
Journal of Theoretical and Applied Information Technology
31st March 2023. Vol.101. No 6

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2118

 EXPLORING A NOVEL PERSPECTIVE ON DESIGN
PATTERN RECOVERY VIA VISUAL SIGNATURES AND

CONTINUOUS-TIME SIGNALS

TARIK HOUICHIME1 , YOUNES EL AMRANI2
1,2Mohammed V University In Rabat, ENSIAS, Laboratory of Software Project Management, Morocco

E-mail: 1houichimetarik@yahoo.com, 2y.elamrani@um5r.ac.ma

ABSTRACT

Design Pattern Recovery is the process of detecting and retrieving pre-existing design patterns inherent in a
software application, which entails a comprehensive investigation of the software and its source code, as well
as its dependencies. However, this process can be both time-consuming and resource-intensive. Moreover,
the automation of this process poses a significant challenge, demanding a profound understanding of the
system's design goals and dependencies that are context-based. Furthermore, the absence of standardization,
and the potential for ambiguity arising from the multitude of implementations of a specific design pattern
further complicates the automation process. In this work, we investigate a new perspective on the problem of
Design Pattern Recovery by framing it in terms of visual signatures and continuous-time signals. The
resulting visual signatures and signals capture the key features of general Object-Oriented codes and well-
defined design pattern micro-architectures in a language-agnostic manner, serving as an intermediary
transformation prior to the recovery phase and facilitating the identification of predefined design pattern
signatures in the target code. Consequently, a twofold opportunity for the retrieval of potential design
information from code is provided. This is manifested in the form of a feature-rich visual signature, which
encapsulates the structural, communicational, and behavioral facets of the analyzed source code. The
utilization of such visual signatures may serve as a facilitator for the straightforward application of state-of-
the-art pattern recognition techniques in automated design pattern identification. Additionally, the features
are also expressed as a scale-invariant continuous-time signal, thereby enabling the effective deployment of
signal classification techniques for design pattern mining.

Keywords: Design Pattern Recovery, Pattern Recognition, Visual Signatures, Continuous Time-Signals,
Signal Processing.

1. INTRODUCTION

The domain of software engineering
encompasses a wide range of techniques that have
been developed to optimize, control, and test various
stages of software development, well studied design
patterns [1] are an effective tool to build high-
quality object-oriented software and producing
coherent source codes, These patterns enable
developers to create an abstract representation of
real-world problems using objects, In addition,
developers may use a combination of these patterns
to achieve their desired outcome, undergoing
multiple development iterations to build all required
features, however, as the software development
iterations become more complex and rigorous, the
final product gains increased robustness, but its
source code and architecture may become difficult to
comprehend, therefore, without adequate

documentation and source code explanations, a
software piece built with complex techniques and
architectures may become obsolete and
unmaintained.

One problem to address in this context is
whether it is possible to reverse-engineer a
software’s source code to recover the design pattern
employed in its development, in other words, can we
discern the design pattern that the developers had in
mind during the development process? Recovering
the design pattern underlying a source code is crucial
for understanding its architecture and addressing
potential issues with it. While manual approaches
based on the product’s documentation may be
effective for this purpose, such an endeavor may be
time-consuming and labor-intensive when the source
code becomes longer and has multiple dependencies.
Moreover, conventional approaches to automating
the process may not be sufficient on their own to

Journal of Theoretical and Applied Information Technology
31st March 2023. Vol.101. No 6

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2119

effectively address the challenges posed by this
problem. One of these challenges is the complexity
of design patterns themselves, which often involve
multiple classes and relationships that can be
difficult to discern and comprehend. Moreover, a
significant challenge lies in the absence of
standardization and uniformity in the definition and
representation of the existing design patterns. This
leads to disparities in the implementation of similar
patterns across different codebases, resulting in
difficulties with precisely identifying and extracting
them from the code. Additionally, the lack of ground
truth data may impede the assessment of the
accuracy and dependability of the extracted patterns.
Furthermore, the application of machine learning
and artificial intelligence techniques to automate the
process of design pattern recovery can introduce
novel sources of inaccuracies and biases, which can
further complicate the process and impact the
accuracy of detecting the patterns, particularly if the
components of the problem are not properly
conditioned beforehand.

To overcome some of these challenges, one
of the crucial impediment in the realm of automating
the design pattern recovery process, is the need to
appropriately frame the problem such that it can be
effectively tackled by machine learning algorithms
ensuring robustness and scalability. This would
allow design pattern recovery methods to capitalize
on the recent advancements in the field of machine
learning, particularly in the areas of pattern
recognition and computer vision. This would enable
computers to assist in the software design recovery
phase, which has traditionally been the exclusive
domain of human developers due to their ability to
handle abstract concepts and comprehend innovative
ideas. The central hypothesis of our work suggests
that, by developing the appropriate intermediate
representation, the problem of design pattern
recovery from code can be framed as a pattern
recognition and signal processing problems. This
transformation facilitates the utilization of these
novel techniques to enrich and enhance the efficacy
of existing methods for addressing this task.

To examine our hypothesis, we present a
novel approach for generating visual signatures of
well-defined design patterns [1], the generated
signatures identify and characterize the key elements
of the code's architecture, such as abstract classes,
inheritance relationships, static and class methods,
as well as the interactions among these elements.
Our method transforms the problem of design
pattern recovery into pattern recognition and signal
processing problems by generating an intermediate

representation that is easily amenable to further
analysis and interpretation by state-of-the-art
machine learning models and signal processing
techniques (Figure 1) to extract valuable information
about the predefined design patterns micro
architectures, which is extremely useful to detect
those design patterns in complex source codes.

