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ABSTRACT 
 

The study aims to test a hypothesis on the applicability of the ARIMA model for forecasting time series that 
reflect the dynamics of carbon dioxide emissions into the atmosphere caused by natural (the Mauna Loa 
volcano) and anthropogenic (CO2 emissions in Germany, France, and Italy) factors. Stationarity of the time 
series is tested using the augmented Dickey-Fuller test; autocorrelation of the time series is tested using the 
Ljung-Box test. The study identifies forecasted values of CO2 emissions for stationary and non-stationary 
time series. In the first case, the obtained forecasted values of the time series are more precise. The authors 
conclude that additional adjustments are needed to increase the predictive capabilities of ARIMA models for 
non-stationary time series. 
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1. INTRODUCTION  
 

The combustion of fossil fuels and the resulting 
emissions of carbon dioxide have a devastating 
effect on the climate, causing its warming. 

Despite the increased influence of geopolitical 
factors on the economy of Russia, the country's 
government is not giving up on the climate agenda, 
including the transition to carbon neutrality. This is 
evidenced by the recent steps made by the 
Government of the Russian Federation in this regard 
[1]. However, internal decarbonization cannot be 
accomplished without economic and technological 
support. The urgency of the transition from fossil 
fuels to a low-carbon economy remains, and the risks 
are particularly great for the Arctic and Russia. 
Against the backdrop of sanctions pressure, some 
Russian exporters will still have to deal with the EU's 
carbon border adjustment mechanism (CBAM). 
Several characteristics of the modern 
decarbonization process can be distinguished. 
Firstly, decarbonization has become an integral 
feature of scientific and technological progress. 
Secondly, the competitiveness of products in the 
world market began to be evaluated in terms of their 
carbon intensity. In addition, the decarbonization 
policy becomes a national obligation. 

The global practice of fulfilling the need for 
decarbonization and plans to achieve carbon 
neutrality offers two solutions: carbon credits or tax 
regulation of greenhouse gas emissions. Each tool on 
its own has both positive and negative sides. The 
example of Kazakhstan shows that the current 
regulated carbon market there has proven 
ineffective, as excessive free emission allowances 
are easily handed out at the request of businesses. 
The danger with carbon taxes is that the government 
would not put a price on carbon that would 
encourage businesses to reduce emissions, which 
would be of little help in actually reducing 
emissions. The example of a regulated carbon 
market in California shows that such a price covers 
only 10% of companies' expenses to reduce 
emissions. On the other hand, the trading of emission 
credits is more effective than a carbon tax in terms 
of limiting the negative effects on the end consumer 
and stimulating the growth of efficiency and the 
development of high-tech industries. For this reason, 
for Russia to achieve carbon neutrality, both 
mechanisms need to be used in combination, 
blending subsidies for technological development 
with fees for emissions. 

Previous studies have shown that in connection 
with the problems of climate change on the Earth, 
which in turn are associated with natural [2] and 
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man-made factors of influence [3], it is necessary to 
solve the problem of regulating emissions of various 
pollutants in general [4], and hydrocarbons [5], in 
particular.  

The research question that authors are trying to 
answer in this article is “How can the application of 
a mathematical model help improve the efficiency of 
environmental and economic policy development in 
Russia and other countries?” 

In the article, authors propose the use of the 
ARIMA economic and mathematical model, which 
allows modeling and predicting carbon dioxide 
emissions into the atmosphere.  

The general hypothesis of the study is that the 
ARIMA model shows the best results in forecasts for 
stationary time series, and additional adjustments are 
needed for non-stationary time series. 

The null hypothesis is the presence of the unit 
root; if the time series has one unit root (α = 1), then 
the first differences are stationary by definition. 

