110892.

 [3] T. Jalaja, T. Adilakshmi, “Change Impact
Analysis using Python for Java Applications”,
International Journal of Recent Technology and
Engineering (IJRTE), ISSN: 2277- 3878
(Online), Volume-9 Issue-1, May 2020.

[4] Haipeng Cai, Raul Santelices and siyuan
Jiang,“Prioritizing Change-Impact Analysis via

 Semantic Program Dependence
Quantification”, IEEE Transactions on
Reliability,Vol.65, No.3,September 2016.

[5] T. Jalaja, T. Adilakshmi,” Automation of Impact
Analysis”, International Journal of New
Innovations n Engineering & Technology,
Vol.11 Issue4, September 2019.

[6] Sufyan Basri, Nazri Kama, Roslina Ibrahim,
Saifuladli Ismail, “ A Change Impact Analysis
Tool for Software Development Phase”,
International Journal of Software Engineering
and its Applications 9(9):245-256, September
2015.

[7] Mithun Acharya, Brian Robinson, “Practical
change impact analysis based on static program
slicing for industrial software systems”,
Proceedings of the 33rd Internal conference on
Software Engineering, pages 746-755, May
2011.

[8] Tie Feng, J.I. Maletic, “Applying Dynamic
Change Impact Analysis in Component-based
Architecture Design”, Seventh ACIS
International Conference on Software
Engineering, Artificial Intelligence,
Networking, and Parallel/Distributed
Computing (SNPD'06), IEEE, 2006.

[9] https://ieeexplore.ieee.org/document/6032516
[10] Nazri Kama, Faizul Azli, “ A Change Impact

Analysis Approach for the Software
 Development Phase”, 19th Asia Pacific

Software Engineering Conference, IEEE, 2012.
[11] Hassan Osman Ali, Mohd Zaidi Abd Rozan,

Abdullahi Mohamud Sharif, “Identifying
challenges of change impact analysis for
software projects”, International Conference on
Innovation Management and Technology
Research, IEEE May 2012.

[12] Hoa Khanh Dam, Aditya Ghose, “Automated
change impact analysis for agent systems”, 27th
IEEE International Conference on Software
Maintenance (ICSM), Sep 2011.

[13] Daniel Amyot, Nikolai Mansurov, Gunter
Mussbacher, “Understanding Existing Software
with Use Case Map Scenarios”, Conference:
Telecommunications and beyond: The Broader
Applicability of SDL and MSC, Third

Journal of Theoretical and Applied Information Technology
15th April 2023. Vol.101. No 7
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2805

International Workshop, SAM 2002,
Aberystwyth, UK, June 24-26, 2002.

[14] Michelle L. Lee “Change Impact Analysis of
Object Oriented Software. Technical Report
ISE-TR-99-06” George Mason University
Fairfax Virginia Dec 1998.

[15] Heiko Koziolek, Bastian Schlich, Steffen
Becker, Michael Hauck “Performance and
Reliability Prediction for Evolving Service-
Oriented Software Systems Industrial Expert
Report” August 2012.

[16] Johannes Stammel, Ralf H. Reussner “KAMP:
Karlsruhe Architectural Maintainability
Prediction” Forschungs zentrum Informatik
(FZI) 15 May 2014.

[17] Birgit Vogel-Heuser, Robert Heinrich, Suhyun
Cha, Felix Ocker, Sandro Koch “Maintenance
effort estimation with KAMP4aPS for cross-
disciplinary automated PLC-based Production
Systems - a collaborative approach” Vol 50
issue July 2017 Elsevier.

[18] Florian Angerer , “Change impact analysis for
maintenance and evolution of variable software
systems” December 2017.

[19] http://www0.cs.ucl.ac.uk/staff/mharman/sf.html
[20] Ekincan Ufuktepe, “A Program Slicing-based

Bayesian Network Model for Change Impact
Analysis Evolution styles: Foundations and
models for software architecture evolution”
Barnes et al., 2014J.M. Barnes, D. Garlan, B.
Schmerl.

[21] AllenR., Kennedy, K.: “Optimizing Compilers
for Modern Architectures: A Dependence-
Based Approach.” Morgan Kaufmann,
Burlington (2001).

[22] Sasirekha Neelamegam, Edwin Robert
“Program Slicing Techniques And Its
Applications”, International Journal of Software
Engineering & Applications (IJSEA), Vol.2,
No.3, July 2011.

[23] Daniel M German , Gregorio Robles, Ahmed E.
Hassan “Change impact graphs: Determining
the impact of prior code changes”, IEEE
International working conference on Source
Code Analysis and Manipulation, 28-29
September 2008 Beijing China.

[24] Hasan Alkaf, Jame leddine Hassine “An
automated change impact analysis approach for
User Requirements Notation models” Elsevier,
November 2019.

[25] Barnes et al, Barnes, D. Garlan, B. Schmerl ,
“Evolution styles: Foundations and models for
software architecture evolution”,2014J.M

[26] Thomas Zimmermann, Student Member, IEEE,
Peter Weißgerber, Stephan Diehl, and Andreas
Zeller, Member, IEEE Computer Society
“Mining Version Histories to Guide Software
Changes”, IEEE TRANSACTIONS ON
SOFTWARE ENGINEERING, VOL. 31, NO.
6, JUNE 2005, Pgno-429 to 445.

[27] B. Dit et al., “ImpactMiner: A tool for change
impact analysis,” in Companion Proc. 36th Int.
Conf. Softw. Eng., 2014, pp. 540–543.