Figure 1: Transforming The Design Recovery Problem
Into A Pattern Recognition Problem By Generating

Images Of Visual Signatures, And Into A Signal
Processing Problem By Generating Continuous-Time

Signals.

Additionally, Our method generates visual
signatures that can be used to train supervised
machine learning algorithms to detect similar design
patterns in any source code built using the object-
oriented programming paradigm. These generated
signatures can also be utilized mathematically to
easily analyze the source code using signal
processing tools, enabling the detection of
underlying design patterns. In section 2, previous
studies are summarized and contextualized in order
to provide a basis for our proposed approach. The
unique aspects of our work are also highlighted in
comparison to previous approaches. Section 3
introduces the general constructs, the mathematical
tools and the transformation process used to generate
the continuous-time signals and visual signatures.
Section 4 introduces the experimental settings to
generate a number of signals and visual signatures of
well-defined design patterns micro architectures and
discuss their properties and how they encode the
unique features of their corresponding micro
architectures. Section 5 concludes our experimental
study and presents future work.

2. . RELATED WORK

The aim of this section is to furnish a
contextual framework for our proposed approach to
examine the task of design pattern recovery from a
different perspective. Previous studies have
investigated a range of techniques for this task,
including machine learning, graph exploration,
logical inference, metamodeling methods, and
metrics-based methods. Many of these approaches
involve the transformation of elements of the

Journal of Theoretical and Applied Information Technology
31st March 2023. Vol.101. No 6

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2120

problem into an intermediate representation as a
necessary step in the identification of patterns. This
transformation is essential in providing suitable
input for the identification process. This section
classifies these transformation techniques into three
categories based on their purpose and then discusses
the distinctiveness of our approach in comparison to
prior studies, as well as its contribution to the
expanding knowledge base within the field.

2.1 Intermediate transformations for Machine
Learning-Based recovery methods

Recently, [2] utilized a word-space model
of Java files as an intermediate transformation by
implementing the Word2Vec algorithm based on the
syntactic and lexical representation (SSLR) of the
Java source code. This process involves the creation
of a call graph and the extraction of 15 source code
features, after which a supervised machine learning
classifier is utilized to identify patterns within the
Java files. In [3] candidates identified by the
Columbus matching algorithm [4] are labeled as true
or false instances and their predictors are calculated.
These values are then provided to a learning system,
consisting of a decision tree-based method and a
neural network, to generate a model that
incorporates this acquired knowledge. This model
can then be applied for pattern mining in unknown
systems. A alternative approach for generating an
intermediate representation for detecting design
patterns within a source code is presented in [5], in
their work, a parser is utilized to analyze the source
code, extracts information, and preserves it in a
metamodel. This metamodel represents each
element in the source, including attributes, methods,
classes, interfaces, and packages, and the
hierarchical relationships between these elements,
the extracted information is then used to generate a
knowledge base in the form of Prolog facts, which
are used in the pattern inference process. Another
practical approach to encode both the structural and
behavioral aspects of design patterns in the
intermediate representation is introduced by [6], they
use a combination of traditional predicate logic and
Allen's interval-based temporal logic as their
theoretical foundation. This combination is used to
process formal specifications of each pattern, which
have been converted into Prolog representations.
Consequently, the use of logical inference allows for
the recovery of both complete and partial patterns.

2.2 Intermediate transformations for Graph-
Based recovery methods

Graphs exploration techniques have also
been employed to address the problem at hand.
These techniques involve the conversion of the

problem into a graph-based analysis and
manipulation task in order to discern patterns, [7]
aims to detect commonly occurring sub-patterns
within design pattern instances by transforming the
source code and predefined design patterns into
graphs, with classes as nodes and relationships as
edges. Sub-pattern instances are identified through
subgraph discovery and merged based on shared
classes to determine if they match a predefined
design pattern, moreover, the behavioral
characteristics of method invocations are also
compared to predefined method signature templates
to identify final pattern instances. Adhering to the
same transformation approach, the problem is also
represented using graphs and matrices in [8], and a
graph matching algorithm is employed to infer
patterns directly from the graphs, It is stated that the
properties of the chosen graph algorithm enable the
method to recognize modified design patterns and
leverage the presence of patterns in inheritance
hierarchies to reduce the size of the analyzed graphs.
Analogously, Polymorphism is also utilized in [9] to
minimize the number of pattern definitions and the
design recovery task is also conceptualized as a
graph-based problem, however, the source code is
transformed through the following process: it is first
parsed into an abstract syntax graph (ASG) and
analyzed using graph rewrite rules that annotate sub-
graphs of the ASG. The parsing of source code is
also performed in order to generate a rudimentary
UML class diagram. Annotation objects are then
introduced to the ASG to store information regarding
the identified patterns and serve as the starting points
for pattern searches. Finally, an inference engine
based on Generic Fuzzy Reasoning Nets (GFRN) is
utilized to recover design patterns and cliches in the
legacy code. [10] employs a slightly different
method for identifying design patterns in a program
by comparing it to a "design motif," which can be
thought of as a model or template of a design pattern.
Nevertheless, the process involves converting the
program and design motif into strings, represented as
digraphs (graphs with directed edges), and then
using a bit-vector algorithm to compare the strings
and identify occurrences of the design motif in the
code of the program.

