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ABSTRACT 
 

Design Pattern Recovery is the process of detecting and retrieving pre-existing design patterns inherent in a 
software application, which entails a comprehensive investigation of the software and its source code, as well 
as its dependencies. However, this process can be both time-consuming and resource-intensive. Moreover, 
the automation of this process poses a significant challenge, demanding a profound understanding of the 
system's design goals and dependencies that are context-based. Furthermore, the absence of standardization, 
and the potential for ambiguity arising from the multitude of implementations of a specific design pattern 
further complicates the automation process. In this work, we investigate a new perspective on the problem of 
Design Pattern Recovery by framing it in terms of visual signatures and continuous-time signals. The 
resulting visual signatures and signals capture the key features of general Object-Oriented codes and well-
defined design pattern micro-architectures in a language-agnostic manner, serving as an intermediary 
transformation prior to the recovery phase and facilitating the identification of predefined design pattern 
signatures in the target code. Consequently, a twofold opportunity for the retrieval of potential design 
information from code is provided. This is manifested in the form of a feature-rich visual signature, which 
encapsulates the structural, communicational, and behavioral facets of the analyzed source code. The 
utilization of such visual signatures may serve as a facilitator for the straightforward  application of state-of-
the-art pattern recognition techniques in automated design pattern identification. Additionally, the features 
are also expressed as a scale-invariant continuous-time signal, thereby enabling the effective deployment of 
signal classification techniques for design pattern mining. 

Keywords: Design Pattern Recovery, Pattern Recognition, Visual Signatures, Continuous Time-Signals, 
Signal Processing. 

 
1. INTRODUCTION  
 

The domain of software engineering 
encompasses a wide range of techniques that have 
been developed to optimize, control, and test various 
stages of software development, well studied design 
patterns [1] are  an effective tool to build high-
quality object-oriented software and producing 
coherent source codes, These patterns enable 
developers to create an abstract representation of 
real-world problems using objects, In addition, 
developers may use a combination of these patterns 
to achieve their desired outcome, undergoing 
multiple development iterations to build all required 
features, however, as the software development 
iterations become more complex and rigorous, the 
final product gains increased robustness, but its 
source code and architecture may become difficult to 
comprehend, therefore, without adequate 

documentation and source code explanations, a 
software piece built with complex techniques and 
architectures may become obsolete and 
unmaintained. 

One problem to address in this context is 
whether it is possible to reverse-engineer a 
software’s source code to recover the design pattern 
employed in its development, in other words, can we 
discern the design pattern that the developers had in 
mind during the development process? Recovering 
the design pattern underlying a source code is crucial 
for understanding its architecture and addressing 
potential issues with it. While manual approaches 
based on the product’s documentation may be 
effective for this purpose, such an endeavor may be 
time-consuming and labor-intensive when the source 
code becomes longer and has multiple dependencies. 
Moreover, conventional approaches to automating 
the process may not be sufficient on their own to 
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effectively address the challenges posed by this 
problem. One of these challenges is the complexity 
of design patterns themselves, which often involve 
multiple classes and relationships that can be 
difficult to discern and comprehend. Moreover, a 
significant challenge lies in the absence of 
standardization and uniformity in the definition and 
representation of the existing design patterns. This 
leads to disparities in the implementation of similar 
patterns across different codebases, resulting in 
difficulties with precisely identifying and extracting 
them from the code. Additionally, the lack of ground 
truth data may impede the assessment of the 
accuracy and dependability of the extracted patterns. 
Furthermore, the application of machine learning 
and artificial intelligence techniques to automate the 
process of design pattern recovery can introduce 
novel sources of inaccuracies and biases, which can 
further complicate the process and impact the 
accuracy of detecting the patterns, particularly if the 
components of the problem are not properly 
conditioned beforehand. 

To overcome some of these challenges, one 
of the crucial impediment in the realm of automating 
the design pattern recovery process, is the need to 
appropriately frame the problem such that it can be 
effectively tackled by machine learning algorithms  
ensuring robustness and scalability. This would 
allow design pattern recovery methods to capitalize 
on the recent advancements in the field of machine 
learning, particularly in the areas of pattern 
recognition and computer vision. This would enable 
computers to assist in the software design recovery 
phase, which has traditionally been the exclusive 
domain of human developers due to their ability to 
handle abstract concepts and comprehend innovative 
ideas. The central hypothesis of our work suggests 
that, by developing the appropriate intermediate 
representation, the problem of design pattern 
recovery from code can be framed as a pattern 
recognition and signal processing problems. This 
transformation facilitates the utilization of these 
novel techniques to enrich and enhance the efficacy 
of existing methods for addressing this task. 

