
Journal of Theoretical and Applied Information Technology
15th April 2023. Vol.101. No 7
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2678

SOFTWARE/HARDWARE TASK MIGRATION BASED ON A
CHECKPOINT FOR MULTIPROCESSORS EMBEDDED

SYSTEMS

KAMEL SMIRI1, FAYCEL EL AYEB2

1Manouba University, Higher Institute of Multimedia Arts Manouba, Manouba University Campus, 2010,

Tunisia.Carthage University, Tunisia Polytechnic School, SERCOM-Lab., Tunis, Tunisia
2Unit of Scientific Research, Applied College, Qassim University, Saudi Arabia.

GRIFT research group, CRISTAL laboratory, National School of Computer Sciences, Manouba University,
Tunisia.

E-mail: 1kamel.smiri@isamm.uma.tn, 2F.ElAyeb@qu.edu.sa

ABSTRACT

Traditionally, the decision of implemented particular task in hardware or as software program running is
typically taken at design time. This partitioning is static which has huge effect to the performance of a
system. In the related work on Hardware/Software Co-design, the Hw/Sw partitioning problem is solved
offline by mapping each task to dedicated core (Hard or Soft) with respect to certain objectives such that
throughput, power consumption. But at now days and with the introduction of reconfiguration at runtime,
the Software/Hardware partitioning problem can be solved online, thus, taking advantage of Hardware high
performance and Software flexibility with the lowest possible costs. In this context, our approach focuses
on these objectives. However, for a wide range of embedded application, the cohabiting software flexibility
and hardware speed is a key feature to provide performing and flexible embedded systems. While in this
system exit some tasks that are appropriate for a software program running on a processor and other tasks
that might have highly throughput requirements that can be executed by dedicated hardware modules.

Keywords: Dynamic Migration Of Soft/Hard Tasks; Embedded Systems; Checkpoint; Soclib; Gaut.

1. INTRODUCTION

For Automotive, avionics systems and multimedia
applications, massive parallelism with more
100,000 computing resources is the most viable
way to meeting a high performance without an
interruption. Future platforms will enroll even more
computing resources to achieve this sustained
performance. For each computing resources
(software or hardware node) is composed of several
hundreds of transistors such node will encounter a
failure every 9 hours in average [1].

In general, several types of errors can be constituted
a threat such as hardware failures and data
corruptions. However, the execution of the
treatments by purely software tasks being carried
out on a given configuration of processors can’t
satisfy the needs of performance. In the same way,
an entirely material execution presents the
drawback of a high cost of design and a low
flexibility. Therefore, many mechanisms and
techniques have been developed to reach a high
availability and reliability for distributed systems.

In this context, Checkpointing is an effective
methodology to cope with faults.

In this paper, we will present Checkpointing
protocols known from software and hardware
systems in section 1. After comparison and
classification different mechanisms for
software/hardware Checkpointing with respect to a
series of desirable properties, we will propose an
approach in which we will investigate the concept
of Checkpointing known from software systems,
can be utilized in hardware tasks running on
reconfigurable devices.

After revealing related checkpoint mechanism, a
related work on dynamic reconfiguration based
software/hardware checkpoint will be presented in
section 2.

In section 3, we will present a novel approach for
increasing fault tolerance on the system MPSoC
based on CPUs in combination with FPGA.

Typically, we will put focus on the problem of
software/hardware co-design at runtime in order to

Journal of Theoretical and Applied Information Technology
15th April 2023. Vol.101. No 7
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2679

reach self-adaptive reconfigurable embedded
systems.

Our approach address to migrate tasks implemented
in software or hardware node from one node to
another. Nevertheless, the fact of interrupting a
software task and activating it in another hardware
node at the same state of execution require for the
availability of the control mechanisms for both
hardware and software side.

In our strategy, we will introduce a software and
hardware Checkpointing mechanisms for both task
migration as well as reconfigurable platform.

A checkpoint is the information necessary to
recover tasks. This information will be used to
restore the application from the last valid
checkpoint in which includes the global consistent
(correct) state of the application. Moreover, our
contribution consist to identify the valid checkpoint
and to find its corresponding in the node in which
receive a task migrated.
2. DESCRIPTION OF CHECKPOINT
MECHANISM

During the last decade in all aspect of our daily
lives have prevailed utilization embedded systems.
In fact, the improvements in deep Submicron
technology (using transistors of smaller size with
faster switching rates) as well as predicted by
Moore’s law [2]. But, the downside of these
technologies is a crisis of complexity design [3]
that leads to decrease the efficient and performance
systems.