2.3 Other intermediate Transformations
techniques

Furthermore, Metamodeling, and other
abstract modeling techniques have also been used to
facilitate the task of pattern recovery, [11]
demonstrates the ability to reason at a meta level
about the structure of object-oriented source code in
a language-independent manner, to accomplish this,
they introduce a meta-level interface to extract

Journal of Theoretical and Applied Information Technology
31st March 2023. Vol.101. No 6

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2121

detailed information about the structure of the source
code. It is stated that the validity of this approach is
demonstrated through the definition of a set of logic
queries to detect object-oriented best practice
patterns and design patterns in two distinct
programming languages: Smalltalk and Java. [12]
define a metamodel called Pattern and Abstract-level
Description Language (PADL) to express the
elements of the problem, which can be extended
through inheritance. Then they use explanation-
based constraint programming and constraint
relaxation to identify microarchitectures that are
similar to modeled design motifs, and it ensures
traceability between the implementation and design
by using the same language to describe different
layers of the model and explicitly recording the set
of lower-level elements that led to the existence of
more abstract elements. Moreover, [13] employ the
Sparx Systems Enterprise Architect (EA) modeling
tool, EA is capable of reverse engineering source
code from various programming languages, and
creates an intermediate representation of the code in
various form ats such as a database model, XML
model, and class model. The authors utilize SQL
queries to extract information about software
artifacts from the intermediate representation.
However, they find that the intermediate
representation is not complete and must apply
regular expressions to selected parts of the source
code in order to extract additional information. It is
stated that the authors successfully recover design
patterns from mobile games with high accuracy, but
they acknowledge that regular expressions have
limitations in extracting nested information and plan
to develop source code parsers in the future to
address this issue. Additionally, other approaches
have been utilized to model the problem, [14]
propose an approach for identifying design patterns
in object-oriented systems by analyzing an
intermediate representation of the system in XMI
format. The approach consists of three phases:
structural analysis, which focuses on the system's
structural characteristics such as classes and their
relationships; behavioral analysis, which verifies the
results of the structural analysis and may check back
into the source code to eliminate false positives; and
semantic analysis, which utilizes naming
conventions and role information to distinguish
between design pattern instances that have the same
structural and behavioral characteristics. The
approach has been automated in a tool called DP-
Miner, which allows users to generate XMI input
from existing tools. In [15] candidate design patterns
are identified based on class diagram information
obtained during the preliminary analysis using a

visual language parsing technique, then, these
candidates are validated through a fine-grained
source code analysis. The approach has been
implemented to recover Adapter, Bridge, Proxy,
Façade, Composite, and Decorator patterns and has
been tested on six public-domain programs and
libraries using a design pattern recovery
environment tool. [16] presents a Multiple Levels
Detection Approach (MLDA) for recovering design
pattern instances from Java source code. MLDA
utilizes a Structural Search Model (SSM) to
incrementally build the structure of design patterns
based on a generated class-level representation of the
system being investigated. Additionally, MLDA
employs a rule-based approach to match the method
signatures of candidate design instances to those in
the subject system. [17] utilizes regular expressions,
SQL queries, and annotations to extract relationships
from legacy applications and source code models.
The approach involves manually annotating the
source code, reverse engineering the source code
using an EA tool to obtain a model, defining pattern
features through the definition of each pattern,
translating the features into rules and searching for
the desired pattern using SQL queries and regular
expressions. Alternatively, [18] propose the use of
the software metrics and a machine learning
algorithm to experimentally fingerprint classes
playing roles in design motifs in order to resolve the
challenge of difficulty of identifying micro-
architectures similar to these design motifs due to the
large number of possible combinations of classes.

Our approach to generating an intermediate
representation of the problem is distinguished by its
ability to incorporate a new set of techniques for
addressing the problem of design pattern recovery.
Additionally, it offers a foundation upon which a
decision support systems can be built. This is
achieved through the generation of a dual dependent
intermediate representation in the form of
continuous-time signals and pattern images of the
source code, as well as well-defined design pattern
micro architectures. These facilitate the systematic
classification of the structural elements of the
problem using mathematical tools such as Fourier
transformation, wavelet analysis and state-of-the-art
machine learning classifiers. Meanwhile, the
dynamic aspects of object-oriented architecture can
be analyzed and predicted using time series
prediction and regression techniques. The inclusion
of time series analysis has the potential to inform the
development of decision support systems that assist
developers in refining their architectures based on
previous examples of successful design decisions
and best practices.

Journal of Theoretical and Applied Information Technology
31st March 2023. Vol.101. No 6

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2122

3. GENERAL CONSTRUCTS & PROBLEM
TRANSFORMATION

3.1 Design patterns description
3.1.1 UML representation

In general, design patterns are depicted
using UML diagrams, which present a template of
the design that can be adapted to address a specific
problem. These diagrams depict all relevant classes,
including their types, attributes, and methods, as
well as the relationships between these classes (an
example is depicted in Figure 2). These relationships
define how the elements of the design are related
with one another when implemented to solve a given
problem.

Figure 2: UML Representation Of The Strategy Design

Pattern Micro Architecture.

3.1.2 Call graph representation
The call graph is a visual representation of

the execution of the source code implementing the
design pattern, which illustrates the chronological
order in which the objects of the design interact with
one another through method calls. It also provides
information about the specific methods being called
and the duration of each call. The call graph is
generated through the execution of the source code
and serves as a useful tool for understanding and
analyzing the behavior of the design pattern.