The novelty of using the ARIMA model to 
predict CO2 emissions caused by natural and man-
made factors lies in its ability to handle the 
complexity of such data. Natural and man-made 
factors can have both short-term and long-term 
effects on CO2 emissions, and these effects can 
interact in complex and nonlinear ways. The 
ARIMA model can capture such complexity by 
incorporating multiple autoregressive and moving 
average terms, as well as differencing to account for 
non-stationarity in the data. 

 
2. LITERATURE REVIEW 
 

The findings of the UN climate report are of 
concern to governments, scientists, and the public 
alike. Since the publication of the Club of Rome's 
work in the 1970s, there have been far more tragic 
natural disasters than those predicted in it [6]. After 
the Club of Rome report, the parallels between the 
1970s and 2022 are becoming ever more apparent [7-
9]. The team of authors of the Club of Rome, using 
the system dynamics computer modeling method at 
the global level, has formed scenarios of general 
development from 1900 to 2100. The authors 
express concern about the coming critical situation 
related to the physical limitations of resources over 
the growing production and consumption, propose 
various scenarios of possible development, and point 
out the limits of growth. J.W. Forrester [10] 
predicted the depletion of resources and the collapse 
of the global economic system by the end of the 20th 
and beginning of the 21st centuries. Later on, the 
results and conclusions of modeling have been 
confirmed by Forrester's followers [11-13]. Over 30 

years, the Club of Rome team evaluated the results 
of the World3 scenario model, changing the 
parameters of technological development, natural 
resources, and social priorities. The variety of 
scenarios has led to a so-called stabilized world in 
which predictable collapse can be avoided and 
prosperity can be increased. An important 
conclusion of the growth limits model is the 
assumption that on the time horizon under study, the 
limits of economic growth will be exceeded, 
economic systems will not survive, and the 
population will begin to decline. As a positive 
conclusion, the authors promise that the 21st century 
will bring technological, behavioral, and political 
changes that will avert this collapse [14]. In 2008 and 
2014, G.M. Turner conducted a growth limits 
analysis for the period of 1970-2000, 30 years later, 
expanding the number of variables analyzed. The 
study was conducted to compare the World3 model's 
forecasts and the state of the variables of the new 
period and to identify the key drivers of economic 
growth [15]. G. Herrington [16], using the method of 
the Club of Rome, conducted a macro-level country 
analysis in addition to the existing Club of Rome 
forecasts and tested for consistency between the 
Club of Rome's third World3 model forecast and the 
current state of the global economy. 

As evidenced by years of experience in the 
development of effective climate policy [17], its 
primary tools are direct methods of regulating 
emissions: emissions trading system (ETS), the 
carbon tax, and hybrid methods [18]. It is also noted 
that in the short term, the carbon tax brings five times 
the benefit of the ETS [19,20]. 

The behavior of people and the political will of 
national governments have only exacerbated and 
amplified the effects of economic growth. However, 
rapid advances in technology and the Coronavirus 
crisis have also made a difference. In particular, 
empirical findings suggest that most innovative 
environmental measures in China are effective at 
reducing carbon emissions [21,22]. A viable 
approach to curbing the impact of such emissions is 
the introduction of advanced carbon capture and 
storage (CCS) technology, which can capture more 
than 90% of the CO2 produced by power plants. T. 
Wilberforce et al. [23] present an assessment of 
contemporary technologies used in CO2 capture, 
including post-combustion, pre-combustion, and 
oxygen combustion, as well as the storage and 
transportation of CO2. K.T. Raimi [24] considers the 
opportunity of using geoengineering – removing 
CO2 and managing solar radiation to control the 
Earth's climate. At the current stage, these factors 
need to be considered in the new forecasts. Many 



Journal of Theoretical and Applied Information Technology 
15th April 2023. Vol.101. No 7 
© 2023 Little Lion Scientific  

 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
2588 

 

policies in limiting greenhouse gas emissions focus 
on setting a price on carbon emissions. The problem 
of the impact of carbon pricing on households due to 
both an increase in the cost of carbon-intensive 
products and changes in factor prices was analyzed 
by S. Rausch et al. [25].  

