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ABSTRACT 
 

One of the most profound changes to human life brought about by technological progress has been 
increased food production and other essentials. Machine learning techniques have contributed to this 
change by making our lives easier and bringing us closer by eliminating hunger and poverty. However, 
these techniques can potentially cause harm if not correctly applied. Machine learning-based crop yield 
predictions resulted in lower yields, as predicted yields can be as low as 20% of actual yields, and it is 
because of the poor performance of classification algorithms. The “Strenuous Grey Wolf Optimization-
based Feed-Forward Neural Network (SGWO-FFNN)” to predict crop yield prediction is a machine 
learning model that combines the optimization algorithm called Grey Wolf Optimization (GWO) with a 
feed-forward neural network (FFNN). The GWO algorithm is a population-based optimization method that 
is inspired by the hunting behavior of grey wolves. The goal of the SGWO-FFNN is to improve the training 
and performance of the FFNN by using the GWO algorithm to optimize the neural network’s weights and 
biases. The SGWO-FFNN has been shown to be effective in various applications, such as image 
classification, time series prediction, and function approximation. 
Keywords: Crop Yield, Prediction, Classification, Grey Wolf, Neural Network, Optimization 
 
1. INTRODUCTION 

The capacity of a country to feed itself is a 
crucial factor in determining its success. The 
cultivation of vital food crops has always been 
linked to farmers. Our culture’s primary focus is the 
high population expansion rate[1]. There has been a 
significant reduction in agricultural potential, 
especially regarding land productivity and use. 
Because the amount of arable land is unlikely to 
expand in this age of urbanization and 
globalization, more attention must be paid to 
optimizing the already available land. Predicting 
which crop cultivars will be successful is essential 
in the agricultural industry. While new studies have 
increased access to agricultural statistics, few have 
considered the feasibility of making accurate crop 
predictions using past data[2]. However, it is 
difficult to estimate crop cultivation due to the 
unrestrained use of fertilizers, including nitrogen, 
potassium, and micronutrients. Soil texture, 
precipitation, and temperature are all agro-climatic 
input characteristics that impact crop yield. 
Collecting such data across vast areas is 
challenging since agricultural input factors differ 
from region to region. The large collected datasets 

have the potential for widespread use in crop 
prediction. The complexity of the issues 
necessitates the creation of novel machine-learning 
approaches for cultivating arable land and 
optimizing limited land resources. Agriculturalists 
have been experimenting with various forecasting 
methods to determine which crop suits a given plot 
of land[3]. 

Agriculture is deeply intertwined with the 
history and identity of a nation. Farmers worldwide 
confront various difficulties due to various factors, 
including but not limited to: storms, floods, land 
drifting, soil erosion, poor soil quality, and erratic 
weather[4]. Due to the country’s enormous 
population, agriculture provides the foundation for 
India’s entire manufacturing sector. Agricultural 
failure has far-reaching effects on the productivity 
of other sectors, lowering the country’s gross 
domestic product[5]. For this reason, bolstering 
agriculture is crucial to the country’s economic 
development, industrial balance, and price stability. 
Farmers in developing nations lack the technical 
knowledge and education to keep up with the rapid 
pace of change in the developed world. Farmers 
don’t know about new farming strategies, 
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equipment, and techniques available[6]. They aren’t 
aware of genetically modified seeds, which increase 
harvest yields significantly. More preventive 
actions are necessary for farmers to increase their 
technical skills to keep up with the rapid pace of 
technological change. Choosing a crop well-suited 
to the farmland is crucial to the prosperity of the 
agricultural enterprise. It is impossible to make a 
sound crop selection choice based on a single 
criterion alone; instead, several considerations must 
be considered[7]. When making a choice that must 
consider more than one factor, a multi-criteria 
decision-making (MCDM) technique is used. In the 
context of crop selection choices in agriculture, 
several variables are weighted more heavily than 
others[8]. 

Regional and worldwide crop production 
forecasting is essential for crop producers, 
agricultural managers, food security alerts, food 
trade policies, and carbon cycle studies[9]. To 
provide a steady food supply for its citizens, 
governments in nations with a high population 
density and a scarcity of farmland must prioritize 
the development of dynamic and accurate crop 
forecasting systems. To maximize profits for local 
farmers and the national export sector, countries 
with a small population but a lot of farmland are 
more focused on the effects of actual crop output on 
food commerce[10]. 

 
Bio-inspired optimization is a method of 

solving problems inspired by natural processes and 
mechanisms[11]. This approach can be applied to 
various fields, including machine learning (ML) 
and pattern recognition. In the field of 
classification, bio-inspired optimization can be used 
to improve the performance of classifiers by 
optimizing the parameters of the classifier using 
techniques such as genetic algorithms, particle 
swarm optimization, and ant colony 
optimization[12]. These bio-inspired algorithms can 
be used to find the optimal set of parameters for a 
given classifier, resulting in improved accuracy and 
robustness in all different domains, including 
advanced networking [13]–[24], [25]. Some of the 
advantages of Bio-Inspired Optimization 
Algorithms (BIOA) are listed below: 
1. BIOA is based on natural processes and 
systems, which can provide better solutions to 
complex problems than traditional methods. 
2. These algorithms can handle high-dimensional 
and non-linear data, which is common in crop yield 
prediction. 

3. They are less sensitive to initial conditions and 
parameters, which makes them more robust than 
traditional methods. 
4. BIOA are parallelizable, meaning they can use 
modern computing resources to speed up the 
computation process. 
5. They can also be easily integrated with other 
machine-learning techniques to improve the 
performance of crop yield prediction models. 
6. They are highly flexible, allowing for the 
incorporation of new data and knowledge as it 
becomes available. 
7. They can handle missing or incomplete data, 
which is common in crop yield prediction. 
8. They can also be used to optimize multiple 
objectives and constraints, which is vital in crop 
yield prediction as it often involves balancing 
factors such as yield, water usage, and pest 
resistance. 
 
