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ABSTRACT 
 

Fog computing efficiently brings services to the edge network because it facilitates processing, 
communication, and storage to be closer to the edge devices. Fog computing is principally used for the 
Internet of Things (IoT) instead of cloud computing as an ideal option to reduce latency, especially for time-
sensitive applications. Many different security challenges and cyber-attacks have emerged in the fog layer, 
rendering typical defense solutions ineffective. The Network Intrusion Detection System (NIDS) is a security 
system that uses various advanced learning approaches to detect and predict various attacks. IoT devices lack 
the computing power and energy needed for such, hence, IDS must be at the fog node to monitor data coming 
from different sources, such as IoT devices or neighboring fog nodes. To identify cyber-attacks and malicious 
states in IoT network traffic, this paper proposes an intrusion detection model named DAE-BiLSTM based 
on deep learning (DL) in the fog layer. The DAE-BiLSTM model employs a Deep AutoEncoder (DAE) in 
conjunction with Bidirectional Long Short-Term Memory (BiLSTM). Many existing state-of-the-art studies 
used the NSL-KDD dataset, which is now out of date and does not include new IoT cyber-attacks. The results 
of these studies also need to be improved by using advanced DL techniques to be effective in detecting current 
cyber-attacks. So the network-based ToN_IoT dataset is used for the training and testing of the DAE-
BiLSTM model. The ToN_IoT dataset comprises new and better-suited cyber-attacks for IoT. The DAE-
BiLSTM model obtained a high accuracy rate of 99.7%, 99.4% for precision, 99.7% for recall, and 99.5% 
for the F1-score in classifying normal traffic data from attacked traffic data in the fog layer. 

Keywords: Internet of Things (IoT), Fog Computing, Intrusion Detection System (IDS), ToN_IoT dataset, 
Deep Learning (DL) 

 
1. INTRODUCTION  

The Internet of Things (IoT) has led to the large-
scale and high-speed development of many systems 
in various fields of life. IoT is used in smart industrial 
systems, healthcare systems, smart homes, smart 
vehicles, and more. Given the nature of IoT, which 
relies on the exchange of huge amounts of data 
between large numbers of devices, the use of the 
cloud is essential. The cloud provides an 
infrastructure that enables users to acquire 
computing and storage resources without suffering 
high design and acquisition costs as needed [1]. 
However, dealing with the cloud layer directly is now 
not suitable for latency-sensitive applications. The 
most common architecture of fog computing can be 
seen in Figure 1. Fog computing is distributed 
computing that offers similar services as cloud 
computing but on a smaller geographic scale [2]. 

 
Fog computing between the cloud and the IoT is 

designed to solve the shortcomings and issues in the 
cloud such as delays in response time, lack of 
location awareness, lack of mobility support, as well 
as lack of geographic distribution.. 
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Figure 1: Fog Computing's Hierarchical Architecture 
 

Because fog nodes are placed between the cloud 
and IoT, they are vulnerable to many cyber threats 
due to the presence of many insecure devices and the 
inability to protect the network very efficiently. The 
Fog Network is a connected network that handles 
thousands of IoT devices. Any of these devices may 
only generate small amounts of data, but when data 
is received from so many devices, it becomes more 
difficult to secure while it is being processed and 
more vulnerable to hacking. Attackers also use these 
vulnerabilities to hack fog devices, obtain sensitive 
data, and compromise fog services. In addition, 
there are new attacks specific to their new location 
at the edge of the network, such as zero-day attacks, 
flooding attacks, abuse of service, advanced 
persistent threats, port scanning attacks, backdoor 
attacks, and user-to-root attacks [3]. Fog layer 
resources need to be secured and protected from 
various threats to preserve them. For example, a 
distributed denial of service (DDoS) attack targets a 
fog node, which is one of the most powerful flood 
attacks. Fog has fewer resources than the cloud. 
These resources are consumed faster, and then the 
network performance will decrease, which will 
deprive users of its services. Therefore, there was a 
need to monitor the packets coming into the fog 

network and predict attacks before they happened, 
so intrusion detection systems (IDSs) were used. 