The methodological foundation for our analysis 
and time series forecasting is formed by the major 
works of G.E.P. Box et al. [26], P.J. Brockwell and 
R.A Davis [27], and R.J. Hyndman and G. 
Athanasopoulos [28]. S.J. Taylor and B. Letham [29] 
consider the problem of forecasting as a curve-fitting 
task that is inherently different from time series 
models, which explicitly take into account the 
structure of the time dependence in the data. This 
formulation of the problem of forecasting, according 
to the authors named, provides several practical 
advantages, including flexibility: it is possible to 
easily adjust the seasonality of multiple periods, 
which will allow the analyst to make various 
assumptions about trends; measurements do not 
have to be distributed regularly, and it is not 
necessary to interpolate missing values, e.g., from 
the removal of outliers; the forecast model has easily 
interpretable parameters that can be changed by the 
analyst to make assumptions. In addition, analysts 
usually have experience with regression and are 
readily able to extend the model to include new 
components. 

H. Castro [30] performed a similar task for CO2 
emissions caused by natural sources for a smaller 
data set. We are expanding on his analysis and 
applying the appropriate methods to analyze and 
forecast CO2 emissions due to anthropogenic factors 
in three European countries. 

 
3. MATERIALS AND METHODS 
 
3.1 Data 

We analyzed two data sets, one for natural CO2 
emissions, and the other for anthropogenic ones. 

For the first case, we used information on CO2 
emissions by the Mauna Loa volcano. Data on CO2 
emissions at Mauna Loa Observatory, known as the 
Keeling Curve, are the world's longest uninterrupted 
data on atmospheric CO2 concentrations. Scientists 
conduct atmospheric measurements at remote 
locations to sample air that is representative of a 
large volume of Earth's atmosphere and relatively 
free of local influences. The data on CO2 have been 
collected and published by the Scripps Institute of 
Oceanography at the University of California, led by 
C.D. Keeling and supported by the U.S. Department 
of Energy, the Earth Networks, and the National 
Science Foundation [31]. 

This data set includes monthly observations of 
atmospheric CO2 concentrations from the Mauna 
Loa Observatory (Hawaii) at 3,397 meters above sea 
level. The dataset contains the monthly CO2 
concentrations measured at 24:00 hours on the 
fifteenth of each month. 

CO2 data from 1958 to 2018 were used to train 
the model, and data for 2019-2021 are those 
predicted based on the proposed forecast model. 
Next, we compared the data obtained with the actual 
data available for the period from 2019 to 2021. 

To analyze anthropogenic CO2 emissions, we 
used data on CO2 emissions in metric tons per capita 
in countries around the world for 1990-2018, 
provided by the World Data Bank [32]. 

Data on CO2 from 1990 to 2016 were used to 
train the proposed model, which enabled us to make 
a forecast for 2017-2018. In our analysis and 
forecast, we limited our analysis to CO2 emission 
data for three European countries: Germany, France, 
and Italy. 

 
3.2 Methods 

ARIMA models offer one approach to 
forecasting time series. Exponential smoothing and 
ARIMA are the two most common approaches to 
time series forecasting and provide additional 
approaches to the problem. While exponential 
smoothing models rely on the description of the 
trend and seasonality in the data, ARIMA models 
focus on describing autocorrelations in the data. 

The basis of forecasting with the ARIMA model 
is Wold's theorem, which stipulates that each time 
series can be represented in the form of an infinite-
order moving average. Note that automatic ARIMA 
forecasts are susceptible to large trend errors when 
there is a change in trend near the cutoff period, and 
they do not capture seasonality. ARIMA models can 
include seasonal covariates, but adding these 
covariates causes very long debugging periods. 
Exponential smoothing and seasonal naïve forecasts 
can determine weekly seasonality but overlook long-
term seasonality. 