1.1 Problem Statement 

Several issues can arise when using ML to 
predict crop yields, including: 
1. Data availability and quality: A large amount of 

data is required to train an ML model for crop 
yield prediction. However, obtaining high-
quality data can be difficult, particularly in 
developing countries where data collection and  
infrastructure may be limited. 

2. Feature selection: Crop yield prediction models 
often rely on many input features, such as 
weather data, soil data, and historical crop 
yields. Selecting the most informative features 
can be challenging and may require domain-
specific knowledge. 

3. Model complexity: Crop yield prediction 
models with many interacting variables can be 
complex. This can make understanding how a 
model makes its predictions difficult and 
increase the risk of overfitting. 

4. Spatial and temporal variability: Crop yields can 
vary widely depending on location and time of 
year. It isn’t easy to develop models that 
generalize well to different regions and seasons 

5. Unforeseen events: Climate change, pandemics, 
natural disasters, and other unforeseen events 
can make crop yield predictions more difficult. 

6. Model interpretability: In some cases, ML 
models may be too complex to interpret, making 
it difficult to understand why a model is making 
a particular prediction. 

7. Human factors: Farmer’s practices, 
technological advancements, and government 
policies can also impact crop yields, making it 
difficult to predict with machine learning. 
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8. Soil variability: Variations in soil quality and 
fertility can significantly impact crop yields. 

9. Weather and climate variability: Weather and 
climate can significantly impact crop yields and 
can be difficult to predict. Incorporating weather 
and climate data into the model can be 
challenging. 

10. Data availability: Deep learning models require 
large amounts of data to train effectively, and 
data on crop yields can be challenging to obtain 
in specific regions or for certain crops. 

11. High computational requirements: Training ML 
models can require significant computational 
resources, making it difficult for researchers to 
access the necessary hardware. 

12. Limited understanding of crop physiology: The 
physiological processes that drive crop growth 
are not well understood, making it challenging 
to develop accurate predictions of yields. 
 

1.2 Motivation 
Following is the list of things that 

motivated this research work: 
1. Improving crop productivity and food security 
2. Identifying and mitigating the effects of climate 

change on crop yields 
3. Developing more efficient and sustainable 

farming practices 
4. Predicting and managing crop disease and pest 

outbreaks 
5. Enhancing the accuracy and reliability of crop 

yield predictions 
6. Supporting farmers and agribusinesses in 

decision-making and resource allocation. 
7. Understanding the relationship between crop 

yield and environmental factors 
8. Developing precision agriculture techniques. 
9. Optimizing crop growth and yield under 

different weather conditions. 
10. Identifying the genetic and physiological factors 

that contribute to crop yield. 
 
1.3 Research Objective 

The research objective of “Strenuous Grey 
Wolf Optimization-based Feed-Forward Neural 
Network (SGWO-FFNN) for Enhanced Crop Yield 
Prediction” is to develop and evaluate a novel 
optimization algorithm, the Strenuous Grey Wolf 
Optimization (SGWO) algorithm, for training feed-
forward neural networks (FFNNs) which will result 
in enhanced crop yield prediction, and to 
demonstrate the effectiveness of the proposed 
approach through extensive experiments and 
comparison with state-of-the-art methods. 

 

1.4 Organization of the Paper 
Section 1 summarized the Introduction 

with a clear and concise statement of the problem 
being addressed in the research paper, an 
explanation of why the problem is important and 
relevant, and a statement of the specific objectives 
of the research. Section 2 critically reviewsthe 
existing literature on the topic, including relevant 
research studies, theories, and models. Section 3 
provides a detailed description of the proposed 
classifier, including its architecture, algorithms, and 
any novel contributions. Section 4 illustrates the 
description of the dataset used for the research, 
including its size and features. Section 5 describes 
the metrics used to evaluate the performance of the 
classifiers. Section 6 presents a discussion of the 
results obtained from the classifiers, including any 
comparison with other existing methods. Section 7 
summarizes the main findings and contributions of 
the research, as well as any limitations and future 
work. 

 
2.    LITERATURE REVIEW 

 
A literature review on crop yield 

prediction would involve researching and 
summarizing existing studies and papers on the 
topic. This could include examining different 
methods and models for predicting crop yields, 
analyzing their accuracy and limitations, and 
identifying gaps in current knowledge and areas for 
future research. Some key focus areas could include 
using meteorological data, remote sensing, and ML 
techniques to predict crop yields and the impact of 
changes in climate and other environmental factors 
on crop yields. The literature review might also 
examine the practical applications of crop yield 
prediction, such as in agriculture, food security, and 
biofuels. 