Intrusion Detection System (IDS) is widely 
applied in many systems because it is a valuable 
solution to reduce malicious attacks by keeping track 
of network traffic and analyzing the behavior of 
devices. IDS employs a variety of techniques, 
including machine learning (ML) and deep learning 
(DL), to predict and discover attacks before they 
happen [4]. There are currently three layers in the 
network architecture: cloud, fog, and edge. IDS can 
be placed inside the cloud to perform this attack 
analysis but it takes a lot of time, from hours to days. 
That is not commensurate with the response speed 
required for latency-sensitive applications. 
Therefore, it is preferable to use IDS inside a fog 
node rather than directly in the cloud to detect any 
unwanted behavior faster and to monitor and analyze 
data and files. From the above, we understand that 
latency is one of the main reasons why we have IDS 
inside fog nodes. IDS inside a fog node reduces 
latency between edge devices and cloud servers. 
Thus, normal network traffic data coming from high-
end devices is analyzed and monitored, and 
malicious attacks are detected in the fog layer. 
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In the proposed work, a detailed, effective 
intrusion detection model named DAE-BiLSTM for 
detecting cyber-attacks via IoT in fog computing is 
presented. Most of the current research [5], [6], and 
[7] is evaluated using an outdated NSL-KDD [8] 
dataset that is not useful for the current IoT 
environment. In this context, the new ToN_IoT [9] 
dataset was used to evaluate how effectively the 
proposed work was done. The ToN_IoT dataset 
contains all new threats to the fog layer. The popular 
NSL-KDD dataset was also used in this research for 
comparison with others to ensure the efficiency of 
this work. Most of the previous work uses learning 
techniques that have become weaker at detecting 
attacks and take more time, and this is no longer 
suitable for the fog layer. The DAE-BiLSTM uses 
modern learning techniques to provide intrusion 
detection within a fog node to reduce latency and 
increase the accuracy of attack detection. The DAE-
BiLSTM model consists of a combination of Deep 
AutoEncoder (DAE) and Bidirectional Long Short-
Term Memory (BiLSTM). BilSTM was used, which 
is one of the most important deep learning 
techniques that give the best results. By using 
BilSTM, the amount of network information 
available increases, which effectively improves the 
context available for the algorithm. To improve its 
results and reduce the evaluation time, DAE should 
be used alongside it. The importance of DAE is to 
compress the original data, remove the noise, extract 
the most important features, and eliminate redundant 
data. The proposed work also consists of several 
phases. In the data preprocessing phase, the dataset 
is optimized by removing irrelevant and redundant 
data, validating the data type, dealing with missing 
values, etc. Using different ML techniques to choose 
the important features, the best one is selected for 
this work to ensure the best performance in the next 
phase. The DAE phase receives preprocessed data 
and compresses this data into a low-dimensional 
representation to extract useful knowledge. The 
compressed data generated from the DAE is then 
used to train the BiLSTM classifier based on binary 
classification. 

The main contribution of the paper is proposing 
an efficient Fog based IDS to accurately detect the 
vulnerabilities that penetrate fog devices to obtain 
sensitive data and violate fog services. The following 
is a summary of the contributions of the proposed 
IDS model: 
 It proposes a combination of DAE and BiLSTM to 

enhance intrusion detection performance which 
requires less amount of dataset used. 

 The DAE model is trained to compress the 
original data to further extract features and reduce 
complexity. 

 The compressed representation of the original 
dataset is used to train the BiLSTM model to get 
a better performance in predicting the intrusion or 
not. 

 The dataset is prepared, preprocessed, and 
optimized by comparing multiple techniques to 
select features and choosing the best one for the 
model. 