To examine our hypothesis, we present a 
novel approach for generating visual signatures of 
well-defined design patterns [1], the generated 
signatures identify and characterize the key elements 
of the code's architecture, such as abstract classes, 
inheritance relationships, static and class methods, 
as well as the interactions among these elements. 
Our method transforms the problem of design 
pattern recovery into pattern recognition and signal 
processing problems by generating an intermediate 

representation that is easily amenable to further 
analysis and interpretation by state-of-the-art 
machine learning models and signal processing 
techniques (Figure 1) to extract valuable information 
about the predefined design patterns micro 
architectures, which is extremely useful to detect 
those design patterns in complex source codes. 

 

 

Figure 1: Transforming The Design Recovery Problem 
Into A Pattern Recognition Problem By Generating 

Images Of Visual Signatures, And Into A Signal 
Processing Problem By Generating Continuous-Time 

Signals. 

Additionally, Our method generates visual 
signatures that can be used to train supervised 
machine learning algorithms to detect similar design 
patterns in any source code built using the object-
oriented programming paradigm. These generated 
signatures can also be utilized mathematically to 
easily analyze the source code using signal 
processing tools, enabling the detection of 
underlying design patterns. In section 2, previous 
studies are summarized and contextualized in order 
to provide a basis for our proposed approach. The 
unique aspects of our work are also highlighted in 
comparison to previous approaches. Section 3 
introduces the general constructs, the mathematical 
tools and the transformation process used to generate 
the continuous-time signals and visual signatures. 
Section 4 introduces the experimental settings to 
generate a number of signals and visual signatures of 
well-defined design patterns micro architectures and 
discuss their properties and how they encode the 
unique features of their corresponding micro 
architectures. Section 5 concludes our experimental 
study and presents future work. 

2. . RELATED WORK 

The aim of this section is to furnish a 
contextual framework for our proposed approach to 
examine the task of design pattern recovery from a 
different perspective. Previous studies have 
investigated a range of techniques for this task, 
including machine learning, graph exploration, 
logical inference, metamodeling methods, and 
metrics-based methods. Many of these approaches 
involve the transformation of elements of the 
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problem into an intermediate representation as a 
necessary step in the identification of patterns. This 
transformation is essential in providing suitable 
input for the identification process. This section 
classifies these transformation techniques into three 
categories based on their purpose and then discusses 
the distinctiveness of our approach in comparison to 
prior studies, as well as its contribution to the 
expanding knowledge base within the field. 

2.1 Intermediate transformations for Machine 
Learning-Based recovery methods 

Recently, [2] utilized a word-space model 
of Java files as an intermediate transformation by 
implementing the Word2Vec algorithm based on the 
syntactic and lexical representation (SSLR) of the 
Java source code. This process involves the creation 
of a call graph and the extraction of 15 source code 
features, after which a supervised machine learning 
classifier is utilized to identify patterns within the 
Java files. In [3] candidates identified by the 
Columbus matching algorithm [4] are labeled as true 
or false instances and their predictors are calculated. 
These values are then provided to a learning system, 
consisting of a decision tree-based method and a 
neural network, to generate a model that 
incorporates this acquired knowledge. This model 
can then be applied for pattern mining in unknown 
systems. A alternative approach for generating an 
intermediate representation for detecting design 
patterns within a source code is presented in [5], in 
their work, a parser is utilized to analyze the source 
code, extracts information, and preserves it in a 
metamodel. This metamodel represents each 
element in the source, including attributes, methods, 
classes, interfaces, and packages, and the 
hierarchical relationships between these elements, 
the extracted information is then used to generate a 
knowledge base in the form of Prolog facts, which 
are used in the pattern inference process. Another 
practical approach to encode both the structural and 
behavioral aspects of design patterns in the 
intermediate representation is introduced by [6], they 
use a combination of traditional predicate logic and 
Allen's interval-based temporal logic as their 
theoretical foundation. This combination is used to 
process formal specifications of each pattern, which 
have been converted into Prolog representations. 
Consequently, the use of logical inference allows for 
the recovery of both complete and partial patterns. 

2.2 Intermediate transformations for Graph-
Based  recovery methods 

Graphs exploration techniques have also 
been employed to address the problem at hand. 
These techniques involve the conversion of the 

problem into a graph-based analysis and 
manipulation task in order to discern patterns, [7] 
aims to detect commonly occurring sub-patterns 
within design pattern instances by transforming the 
source code and predefined design patterns into 
graphs, with classes as nodes and relationships as 
edges. Sub-pattern instances are identified through 
subgraph discovery and merged based on shared 
classes to determine if they match a predefined 
design pattern, moreover, the behavioral 
characteristics of method invocations are also 
compared to predefined method signature templates 
to identify final pattern instances. Adhering to the 
same transformation approach, the problem is also 
represented using graphs and matrices in [8], and a 
graph matching algorithm is employed to infer 
patterns directly from the graphs, It is stated that the 
properties of the chosen graph algorithm enable the 
method to recognize modified design patterns and 
leverage the presence of patterns in inheritance 
hierarchies to reduce the size of the analyzed graphs. 
Analogously, Polymorphism is also utilized in [9] to 
minimize the number of pattern definitions and the 
design recovery task is also conceptualized as a 
graph-based problem, however, the source code is 
transformed through the following process: it is first 
parsed into an abstract syntax graph (ASG) and 
analyzed using graph rewrite rules that annotate sub-
graphs of the ASG. The parsing of source code is 
also performed in order to generate a rudimentary 
UML class diagram. Annotation objects are then 
introduced to the ASG to store information regarding 
the identified patterns and serve as the starting points 
for pattern searches. Finally, an inference engine 
based on Generic Fuzzy Reasoning Nets (GFRN) is 
utilized to recover design patterns and cliches in the 
legacy code. [10] employs a slightly different 
method for identifying design patterns in a program 
by comparing it to a "design motif," which can be 
thought of as a model or template of a design pattern. 
Nevertheless, the process involves converting the 
program and design motif into strings, represented as 
digraphs (graphs with directed edges), and then 
using a bit-vector algorithm to compare the strings 
and identify occurrences of the design motif in the 
code of the program. 