Figure 3: The Call Graph Generated From The Python
Implementation Of The Strategy Design Pattern Micro

Architecture Described In Figure 2.

The execution of a Python source code
implementing the Strategy design pattern that is

depicted in Figure 2 results in a series of calls, which
are logged in the figure 3. The primary routine,
“main”, initiates the call graph by invoking various
methods of the Context class. From there, the
Context class communicates with
ConcreteStrategyA, ConcreteStrategyB, and
ConcreteStrategyC in order to complete the
processing. It is worth noting that the call graph also
records the number of times each class method is
called during the execution.

3.2 Combining UML diagrams, call graph logs
and code keywords into a time-continuous
signal spike

Our goal is to thoroughly integrate UML
diagrams and call graph representations in order to
fully encode the behavioral and structural aspects of
a well-defined design pattern implementation into a
continuous-time signal spikes, the generated signal
is used later to generate a pattern image carrying the
same amount of information previously provided by
both of the diagrams. However, we opt to extract
certain information including whether a method
belongs to the static category or serves as a
constructor for a specific object or a super
constructor, through analysis of the code utilizing
the specialized terms offered by the programming
language to classify class methods, in Figure 4 we
have summarized our approach of combining the
data from the different sources. Moreover, we
introduce a time dimension component to our signal
which encodes the behavioral aspect of the code
design by exploiting the call graph chronological
nature, this makes the spikes in our generated signal
occur in same order as the calls depicted in the
correspondent call graph.

 The frequency of each spike in the
generated signal is used to encode the identities of
the caller and the callee objects in a one-to-one
reversible manner, this creates a permanent bond
between every pair of objects in the call graph log
and their correspondent signal spike, facilitating the
ability of any future decision support system to
target objects identities in its optimization processes.
Finally, the amplitude of each spike of the signal
encodes the structural information of the code
design, to do that, we mine the source code keywords
and decorators to determine the type of the class
method used by the caller object to communicate
with the callee object, then we determine the
amplitude of the spike accordingly. It is noteworthy
to mention that if the caller-callee pair of objects
define an inheritance or abstraction relationship and
the constructor method of the callee object is being
used by the caller object implicitly or explicitly, this

Journal of Theoretical and Applied Information Technology
31st March 2023. Vol.101. No 6

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2123

results in an additional spike in the signal. This
information is obtained by checking the UML
diagram.

Figure 4: Gathering All Needed Information From The
Three Sources : Source Code, Call Graph And UML
Class Diagram, Then A Transformation Process Is

Applied To Obtain A Continuous-Time Signal.

3.3 Problem transformation
As the final output of our transformation

process is a time-continuous signal, we first need to
model the signal components with respect to the
previous information that we have obtained from
combining the call graph logs and UML diagram
representations in addition to the data from the
code’s keyword-based extraction process as
described in section 3.2, to do that, we attribute a
frequency 𝑓௜ to each class 𝑐௜ of the UML diagram,
such as 𝑓௜ ∈ ℕ is unique for every element in the
class space 𝜉 of the UML diagram.

 𝐴௝ is the amplitude of the signal spike with
respect to its correspondent call j ∈ Ω where Ω
represents the whole call graph log. 𝐴௝ is defined to
be a member of a predefined set 𝜒, where each
element of 𝜒 is a pair of the form (𝜇௞, 𝜈௞), such as
𝜈௞ ∈ ℝ∗ which represents the numerical value of
amplitude. The variable 𝜇௞ represents the
classification of the information conveyed by the call
j, for the purposes of simplicity, we refer to the value
of 𝜇௞ as the “Objective of the call” throughout the
remainder of this paper. The possible values of 𝜇௞

that were investigated within the context of this
research are listed in Table 1.

 Table 1: List Of The 𝜇௞ Values Or “Objectives Of The

Call”.

𝛍𝐤 “Objectives of the call”
𝜇ଵ Interface implementation
𝜇ଷ Inheritance
𝜇ସ Object constructor call

𝜇ହ Getter or Setter method call
𝜇଺ General processing method call
𝜇଻ Cloning method call
𝜇଼ Static method call

In the context of the call graph diagram, a

call j is typically characterized by three components:
the caller, the callee, and the calling method. The
caller is the object that initiates the call, while the
callee is the object being called. The calling method
is the class method utilized by the caller to facilitate
communication with the callee. This calling method
is contextualized and categorized by our
transformation process to be represented by the
variable 𝜇௞ as the “Objective of the call”. All the
calls depicted in the call graph diagram are encoded
using this structure of three components and logged
in Ω following the same chronological order as
shown in the diagram. Figure 5 illustrates the logged
structure of the call and highlights the location of the
𝜇௞ variable within the structure. Consequently, upon
determining the value 𝜇௞ we can utilize 𝜒 to access
the amplitude value of the corresponding signal
spike.

Figure 5: Each Call Is A Signal Spike With A Specific
Frequency Obtained By Combining The Frequencies Of

'Caller Object', 'Callee Object', And A Specific
Amplitude Defined By The Objectives Of The Call Set.

Finally, the frequency 𝑓௝ of one call j ∈ Ω
is obtained by combining both of the frequencies of
the caller and the callee objects objects in a one-to-

Journal of Theoretical and Applied Information Technology
31st March 2023. Vol.101. No 6

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2124

one reversible manner. In section 3.3.2 we present
the detailed calculation of 𝑓௝. Meanwhile we
summarized the problem transformation elements in
Figure 6.