 A comparative analysis between the proposed 
work and some related IDS works on the fog 
environment using the ToN_IoT and NSL-KDD 
datasets. The results of the experiments 
demonstrate that the proposed work performs 
better than other methods in terms of metrics like 
accuracy, precision, recall, and F1-score. 

The following is how the paper is organized: the 
background knowledge of fog computing, some of 
the security problems it faces, and the role of IDS as 
an effective solution to these problems are presented 
in Section 2. Section 3 presents some work related 
to IDS based on ML and DL in a fog computing 
environment and its results and limitations. The 
DAE-BiLSTM model and some of its basic concepts 
are also explained for clarity in Section 4. In Section 
5, the different experiments were discussed, their 
results were compared, their performance was 
determined, and there was a comparison with other 
methods already in use. In Section 6, the conclusion 
resulting from the proposed work is drawn and 
clarified, in addition to directions and improvements 
that we hope will benefit future work being 
presented. 

2. BACKGROUND 

In this section, more information will be 
covered about fog computing, some security issues, 
cyber-attacks on them, and how to use intrusion 
detection systems to solve them. First, a simplified 
view of fog computing and its importance is 
presented, followed by a list of security issues and 
malicious attacks that threaten IoT devices and fog. 
Finally, intrusion detection systems, their 
categories, and their importance in solving these 
problems will be discussed. 

2.1 Fog Computing 

Fog systems have the lower computing power 
for resources but can be scaled up as needed, such 
as memory, processing, and storage. Fog is a mini-
cloud at the edge of the network that is closer to the 
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user to reduce latency and support real-time 
applications. The fog layer includes fog nodes such 
as access points, switches, embedded servers, 
controllers, routers, gateways, and storage devices. 
End-users interact with these nodes instead of 
connecting to cloud data centers to reduce power 
consumption and respond in real time. Different 
scenarios of fog nodes were presented in [10], where 
fog nodes were divided into two categories 
according to the edge devices connected to them. 
The first category is dumb fog nodes, which are 
limited to producing and sensing data only. The 
second category is smart fog nodes, which do not 
stop at sensation but also preprocess data using 
advanced computing capabilities. Fog computing 
offers load balancing, lowers latency, and maintains 
the quality of service (QoS), in addition to lowering 
expenses and energy consumption within the 
network [2]. 

2.2 Fog Security Issues 

The fog platform is vulnerable to many attacks 
due to its presence between users and the cloud, 
which creates many vulnerabilities. Fog computing 
is currently used to increase the performance of 
websites. Fog computing enables them to deal with 
HTTP requests, receiving and executing them at the 
same time, as well as dealing with different user 
files [11]. This makes fog computing vulnerable to 
attacks based on malicious input without validation, 
such as Cross-Site Scripting (XSS) and injection 
attacks. Fog nodes communicate with each other 
and with a huge number of IoT devices. This makes 
them vulnerable to a network traffic interception 
attack called Man-In-The-Middle (MITM) by a 
malicious intermediary attacker who intercepts 
communications, alters data, and destroys service 
within the network [12]. As shown in Figure 1, the 
fog platform connects to various types of IoT 
devices for ordinary users, such as sensors, laptops, 
phones, etc. This connection can be both wired and 
wireless, which means the fog platform is easily 
accessible, making it vulnerable to resource 
violation attacks such as denial of service (DoS) and 
distributed denial of service (DDoS) [13]. Some 
attacks represent a great danger within the IoT and 
affect its performance and lead to damage, such as 
scanning attacks that aim to collect data (available 
system services and open ports) and backdoor 
attacks that use hidden malware to gain remote 
control of IoT systems. Using different techniques 
to hack the passwords of IoT devices is a common 
attack within the fog environment. Fog computing 
is vulnerable to ransomware attacks that prevent a 
user from gaining access to an IoT device or service 

[14]. The ToN_IoT dataset includes all of these 
cyber-attacks that threaten the fog layer, such as 
backdoors, ransomware, scanning, denial of service 
(DoS), password attacks, Man-In-The-Middle 
(MITM), distributed denial of service (DDoS), data 
injection, and Cross-site Scripting (XSS) [15]. 