2.3 Other intermediate Transformations 
techniques 

Furthermore, Metamodeling, and other 
abstract modeling techniques have also been used to 
facilitate the task of pattern recovery, [11] 
demonstrates the ability to reason at a meta level 
about the structure of object-oriented source code in 
a language-independent manner, to accomplish this, 
they introduce a meta-level interface to extract 
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detailed information about the structure of the source 
code.  It is stated that the validity of this approach is 
demonstrated through the definition of a set of logic 
queries to detect object-oriented best practice 
patterns and design patterns in two distinct 
programming languages: Smalltalk and Java. [12] 
define a metamodel called Pattern and Abstract-level 
Description Language (PADL) to express the 
elements of the problem, which can be extended 
through inheritance. Then they use explanation-
based constraint programming and constraint 
relaxation to identify microarchitectures that are 
similar to modeled design motifs, and it ensures 
traceability between the implementation and design 
by using the same language to describe different 
layers of the model and explicitly recording the set 
of lower-level elements that led to the existence of 
more abstract elements. Moreover, [13] employ the 
Sparx Systems Enterprise Architect (EA) modeling 
tool, EA is capable of reverse engineering source 
code from various programming languages, and 
creates an intermediate representation of the code in 
various form ats such as a database model, XML 
model, and class model. The authors utilize SQL 
queries to extract information about software 
artifacts from the intermediate representation. 
However, they find that the intermediate 
representation is not complete and must apply 
regular expressions to selected parts of the source 
code in order to extract additional information. It is 
stated that the authors successfully recover design 
patterns from mobile games with high accuracy, but 
they acknowledge that regular expressions have 
limitations in extracting nested information and plan 
to develop source code parsers in the future to 
address this issue. Additionally, other approaches 
have been utilized to model the problem, [14] 
propose an approach for identifying design patterns 
in object-oriented systems by analyzing an 
intermediate representation of the system in XMI 
format. The approach consists of three phases: 
structural analysis, which focuses on the system's 
structural characteristics such as classes and their 
relationships; behavioral analysis, which verifies the 
results of the structural analysis and may check back 
into the source code to eliminate false positives; and 
semantic analysis, which utilizes naming 
conventions and role information to distinguish 
between design pattern instances that have the same 
structural and behavioral characteristics. The 
approach has been automated in a tool called DP-
Miner, which allows users to generate XMI input 
from existing tools. In [15] candidate design patterns 
are identified based on class diagram information 
obtained during the preliminary analysis using a 

visual language parsing technique, then, these 
candidates are validated through a fine-grained 
source code analysis. The approach has been 
implemented to recover Adapter, Bridge, Proxy, 
Façade, Composite, and Decorator patterns and has 
been tested on six public-domain programs and 
libraries using a design pattern recovery 
environment tool. [16] presents a Multiple Levels 
Detection Approach (MLDA) for recovering design 
pattern instances from Java source code. MLDA 
utilizes a Structural Search Model (SSM) to 
incrementally build the structure of design patterns 
based on a generated class-level representation of the 
system being investigated. Additionally, MLDA 
employs a rule-based approach to match the method 
signatures of candidate design instances to those in 
the subject system. [17] utilizes regular expressions, 
SQL queries, and annotations to extract relationships 
from legacy applications and source code models. 
The approach involves manually annotating the 
source code, reverse engineering the source code 
using an EA tool to obtain a model, defining pattern 
features through the definition of each pattern, 
translating the features into rules and searching for 
the desired pattern using SQL queries and regular 
expressions. Alternatively, [18] propose the use of 
the software metrics and a machine learning 
algorithm to experimentally fingerprint classes 
playing roles in design motifs in order to resolve the 
challenge of difficulty of identifying micro-
architectures similar to these design motifs due to the 
large number of possible combinations of classes. 