Traditionally, the development of the embedded
systems has been released by two groups. The first
group develop the embedded software whereas the
second staff prepare a hardware architecture can be
elaborated and implemented onto SoC (System on
Chip). Provided that this design space is the
optimal or near optimal implementation. However,
a hardware/software co-design methodology cope
this increasing complexity of embedded systems.
Moreover, the task migration and the
hardware/software Morphing can solve this issue
by giving the possibility to optimize the task
binding or to reconfigure both the software and the
hardware of the systems. These solutions based on
the process checkpointing. A checkpointing
technique is further used for the task migration
which saves internal states during this process. In
addition, task morphing is based on checkpointing
technique in which allows migrating or swapping
the execution of a task between software
implementation (on a CPU) and hardware
implementation (on a FPGA).

In the following, we will present protocols
checkpointing for both software and hardware
areas.

3. RELATED WORK : SOFTWARE
CHECKPOINTING

In this section, we will present three categories of
checkpointing and rollback recovery protocols: 1)
Uncoordinated checkpointing, 2) Coordinated
checkpointing and 3) communication-induced
checkpointing. These protocols have given the
possibility to ensure consistently recovery for the
state in a system with multiple communicating
tasks.

3.1 Uncoordinated Checkpointing

At this protocol, the domino effect present
certainly. Consequently, a larger amount of useful
work will get lost. This issue was due for
uncoordinated taking checkpoints for each process
which it decides independently when to store a
checkpoint.

Many check points have to be stored and that may
be useless. Subsequently, the systems have to
rollback from the beginning of computation.

3.2 Coordinated Checkpointing

This scheme synchronizes the moment of taking
check points for avoiding the domino effect.

Consequently, the coordinated checkpointing
protocol has to insure that a consistent global state
will be stored. But, the down side is a latency
penalty will be paid in order to take synchronizing
check points.

In distributed systems, communication between
tasks can be blocked when applying check pointing.
The coordinator sends a check point request to all
tasks that will stop processing and flush their
communication channels. After that, all tasks will
return the entire check-points which received
successfully messages to the checkpoint
coordinator.

Furthermore, the coordinated checkpointing
protocol can provide unblocked communication in
which messages are stamped with a checkpoint
index.

3.3 Communication-induced Checkpointing
The communication induced checkpointing
protocol gives the possibility to a process to take a
local check point autonomously, but however, for
avoiding the domino effect, this scheme allows a
checkpoint index that stamps which are
piggybacked on all messages.

Journal of Theoretical and Applied Information Technology
15th April 2023. Vol.101. No 7
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2680

The main difference between coordinated and
communication-induced checkpointing protocols is
the process checkpointing in the second scheme
will be forced when receiving message. As contrary
to coordinated checkpointing, which applying
checkpointing autonomously at the transmission
messages.
3.4 Synthesis software checkpointing protocols
In fact, it exits other techniques for restoring the
system state to the most recent consistent global
state that are log-based rollback recovery. But, we
are interesting by checkpoint-based protocols,
because, there are less restrictive and simpler to
implement than log-based protocols [4].

Table 1: Comparison between three categories of
checkpoint-based rollback recovery protocols.

Uncoordinat
ed/Checkpoi
nting

Coordinat
ed/Checkp
ointing

Communica
tion/Induce
d/Checkpoi
nting

Checkpointin/
process

Several 1 Several

Domino effect Possible No No
Orphan
process

Possible No Possible

Rollback
extent

Unlimited
Last global
checkpoint

Possibly
several

checkpoints
Recovery
protocol

Distributed Distributed Distributed

Table 1 summarizes a comparison between the
different of checkpoint-based protocols. These
different scheme provide tradeoffs with respect to
set of properties such that the extent of rollback,
protocol of recovery, freedom from domino effect
and from orphan process [5]. In first column,
uncoordinated checkpointing allows the process to
take autonomously its checkpoints. But however, it
suffers from the domino effect and a complicated
recovery. As opposed to uncoordinated
checkpointing, the coordinated checkpointing
protocol makes easy the recovery by synchronizing
the moment of taking the checkpoints. Between
these two protocols, exit communication-induced
checkpointing protocol, which do not require the
coordination and keep away from the domino effect
[4].