“DeepYield”[26]  has been suggested for 
predicting crop production. It combines different 
types of neural networks, specifically 
Convolutional Long Short-Term Memory layers 
and a 3D CNN, to improve the extraction of 
features related to space and time. The models are 
trained using various types of data, including 
information on land cover, surface reflectance, 
temperature, and historical crop yields from 1836 
countries in the US where soybeans are primarily 
grown.A method called “Synthetic Analysis and 
Bootstrap Method (SABM)”[27] has been put forth 
for forecasting worldwide crop yields. It employs 
updated information from crop surveys for around 
12,000 geographic regions. To begin, it examines 
the concurrent effect of El Nino Southern 
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Oscillation (ENSO) on the yield fluctuation of key 
crops using SABM. Next, it calculates the 
likelihood of simultaneous crop failure in the top 
five nations that produce the most crops by utilizing 
a statistical technique called the copula approach. 
Lastly, using multiple regression analysis, the most 
accurate forecasting model, relevant ENSO indices, 
and the appropriate lead time for each geographical 
area are determined based on previous ENSO 
indices.“Bayesian-based Model” [28] is proposed 
to forecast the results of wheat breeding 
experiments. This model utilizes hyperspectral 
reflectance data from the canopy of the plants and 
employs the ensemble Bayesian model averaging 
technique to enhance its accuracy. To construct 
yield prediction models, vital spectral bands 
identified using the Boruta feature selection 
technique are input into a combination of four 
linear and four non-linear ML models. These 
predictions are then combined using Bayesian 
model averaging weights, which are determined 
based on the cross-validation performance of each 
model. 

“Soft-Fruit Yield Framework”[5] has been 
developed to predict soft fruit yield. It incorporates 
weather forecasts at a regional scale and utilizes 
autonomous sensors to gather data on local crop 
conditions, specifically focused on strawberries as a 
model crop. The study involved planting seedlings 
in polytunnels and collecting data on various 
environmental factors and yield throughout the 
growing season. Over 1.2 million data points were 
gathered using microsensors that measured the 
temperature, humidity, soil moisture, and light 
levels within the polytunnels. To enhance the study, 
some plants were covered with fleeces to create 
more variation within the polytunnels. The data was 
then analyzed using trigonometric models, which 
helped to improve the accuracy of temperature and 
humidity predictions specific to the polytunnels by 
adjusting for discrepancies between the weather 
station data and the data gathered by the 
microsensors.“ Linear Regression-based 
Classification”[9] has been suggested for 
forecasting the characteristics of soil and the output 
of corn crops. This method involves the creation of 
multiple models through linear regression and 
assessing five different ML techniques based on 
their coefficient of determination and root mean 
square error. Combining remotely sensed data with 
ML techniques is a viable approach for identifying 
soil properties and corn yield at a regional level, 
which can aid in identifying regions that may 
require special attention and implementing farming 
methods specific to those areas. “Bayesian Extreme 

Gradient Boosting”[29] has been suggested to 
determine the impact of factors such as crop 
management, soil, and weather on the predicted 
yield and the level of uncertainty for key 
components of maize production. This approach 
combines Bayesian statistics to model the yield 
response and extreme gradient boosting to evaluate 
the importance of different features in predicting 
the outcome. The study found that factors related to 
crop management, such as the previous crop and 
irrigation, have a significant impact (around 50%) 
on estimating one component of the yield but a 
lesser impact on other components. 

Crop production data from 40 agricultural 
areas were organized into fewer, larger regions for 
forecasting using the “Hierarchical Clustering-
based Prediction Model (HCPMM)” [30]. Model-
based recursive partitioning, linear regression, and 
Bayesian neural networks predicted agricultural 
yields. The mean absolute error skill score from 
2000 to 2011 was used to assess predictions 
generated using data from July and earlier. A 
“Comparison Study” [31] used two significant ML 
strategies, namely, Random Forest and Support 
Vector Machine, to a commonly used model for 
predicting the conductance of stomata in wheat 
plants. The study used data collected from an 
experimental facility in Australia. The results 
showed that the ML methods were more accurate 
than the traditional model in predicting 
conductance based on various environmental 
factors. However, the ML methods required a large 
amount of data for training and did not offer the 
same level of understanding of plant physiology as 
the traditional model.“Hybrid Particle Swarm 
Optimization with Extreme Learning Machine” 
[32] has been proposed for forecasting 
evapotranspiration in regions with limited climate 
information. This method combines a particle 
swarm optimization algorithm and an extreme 
learning machine model to optimize the model’s 
parameters. The method was tested in northwest 
China’s arid region and used three input data sets: 
radiation, temperature, and mass 
transfer.“Multilayer Perceptron Model with 
Bayesian and Copula Bayesian Approaches” [33] 
for predicting wheat yields was proposed that 
utilizes a Multilayer Perceptron (MLP) model in 
multiple ways. The model was trained using 
backpropagation in its default mode and with a 
combination of the Genetic Algorithm, Sine-Cosine 
Algorithm, and Water Striders Algorithm in a 
hybrid mode. The ensemble modeling techniques 
employed are Copula-based Bayesian Model 
Averaging and Bayesian Model Averaging. 
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“Random Forest Algorithm (RFA)” [34] is 
a popular method for tackling both classification 
and regression tasks in supervised machine 
learning. It operates by building a collection of 
decision trees, known as a forest, and then using the 
average or majority vote of the predictions made by 
each tree to make a final prediction. This approach 
helps to reduce the variance and bias that can arise 
when using just a single decision tree. Additionally, 
RFA employs random selection of features at each 
split, which helps to avoid overfitting. This 
algorithm is versatile in that it can handle both 
categorical and numerical features, and it can also 
identify the most important features in a dataset. 
RFA is commonly used in a variety of applications, 
such as image classification, speech recognition, 
and bioinformatics. One of its main benefits is its 
ability to handle large amounts of data and high-
dimensional feature spaces. However, it should be 
noted that RFA can be computationally expensive 
and may not be the best option for real-time 
applications. In summary, RFA is a robust 
algorithm that can produce accurate predictions and 
feature importance, but its performance may not be 
optimal when used to predict crop yields. “Support 
Vector Machine (SVM)” [35] is a powerful 
supervised learning algorithm that is widely used 
for both classification and regression tasks. The 
algorithm is designed to find the optimal boundary 
or hyperplane that separates the data into different 
classes, while maximizing the margin, which is the 
distance between the boundary and the closest data 
points from each class, known as support vectors. 
One of the key advantages of SVM is its ability to 
handle non-linearly separable data through a 
technique called kernel trick, which projects the 
data into a higher dimensional space where it 
becomes linearly separable. Furthermore, SVM is 
robust to high-dimensional data and can handle a 
large number of features. However, SVM has some 
limitations as well, such as being sensitive to the 
choice of kernel function and algorithm parameters, 
and being computationally expensive for large 
datasets. In the context of crop yield prediction, it 
has been observed that the use of SVM may lead to 
a decline in performance. 