Our approach to generating an intermediate 
representation of the problem is distinguished by its 
ability to incorporate a new set of techniques for 
addressing the problem of design pattern recovery. 
Additionally, it offers a foundation upon which a 
decision support systems can be built. This is 
achieved through the generation of a dual dependent 
intermediate representation in the form of 
continuous-time signals and pattern images of the 
source code, as well as well-defined design pattern 
micro architectures. These facilitate the systematic 
classification of the structural elements of the 
problem using mathematical tools such as Fourier 
transformation, wavelet analysis and state-of-the-art 
machine learning classifiers. Meanwhile, the 
dynamic aspects of object-oriented architecture can 
be analyzed and predicted using time series 
prediction and regression techniques. The inclusion 
of time series analysis has the potential to inform the 
development of decision support systems that assist 
developers in refining their architectures based on 
previous examples of successful design decisions 
and best practices. 
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3. GENERAL CONSTRUCTS & PROBLEM 
TRANSFORMATION  

 
3.1 Design patterns description 
3.1.1 UML representation 

In general, design patterns are depicted 
using UML diagrams, which present a template of 
the design that can be adapted to address a specific 
problem. These diagrams depict all relevant classes, 
including their types, attributes, and methods, as 
well as the relationships between these classes (an 
example is depicted in Figure 2). These relationships 
define how the elements of the design are related 
with one another when implemented to solve a given 
problem. 

 
Figure 2: UML Representation Of The Strategy Design 

Pattern Micro Architecture. 

3.1.2 Call graph representation 
The call graph is a visual representation of 

the execution of the source code implementing the 
design pattern, which illustrates the chronological 
order in which the objects of the design interact with 
one another through method calls. It also provides 
information about the specific methods being called 
and the duration of each call. The call graph is 
generated through the execution of the source code 
and serves as a useful tool for understanding and 
analyzing the behavior of the design pattern. 

 
Figure 3: The Call Graph Generated From The Python 
Implementation Of The Strategy Design Pattern Micro 

Architecture Described In Figure 2. 

The execution of a Python source code 
implementing the Strategy design pattern that is 

depicted in Figure 2 results in a series of calls, which 
are logged in the figure 3. The primary routine, 
“main”, initiates the call graph by invoking various 
methods of the Context class. From there, the 
Context class communicates with 
ConcreteStrategyA, ConcreteStrategyB, and 
ConcreteStrategyC in order to complete the 
processing. It is worth noting that the call graph also 
records the number of times each class method is 
called during the execution. 

3.2 Combining UML diagrams, call graph logs 
and code keywords into a time-continuous 
signal spike 

Our goal is to thoroughly integrate UML 
diagrams and call graph representations in order to 
fully encode the behavioral and structural aspects of 
a well-defined design pattern implementation into a 
continuous-time signal spikes, the generated signal 
is used later to generate a pattern image carrying the 
same amount of information previously provided by 
both of the diagrams. However, we opt to extract 
certain information including whether a method 
belongs to the static category or serves as a 
constructor for a specific object or a super 
constructor, through analysis of the code utilizing 
the specialized terms offered by the programming 
language to classify class methods, in Figure 4 we 
have summarized our approach of combining the 
data from the different sources. Moreover, we 
introduce a time dimension component to our signal 
which encodes the behavioral aspect of the code 
design by exploiting the call graph chronological 
nature, this makes the spikes in our generated signal 
occur in same order as the calls depicted in the 
correspondent call graph. 

 The frequency of each spike in the 
generated signal is used to encode the identities of 
the caller and the callee objects in a one-to-one 
reversible manner,  this creates a permanent bond 
between every pair of objects in the call graph log 
and their correspondent signal spike, facilitating the 
ability of any future decision support system to 
target objects identities in its optimization processes. 
Finally, the amplitude of each spike of the signal 
encodes the structural information of the code 
design, to do that, we mine the source code keywords 
and decorators to determine the type of the class 
method used by the caller object to communicate 
with the callee object, then we determine the 
amplitude of the spike accordingly. It is noteworthy 
to mention that if the caller-callee pair of objects 
define an inheritance  or abstraction relationship and 
the constructor method of the callee object is being 
used by the caller object implicitly or explicitly, this 
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results in an additional spike in the signal. This 
information is obtained by checking the UML 
diagram. 

 
 

Figure 4: Gathering All Needed Information From The 
Three Sources : Source Code, Call Graph And UML 
Class Diagram, Then A Transformation Process Is 

Applied To Obtain A Continuous-Time Signal. 

3.3 Problem transformation 
As the final output of our transformation 

process is a time-continuous signal, we first need to 
model the signal components with respect to the 
previous information that we have obtained from 
combining the call graph logs and UML diagram 
representations in addition to the data from the 
code’s keyword-based extraction process as 
described in section 3.2, to do that, we attribute a 
frequency 𝑓௜   to each class 𝑐௜  of the UML diagram, 
such as 𝑓௜  ∈  ℕ is unique for every element in the 
class space  𝜉 of the UML diagram. 