4. RELATED WORK : HARDWARE
CHECKPOINTING

In this section, three different methods for hardware
checkpointing will be presented: 1) memory
mapped state access (MM), 2) scan chain based
state access (SC), and 3) shadow based scan chain
state access (SHC).

4.1 Memory mapped state access

Each flip flop is directly accessible by the CPU via
an address and a data bus by integrating the flip-
flops storing the checkpoint into a read/writable
memory space of a system. For keeping the states
consistent during read or write operations, the
module must be blocked until a state extraction or a
rollback process has been finished [6].

4.2 Scan chain based state access

Instead of moving the flip values in the address
space of the memory, the flip-flops can be chained
together in Scan Chain. This is known from
established ASIC design techniques. A multiplexer
in front of each flip-flop is used to switch between
a regular execution mode and a scan mode, where
all flip-flops are linked together to form a shift
register chain.

Figure 1: Hardware checkpointing using a scan chains

As depicted in figure 1, for keeping the state of the
chain consistent, the output of the register chain is
connected to the input forming a ring shift. So, the
module can continue regular execution immediately
after the checkpoint has been read.
4.3 Shadow based scan chain state access
As shown in figure2, each flip-flop of the original
circuit is duplicated and connected to a chain.

Figure 2: Hardware checkpointing using shadow scan
chains

The shadow scan chain allows copying all values in
one single clock cycle. Hence, it is possible to
store, restore, or swap a checkpoint within one
single clock cycle.
3.5 Synthesis hardware checkpointing protocols

These techniques differ in terms of the latency to
extract a checkpoint (C) and hardware overhead (L)
which required for saving and storing the
checkpoints. Dirk Koch and al examined these

Journal of Theoretical and Applied Information Technology
15th April 2023. Vol.101. No 7
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2681

methodologies by implementing the different state
extraction mechanisms in their approach. The
results obtained will be present in Table 2.

Table 1: Results obtained by our approach by
implementing the different state extraction mechanisms.

 #LUTs/HL #Flip-Flop/HF
 Original DES
 Scan Chain
 Shadow chain
 Memory mapped

2015/100%
2414/120%
3937/195%
2851/141%

984/100%
1138/116%
2025/205%
1026/105%

 Fmax [MHz]/P C L
 Original DES
 Scan Chain
 Shadow chain
 Memory mapped

116/100%
110/95%

99/85%
107/92%

-
10354

0
1306

-
24979
16813

 16931

The table points out that each state extraction
strategy is optimal in the sense of one of the
defined properties. The shadow scan chain method
leads in the case of high checkpoint rates to a
higher throughput by the cost of almost doubling of
the required logic resources. The simple scan chain
approach demonstrates that it is possible to enhance
a hardware module to be capable of checkpointing
with an overhead of about 20% as compared to the
original module [6].

5. RELATED WORK ON DYNAMIC

HARDWARE/SOFTWARE

A first approach to dynamic hardware/software
partitioning is presented in [10] [11]. There, the
authors present warp configurable logic architecture
(WCLA) which is dedicated for accelerating
software kernels of embedded systems applications.
In [12], the authors propose a dynamic Partial
Reconfiguration technology coupled with an
Operating System for Reconfigurable Systems
(OS4RS). In this work, they present a novel,
lightweight scheduling mechanism supporting
preemptable and clock-scalable hardware tasks.
A software-hardware cooperative method for multi-
projector seamless tiled display system is proposed
by Wang et al. by profiling the software that is
currently running on an ordinary PC and the
hardware image processors that are currently
running on FPGAs [13]. In the FPGA domain
checkpointing has been seldom investigated so far.
Multi-context FPGAs have been proposed, that
allow to swap the complete register set (and
therefore the state) among with the hardware circuit
between a working set and one or more shadow sets
in a single cycle. But due to the enormous amount
of additional hardware overhead, they have not
been used commercially”.