 
3. STRENUOUS GREY WOLF 

OPTIMIZATION-BASED FEED-
FORWARD NEURAL NETWORK 
(SGWO-FFNN) 

 
3.1. Feed Forward Neutral Network 

Bernstein polynomials uniformly 
approximate a limited and continuous function over 

the range [0, 1].  It is defined as follows: the 
polynomial function 𝑔(𝑝) for which 𝑝 𝜔 [0,1] 
and 𝜗 𝜔 𝑇∗ in terms of a Bernstein polynomial of 
order 𝜗 of 𝑔(𝑝), with a binomial coefficient 
denoted by 𝑈∋ =∋ !/(𝜗! (𝜗−∋)!). 𝑔(𝑝) on [0,1] is 
mapped to a polynomial function 𝑉 (𝑔, 𝑝) with 
𝑝 𝜔 [0, 1] through the polynomial function, and it is 
expressed as Eq.(1). 
  

𝑉 (𝑔, 𝑝) = 𝑔
∋

𝜗
𝑈∋𝑝∋

∋

(1 − 𝑝) ∋ 
 

(1) 

 
There exist 𝑇 parameters in 𝑔(. ), this 

research work writes it as 𝑔(𝑃) =
[𝑝 𝑝 … . . 𝑝 ]  𝜔 [0,1] × , where the 𝐹 in the 
superscript denotes the transposition operator. 
Therefore, Eq.(1) can be written as Eq.(2). 

 

𝑉 , (𝑔, 𝑃) = …

∋

𝑔
∋

𝜗
, … . ,

∋

𝜗
𝑣∋ (𝑝 ) … .

∋

𝑣∋ (𝑝 ), 

(2) 

 
such that 𝑣∋ (𝑝 ) = 𝑈

∋
𝑝

∋ (1 − 𝑝 ) ∋  with 𝑠 =

1,2, … , 𝑇.  
 

Regarding Approximation Theory [1], 
Chebyshev Polynomials (𝐶ℎ𝑠𝑃𝑙𝑚) [2] are a 
sequence of basis functions that prove useful. 
ANNs trained with 𝐶ℎ𝑠𝑃𝑙𝑚 perform well in 
approximation and generalization. Eq.(3) determine 
the recursion. 
 

𝐹 (𝑝) = 1, 

𝐹 (𝑝) = 𝑝, 

𝐹 (𝑝) = 2𝑝𝐹 (𝑝) − 𝐹 (𝑝), 

(3) 

wherein 𝐶ℎ𝑠𝑃𝑙𝑚 severity is indicated by 𝑤 =
1,2,3 … , 𝑛.  
 An assortment of 𝐶ℎ𝑠𝑃𝑙𝑚s, in conformity with 
the theory of orthonormal approximation, can 
estimate a target function of arbitrarily high 
degree 𝑚(𝑝) with 𝑝𝜔 in the range [−1, +1] as 
Eq.(4). 

 𝑚(𝑝) ≈ ∑ 𝛿 𝐹 (𝑝), (4) 

wherein 𝑍 is the sum of the 𝐶ℎ𝑠𝑃𝑙𝑚s employed in 
approximating 𝑚(𝑝), and 𝛿  is the mass of 𝐹 (𝑝). 
To simulate each 𝑣∋ (𝑝 ) in Eq.(2), this research 
work utilizes a cluster of 𝐶ℎ𝑠𝑃𝑙𝑚s when 𝑍 is 
sufficiently a huge value and it is represented as 
Eq.(5) 
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𝑣∋ (𝑝 ) ≈ 𝛿𝑧 , ,∋ 𝐹 (𝑝),

,∋

 (5) 

using 𝑠 = 1,2, … . , 𝑇, and if we let 𝑀∋ ,……,∋
(𝑃) =

𝑣∋ (𝑝 ) … . . 𝑣∋ (𝑝 ),  we get: 
𝑃∋ ,… ,∋ (𝑃)

≈ 𝛿𝑧 , ,∋ 𝐹∋ (𝑝 )

,∋

… 𝛿𝑧 , ,∋ 𝐹 (𝑝 )

,∋

 

= … 𝛿 , ,∋ …

,∋

𝛿𝑧 , ,∋ 𝐹 (𝑝 ) … 𝐹 (𝑝 )

,∋

. 

 

(6) 

Since, 𝐶ℎ𝑠𝑃𝑙𝑚s are approximative, Eq.(2) can be 
represented as Eq.(7): 

𝑉 , (𝑔, 𝑃)

= …

∋

𝑔
∋

𝜗
, … . . ,

∋

𝜗
𝑀

,…..∋
(𝑃)

∋

 

≈ … 𝑛
,….,

𝐹 (𝑝 ) … 𝐹 (𝑝 )

( )( )

= 𝑛 𝐺 (𝑃), 

(7) 

wherein {𝑔 (𝑝|𝐴 = 1,2, … , 𝐴)} signifies the basis 
function, 𝐹 (𝑝 ) … . . 𝐹 (𝑝 ) , 𝑛   denotes the 
weight associated with each 𝐺 (𝑃), & 𝐴 is the 
maximum number of basis functions. Each 𝐺 (𝑃)is 
increased by some number of 𝐶ℎ𝑠𝑃𝑙𝑚s equal to 𝑇. 
These 𝐶ℎ𝑠𝑃𝑙𝑚s can be sorted according to their 
degrees to help clear things up. The lexicographic 
order is chosen in this research work by upgrading 
it to categorize 𝐶ℎ𝑠𝑃𝑙𝑚s.  
 