2.3 Intrusion Detection System 

The fog network is vulnerable to many 
intrusions. The intruder can eavesdrop, steal the 
password, spread malicious programs, malicious 
injections, or violate the resources of the network, 
and thus he can access another user’s account 
without permission or destroy the entire network. 
Therefore, it is necessary to use advanced and 
different methods of protection to limit these 
attacks. There are many techniques and tools to 
protect the network from this intrusion, such as 
firewalls, encryption techniques, and intrusion 
detection systems (IDSs). This research will focus 
on IDS within the fog environment. IDS is a security 
system that is applied inside fog nodes and monitors 
data coming from different sources, such as IoT 
devices or neighboring fog nodes. IDS uses various 
advanced learning methods, such as machine 
learning (ML) and deep learning (DL) models, to 
detect undesirable and abnormal behavior within the 
network [4]. IDS is categorized into two types: 
Network Intrusion Detection Systems (NIDS) and 
Host Intrusion Detection Systems (HIDS) [16]. 
Network-based IDS monitors network traffic, while 
HIDS monitors and analyzes activities, logs, and 
modifications to system files to identify intrusions. 
IDS can be classified into two categories: anomaly-
based IDS and misuse-based IDS or signature-based 
IDS [4]. NIDS monitors the behavior of fog network 
traffic through various IoT devices and searches for 
anomalies. If the behavior and patterns of current 
network traffic differ, it issues an alert. The structure 
of IDS consists of two methods: distributed or 
centralized. Distributed IDS nodes are scattered 
across the network, and each contributes to a portion 
of the processing with the others to form a collective 
data processing. Centerized IDS nodes process the 
network data entirely. Having NIDS inside the fog 
nodes helps to have a wider view of the network as 
the fog nodes receive different data from the edge 
subnetworks. IDS is constantly and rapidly being 
developed in fog computing as new attacks have 
emerged that need immediate solutions. 

 
3. RELATED IDS WORKS 

This section discusses the latest security 
techniques and some previous work in the fog 
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computing environment that uses ML and DL to 
detect attacks faced by IoT.  

Kumar et al. [13] presented a design based on 
IDS technology in fog computing using an ensemble 
of different ML techniques. At the first level, K-
Nearest Neighbors, XGBoost, and Gaussian Naive 
Bayes are combined as separate learners, and then 
use the results of the first level to predict the second 
level by Random Forest for classification. When it 
was used on the UNSW-NB15 dataset, the detection 
rates for backdoor attacks, analysis, reconnaissance, 
and DoS attacks were 71.18%, 68.98%, 92.25%, and 
85.42% respectively. Their work gives an overall 
score of detection accuracy of 93.2%. The model is 
computationally complex and has low detection 
accuracy for the backdoor, analysis, and worm 
attacks. 

Sudqi Khater et al. [17] proposed a lightweight 
IDS for a fog computing environment using a 
Multilayer Perceptron (MLP) model with a 
Raspberry Pi as a fog node.  It was applied on a 
dataset (ADFA-WD) with 74% accuracy, 74% 
recall, and 74% F1-score and on a dataset (ADFA-
LD) with 94% accuracy, 95% recall, and 92% F1-
score for detecting various attacks. Their model still 
has to be improved in terms of computational 
efficiency and detection accuracy by using modern 
learning models. It cannot detect current IoT 
network attacks. 

Prabavathy et al. [5] presented an intrusion 
detection model for a fog computing environment 

using an online sequential extreme learning machine 
(OS-ELM) to detect incoming attacks from the 
Internet of Things and implemented it on the NSL-
KDD dataset. The authors reached a detection 
accuracy of 97.36% when implemented in fog 
computing. The dataset used was unbalanced and 
needed sophisticated preprocessing before use. 
Although all the features available in the dataset are 
used, it is unable to detect current or unknown 
network attacks. 