6. PROPOSED APPROACH

In the following, we will present a new approach
which provides a novel medium for adapting to the
new conditions, i.e., when the implementation task
change its environments (Hardware to software or
vice versa) at runtime by Dynamic Hw/Sw
partitioning or Hw/Sw morphing [6]. As a matter of
fact, these concepts have not been sufficiently
studied [7]. Nevertheless, we investigate objectives
Hw/Sw partitioning with utilizes checkpoint
protocols until reaching an ideal platform featuring
by high-speed and efficient dynamic
reconfiguration mechanism. The objective of our
dynamic Hw/Sw reconfiguration approach is not
merely to change the task execution between
different implementation alternatives, but also,
without losing of internal states.
Our approach “Dynamic reconfiguration based
checkpoint” will be integrated in an OS
infrastructure which is shown in Figure 3. In which,
the tasks implemented in hardware or software can
be migrated from one node to another. This
approach is destined to architectures based on field-
programmable gate arrays (FPGA) in combination
with CPUs.
We propose four main phases to realize our
approach: 1) Checkpoint Identification, 2) Save and
Store Checkpoint, 3) Translation process Sw/Hw
and 4) Continue Execution.

6.1 Phase 1: Checkpoint Identification
Firstly, we choose a suitable software checkpoint
protocol for our requirement specification. Besides,
this protocol will be encoded and implemented as a
plug-in in platform for virtual prototyping of
MPSoC. Checkpoint Identification: in which
determine where the failure intervene (during task
execution, at recording data, during a transmission
of a message, etc.) and identify the consistent
global state.
6.2 Phase 2: Save and Store Checkpoint
In order to keep the continuity, the save checkpoint
process must be triggered. And, the checkpoint
would be stored into a read/writable memory space
of a system.
6.3 Phase 3: Translation process Sw/Hw
As same thing for hardware checkpoint protocol, it
will be written in some line of codes and integrated
as plug-in in the High-Level Synthesis tool for
automatic generation of hardware accelerators for
FPGA. This work will be sketched in second step.
Translation: the task execution can be translated
between hardware and a software domain by
reading a consistent state from one domain and
transforming the state according to other domain.

Journal of Theoretical and Applied Information Technology
15th April 2023. Vol.101. No 7
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2682

6.4 Phase 4: Continue Execution
This phase resumes execution and maintains the
continuity of its operations. The operating system
again launches the execution of complete systems
(application software part and application hardware
part). The execution is restarted at the selected
checkpoint.

Figure 3: Proposed Approach: Software/Hardware Task
Migration based on checkpoint

We have established a bibliographic synthesis in
[19] [20] in order to get an idea of the new
applications used in modern embedded systems.
We have found that our approach is very effective
for these applications. The use and implementation
of our approach greatly improves the performance
and robustness of these embedded systems.

7. EXPERIMENTATION

7.1 Architecture Description
The target is a ZedBoard included Xilinx chip of
the Zynq-7000 family. ZedBoard is a SoC includes
an ARM Cortex-A9 dual-core processor and an
FPGA as well interfaces and functions required for
a wide application panel. The ZedBoard card
consists of two main parts:
 Programmable Logic (PL): contains FPGA.

Due to financial constraints, we have to go
through the PS section in order to program the
PL. The PL configuration is carried out either
by Chips-cop pro or either by mono USB
Debug JTAG cable.

 Processing System (PS): contains processor
ARM dual-core with its memory controllers
and its peripherals.

7.2 Description MJPEG Decoder
The application used in the case study is decoder
MJPEG. This code handles data per blocks of 8x8
pixels by using the technology of coding intra-
screen. The decompression of an image JPEG
(figure 4) is done in five most important stages:
First actor VLD allows to analyze the input file and
to decompress in blocks MCU “Minimum Coded
Units”. Then, each block passed through the
opposite quantification and to reorder in ZIGZAG.
The following task is the IDCT which makes it
possible to transform the image starting from
frequency field towards the space field. Finally, the
conversion of the colors translates the colors of the
blocks of components of an MCU to values of
pixels; this task is carried out by actor LIBU [8]
[15].

(a)

(b)

Figure 4: (a) Motion JPEG decoding principle, (b) model
of Motion JPEG decoder

7.3 Tools Description

In this section, we will present tools that will be
used in the experimental side. For the moment, we
choose SoCLib and Gaut platforms because we
familiar with these environments.

 SoCLib

The System on Chip Library (SoCLib) is an open
framework for the virtual prototyping of MPSoC
systems. This tool based on the simulation model
and it respected the KPN formalism.

Journal of Theoretical and Applied Information Technology
15th April 2023. Vol.101. No 7
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2683

Figure 5: Design flow for dynamic reconfiguration based
checkpoint

Journal of Theoretical and Applied Information Technology
15th April 2023. Vol.101. No 7
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2684

In which, the SoCLib allows the development a
software application in the form of a set of parallel
(allow to deal the pipeline parallelism) and
communicating tasks [17]. These tasks can be
implemented in hardware or software and use a
Multi-Writer/Multi-Reader First-In/First-Out
(MWMR FIFO) as a communication channel.
Besides, SoCLib allows the simulation and the
exploration of the hardware architecture via an
open source library in two level abstractions
(CABA and TLM) written in SystemC for the
material components [14] [15] [18].