3.1.1 Model of the original FFNN’s 

It is possible to represent a real-world 
instance with 𝑇 characteristics as 𝑃 =
[𝑝 𝑝 … . 𝑝 ] 𝜔 [0,1] × . Then, by using the FFNN 
model, 𝑄 = [𝑞 𝑞 … … 𝑞 ] 𝜔 𝐵 × can be 
derived, where 𝐶 stands for the total count of 
classes. If the class 𝑑(1 ≤ 𝑤 ≤ 𝐶), then 𝑞 = 2 
and 𝑞 = 1(1 ≤ 𝑤 ≤ 𝐶 𝑎𝑛𝑑 𝑤 ≠ 𝑑). This is the 
result of each 𝑞 (𝑠 = 1,2, … . , 𝐶)in 𝑄 . 

Remembering that the base FFNN model 
incorporates 𝐶 subnets, each of which may be 
thought of as a standard three-layer neural network. 
The neural network can be represented for the 𝑢th 
subnet, where 𝑢 = 1,2, … . , 𝐶. To represent the 𝑇 
characteristics with the output result y, the subnet 
model depicted holding 𝑇 neurons in its input layer 
and a single neuron in its output layer.  

The hidden layer neurons of the modified 
FFNN are powered up by a series of decided-to-
order basis functions 𝐺 , (𝑃)|𝑎 = 1,2, … . , 𝐴 , and 
the amount of these neurons 𝐴 is deduced using a 
significant classifier. The linking weights between 
the input and hidden layers are maintained at 1 to 
reduce computational complexity without 
sacrificing classification accuracy. With important 
parameters, the weights that link the hidden layer to 
the output layer 𝑛 , (𝑃)|𝑎 = 1,2, … . , 𝐴 , are 
calculated using the weights-based classification 
strategy (WCS). In addition, every neuron has a 
constant threshold value of 0. Eq.(8) depicts the 
expected outcome of the subnet. 

 𝑞 (𝑃) = ∑ 𝑛 , 𝐺 , (𝑃). (8) 

Approximation and generalization 
performances, crucial indicators of a neural 
network’s quality, are strongly influenced by the 
count of neurons present in it. It’s necessary to 
compute the neurons present in the hidden layer 
because the percentage of neurons in each layer is 
equal to the number of characteristics of the true 
instance, and the amount of neurons in the output 
layer is equal to the number of records present in 
the dataset.  

 
 The mean square error (𝑀𝑆𝐸) is frequently 
employed to evaluate the efficacy of neural 
networks. It’s a measure of how much the neural 
network’s actual outputs deviate from what would 
be predicted given the inputs to the network. 𝑀𝑆𝐸 
is determined using Eq.(9) when the training 
dataset comprises 𝑋 instances that may be treated 
as {𝑄 |𝑠 = 1,2, … . , 𝑋}. 

 𝑀𝑆𝐸 = ∑ 𝑞 , − 𝑞 (𝑃 ) , (9) 

wherein 𝑞 ,  indicates the 𝑠th desired output (i.e., 
𝑞 , = 2 if the 𝑠th example belongs to class 𝑢; 
otherwise, 𝑞 , = 1), and 𝑞 (𝑃 ) is the real weight 
of the corresponding 𝑠th instance’s output attribute. 
It’s worth noting that a lower MSE suggests a 
closer approximation between the neural network’s 
prediction and the desired prediction. 
 To get enhanced classification accuracy, 
partitioning becomes mandatory and the training 
dataset into 𝑛 different sets is then used in 𝑛 
iterations of cross-validation. With 𝑦 = 1,2, … . , 𝑛, 
the 𝑦th iteration applies the 𝑦th subset to validation 
while the remaining subsets are utilized for 
training. The algorithm is executed with a single 
hidden-layer neuron, and that number will rise by 
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one each time. Furthermore, the 𝑀𝑆𝐸 of the 
verification subset is logged as 𝐻 as well as the 
𝑀𝑆𝐸 of the training section is recorded as 𝐻  
while the algorithm is being executed. 
 The early-stage approximation and 
generalization ability of the neural network 
improves as the number of hidden-layer neurons, as 
seen by the constant lowering of 𝐻  and 𝐻 . 
Overfitting occurs when a neural network’s hidden 
layer has multiple neurons, leading to subpar 
approximation and generalization performance. 
This means that as the total number of hidden layer 
neurons increases to a significant size, the ratio of 
𝐻  to 𝐻  keeps falling while it attempts to get 
increase. It can be stated that once the 𝐻 starts to 
increase continuously over the threshold value of 
neurons in the hidden layer. The number of neurons 
correlating to the minima of 𝐻  is presumed to be 
the optimal amount in the cross-validation stage.  
 
3.1.2 Weight-based Classification Strategy 

Once the number of hidden layer neurons 
is set, then the topology of the neural network is 
fixed by depending on it. It involves calculating the 
weights of the connections between both the hidden 
and the output layer 𝑛 , (𝑃)|𝑎 = 1,2, … . , 𝐴 . The 
weights of the 𝑢th FFNN subnet are represented in 
Eq.(10) as a vector. 

𝑁 = 𝑛 , 𝑛 , … . . 𝑛 , 𝜔 𝐵 × . (10) 

Eq.(11) defines the input activation matrix. 
 