Kalaivani et al. [6] proposed a deep learning-
based intrusion detection model for use in fog layer 
devices that combines CNN with LSTM called 
ICNN-FCID to classify attacks. They also compared 
three activation functions (relu, sigmoid, and tanh), 
with relu obtaining the best accuracy of 96.5%, 
85.2% for precision, 91.1% for recall, and 86.4% for 
F1-score. The model was evaluated using NSL-
KDD and this evaluation resulted in an attack 
detection accuracy of 96.5%. This accuracy needs to 
be improved. They also had to evaluate their best 
model on new and different datasets that correspond 
to the fog layer to determine its performance for 
different types of cyber-attacks. The proposed 
method was only trained to identify basic network 
attacks. 

 Sadaf et al. [7] presented a method to detect 
abnormal and intrusive attacks based on deep 
learning using AutoEncoder and Isolation Forest 
techniques within a fog computing environment. 
They called it (Auto-IF) and it was verified using the 
NSL-KDD dataset with an accuracy rate of 95.4%, 

Authors Methods Dataset Accuracy Limitations 

Kumar et al 
[13] 

Ensemble of  KNN, 
XGBoost, Gaussian 
Naive Bayes, and  
Random Forest 

UNSW-
NB15 

93.2% 
The model is computationally complex 

and has low detection accuracy for 
backdoor, analysis, and worm attacks. 

Sudqi Khater 
et al [17] 

Multilayer Perceptron 
(MLP) 

ADFA-WD 74% The model's 94% attack detection 
accuracy has to be increased. It cannot 
detect current IoT network attacks. ADFA-LD 94% 

Prabavathy et 
al [5] 

Online Sequential 
Extreme Learning 

Machine (OS-ELM) 
NSL-KDD 97.36% 

Although all the features available in the 
dataset are used, it is unable to detect 
current or unknown network attacks. 

Kalaivani et al 
[6] 

CNN with LSTM 
(ICNN-FCID) 

NSL-KDD 96.5% 
The proposed method was only trained to 

identify basic network attacks. 

Sadaf et al [7] 
Autoencoder and 

Isolation Forest (Auto-
IF) 

NSL-KDD 95.4% 

Attack detection accuracy for the model 
is 95.4%, which needs to be improved. It 
cannot detect recent or unknown IoT 
network threats. 

Maharani et al. 
[18] 

K-Means 
KDD 
Cup'99 

93.3% 

Attack detection accuracy for the model 
is 93.3%, which can be higher. It 
cannot detect recent or unknown IoT 
network threats. 

Table 1: Existing Works of IDS at Fog Layer 
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94.8% for precision, 97.2% for recall, and 96% for 
F1-score for detecting different attacks in real-time. 
Although the isolation forest is used to increase the 
accuracy of their results, the accuracy of their final 
model still needs to be improved. It cannot detect 
recent or unknown IoT network threats. It also needs 
to be evaluated with recent datasets. 

Maharani et al. [18] proposed an IDS 
framework for fog computing to detect attacks using 
ML techniques, namely Decision Tree, K-Means, 
and Random Forest. The evaluation was performed 
using the KDD Cup'99 dataset. It found that K-
Means has the highest accuracy of 93.3% among 
other algorithms. KDD Cup'99 is one of the oldest 
and most outdated datasets, so it was preferable to 
evaluate this model with newer datasets. Their 
accuracy is small compared to the current works, so 
they should improve it by using new and effective 
learning algorithms. It cannot detect recent or 
unknown IoT network threats. 

IDS has been used in all the above-mentioned 
works to scan network data packets and identify 
different types of attacks, but it still has some 
shortcomings that were discussed above that need to 
be worked on and improved. It was found that there 
are repeated shortcomings in most of these works, 
such as: 
 As shown in Table 1, the accuracy rates of the 

used models need to be improved to ensure the 
efficiency of the intrusion detection system and 
reduce the high rate of false alarms. 