 GAUT

GAUT (Generator Automatic Processing Unit) is
an academic and open source high-level hardware
architecture synthesis tool dedicated to DSP digital
signal processing applications.

With the bit-Accurate C/C++ specification, the
GAUT tool automatically generates an RTL level
architecture described in VHDL which can be used
by logic synthesis tools on the market such as ISE
(Xilinx), Quartus (Altera) or Design Compiler
(Synopsis). Thus, Gaut also makes it possible to
generate SystemC simulation models at the TLM
and CABA levels via the virtual prototyping
platform SoCLib[9].

This environment emerged in the 1990s at the
LASTI research laboratory and has been pursued at
LESTER since 1994. This tool currently represents
a volume of around 70,000 lines of C/C++ and
JAVA code.

The GAUT tool takes as input the description of the
algorithm in C/C++ which must be synthesized
using the CTM algorithmic class library produced
by Mentor Graphics (American company founded
in 1981 and its activity is in the electronic CAD
field).

The functional constraints are the throughput
(specified through an initiation interval which is
represented by a period between the start of
successive iterations) and the clock period. In
addition, optional design constraints are memory
mapping and timing diagram inputs/outputs.

The target model of the architectures synthesized
by GAUT is composed of three functional units
working in parallel: processing unit (UT), storage
unit (UM) and communication unit (UCOM). The
(UT) is a data path composed of logic or arithmetic
cells, storage elements, driving logic and a
controller (FSM). The (UM) is composed of
memory banks and their associated controllers. The
(UCOM) includes a synchronization processor and

an operation memory which allow to have a
communication interface of GALS/LIS [16].

7.4 Proposed Algorithm

The dynamic Software/Hardware online
reconfiguration model is based on algorithm which
will be illustrated in figure 6.

Algorithm Checkpoint
Variable

Begin
 For all task_tj IN Γ
 Init_task()
 Task_binary()
 Start_task()

While (Exec_task (tj) does not finish)
 If (tj-> current_state == Running) then
 Continue (Exec_task(tj))
 Else
 If (tj-> current_state == Blocking) then
 Checkpoint_here()
 Write_checkpoint()
 t’j translate_task(tj)
 Find_corresponding-ckpt()
 Continue (Exec_task(t’j))
 End if
 End if

End while
 Jj+1
 End for
End

Figure 6 : Dynamic Algorithm for Software/Hardware
Task Migration

This algorithm illustrates the model steps. In order
to identify certain states at which the execution can
be switched between hardware and software which
as shown in figure 6. The model begin by
Init_task() for initialing task. After that,
Task_binary() and Start_task() for loading binary
implementation and launching the task execution.
This novel model includes some sensor functions
for controlling the states of tasks. If the current
state is normal then the task continues its execution.
When the state task is blocking then the checkpoint
mechanism will be started its functions which are
depicted in figure 5.

8. CONCLUSION

The computational requirements for embedded
applications are increasing exponentially. This
complexity, coupled with constantly evolving
specifications, has forced designers to consider
intrinsically flexible implementations. In this paper,
we presented a first step toward a dynamic
Software/hardware partitioning approach. And, we
described how hardware-software morphing could
be implemented. The target and the tools identified
at last section with explaining a proposed
algorithm. Future work will focus on

Journal of Theoretical and Applied Information Technology
15th April 2023. Vol.101. No 7
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2685

implementation of our methodology and will
compare different experimental results examples.

REFERENCES:

[1] J. Dongarra, T. Herault and Y. Robert, “Fault

tolerance techniques for high-performance
computing”, Chapter1: Fault-Tolerance
Techniques for High Performance Computing,
Springer international Publishing Switzerland,
2015.

[2] G. E.Moore, “Cramming more components
onto integrated circuits,” Electronics, vol. 38,
no. 8, pp.114–117, April 1965.

[3] J. Henkel, “Closing the SoC design gap” ,
IEEE Computer, vol. 36, pp. 119–121,
September 2003.