𝑆 =

⎣
⎢
⎢
⎢
⎢
⎡
𝐺 , (𝑃 )𝐺 , (𝑃 )           …          𝐺 , (𝑃 )

𝐺 , (𝑃 )𝐺 , (𝑃 )           …          𝐺 , (𝑃 )

⋮                    ⋮                       ⋱                   ⋮
𝐺 , (𝑃 )𝐺 , (𝑃 )     …            𝐺 , (𝑃 )

⎦
⎥
⎥
⎥
⎥
⎤

 𝜔 𝐵 × . (11) 

The desired 𝑞 , |𝑠 = 1,2, … . , 𝑋 from the neural 
net is expressed as Eq.(12) as a vector. 

𝑄 = 𝑞 , 𝑞 , … 𝑞 , 𝜔 𝐵 × . (12) 

 
Then, the WCS assists in deriving the 

optimum values using Eq.(13) of the subdomain of 
the modified FFNN. 

𝑁 = (𝑆 𝑆 ) 𝑆 𝑄 = 𝑝𝑖𝑛𝑣(𝑆 )𝑄 , (13) 

Using the notation 𝑝𝑖𝑛𝑣(𝑆 )to represent 
the effects of the matrices 𝑆 . Using the same 
technique, parameters for the other FFNN subnets 
can be obtained but may result in low classification 

accuracy then it is expected. Hence, this research 
work utilizes the enhanced version of grey wolf 
optimization, namely “Strenuous Grey Wolf 
Optimization” to enhance the classification 
accuracy. 
 
3.2Strenuous Grey Wolf Optimization 

This part introduces the grey wolf 
optimizer’s origin, the underlying mathematical 
model, and the associated method. There is a fairly 
clear pecking order among grey wolves. The most 
common digit sequences are 𝛿, 𝛾, 𝜃 and 𝜋. A wolf 
with level 𝛿 is the team’s leader. Subordinate 𝛾 
wolves of the 2nd layer help the alpha wolf with 
decision-making. Wolves in the roles of Scout, 
guardians, seniors, hunters, and caretakers make up 
the 𝛾 who are subservient to the 𝛿, 𝛾 who is in 
charge of the 𝜋. The pack’s lowest-ranking wolf is 
𝜋. They are in the last rank in the pack. Among 
some communities, the 𝜋 wolf serves as a 
babysitter. It’s important to note that while 
developing a computational formula for hunting 
grey wolves, pick the three optimum places to be 
alpha (𝛿), beta (𝛾), and delta(𝜃). We narrowed it 
down to 𝜋 as the last possible choice, and alpha(𝛿), 
beta(𝛾), and delta(𝜃) helped steer our hunting 
position. This is not to say that there is just one 
alpha (𝛿) wolf, or even one beta (𝛾)wolf, or even 
one delta(𝜃) wolf. 
 
 Grey wolves follow a three-stage process when 
hunting: surrounding prey, hunting, and attacking 
prey (exploit). Each wolf adjusts its position 
relative to the herd, dependent on how close it is to 
the prey. A siege is eventually organized. Eq.(14) 
and Eq.(15) mathematically show how the wolves 
encircle the prey. 

 𝑌 = 𝑈𝐷. 𝑃 ⃗(𝑓) − 𝑃  (14) 

𝑃( ) = 𝑃 ⃗(𝑓) − 𝐷. 𝑌 (15) 

𝑌 shows how far away the prey is from the 
wolf. 𝑃 ⃗(𝑓) shows the prey’s position vector. 𝑃 ⃗ is 
the vector that shows where each wolf is. 
 Eq.(16) and Eq.(17) determine the correlation 
coefficient vectors 𝐷 and 𝑈. 

𝐷 = 2𝑑. �⃗� − 𝑑 (16) 

𝑈 = 2. �⃗�  (17) 
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The random vectors �⃗� and �⃗�   are between 

[0, 1]. From 2 to 0, 𝑑 reduces linearly as the 
amount of iterations increases.  
 
3.2.1 Hunting 

alpha(𝛿), beta(𝛾), and delta(𝜃) are more 
likely to know where to find suitable prey. 
Following these three wolves, the others adjust 
their locations accordingly. Eq.(18) to Eq.(20) 
indicates the mathematical model of the same. 

 𝑌 = 𝑈 𝐷. 𝑃 − 𝑃 𝑌 = 𝑈 𝐷. 𝑃 −

𝑃 𝑌 = 𝑈 𝐷. 𝑃 − 𝑃  
(18) 

𝑃 = 𝑃 − 𝐷 . 𝑌 𝑃 = 𝑃 − 𝐷 . 𝑌 𝑃

= 𝑃 − 𝐷 . 𝑌  
(19) 

𝑃(𝑓 + 1) =
𝑃 + 𝑃 + 𝑃

3
 (20) 

 If 𝑌 , 𝑌 , 𝑌  denote the search agent’s 

position, 𝛿, 𝛾, 𝜃, 𝑃 , 𝑃 , 𝑃  denote the wolves’ 
locations, and 𝛿, 𝛾 and 𝜃 denote the search agent’s 
distance from the wolves. So far, those are the three 
most promising options. Wolf packs are given a 
random weight by 𝛿, 𝛾, 𝜃, the correlation 
coefficient, so they do not rush at their prey and 
reach sexual maturity at an unnaturally young age. 
It plays the same part that barriers do in a real hunt. 
After (𝑓 + 1) iterations, the search agent is located 
at the position 𝑃(𝑓 + 1). You can see the three 
wolves at 𝛿, 𝛾, and 𝜃 and have a significant impact 
on its position update. 
 