Figure 6: Mapping The Call Graph Log Components

With A Continuous-Time Signal Components

3.3.1 Mathematical modelling & calculation of
the signal spikes components
To generate time-continuous spikes for our

signal we adopt a generic form of the sinusoidal
wave function (1) defined on ℝ∗, then we
parameterize it to fit our previous constraints with
regards to the frequency and amplitude definitions.

𝑆௝(𝑡) = 𝐴௝ sin ቀ𝛼௝൫𝑡 − 𝛽௝൯ቁ (1)
Such as j ∈ Ω, 𝑡 ∈ ℝ∗

𝑆௝ defines the signal spike of one call j ∈ Ω, 𝐴௝ is the
amplitude of the spike. 𝛼௝, 𝛽௝ are numerical
parameters that are determined by the frequencies of
the caller and callee objects, as well as the initial
conditions of the equation. A call j is modelled by a
spike with a period 𝑇௝ of the signal over a continuous
interval of time [𝑡௛, 𝑡௛ାଵ], ℎ ∈ ℕ, such as :

 |𝑡௛ାଵ − 𝑡௛ | = 𝑓௝ =
ଵ

்ೕ
 (2)

We have selected the constraint (2), because it
ensures that the spike reaches its maximum value
when t = t୫ such as :

 max

௧∈[௧೓,௧೓శభ]
𝑆௝(𝑡) = 𝑆௝(𝑡௠) = 𝐴௝ (3)

In order to fit the general form of sinusoidal curve,
𝑡௠ must be exactly in the middle of the time interval
[𝑡௛, 𝑡௛ାଵ]:

 𝑡௠ = 𝑡௛+
௙ೕ

ଶ
 (4)

Consequently, 𝛼௝, 𝛽௝ are obtained by solving three
equations using the coordinates (𝑡௛,0), (𝑡௠,𝐴௝), and

(𝑡௛ାଵ,0) to fit the sinusoidal curve form in the time
interval [𝑡௛, 𝑡௛ାଵ]:

 ቐ

𝑆௝(𝑡௛) = 0

𝑆௝(𝑡௠) = 𝐴௝

𝑆௝(𝑡௛ାଵ) = 0

 ⟺ ቐ
𝛼௝ =

గ

௙ೕ

 𝛽௝ = −
௙ೕ

ଶ
+ 𝑡௠

 (5)

By incorporating 𝛼௝, 𝛽௝ expressions, the equation (1)
becomes:

 𝑆௝(𝑡) = 𝐴௝ sin ቆ
గ

௙ೕ
ቀ𝑡 +

௙ೕ

ଶ
− 𝑡௠ቁቇ (6)

Such as j ∈ Ω and 𝑡 ∈ [𝑡௛, 𝑡௛ାଵ]

Finally, the correspondent spike of one call j which
has a frequency 𝑓௝ and amplitude 𝐴௝ is depicted using
the equation (6) in Figure 7.

Figure 7: Graph Representation Of A Call Spike From

Equation 8.

3.3.2 Calculation of 𝒇𝒋
Previously, it was stated that the frequency

𝑓௝ must encodes information about both the caller
and callee objects, if we let 𝑓௜, 𝑓௜ାଵ denote the
frequencies of the caller and callee objects,
respectively, then 𝑓௝ is a function of 𝑓௜and 𝑓௜ାଵ.
Additionally, we desire that the mapping between
the spike and the objects involved in the call to be
reversible one-to-one manner, so that we can
determine which objects are responsible for a
particular spike if necessary, for that reason we adopt
the cantor pairing function [19] to calculate the
frequency of the call with respect to 𝑓௜ and 𝑓௜ାଵ :

𝐾(𝑓௜ , 𝑓௜ାଵ) =
ଵ

ଶ
(𝑓௜ + 𝑓௜ାଵ)(𝑓௜ + 𝑓௜ାଵ + 1) + 𝑓௜ାଵ (7)

Since 𝐾(𝑓௜ , 𝑓௜ାଵ) results relatively in large natural
numbers which will make our wave graphic
representation inconsistent, we apply the TANH
function on 𝐾(𝑓௜ , 𝑓௜ାଵ) in order to limit our result

Journal of Theoretical and Applied Information Technology
31st March 2023. Vol.101. No 6

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2125

inside the interval [0,1] and keep the one-to-one
reversibility nature of our transformation:

 𝑓௝ = tanh(𝐾(𝑓௜ , 𝑓௜ାଵ)) (8)

3.3.3 Constitution of the signal

To encode the full call graph log Ω into
multiple spikes of a continuous-time signal, we
iterate over the calls in the log to generate the
corresponding spikes using the equation (6). The
union of these generated spikes forms a unified
continuous signal 𝜓, which can be generalized using
the following form:

 𝜓(𝑡) = ⋃ ⋃ 𝑆௝(𝑡)௛ ∈ ℕ௝ ∈ ஐ (9)

4. EXPERIMENTS & RESULTS
DISCUSSION

In this section, we begin by generating and
examining the signals and visual signatures of three
commonly utilized design patterns. We analyze the
visual differences between the generated signals and
visual signatures of the microarchitectures of these
design patterns, and then explore how these
intermediate representations encode the features of
their corresponding design pattern models. Finally,
we examine the construction of the visual signatures,
which are presented as images, based on the
generated signals and how they encode the same
features as those contained in the generated signals.
4.1 Experimental setup & materials

In this study, we utilized a consumer laptop
equipped with an Intel Core i7 3610QM CPU and 16
GB RAM to execute all computational tasks. Our
method to generate the intermediate representations
and the analyzed design pattern architectures were
both implemented using the Python programming
language. The scope of our investigation into object-
oriented programming techniques was confined to
the elements listed in the second column of Table 1
as “Objectives of the call”.