The ARIMA model gets its name from the 
acronym Auto Regressive Integrated Moving 
Average, which indicates that the ARIMA model has 
three components: AR – autoregressive term, I – 
differentiating member, and MA – moving average. 

ARIMA models can be expressed in two forms: 
1) Non-seasonal models, in which the model has 

an order in the form (p, d, q), where: 
- p – the order of the automatic regression model; 
- d – the order of differentiation; 
- q – the order of the moving average. 
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Automatic regression models are similar to 
regression models, but the regressor in this case is 
the same dependent variable with a specific lag. 

For ARIMA to work, the time series must be 
stationary at best. This means that the mean and 
variance are constant over the entire set. 
Differentiation is used to transform the data to make 
it stationary. It is assumed that if a time series is 
stationary, there is a high probability of it repeating 
the same patterns in the future. 

Moving averages are widely used in time series 
analysis and are a well-known concept. This 
involves obtaining the average number of points in a 
series for a particular lag and can be expressed as: 

 

𝛵 =   ∑ 𝑦   (1) 

 
where m = 2k +1, 
k – the number of values used on average before and 
after the point used, 
t – the time in which the trend cycle is calculated. 

With the naïve method, all predictions for the 
future are equal to the last observed value of the 
series: 

 
𝑦 |    (2) 

 
where h = 1, 2 …. The naïve method thus assumes 
that the most recent observation is the only one that 
matters and that all previous observations give no 
insight into the future. This can be thought of as a 
weighted average, in which all the weight 
corresponds to the last observation. 

With the averaging method, all future forecasts 
are equal to the simple mean value of the observed 
data: 

 

𝑦 | =  ∑ 𝑦   (3) 

 
where h = 1, 2 …. The averaging method thereby 
presumes that all observations have the same value, 
and gives them equal weight when producing 
forecasts. 

Therefore, it may be appropriate to give more 
weight to more recent observations than to those 
from the distant past. This very concept lies at the 
heart of simple exponential smoothing. Predictions 
are calculated using weighted averages, where 
weights exponentially decrease as observations 
come from the more distant past, so the lowest 
weights are attributed to the oldest observations: 

 
𝑦 | =  𝛼𝑦 +  𝛼(1 −  𝛼)𝑦 +  𝛼(1 −

 𝛼) 𝑦 + ⋯  
(4) 

 
where 0 ≤ α ≤ 1 – the smoothing parameter. A one-
step-ahead time forecast T + 1 is the weighted 
average of all observations in the series y1, …, yt. 
The rate at which the weight decreases is controlled 
by the parameter α. 

2) Seasonal ARIMA (SARIMA) models 
account for seasonality in the data and perform the 
same steps as ARIMA but on a seasonal model. 
Thus, if the data have a seasonal pattern each quarter, 
then SARIMA will get an order for (p, d, q) for all 
points and (P, D, Q) for each quarter. 

Stationary time series are those whose 
properties do not depend on the time of observation 
of the dynamics series. A series of white noise, on 
the other hand, is stationary – the time of its 
observation is irrelevant, it has to look almost the 
same at each moment in time 

Some cases can be misleading – time series with 
cyclical behavior (but no trend or seasonality) – are 
unchanging. This comes from the fact that cycles 
have no fixed length, so before making observations 
of a series, one cannot be sure where the peaks and 
valleys of the cycles will be. 

In general, stationary time series will not have a 
predictable structure in the long run. Time plots 
show that these series are roughly horizontal 
(although some cyclical processes are possible), with 
constant variance. 

An autoregressive model uses lagged target 
values as predictors in the regression. An 
autoregressive model of order p can be written as: 

 
𝑦 = 𝑐 +  𝜙 𝑦 +  𝜙 𝑦 + ⋯ +

 𝜙 𝑦 +  𝜀   (5) 

 
Instead of using past values of the forecast 

variable in the regression, the moving average model 
uses past forecast errors in the regression model. 