 Most of the work was evaluated on older datasets 
that lack modern attack types in the fog layer. 
Therefore, it is not compatible with current 
Internet of Things devices. 

In this paper, to overcome these shortcomings, 
an IDS model based on deep learning was 
implemented in the fog layer. A network-based IoT 
dataset called ToN_IoT is used that contains nine 
types of cyber-attacks that have been gathered from 
huge, realistically tested networks. 

4. PROPOSED IDS ARCHITECTURE 

 As mentioned earlier, the network structure 
consists of three layers: edge, fog, and cloud. These 
layers collaborate in dealing with traffic from 
various devices to detect intrusion and record it in 
blacklists so that similar packages are not included 
again. 

As shown in Figure 2, fog layer nodes receive 
IoT device packets. By building an intrusion 
detection system model inside these nodes using 

DL, this data is analyzed and the intrusion is 
detected. The fog node intrusion detection system 
collects traffic, generates security alerts if an 
intrusion is detected, then logs those alerts and sends 
them to the cloud servers. 

 

Figure 2: Flow-graph for the proposed IDS Architecture 

IDSs must be enhanced to ensure effective 
intrusion detection and lower the high rate of false 
alarms as new generations of cyber-attacks appear 
every day. Enhancements are presented by utilizing 
advanced DL techniques to guarantee great results 
in identifying intrusions and a recent dataset to feed 
these technologies. The DAE-BiLSTM model 
includes several phases. The outputs of each phase 
are used as inputs to the next, as shown in Figure 3. 
The proposed IDS model has been tested on the 
network ToN_IoT dataset and consists of several 
phases; each phase has separate functions as 
follows: 

Phase (1): Preprocessing techniques should be 
used that aim to improve and prepare the data before 
it is used by deep learning techniques. In the 
proposed model, preprocessing consists of: 

 Data cleaning is done to get rid of messy and 
ineffective data and to ensure the correctness of 
the types of features. 

 Feature selection for defining the most important 
features of data by using the appropriate method. 

 Feature encoding encodes feature values into 
numerical values. 

 Feature scaling for scaling feature values into 
specific ranges. 
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Phase (2): Deep AutoEncoder (DAE), which is 
also a good option for guaranteeing data privacy and 
further feature selection. 

Phase (3): Bidirectional long short-term 
memory (BiLSTM), which is currently one of the 
most effective deep learning models employed. The 
use of BiLSTM has increased the accuracy of results 
and the ability to detect attacks effectively. 

 

Figure 3: DAE-BiLSTM Model. 
 

As shown in Figure 3, the DAE-BiLSTM model 
includes several stages. The outputs of each stage 
are used as inputs for the next. The ToN_IoT dataset 
is initially prepared and optimized by preprocessing 
techniques including data cleaning and 
segmentation, feature selection, feature encoding, 
and feature scaling. The output is used as input to 
DAE for further feature selection and encoding. The 
DAE output is then used as input into BiLSTM to 
increase the accuracy of the results and the ability to 
detect attacks efficiently. 

 
The following is a brief explanation of the 

proposed IDS model, the methods used for each of 
its phases, and their advantages. 

4.1 Data Preprocessing 

Fog nodes exist between IoT devices and the 
cloud layer. They receive incoming traffic from IoT 
devices with various feature categories as numeric 
and categorical contents. To improve the efficiency 

of the DAE-BiLSTM model, the traffic must be 
analyzed and preprocessed as described below. 

4.1.1 Data cleaning 
Data cleaning is an important process for 

identifying bad data and systematically 
restructuring it correctly, as data must be cleaned 
before processing to ensure the quality of the results 
of the machine and deep learning models. There are 
many methods of data cleaning, such as removing 
irrelevant and redundant data, checking the 
correctness of the data type, handling missing 
values, etc. 