4.2 Tests & results
 Initializing the amplitude values

To implement the signal spikes using
equations 6 and 9, we propose the values of 𝜈௞
elements for the set . As described in section 3.3, 𝜈௞
corresponds to the numerical values of the
amplitudes of the signal spikes . The (𝜇௞ , 𝜈௞) values,
which can be found in the third column of Table 2,
are constant throughout all tests.

Table 2: Assignment Of Initial Values For The 𝜒 Set.

𝛍𝐤 “Objectives of the call” 𝝂𝒌
𝜇ଵ Interface implementation -2
𝜇ଷ Inheritance -1
𝜇ସ Object constructor call 7

𝜇ହ Getter or Setter method call 10
𝜇଺ General processing method call 8
𝜇଻ Cloning method call 5
𝜇଼ Static method call 4

 The Observer design pattern

The Observer design pattern is a behavioral
design pattern that defines a one-to-many
dependency between objects. It allows a subject
object to notify a set of observer objects when its
state changes, and the observer objects automatically
update themselves accordingly.

Figure 8: A Simplified UML Class Diagram Of The
Observer Design Pattern.

We implemented the simplified architecture of the
Observer design pattern depicted in Figure 8 and
generated its corresponding call graph diagram,
which is illustrated in Figure 9.

Figure 9: The Call Graph Of The Observer Design

Pattern Micro Architecture’s Implementation.

Additionally, we have implemented a
routine that assigns a frequency, which is modelled

Journal of Theoretical and Applied Information Technology
31st March 2023. Vol.101. No 6

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2126

to the variable 𝑓௜ described in section 3.3.2, to each
class/object of the UML class diagram and the call
graph. In addition, the routine attributes a unique
frequency to any object that encapsulates static
methods and to all the interfaces and super classes of
the architecture, it is worthy to note that all the
interfaces and the super classes in the same
architecture share the same frequency. The
frequencies are listed in Table 3. Finally, we
generated the correspond signal 𝜓 of the
implemented design pattern architecture by
combining the data provided by the UML class
diagram and the call graph diagram.

Figure 10: The Generated Signal Of The Observer

Design Pattern Micro Architecture.

As observed in Figure 10, the signal
preserves the structural and behavioral
characteristics of the corresponding architecture, the
frequency 𝑓௝ (as defined in equation 6) of each spike
is indicated next to the peak of its corresponding
curve, and at the end of each spike we have indicated
the frequencies 𝑓௜ and 𝑓௜ାଵ of the caller and callee
objects, respectively, which were used to calculate
the final frequency of the spike, for the purpose of
conducting analytics, Table 3 can be utilized to
identify the objects present in the signal using their
frequencies. The signal oscillates at various
amplitudes to encode the structural relationships
among the objects of the architecture, For instance,
the second spike of the signal reaches a negative
peak corresponding to the value of -1, which
according to Table 2 represents an inheritance
relationship. The signal then reaches a positive peak
of value 7, which indicates the use of a constructor.
This implies that the object with frequency 4
(ConcreteObserver1 in our architecture) utilizes the
properties of its superclass before it is instantiated by
the object with frequency 2 (ConcreteSubject in our
architecture). These two spikes represent the
inheritance and aggregation depicted in the UML
class diagram. The sixth spike with frequency 74

indicates that the object with frequency 3
(ConcreteSubject in our architecture) implements its
interface before it is instantiated by Client
(frequency 2), which represents the “main” routine
in our call graph (Figure 9). The last five spikes,
which oscillate at an amplitude of 8 corresponding
to general processing methods represent the different
objects calling each other's general methods for
communication or data processing purposes. It is
worth noting that the signal is always initiated by a
first spike oscillating at an amplitude of 7, which
represents the client object calling itself,
corresponding to the invocation of the “main”
method in our generated call graph.

Table 3: Runtime Assignment Of Frequencies To Each
Object/Class Of The Call Graph And UML Diagram.

Object/Class Frequency
Client (___main__) 2
ConcreteObserver1 4
ConcreteObserver2 1

Interface class 6
Super class 10

 Static methods’ object 8
ConcreteSubject 3

Afterward, we arranged the previously generated
signal to create a 2D image that converts the signal
into visual patterns (Figure 11). Each spike is
represented in the same order as in the signal by a
sequence of vertical tiles that change color according
to the intensity of the amplitude and the frequency of
the spike.

Figure 11: 2D Image of Patterns that represents the
Observer design pattern micro architecture visual

signature.

It is worth noting that negative spikes are
represented in the image using their absolute value,
which is generally depicted through shades of
purple. The highest amplitude values tend to be
represented in red.

 The Decorator design pattern

The decorator design pattern is a structural
design pattern that allows the attachment of
additional behavior or responsibilities to an
object dynamically. It is an alternative to
subclassing, in which new functionality can be

Journal of Theoretical and Applied Information Technology
31st March 2023. Vol.101. No 6

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2127

added to an existing object by creating a new
subclass.

Figure 12: A Simplified UML Class Diagram Of The
Decorator Design Pattern Micro Architecture.

As with the previous design pattern, we generated its
call graph and assigned frequencies to the objects of
the architecture, as shown in Table 4 and Figure 13.

Table 4: Runtime Assignment Of Frequencies To Each
Object/Class Of The Call Graph And UML Diagram.