 
𝑦 = 𝑐 +  𝜀 +  𝜃 𝜀 +  𝜃 𝜀 + ⋯ +

 𝜃 𝜀   (6) 

 
where εt – white noise. 

These two approaches can be combined into one 
system, which has been subsequently extended to 
cover seasonality and additional regressors. It should 
be noted that the time series should be stationary to 
satisfy the underlying assumptions of the model. As 
a rule, if the first difference in the time series is 
taken, it becomes stationary. 

The stationarity of the time series was tested 
using the Augmented Dickey-Fuller test examining 
the value of the coefficient α in the first-order 
autoregressive equation: 
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𝑦 =  𝛼 ∗  𝑦 +  𝜀  (7) 

 
where yt – the time series, εt – error. 

If α = 1, the process has a unit root, in which 
case the yt series is non-stationary. 

If |α| < 1, the series is stationary. 
Since the process can be a higher order 

autoregression, we add lags of the first differences 
and obtain the following test model: 

 
∆𝑦 = (𝑎 +  𝑎 − 1)𝑦 −  𝑎 ∆𝑦 + 𝜀   (8) 

 
If the resulting time series has one unit root, then 

the first differences are stationary by definition. 
Before the Augmented Dickey-Fuller test, we 

condense our data by removing the trend from it and 
then re-center the time series by giving it an average 
value of zero. The test delivers a p-value: if p < 0.05, 
the time series probably returns to the mean (i.e., it 
is stationary), whereas p > 0.05 gives no such 
indication since the null hypothesis cannot be 
rejected. When a time series returns to the mean, it 
tends to return to its long-term average. In turn, if the 
time series does not return to its mean value, it can 
shift and never come back to its average. In the latter 
case, the considered time series is non-stationary. 

Testing of the time series for autocorrelations is 
performed using the Ljung-Box test, which is well 
suited for time series of short length (as in our case) 
and also provides a p-value. 

 

𝑄 = 𝑛(𝑛 + 2)
�̂�

𝑛 − 𝑘
 (9) 

 
where n – the number of observations, �̂�  – 
autocorrelation of the k-th order, and m – the number 
of lags tested. 

The Ljung-Box test was applied to the residuals 
of the resulting ARIMA model. 

 
4. RESULTS 
 
4.1 Analysis of Mauna-Loa CO2 Emissions in 

1958-2018 
First, we analyze data on CO2 emissions by the 

Mauna Loa volcano for observation from 1958 to 
2018, which are used to train the model. For this 
purpose, we present the available data, selected over 
equal time intervals, in our case – a month, which 
will be the frequency of the argument. The results 
are given in Figure 1. 

 

 
Figure 1: Data on CO2 Emissions for 1958-2018 as a Time Series 

The x-axis is time periods, the y-axis is CO2 emissions. 
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The obtained time series demonstrates an 
upward trend and is stationary. 

 
4.2 Forecast of Mauna-Loa CO2 Emissions in 

2019-2021 
Now we shall make forecasts using the ARIMA 

model, which is applied to the training period of 

1958-2018. From the results obtained, we select the 
version of the model with the lowest Akaike 
Information Criterion (AIC). In our case, this is the 
model ARIMA (2,1,1), AIC = 1500.625. This model 
is used to make forecasts for 36 months ahead, i.e., 
2019-2021. The results are presented in Figure 2. 

 

 
Figure 2: CO2 Emissions Forecast for 2019-2021, Mauna Loa 

Dark blue indicates projected data, and light blue indicates the confidence interval. 

 
Judging by the visualization of the model given 

in Figure 3, the forecast data are quite consistent with 
those of the training period and do not fall outside 
the confidence interval. 