 𝐴௝ is the amplitude of the signal spike with 
respect to its correspondent call j ∈ Ω where Ω 
represents the whole call graph log. 𝐴௝ is defined to 
be a member of a predefined set 𝜒, where each 
element of 𝜒 is a pair of the form ( 𝜇௞, 𝜈௞), such as 
𝜈௞ ∈ ℝ∗ which represents the numerical value of 
amplitude. The variable  𝜇௞ represents the 
classification of the information conveyed by the call 
j, for the purposes of simplicity, we refer to the value 
of 𝜇௞ as the “Objective of the call” throughout the 
remainder of this paper. The possible values of 𝜇௞ 

that were investigated within the context of this 
research are listed in Table 1. 
 
     Table 1: List Of The 𝜇௞ Values Or “Objectives Of The 

Call”. 

𝛍𝐤 “Objectives of the call” 
𝜇ଵ Interface implementation 
𝜇ଷ Inheritance 
𝜇ସ Object constructor call 

𝜇ହ Getter or Setter method call 
𝜇଺ General processing method call 
𝜇଻ Cloning method call 
𝜇଼ Static method call 

 
In the context of the call graph diagram, a 

call j is typically characterized by three components: 
the caller, the callee, and the calling method. The 
caller is the object that initiates the call, while the 
callee is the object being called. The calling method 
is the class method utilized by the caller to facilitate 
communication with the callee. This calling method 
is contextualized and categorized by our 
transformation process to be represented by the 
variable 𝜇௞ as the “Objective of the call”. All the 
calls depicted in the call graph diagram are encoded 
using this structure of three components and logged 
in Ω following the same chronological order as 
shown in the diagram. Figure 5 illustrates the logged 
structure of the call and highlights the location of the 
𝜇௞ variable within the structure. Consequently,  upon 
determining the value 𝜇௞  we can utilize 𝜒 to access 
the amplitude value of the corresponding signal 
spike. 

 

Figure 5:  Each Call Is A Signal Spike With A Specific 
Frequency Obtained By Combining The Frequencies Of 

'Caller Object',  'Callee Object', And A Specific 
Amplitude Defined By The Objectives Of The Call Set. 

Finally, the frequency 𝑓௝ of one call  j ∈ Ω  
is obtained by combining both of the frequencies of 
the caller and the callee objects objects in a one-to-
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one reversible manner. In section 3.3.2 we present 
the detailed calculation of 𝑓௝. Meanwhile we 
summarized the problem transformation elements in 
Figure 6. 

 
Figure 6: Mapping The Call Graph Log Components 

With A Continuous-Time Signal Components 

3.3.1 Mathematical modelling & calculation of  
the signal spikes components 
To generate time-continuous spikes for our 

signal we adopt a generic form of the sinusoidal 
wave function (1) defined on ℝ∗, then we 
parameterize it to fit our previous constraints with 
regards to the frequency and amplitude definitions. 
 

𝑆௝(𝑡) = 𝐴௝ sin ቀ𝛼௝൫𝑡 − 𝛽௝൯ቁ               (1) 
Such as  j ∈ Ω, 𝑡 ∈ ℝ∗ 

 
𝑆௝ defines the signal spike of one call  j ∈ Ω, 𝐴௝ is the 
amplitude of the spike. 𝛼௝, 𝛽௝ are numerical 
parameters that are determined by the frequencies of 
the caller and callee objects, as well as the initial 
conditions of the equation. A call j is modelled by a 
spike with a period 𝑇௝ of the signal over a continuous 
interval of time [𝑡௛, 𝑡௛ାଵ], ℎ ∈  ℕ, such as : 
 

                    |𝑡௛ାଵ −  𝑡௛ | =  𝑓௝  = 
ଵ

்ೕ
                     (2) 

 
We have selected the constraint (2), because it 
ensures that the spike reaches its maximum value  
when t = t୫ such as  : 
 
            max

௧∈[௧೓,௧೓శభ]
𝑆௝(𝑡)  = 𝑆௝(𝑡௠) = 𝐴௝                (3) 

 
In order to fit the general form of sinusoidal curve,  
𝑡௠ must be exactly in the middle of the time interval 
[𝑡௛, 𝑡௛ାଵ]: 

                               𝑡௠ =   𝑡௛+  
௙ೕ

ଶ
                                (4)                      

 
Consequently, 𝛼௝, 𝛽௝ are obtained by solving three 
equations using the coordinates (𝑡௛,0), (𝑡௠,𝐴௝), and 

(𝑡௛ାଵ,0) to fit the sinusoidal curve form in the time 
interval [𝑡௛, 𝑡௛ାଵ]:  

 

  ቐ  

𝑆௝(𝑡௛) =  0

𝑆௝(𝑡௠) =  𝐴௝

𝑆௝(𝑡௛ାଵ) = 0 

   ⟺   ቐ
𝛼௝  =  

గ

௙ೕ

  𝛽௝ =  − 
௙ೕ

ଶ
+ 𝑡௠ 

         (5) 

 

By incorporating 𝛼௝, 𝛽௝ expressions, the equation (1) 
becomes: 

              𝑆௝(𝑡) = 𝐴௝ sin ቆ 
గ

௙ೕ
ቀ𝑡 +  

௙ೕ

ଶ
− 𝑡௠ቁቇ           (6) 

Such as j ∈ Ω and 𝑡 ∈ [𝑡௛, 𝑡௛ାଵ]  
 
Finally, the correspondent spike of one call j which  
has a frequency 𝑓௝  and amplitude 𝐴௝ is depicted using 
the equation (6) in Figure 7. 
 