Algorithm 1. Strenuous Grey Wolf Optimizer 
1 Grey wolf population                         

𝑃 (𝑠 = 1,2,3, … , 𝑡) initialized. 
2 Prepare 𝐷, 𝑑, 𝑈 
3 Find out how effective each search 

agent is. 
4 Describe 𝛿, 𝛾, 𝜃, wolves 
5 Primary loop 
6 Analyze (𝑓 < 𝐹) 
7 For each search agent 
8 Adjust the locations using Eq (20) 
9 End foreach 
10 Upgrade 𝐷, 𝑑, 𝑈 
11 Calculate each search agent’s fitness. 
12 Upgrade𝛿, 𝛾, 𝜃 
13 𝑓 = 𝑓 + 1 
14 Finish while 
15 Repeat going to Step 5 till a better 

result is achieved.  

 
3.2.2 Exploring 

Once their target comes to a stop, the 
wolves pounce. The process can be modulated by 

reducing 𝑑. From Eq.(3), this research work can 
deduce that the range of values for 𝐷 , 𝐷 , 𝐷 is 
[−2,2], and that as 𝑑, their variability progressively 
diminishes. Grey wolves prioritize exploitation 
when |𝐷| < 1. During periods of |𝐷| > 1, when 
grey wolves avoid their usual prey in favor of 
searching for something new, foraging takes centre 
stage. 
 
4. ABOUT THE DATASET 

A dataset in machine learning research is a 
collection of data that is used to train, validate, and 
test a model. 
 
4.1 Soybean Crop Dataset 

The dataset used for this work contains 
information regarding the Soybean crop cultivated 
along with the nine states of the US Corn belt. The 
dataset holds 25345 records and three different 
features, namely: (a) Soil Feature, (b) Weather 
Feature, and (c) Crop Management Feature. 
 
4.1.1 Soil Feature 

The data present in this feature contains 11 
variables measured at six different depths in 250 
square meter resolution, which are: (i) 0-5cm, (ii) 
5-15cm, (iii) 15-30cm, (iv) 30-60cm, (v) 60-100cm, 
and (vi) 100-200cm. 

 
Table 1: Six Different Depths 

Interval Top Depth(cm) 
Bottom 

Depth(cm) 
𝐼 0 5 
𝐼𝐼 5 15 
𝐼𝐼𝐼 15 30 
𝐼𝑉 30 60 
𝑉 60 100 
𝑉𝐼 100 200 

 
Table 2:Soil Features 

Features Units Description 

Bulk 
Density 
(bdod) 

Centigram Per Cubic 
Centimetre 

Density in a 
volume of the 
fine-grained 

earth 
Cation 

Exchange 
Capacity 

(cec) 

Millimole Per 
Kilogram 

Soil pH7 
CEC: Cation 

Exchange 
Capacity (i.e., 
the potential 
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of Hydrogen 
value-7) 

Coarse 
Fragments 

(cfvo) 

Cubic Centimetre Per 
Cubic Decimetre 

The 
proportion of 

coarse 
particles (> 2 

mm) by 
volume. 

Clay Gram Per Kilogram Percentage of 
clay particles 

in the fine 
earth fraction 

Total 
Nitrogen 

(Nitrogen) 

Centigram Per 
Kilogram 

N2O (i.e., the 
Entire Gas) 

Organic 
Carbon 
Density 
(ocd) 

Kilogram Per Cubic 
Meter 

The molecular 
weight of 
carbon in 
organic 

compounds 
Organic 
Carbon 

Stock (ocs) 

Kilogram Per Square 
Meter 

Carbon 
Remaining in 

Organic 
Matter 

pH in H20 Percentage Hydrogen’s 
Untapped 

Potential in 
Water 

Sand Gram Per Kilogram Sand’s 
representation 

in the fine 
earth’s 
particle 

distribution 
Silt Gram Per Kilogram Microscopic 

particles of 
silt relative to 
those of fine 

earth 
Soil Organic 

Carbon 
(soc) 

Decigram Per 
Kilogram 

The fine-
grained 
organic 
carbon 

content of the 
soil 

 
4.1.2 Weather Feature 

The data present in this feature contains 
five components which are measured throughout 
the year. 

Table 3:Weather Features 

Features Units Description 

Precipitation Millimetre 
Week typical 
precipitation 

Solar Radiation 
Watt Per Square 
Meter 

Surfaces are 
exposed to solar 
energy 

Maximum 
Temperature 

Degree 
Centigrade 

Weekly mean 
highest 

temperature 

Minimum 
Temperature 

Degree 
Centigrade 

Weekly mean 
low temperature 

Vapor Pressure Pascal 
Speed of a 
liquid’s 
evaporation 

 
4.1.3 Crop Management Feature 

Information on the cumulative proportion 
of planted fields each state has each week 
beginning in April of each year is provided in this 
feature. 

 
Table 4:Crop Management Features 

Features Units Description 
Weekly 
Cumulative 
Percentage of 
Planted-fields 
(CWPP) 

Percentage The average 
weekly 
proportion of 
fields that have 
been planted 

 
4.2 Rice Crop Dataset 

This study incorporated a dataset that 
pertains to rice farming in 20 districts of 
Tamilnadu, spanning from 1990 to 2015. It 
comprises 520 records and encompasses two 
distinct characteristics: soil and weather. To gain a 
comprehensive understanding of classifier 
performance, records in the dataset were replicated 
multiple times, resulting in 10400 records. 
 
4.2.1 Soil Feature 

The data set for soil examination includes 
measurements for six attributes, taken monthly for 
25 years starting in 1990. 