 

 
Figure 3: Actual (A) and Predicted (B) CO2 Emissions from the Mauna Loa Volcano in 1958-2021 

 
The Liung-Box test (179.73) and p-value (2.2e-

16 in scientific notation) give reason to reject the null 
hypothesis and confirm the hypothesis that the 
model chosen for forecasting is correct. 
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Figure 4: Analysis of Residuals in the Forecast Model of CO2 Emission by the Mauna Loa Volcano, 2019-2021 

 
Data in Figure 4 indicate that the residuals of the 

proposed time series forecast model are close to the 
normal distribution and are seasonal, although much 
of them fall outside of the confidence interval. No 
volatility clusters are detected. The residuals are 
rather symmetrical. The P-value in the Ljung-Box 
test is low, which means that the inconsistencies 
have patterns, i.e. not all of the information is 
extracted by the model. The autocorrelation function 
shows significant autocorrelations between the 
residuals. 

 
4.3 Analysis of CO2 Emissions in Germany, 
France, and Italy in 1990-2016 

Below we shall analyze and predict 
anthropogenically generated CO2 emissions in 
European countries. For this purpose, we employ the 
methods described above. To do this, data on CO2 
emissions are converted into time series (Figures 5-
7). The period between 1990 and 2016 is used for 
model training and the forecast is made for 2017-
2018. 
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Figure 5: Time Series Data on CO2 Emissions from 1990 to 2016 in Germany 

 
Augmented Dickey-Fuller Test for Germany: 
Dickey-Fuller = -3.0497, Lag order = 2 
p-value = 0.1717 
Alternative hypothesis: stationary 

Since the p-value is above 0.05, the null 
hypothesis cannot be rejected, which means that the 
time series is non-stationary (has some time-
dependent structure and does not have a constant 
variance over time). 

 

 
Figure 6: Time Series Data on CO2 Emissions from 1990 to 2016 in France 
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Augmented Dickey-Fuller Test for France: 
Dickey-Fuller = -0.86131, Lag order = 2 
p-value = 0.9414 
Alternative hypothesis: stationary 

Since the p-value is above 0.05, the null 
hypothesis cannot be rejected, which means that the 
time series is non-stationary (has some time-
dependent structure and does not have a constant 
variance over time). 

 

 
Figure 7: Time Series Data on CO2 Emissions from 1990 to 2016 in Italy 

 
Augmented Dickey-Fuller Test for Italy: 
Dickey-Fuller = -0.72133, Lag order = 2 
p-value = 0.9568 
Alternative hypothesis: stationary 
Since the p-value is above 0.05, the null 

hypothesis cannot be rejected, which means that the 
time series is non-stationary (has some time-
dependent structure and does not have a constant 
variance over time). 

The curves characterizing CO2 emissions in the 
three European countries in 1990-2016 give 

evidence that the time series models for them do not 
have a seasonal pattern and that the series themselves 
are not stationary. To bring the obtained time series 
to the stationary version, we differentiate the original 
series twice using the autoregression process, i.e. the 
moving average orders p, d, q – ARIMA. 

A preliminary analysis of the data on CO2 
emissions is conducted to build a forecasting model 
based on ARIMA. 

 

 

Figure 8: Box Plots for CO2 Emissions in Germany, France, and Italy in 1990-2016 
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Figure 8 gives box plots for total CO2 emissions 
in the considered countries in the testing period. The 
values of outliers are quite diverse (the value of CO2 
emissions in Italy has statistical outliers that fall 
outside the rest of the data, while analysis on 
Germany and France reveals no outliers), which 
allows testing the model on heterogeneous material. 

 
4.4 Forecast of CO2 Emissions in Germany, 
France, and Italy for 2017-2018 

Below we provide forecasts of CO2 emissions 
based on the ARIMA model for Germany, France, 
and Italy for 2017-2018. 

 

 
Figure 9: CO2 Emissions Forecast for 2017-2018, Germany.  

Dark blue indicates projected data, and light blue indicates the confidence interval. 