 
Figure 7: Graph Representation Of A Call Spike From 

Equation 8. 

3.3.2 Calculation of 𝒇𝒋 
Previously, it was stated that the frequency 

𝑓௝ must encodes information about both the caller 
and callee objects, if we let 𝑓௜, 𝑓௜ାଵ denote the 
frequencies of the caller and callee objects, 
respectively, then 𝑓௝ is a function of 𝑓௜and 𝑓௜ାଵ. 
Additionally, we desire that the mapping between 
the spike and the objects involved in the call to be 
reversible one-to-one manner, so that we can 
determine which objects are responsible for a 
particular spike if necessary, for that reason we adopt 
the cantor pairing function [19] to calculate the 
frequency of the call with respect to  𝑓௜  and 𝑓௜ାଵ : 

𝐾(𝑓௜ , 𝑓௜ାଵ) =   
ଵ

ଶ
(𝑓௜ + 𝑓௜ାଵ)(𝑓௜ + 𝑓௜ାଵ + 1) + 𝑓௜ାଵ  (7) 

 
Since 𝐾(𝑓௜ , 𝑓௜ାଵ) results relatively in large natural 
numbers which will make our wave graphic 
representation inconsistent, we apply the TANH 
function on 𝐾(𝑓௜ , 𝑓௜ାଵ) in order to limit our result 
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inside the interval [0,1] and keep the one-to-one 
reversibility nature of our transformation: 
 
                          𝑓௝ = tanh( 𝐾(𝑓௜ , 𝑓௜ାଵ))                (8) 

 
3.3.3 Constitution of the signal 

To encode the full call graph log Ω into 
multiple spikes of a continuous-time signal, we 
iterate over  the calls in the log to generate the 
corresponding spikes using the equation (6). The 
union of these generated spikes forms a unified 
continuous signal 𝜓, which can be generalized using 
the following form: 
 
                      𝜓(𝑡) = ⋃ ⋃ 𝑆௝(𝑡)௛ ∈ ℕ௝ ∈ ஐ                (9) 

 
 

4. EXPERIMENTS & RESULTS 
DISCUSSION 

In this section, we begin by generating and 
examining the signals and visual signatures of three 
commonly utilized design patterns. We analyze the 
visual differences between the generated signals and 
visual signatures of the microarchitectures of these 
design patterns, and then explore how these 
intermediate representations encode the features of 
their corresponding design pattern models. Finally, 
we examine the construction of the visual signatures, 
which are presented as images, based on the 
generated signals and how they encode the same 
features as those contained in the generated signals. 
4.1 Experimental setup & materials 

In this study, we utilized a consumer laptop 
equipped with an Intel Core i7 3610QM CPU and 16 
GB RAM to execute all computational tasks. Our 
method to generate the intermediate representations 
and the analyzed design pattern architectures were 
both implemented using the Python programming 
language. The scope of our investigation into object-
oriented programming techniques was confined to 
the elements listed in the second column of  Table 1 
as “Objectives of the call”.  

4.2 Tests & results 
 Initializing the amplitude values 

To implement the signal spikes using 
equations 6 and 9, we propose the values of 𝜈௞ 
elements for the set  . As described in section 3.3, 𝜈௞ 
corresponds to the numerical values of the 
amplitudes of the signal spikes . The ( 𝜇௞ , 𝜈௞) values, 
which can be found in the third column of Table 2, 
are constant throughout all tests. 

Table 2:  Assignment Of Initial Values For The 𝜒 Set. 

𝛍𝐤 “Objectives of the call” 𝝂𝒌 
𝜇ଵ Interface implementation -2 
𝜇ଷ Inheritance -1 
𝜇ସ Object constructor call 7 

𝜇ହ Getter or Setter method call 10 
𝜇଺ General processing method call 8 
𝜇଻ Cloning method call 5 
𝜇଼ Static method call 4 

 
 The Observer design pattern 

The Observer design pattern is a behavioral 
design pattern that defines a one-to-many 
dependency between objects. It allows a subject 
object to notify a set of observer objects when its 
state changes, and the observer objects automatically 
update themselves accordingly. 

 

 
 

Figure 8: A Simplified UML Class Diagram Of The 
Observer Design Pattern. 

We implemented the simplified architecture of the 
Observer design pattern depicted in Figure 8 and 
generated its corresponding call graph diagram, 
which is illustrated in Figure 9. 
 