[4] E. N. (Mootaz) Elnozahy, Lorenzo Alvisi, Yi-
Min Wang, and David B. Johnson. 2002. “A
survey of rollback-recovery protocols in
message-passing systems”. ACM Comput.
Survey. 34, 3 (September 2002), 375-408.

[5] Akanshika, “Analysis of Rollback Recovery
Techniques in Distributed Database
Management System”, International Journal of
Modern Engineering Research (IJMER) Vol.3,
Issue.3, May-June. 2013.

[6] Dirk Koch, Christian Haubelt, Thilo Streichert,
Jurgen Teich., “Modeling and Synthesis of
Hardware-Software Morphing”, IEEE
International Symposium on Circuits and
Systems, New Orleans, May 2007.

[7] Ihsen Alouani, Braham L. Mediouni and Smail
Niar, “A Multi-Objective Approach for
Software/Hardware Partitioning in a Multi-
Target Tracking System”, International
Symposium on Rapid System Prototyping
(RSP), Amsterdam, 8-9 Oct. 2015.

[8] A. Jemai, K. Smiri, H. Smei, Task Migration in
Embedded Systems: Design and
Performance. Embedded Computing Systems:
Applications, Optimization, and Advanced
Design: Applications, Optimization, and
Advanced Design, 2013.

[9] Kamel Smiri, Abdelhafidh Ben Fadhel,
Abderrazak Jemai and Ahmed Chiheb
Ammari, Automatic Migration of a Software
Task to Hardware Component in MPSoC
Systems, David publishing, Computer
Technology and Application, 2011.

[10] R. Lysecky and F. Vahid, “A configurable
logic architecture for dynamic
hardware/software partitioning,” in
Proceedings of Design, Automation and Test in

Europe Conference and Exhibition (DATE
’04), vol. 1, pp. 480–485, Paris, France, 2004.

[11] K. Jozwik, Shinya Honda, Masato Edahiro,
Hiroyuki Tomiyama, and Hiroaki Takada.
2013. Rainbow: an operating system for
software-hardware multitasking on
dynamically partially reconfigurable
FPGAs. Int. J. Reconfig. Comput. 2013.

[12] M. Wang, Y Han, R Wang, X Liu and J
Sun., A software-Hardware Cooperative
Method for Multi-projector Seamless tiled
display system, - IEICE Electronics Express,
2015.

[13] Andy D.Pimentel, 2004. « Computer Systems:
Architecture, Modelling, and Simulation »,
BOOK, THIRD AND FOURTH
INTERNATIONAL WORKSHOPS, SAMOS
2003 AND SAMOS 2004, SAMOS, GREECE.

[14] Website SoCLib http://www.soclib.fr, Juin
2017.

[15] JPEG committee: ‘Standardized in ISO/IEC IS
10918-1/2’. http://www.jpeg.org/., Juin 2017.

[16] K. Smiri, S. Bekri, H. Smei,“Fault-Tolerant in
Embedded Systems (MPSoC): Performance
estimation and dynamic migration tasks”, in
11th International Design & Test Symposium,
IDT 2016, Hammamet, Tunisia, December 18-
20, 2016. IEEE 2016, ISBN 978-1-5090-4900-
4 (IDT 2016), pp1-6, 2016.

[17] D. Sender Rocha dos, A. Santos, L. M. Jorge,
Adaptive Intelligent Systems applied to two-
wheeled robot and the effect of different
terrains on performance, Advances in Science,
Technology and .Engineering Systems
Journal Volume: 2 Issue: 1 Pages: 1-
5 Published: 2017.

[18] A.C. Ammari, A. Jemai, Multiprocessor
platform-based design for multimedia, IET
Computers & Digital Techniques, Volume 3,
Issue 1, January 2009, p. 52 – 61, ISSN 1751-
8601, 2009.

[19] Sima Afsharpour, Ahmad Patooghy, Mahdi
Fazeli, Performance/energy aware task
migration algorithm for many-core chips, IET
Computers & Digital Techniques, 10.1049/iet-
cdt.2015.0131, Print ISSN 1751-8601, Online
ISSN 1751-861, Volume 10, Issue 4, pp. 165 –
173, 2016.

[20] Adel A. Elbaset, Hamdi Ali, Montaser Abd-El
Sattar, Mahmoud Khaled, Implementation of a
modified perturb and observe maximum power
point tracking algorithm for photovoltaic
system using an embedded microcontroller,
IET Renewable Power Generation, Volume 10,
Issue 4, p. 551 – 560, 2016.