 
The Liung-Box test for the forecast of CO2 

emissions in Germany in 2017-2018 (10.489) and p-
value (0.03295) disprove the null hypothesis and 

confirm the hypothesis that the model chosen for 
forecasting is correct. 
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Figure 10: Analysis of Residuals in the CO2 Emission Forecast Model, Germany, 2017-2018 

 
Figure 10 demonstrates that the residuals of the 

proposed ARIMA time series model for Germany in 
2017-2018 show a seasonal pattern, lie within the 

normal distribution, and have no autocorrelation. 
Standardized residuals do not reveal volatility 
clusters. 

 

 
Figure 11: CO2 Emissions Forecast for 2017-2018, France 

Dark blue indicates projected data, and light blue indicates the confidence interval. 
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The Liung-Box test for the forecast of CO2 

emissions in France in 2017-2018 (11.208) and p-
value (0.0474) indicate that the null hypothesis is 

incorrect and prove the hypothesis that the model 
chosen for forecasting is correct. 

 

 
Figure 12: Analysis of Residuals in the CO2 Emission Forecast Model, France, 2017-2018 

 
The data presented in Figure 12 indicate that the 

residuals of the proposed ARIMA time series 
forecast model for France in 2017-2018 are close to 

the normal distribution and have a seasonal pattern, 
but some of them are outside the confidence interval 
and there is no autocorrelation between them. 
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Figure 13: CO2 Emissions Forecast for 2017-2018, Italy 

Dark blue indicates projected data, and light blue indicates the confidence interval. 

 
The Liung-Box test for the forecast of CO2 

emissions in Italy in 2017-2018 amounts to 7.096. 
However, the p-value for the period of the forecast 

(0.1309) prevents us from rejecting the null 
hypothesis and confirming the proposed hypothesis 
stating that the selected forecast model is correct. 

 

 
Figure 14: Analysis of Residuals in the CO2 Emission Forecast Model, Italy, 2017-2018 
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The data reported in Figure 14 demonstrate that 
the residuals of the proposed ARIMA time series 
prediction model for Italy in 2017-2018 are far from 
the normal distribution, have a seasonal pattern, and 
stay within the confidence interval in the specified 
period. There are no autocorrelations between model 
residuals, and the p-value in the Ljung-Box test for 
Italy has a larger value than in similar tests for 
Germany and France, which makes it more likely 
that all information has been extracted by the model 
leaving only noise. 

 
5. DISCUSSION 
 

The ARIMA methodology is a statistical 
method for analyzing and building a forecasting 
model that best represents a time series by modeling 
correlations in the data [33]. 

According to the researchers [34], the main 
advantage of the ARIMA model for forecasting 
emissions of CO2 is its ability to capture both short-
term and long-term patterns in the data, including 
seasonal fluctuations, trend, and irregular 
fluctuations, in particular, volcanic eruptions. This is 
achieved by incorporating autoregressive and 
moving average components, as well as differencing 
to account for non-stationarity [35].  

As in the study [36], the authors conclude that 
another advantage of the ARIMA model is its 
flexibility in handling data with missing values or 
irregular time intervals. It can also be used to model 
non-linear relationships between CO2 emissions and 
other factors, such as economic activity or energy 
consumption [37]. 

Compared to other models, such as exponential 
smoothing [35] or state-space models [38], the 
ARIMA model has the advantage of being well-
established and widely used in time series analysis 
[39]. According to research [40] it also provides a 
straightforward and interpretable framework for 
understanding the underlying patterns in the data. 

The study investigated the hypothesis of the 
applicability of the ARIMA model for time series 
analysis and forecasting. We used data on monthly 
average CO2 emissions from the Mauna Loa 
volcano for 1958-2018 (natural factors) and on 
annual CO2 emissions in Germany, France, and Italy 
for 1990-2016 (anthropogenic/technogenic factors). 

The authors of the article believe that in order to 
improve the ARMA model, it can be extended to 
include exogenous variables, such as economic 
indicators, weather data, or policy changes, that may 
influence the behavior of the variable being 
analyzed. The inclusion of exogenous variables can 
affect the predictive power of the model and its 

ability to capture the complex relationships between 
variables.  