 
Figure 9: The Call Graph Of The Observer Design 

Pattern Micro Architecture’s Implementation. 

Additionally, we have implemented a 
routine that assigns a frequency, which is modelled 
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to the variable 𝑓௜ described in section 3.3.2, to each 
class/object of the UML class diagram and the call 
graph. In addition, the routine attributes a unique 
frequency to any object that encapsulates static 
methods and to all the interfaces and super classes of 
the architecture, it is worthy to note that all the 
interfaces and the super classes in the same 
architecture share the same frequency. The 
frequencies are listed in Table 3. Finally, we 
generated the correspond signal 𝜓 of the 
implemented design pattern architecture by 
combining the data provided by the UML class 
diagram and the call graph diagram. 
 

 
Figure 10: The Generated Signal Of The Observer 

Design Pattern Micro Architecture. 

As observed in Figure 10, the signal 
preserves the structural and behavioral 
characteristics of the corresponding architecture, the 
frequency 𝑓௝ (as defined in equation 6) of each spike 
is indicated next to the peak of its corresponding 
curve, and at the end of each spike we have indicated 
the frequencies 𝑓௜ and 𝑓௜ାଵ of the caller and callee 
objects,  respectively, which were used to calculate 
the final frequency of the spike, for the purpose of 
conducting analytics, Table 3 can be utilized to 
identify the objects present in the signal using their 
frequencies. The signal oscillates at various 
amplitudes to encode the structural relationships 
among the objects of the architecture,  For instance, 
the second spike of the signal reaches a negative 
peak corresponding to the value of -1, which 
according to Table 2 represents an inheritance 
relationship. The signal then reaches a positive peak 
of value 7, which indicates the use of a constructor. 
This implies that the object with frequency 4 
(ConcreteObserver1 in our architecture) utilizes the 
properties of its superclass before it is instantiated by 
the object with frequency 2 (ConcreteSubject in our 
architecture). These two spikes represent the 
inheritance and aggregation depicted in the UML 
class diagram. The sixth spike with frequency 74 

indicates that the object with frequency 3 
(ConcreteSubject in our architecture) implements its 
interface before it is instantiated by Client 
(frequency 2), which represents the “main” routine 
in our call graph (Figure 9). The last five spikes, 
which oscillate at an amplitude of 8 corresponding 
to general processing methods represent the different 
objects calling each other's general methods for 
communication or data processing purposes. It is 
worth noting that the signal is always initiated by a 
first spike oscillating at an amplitude of 7, which 
represents the client object calling itself, 
corresponding to the invocation of the “main” 
method in our generated call graph. 
 

Table 3: Runtime Assignment Of  Frequencies To Each 
Object/Class Of The Call Graph And UML Diagram. 

Object/Class Frequency 
Client (___main__) 2 
ConcreteObserver1 4 
ConcreteObserver2 1 

Interface class 6 
Super class 10 

 Static methods’ object  8 
ConcreteSubject 3 

 
Afterward, we arranged the previously generated 
signal to create a 2D image that converts the signal 
into visual patterns (Figure 11). Each spike is 
represented in the same order as in the signal by a 
sequence of vertical tiles that change color according 
to the intensity of the amplitude and the frequency of 
the spike.  

 
Figure 11: 2D Image of Patterns that represents the 
Observer design pattern micro architecture visual 

signature. 

It is worth noting that negative spikes are 
represented in the image using their absolute value, 
which is generally depicted through shades of 
purple. The highest amplitude values tend to be 
represented in red. 
 
 The Decorator design pattern 

The decorator design pattern is a structural 
design pattern that allows the attachment of 
additional behavior or  responsibilities to an 
object dynamically. It is an alternative to 
subclassing, in which new functionality can be 
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added to an existing object by creating a new 
subclass. 

 
 

Figure 12:  A Simplified UML Class Diagram Of  The 
Decorator Design Pattern Micro Architecture. 

As with the previous design pattern, we generated its 
call graph and assigned frequencies to the objects of 
the architecture, as shown in Table 4 and Figure 13. 
 

Table 4: Runtime Assignment Of  Frequencies To Each  
Object/Class Of The Call Graph And UML Diagram. 

Class Frequency 
Client (___main__) 4 

Code_caller 1 
ConcreteDecoratorA 3 
ConcreteDecoratorB 2 

Interface class 9 
Super class 11 

Static methods’ object 7 
ConcreteComponent 5 

 

 
Figure 13:  The Call Graph Of The Decorator Design 

Pattern Micro Architecture’s Implementation. 

Afterward, we generate the corresponding 
signal and image of patterns as depicted in Figure 14 
& 15. 
 

 
Figure 14: The Generated Signal Of The Decorator 

Design Pattern. 

 
Figure 15: 2D Image Of Patterns That Represents The 
Decorator Design Pattern Micro Architecture Visual 

Signature. 