 
 
 
 
 
 
 

Table 5:Soil Feature 

Features Units Description 
Irrigated area of 
rice 

Ha 
Rice Irrigated 
Area 

Consumption of 
Nitrogen 

Tons NitrogenFertilizer 

Consumption of 
Potassium 

Tons 
PhosphateFertiliz
er 

Consumption of 
Potash 

Tons PotashFertilizer 

Presence of 
OrthidSoil 

Percentage Orthid Soil Level 
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Presence of 
Sandy Soil 

Percentage 
Sandy Alfisol 
Soil Level 

 
4.2.2 Weather Feature 

The measurement of the 5 components of 
the weather were recorded during a 12-month 
period between 1990 and 2015. 

 
Table 6:Weather Feature 

Features Units Description 
JAN_MR - 
DEC_MR 

mm Rainfall in Months 

JAN_MT - 
DEC_MT 

cg 
Temperature at 
Minimum Level 

JAN_XT - 
DEC_XT 

cg 
Temperature at 
Maximum Level 

JAN_PT - 
DEC_PT 

mm Precipitation 

JAN_ET - 
DEC_ET 

mm 
Evapotranspiration 
Potential 

 
5. PERFORMANCE METRICS 

The metric outlined below is employed in 
this research to determine the effectiveness of the 
proposed classifier when compared to the current 
classifier. 
 Classification Accuracy (CA) measures how 
well a classifier can correctly identify the class of a 
given input. It is calculated as the number of correct 
classifications divided by the total number of 
instances in the test set. 
 F-Measure(FM)also known as the F1 Score, is 
a metric used to evaluate the performance of binary 
classification models. It is calculated by taking the 
harmonic mean of precision and recall. Precision is 
determined by dividing the number of true positive 
results by the number of true positive and false 
positive results. Recall is found by dividing the 
number of true positive results by the number of 
true positive and false negative results. 
 Matthews Correlation Coefficient (MCC) is 
another metric for evaluating binary classification 
models. It measures the correlation between 
predicted and observed outcomes, taking into 
account true positives, true negatives, false 
positives, and false negatives. A value of 1 
indicates a perfect prediction, while a value of 0 
suggests the model is no better than random 
guessing. A value of -1 indicates complete 
disagreement between the predictions and 
observations. 
 Fowlkes-Mallows Index (FMI) is a similarity 
index that is used to compare the similarity of two 
clusterings. It measures the geometric mean of the 
pairwise precision and recall of the two clusterings, 
where precision is the number of true positives 

divided by the number of true positives and false 
positives, and recall is the number of true positives 
divided by the number of true positives and false 
negatives. 
 
6. RESULTS AND DISCUSSION 

6.1 CA and FM Analysis 

Figures 1 and Figure 2 present an analysis 
of how different classifiers perform when using 
soybean and rice crop datasets, measured in terms 
of CA and FM. The figures indicate that the 
proposed classifier outperforms the others because 
of its optimization strategy, while the RFA and 
SVM classifiers fall short because they do not have 
an optimization strategy. These results are also 
listed in Table 7. Thus the proposed work achieves 
the research objective of predicting the crop yields 
more accurately than the existing classifier. 

 

 
 

Figure 1. Analysis of CA and FM on Soybean Crop 
Dataset 
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Figure 2. Analysis of CA and FM on Rice Crop Dataset 
 

Table 7 Result Values of CA and FM 

Dataset → 
Soybean Crop 

Dataset 
Rice Crop 

Dataset 
Metrics→ 

Classifiers↓ 
CA FM CA FM 

RFA 50.925 54.632 55.077 55.749 

SVM 59.795 64.210 58.442 59.818 

SGWO-
FFNN 

86.475 87.884 87.654 88.179 

 
6.2 FMI and MCC Analysis 
Figure 3 and Figure 4 provide an analysis of the 
performance of classifiers using soybean and rice 
crop datasets with respect to FMI and MCC. The 
results of the study suggest that the proposed 
classifier is trustworthy and can be utilized in 
further processing. In contrast, the results obtained 
from RFA and SVM classification methods indicate 
that further developments are required. The data 
values used in Figure 3 and Figure 4 are detailed in 
Table 8. FMI and MCC Analysis indicate that the 
proposed classifier's result is more trustable than 
the existing classifiers. 
 

 
 

Figure 3. Analysis of FMI and MCC on Soybean Crop 
Dataset 

 
 

Figure 4. Analysis of FMI and MCC on Rice Crop 
Dataset 

 
Table 8 Result Values of CA and FM 

Dataset → 
Soybean Crop 

Dataset 
Rice Crop 

Dataset 
Metrics→ 

Classifiers↓ 
FMI MCC FMI MCC 

RFA 54.633 1.194 55.750 10.135 

SVM 64.336 54.633 60.060 55.750 

SGWO-
FFNN 

87.885 72.587 88.179 75.259 

 
7. CONCLUSION 

Crop yield prediction is a critical task for 
farmers and agricultural scientists alike. In recent 
years, ML algorithms have succeeded in this 
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domain. The ML algorithm can be used to predict 
crop yields. These algorithms learn from past data 
to create a model that can then be used to predict 
future crop yields. Many different classification 
algorithms are available, each with its strengths and 
weaknesses. The Strenuous Grey Wolf 
Optimization-based Feed-forward Neural Network 
(SGWO-FFNN) has been successfully applied in 
crop yield prediction. The results of this study 
indicate that the proposed model can effectively 
predict crop yields with a high degree of accuracy. 
The use of the SGWO algorithm in optimizing the 
FFNN model has been shown to improve the 
network’s performance. The SGWO demonstrate 
the potential of the SGWO-FFNN model for 
accurate and reliable crop yield prediction. 
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