The Augmented Dickey-Fuller test indicates 
that the time series of the Mauna Loa volcano 
emissions are stationary, while the anthropogenic 
emissions in the considered European countries are 
non-stationary. 

Using the Mauna Loa volcano's CO2 emissions 
data from 1959-2018 as the training period for the 
model, we plotted a forecast of CO2 emissions for 
2019-2021. The forecast suggests that CO2 
emissions into the atmosphere will increase. The p-
value for this prediction is less than 0.05, which 
gives reason to reject the null hypothesis and 
confirms sufficient reliability of the capabilities of 
our model. The model residuals show patterns, 
meaning that not all the information has been 
extracted by our model; there are significant 
autocorrelations between the model residuals. 

Based on data on CO2 emissions in Germany, 
France, and Italy in 1990-2016 (the model's training 
period), we built a forecast of CO2 emissions in 
these countries for 2017-2018. Testing of the 
obtained forecast data proves the proposed model to 
be usable for Germany and France, while for Italy 
the null hypothesis could not be rejected. This can be 
explained by the fact that the residuals of the 
ARIMA model for Italy are the least symmetrical, 
and the data on CO2 emissions in this country for the 
analyzed period have statistical outliers. 

The study's limitations relate primarily to the 
fact that the ARIMA model is better suited for 
capturing short-term patterns in the data, such as 
seasonality or cyclicality, rather than long-term 
trends. For this reason, further research may need to 
consider alternative models, such as trend models or 
structural time series models, if they are interested in 
modeling long-term trends in CO2 emissions. 

 
6. CONCLUSION 
 

CO2 emissions generated by natural sources are 
expected to increase. The resulting model provides 
us with the corresponding prediction. However, this 
model (like any other model) is powerless to predict 
the explosive growth of CO2 emissions resulting 
from volcanic eruptions, as happened with the 
Mauna Loa volcano in mid-December 2022. 

The use of ARIMA models has become more 
relevant in the context of climate change and the 
need for accurate and reliable emissions forecasts. 
ARIMA models could help to anticipate future 
emissions in the energy sector and develop strategies 
to mitigate the negative impacts of climate change.  
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Considering technogenic emissions, all three 
time series describing the dynamics of CO2 
emissions in Germany, France, and Italy show a 
trend of decreasing CO2 emissions, both in the test 
period and in the forecast period. It appears 
expedient to conduct a further study of the dynamics 
of CO2 emissions in European countries. This 
suggestion is based on our expectations that 
emissions will decrease in 2022 owing not to the 
EU's effective environmental policy, but to the high 
prices of hydrocarbon raw materials for the industry 
due to the sanctions policy against Russia. Another 
reason for the decrease in CO2 emissions in the near 
future will be the relocation of industrial production 
from European countries to the United States. We 
believe that research into the reduction of CO2 
emissions in some countries should be tied in with 
the study of the increase in such emissions in other 
countries of the world. Otherwise, it will be 
impossible to formulate credible arguments in 
defense of declarations about the effectiveness of 
proposed environmental measures in a single state or 
region. 

We also argue that our results support the 
hypothesis that ARIMA models give the best results 
in forecasts for stationary time series. Non-stationary 
time series require additional model adjustments, for 
instance, elimination of seasonality, removal of the 
trend and insignificant coefficients from the 
ARIMA, change of the confidence interval, etc., 
which will increase the predictive capabilities of the 
proposed model. By providing a robust and flexible 
framework for time series analysis, the ARIMA 
model can enable researchers and policymakers to 
better understand the dynamics of CO2 emissions 
and make more informed decisions. 

Overall, the novelty of using the ARIMA model 
lies in its ability to capture the complexity of CO2 
emissions data caused by natural and man-made 
factors, and to provide accurate and reliable forecasts 
that can inform policy decisions 
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