The generated signal of the decorator differs 
significantly from the previous design pattern signal 
as it encodes new behaviors. For example, the fourth 
spike, which oscillates at an amplitude of 4 
corresponding to the use of static methods, indicates 
that the client has utilized a static method. This 
behavior is also indicated by a special color in fourth 
group of tiles in the pattern image. Additionally, the 
fifth and sixth spikes represent the structural 
relationships as depicted in the UML class diagram 
(Figure 12) among the ConcreteDecoratorA, 
Decorator, and Component objects: 
ConcreteDecoratorA extends the Decorator class 
and the Decorator class also implements the 
Component interface. Other spikes are distributed 
among general processing calls and constructor 
calls. 

 The Prototype design pattern 
The Prototype design pattern is a creational 

design pattern that allows objects to be created by 
copying a prototype instance. It is an alternative to 
the more traditional approach of using a class 
hierarchy and a factory method to create new 
objects. In the Prototype pattern, a prototype object 
is created and registered with a prototype manager. 
When a client wants to create a new object, it asks 
the prototype manager for a copy of the prototype.  
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Figure 16:  A Simplified UML Class Diagram Of The 
Prototype Design Pattern. 

We followed the same steps as before to generate the 
corresponding frequency values and call graph 
depicted in Table 5 and Figure 17, respectively, and 
then generated the signal and visual signature of the 
Prototype design pattern, as illustrated in Figure 19. 
 

Table 5: Runtime Assignment Of  Frequencies To Each  
Object/Class Of The Call Graph And UML Diagram. 

Class Frequency 
Client (___main__) 4 

Copyreg 3 
Get_a_prototype_clone 5 

Interface class 10 
Super class 12 

 Static methods Class  8 
Copy 2 

ConcretePrototype 1 
Load_prototypes 6 

 

 
Figure 17: The Call Graph Of The Of The Prototype 
Design Pattern Micro Architecture’s Implementation. 

 
Figure 18: The generated signal of the Prototype design 

Pattern. 

 
Figure 19: 2D Image Of Patterns That Represents The 
Prototype Design Pattern Micro Architecture Visual 

Signature. 

The signal characterizes the Prototype 
design pattern's unique and principal feature, the 
cloning techniques, through the 10th and 11th spikes 
oscillating at amplitudes of 5. On the other hand, the 
invocation of getters and setters methods is 
represented by the sixth and seventh spikes 
oscillating at amplitudes of 10. 

4.3 Discussion 

The transformation approach applied to the 
well-defined design patterns micro architectures 
presented in this work maintained all structural 
properties of these architectures by assigning each 
property a specific amplitude. Additionally, This 
approach incorporates objects’ and classes’ 
identities in the construction of the final signal, by 
such, it retained the communicational aspects of 
each specific design pattern. The behavioral aspects 
are also maintained by incorporating the 
chronological aspect of  the corresponding call graph 
of each micro architecture within the signal. 
Furthermore, the generated representation 
encompasses all mentioned aspects resulting in a 
feature-rich representation which allows 
identification and classification based on the specific 
features of the design pattern. The method of 
transformation possesses an inherent invariancy with 
regards to the scale of the architectural design. This 
is a consequence of the fact that the replication of 
objects, which exhibit identical behavior, leads to the 
generation of spike patterns that can be readily 
extracted from the signal through filtering 
techniques. All of the prior results align uniformly 
with the predictions made by the hypothesis stated in 
section 1, thereby providing substantial evidence in 
favor of its validity. Furthermore, The intermediate 



Journal of Theoretical and Applied Information Technology 
31st March 2023. Vol.101. No 6 

© 2023 Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
2129 

 

formats derived as results of this work are 
fundamentally dissimilar to those utilized in the 
previously reviewed approaches in section 2. This 
distinction arises from their capability to facilitate 
the utilization of advanced machine learning and 
signal processing methodologies to tackle the 
challenge, thereby making techniques originally 
intended for other purposes adaptable not only to the 
task of retrieving design patterns, but also to help 
providing a knowledge base to support the 
development of future autonomous software design 
support systems. 

 
5. CONCLUSION & FUTURE WORK 
 

In the present study, a dual representation is 
proposed to facilitate the task of design recovery 
through the utilization of both signal processing 
techniques and state-of-the-art pattern recognition 
techniques. The purpose of this representation is to 
provide a dual opportunity to recover design 
information from code. However, it should be noted 
that the scope of this study is restricted to a limited 
number of design properties that were previously 
outlined in Table 2. In forthcoming research, efforts 
will be directed towards differentiation of the 
superclasses and interfaces within an architecture by 
endowing each entity with a unique identity via a 
systematic procedure. Moreover, the proposed 
approach has the potential to be generalized to 
various open-source legacy software, incorporating 
sophisticated pattern recognition techniques to 
evaluate the effect of intermediate representation 
characteristics on the classification accuracy of the  
design pattern recovery process. Additionally, future 
studies will  investigate the influence of the 
variations in the implementation of similar design 
patterns, as well as the scale of the architectures, on 
the precision of patterns identification. 
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