Class Frequency
Client (___main__) 4

Code_caller 1
ConcreteDecoratorA 3
ConcreteDecoratorB 2

Interface class 9
Super class 11

Static methods’ object 7
ConcreteComponent 5

Figure 13: The Call Graph Of The Decorator Design

Pattern Micro Architecture’s Implementation.

Afterward, we generate the corresponding
signal and image of patterns as depicted in Figure 14
& 15.

Figure 14: The Generated Signal Of The Decorator

Design Pattern.

Figure 15: 2D Image Of Patterns That Represents The
Decorator Design Pattern Micro Architecture Visual

Signature.

The generated signal of the decorator differs
significantly from the previous design pattern signal
as it encodes new behaviors. For example, the fourth
spike, which oscillates at an amplitude of 4
corresponding to the use of static methods, indicates
that the client has utilized a static method. This
behavior is also indicated by a special color in fourth
group of tiles in the pattern image. Additionally, the
fifth and sixth spikes represent the structural
relationships as depicted in the UML class diagram
(Figure 12) among the ConcreteDecoratorA,
Decorator, and Component objects:
ConcreteDecoratorA extends the Decorator class
and the Decorator class also implements the
Component interface. Other spikes are distributed
among general processing calls and constructor
calls.

 The Prototype design pattern
The Prototype design pattern is a creational

design pattern that allows objects to be created by
copying a prototype instance. It is an alternative to
the more traditional approach of using a class
hierarchy and a factory method to create new
objects. In the Prototype pattern, a prototype object
is created and registered with a prototype manager.
When a client wants to create a new object, it asks
the prototype manager for a copy of the prototype.

Journal of Theoretical and Applied Information Technology
31st March 2023. Vol.101. No 6

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2128

Figure 16: A Simplified UML Class Diagram Of The
Prototype Design Pattern.

We followed the same steps as before to generate the
corresponding frequency values and call graph
depicted in Table 5 and Figure 17, respectively, and
then generated the signal and visual signature of the
Prototype design pattern, as illustrated in Figure 19.

Table 5: Runtime Assignment Of Frequencies To Each
Object/Class Of The Call Graph And UML Diagram.

Class Frequency
Client (___main__) 4

Copyreg 3
Get_a_prototype_clone 5

Interface class 10
Super class 12

 Static methods Class 8
Copy 2

ConcretePrototype 1
Load_prototypes 6

Figure 17: The Call Graph Of The Of The Prototype
Design Pattern Micro Architecture’s Implementation.

Figure 18: The generated signal of the Prototype design

Pattern.

Figure 19: 2D Image Of Patterns That Represents The
Prototype Design Pattern Micro Architecture Visual

Signature.

The signal characterizes the Prototype
design pattern's unique and principal feature, the
cloning techniques, through the 10th and 11th spikes
oscillating at amplitudes of 5. On the other hand, the
invocation of getters and setters methods is
represented by the sixth and seventh spikes
oscillating at amplitudes of 10.

4.3 Discussion

The transformation approach applied to the
well-defined design patterns micro architectures
presented in this work maintained all structural
properties of these architectures by assigning each
property a specific amplitude. Additionally, This
approach incorporates objects’ and classes’
identities in the construction of the final signal, by
such, it retained the communicational aspects of
each specific design pattern. The behavioral aspects
are also maintained by incorporating the
chronological aspect of the corresponding call graph
of each micro architecture within the signal.
Furthermore, the generated representation
encompasses all mentioned aspects resulting in a
feature-rich representation which allows
identification and classification based on the specific
features of the design pattern. The method of
transformation possesses an inherent invariancy with
regards to the scale of the architectural design. This
is a consequence of the fact that the replication of
objects, which exhibit identical behavior, leads to the
generation of spike patterns that can be readily
extracted from the signal through filtering
techniques. All of the prior results align uniformly
with the predictions made by the hypothesis stated in
section 1, thereby providing substantial evidence in
favor of its validity. Furthermore, The intermediate

Journal of Theoretical and Applied Information Technology
31st March 2023. Vol.101. No 6

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2129

formats derived as results of this work are
fundamentally dissimilar to those utilized in the
previously reviewed approaches in section 2. This
distinction arises from their capability to facilitate
the utilization of advanced machine learning and
signal processing methodologies to tackle the
challenge, thereby making techniques originally
intended for other purposes adaptable not only to the
task of retrieving design patterns, but also to help
providing a knowledge base to support the
development of future autonomous software design
support systems.

5. CONCLUSION & FUTURE WORK

In the present study, a dual representation is
proposed to facilitate the task of design recovery
through the utilization of both signal processing
techniques and state-of-the-art pattern recognition
techniques. The purpose of this representation is to
provide a dual opportunity to recover design
information from code. However, it should be noted
that the scope of this study is restricted to a limited
number of design properties that were previously
outlined in Table 2. In forthcoming research, efforts
will be directed towards differentiation of the
superclasses and interfaces within an architecture by
endowing each entity with a unique identity via a
systematic procedure. Moreover, the proposed
approach has the potential to be generalized to
various open-source legacy software, incorporating
sophisticated pattern recognition techniques to
evaluate the effect of intermediate representation
characteristics on the classification accuracy of the
design pattern recovery process. Additionally, future
studies will investigate the influence of the
variations in the implementation of similar design
patterns, as well as the scale of the architectures, on
the precision of patterns identification.

REFERENCES:

[1] E. Gamma, R. Johnson, R. Helm, R. E.

Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented
Software. Pearson Deutschland GmbH, 1995.

[2] N. Nazar, A. Aleti, and Y. Zheng, “Feature-
based software design pattern detection,” J.
Syst. Softw., vol. 185, p. 111179, Mar. 2022,
doi: 10.1016/j.jss.2021.111179.

[3] R. Ferenc, A. Beszedes, L. Fulop, and J. Lele,
“Design pattern mining enhanced by machine
learning,” in 21st IEEE International
Conference on Software Maintenance

(ICSM’05), Sep. 2005, pp. 295–304. doi:
10.1109/ICSM.2005.40.

[4] R. Ferenc, A. Beszedes, M. Tarkiainen, and T.
Gyimothy, “Columbus - reverse engineering
tool and schema for C++,” in International
Conference on Software Maintenance, 2002.
Proceedings., Montreal, Que., Canada, 2002,
pp. 172–181. doi:
10.1109/ICSM.2002.1167764.

[5] R. Couto, A. Nestor Ribeiro, and J. Creissac
Campos, “MapIt: A Model Based Pattern
Recovery Tool,” in Model-Based
Methodologies for Pervasive and Embedded
Software, Berlin, Heidelberg, 2013, pp. 19–
37. doi: 10.1007/978-3-642-38209-3_2.

[6] H. Huang, S. Zhang, J. Cao, and Y. Duan, “A
practical pattern recovery approach based on
both structural and behavioral analysis,” J.
Syst. Softw., vol. 75, no. 1, pp. 69–87, Feb.
2005, doi: 10.1016/j.jss.2003.11.018.

[7] D. Yu, Y. Zhang, and Z. Chen, “A
comprehensive approach to the recovery of
design pattern instances based on sub-patterns
and method signatures,” J. Syst. Softw., vol.
103, pp. 1–16, May 2015, doi:
10.1016/j.jss.2015.01.019.

[8] N. Tsantalis, A. Chatzigeorgiou, G.
Stephanides, and S. T. Halkidis, “Design
Pattern Detection Using Similarity Scoring,”
IEEE Trans. Softw. Eng., vol. 32, no. 11, pp.
896–909, Nov. 2006, doi:
10.1109/TSE.2006.112.

[9] J. Niere, “Fuzzy logic based interactive
recovery of software design,” in Proceedings
of the 24th International Conference on
Software Engineering. ICSE 2002, May 2002,
pp. 727–728. doi: 10.1145/581469.581473.

[10] O. Kaczor, Y.-G. Gueheneuc, and S. Hamel,
“Efficient identification of design patterns
with bit-vector algorithm,” in Conference on
Software Maintenance and Reengineering
(CSMR’06), Mar. 2006, p. 10 pp. – 184. doi:
10.1109/CSMR.2006.25.

[11] J. Fabry and T. Mens, “Language-independent
detection of object-oriented design patterns,”
Comput. Lang. Syst. Struct., vol. 30, no. 1, pp.
21–33, Apr. 2004, doi:
10.1016/j.cl.2003.09.002.

[12] Y.-G. Guéhéneuc and G. Antoniol,
“DeMIMA: A Multilayered Approach for
Design Pattern Identification,” IEEE Trans.
Softw. Eng., vol. 34, no. 5, pp. 667–684, Sep.
2008, doi: 10.1109/TSE.2008.48.

[13] M. Khan and G. Rasool, “Recovery of Mobile
Game Design Patterns,” in 2020 21st

Journal of Theoretical and Applied Information Technology
31st March 2023. Vol.101. No 6

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2130

International Arab Conference on
Information Technology (ACIT), Nov. 2020,
pp. 1–7. doi:
10.1109/ACIT50332.2020.9299966.

[14] J. Dong, D. S. Lad, and Y. Zhao, “DP-Miner:
Design Pattern Discovery Using Matrix,” in
14th Annual IEEE International Conference
and Workshops on the Engineering of
Computer-Based Systems (ECBS’07), Mar.
2007, pp. 371–380. doi:
10.1109/ECBS.2007.33.

[15] A. D. Lucia, V. Deufemia, C. Gravino, and M.
Risi, “Design pattern recovery through visual
language parsing and source code analysis,” J.
Syst. Softw., vol. 82, no. 7, pp. 1177–1193, Jul.
2009, doi: 10.1016/j.jss.2009.02.012.

[16] M. G. Al-Obeidallah, M. Petridis, and S.
Kapetanakis, “A Structural Rule-Based
Approach for Design Patterns Recovery,” in
Software Engineering Research, Management
and Applications, R. Lee, Ed. Cham: Springer
International Publishing, 2018, pp. 107–124.
doi: 10.1007/978-3-319-61388-8_7.

[17] G. Rasool, I. Philippow, and P. Mäder,
“Design pattern recovery based on
annotations,” Adv. Eng. Softw., vol. 41, no. 4,
pp. 519–526, Apr. 2010, doi:
10.1016/j.advengsoft.2009.10.014.

[18] G. Y-G, H. Sahraoui, and F. Zaidi,
“Fingerprinting design patterns,” in 11th
Working Conference on Reverse Engineering,
Nov. 2004, pp. 172–181. doi:
10.1109/WCRE.2004.21.

[19] M. P. Szudzik, “The Rosenberg-Strong
Pairing Function.” arXiv, Jan. 28, 2019.
Accessed: Dec. 17, 2022. [Online]. Available:
http://arxiv.org/abs/1706.04129