 Remove Duplicate Rows and Check Data Types 
The presence of duplicate data rows leads to 

data distortion, which then negatively affects the 
results, so it is preferable to remove them. It is also 
necessary to ensure the data type for each feature 
within the datasets, whether it is numeric, nominal, 
boolean, or other. 

 Dealing with Missing Values 
Lots of datasets currently in use have missing 

values. Ignoring missing values can be a mistake 
because it weakens your data, and you won't get 
accurate results. These values can be dealt with in 
two ways: either by removing them or by inputting 
them. 

Removing the missing value is a sensitive 
process as it either benefits the data set or leads to 
the removal of useful insights from your data. You 
must verify and analyze these values before 
removing them. The missing values should not be 
ignored and must be filled in. They are analyzed 
according to the nature of the dataset used. 

4.1.2 Feature selection 
One of the most crucial steps is feature 

selection, as the best features have to be chosen from 
many features. This process removes redundant and 
irrelevant features to reduce computation time, 
improve accuracy, and build a DL model that 
achieves higher performance. In the proposed 
model, Random Forest Classifier, Chi-square test, 
and Extra-Trees are applied for feature selection. 

 Chi-square Test 
A statistical test known as the Chi-square test 

[19] that belongs to the filter method category can 
be effectively used to select important features. It is 
applied to a set of features to evaluate the correlation 
between them by calculating the Chi-square 
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statistical value of the feature concerning the output 
class. The Chi-square formula is applied using 
equation (1). 

  (1) 
 

Where Oi represents the observed value and Ei 
represents the expected value. 

 Random Forest Classifier 
Using the Random Forest Classifier to select 

features falls under the category of embedded 
methods that combine the properties of filter and 
wrapper methods [20]. The algorithm's work 
depends on classification and regression trees 
(CART). Each tree in the random forest calculates 
the importance of the feature according to the purity 
of its leaves. There is a direct relationship between 
the increase in the purity of leaves and the increase 
in the importance of the feature. The average is 
calculated for all trees, and this average is 
normalized to 1. 

 Extra-Trees 
The extra-trees classifier is an embedded 

method to extract relevant features [21]. They 
generate from the training dataset a large number of 
individual decision trees. The algorithm chooses a 
random split rule from the sub-features and a 
random cut point relative to the root node. The 
parent node is randomly divided into two child 
nodes, and this process is repeated until the leaf 
node has no child nodes. A majority vote of all the 
trees' predictions determines the final prediction. 
The Gini importance of each feature during forest 
construction is calculated and arranged in 
descending order of importance. The best features 
are chosen as an introduction to the different 
learning models. 

The chi-square is used in the model because of 
its many advantages. It is considered robust and 
flexible in dealing with data. It was also found that 
it is distinguished by its ease and faster 
computations, in addition to the specific information 
that can be obtained from the test [19]. When 
applying the methods, it was found that using the 
chi-square method led to higher results than other 
methods. 

4.1.3 Feature encoding 
This step is one of the most important processes 

for dealing with data, as categorical data is encoded 
into numeric data because dealing with numbers is 

generally easier and faster. Categorical data can be 
encoded in a variety of ways, including label 
encoding and one-hot encoding. Label encoding is 
used because there is a lot of categorical data in the 
dataset. Using label encoding makes it fast and easy 
and does not create a messy frame of data as in one-
hot encoding, which adds a lot of columns. 

4.1.4 Feature scaling 
The values of the features in the network traffic 

coming from IoT devices vary, some of them have 
very high values, while others have very small 
values, so there is a need to use feature scaling. 
Feature scaling is one of the most important steps 
during data preprocessing. Scaling can make a 
difference during the creation of a deep learning 
model as it determines whether a model is weak or 
strong. The most common scaling techniques are 
normalization and standardization. The Min-Max 
scaling [22] is used, to apply normalization as it 
scales and translates each feature individually so 
that it is within the specified range. It can be 
calculated as follows: 

 
 (2) 

 
Where Xsc represents the output of scaling, X 

represents the input value, Xmin represents the 
minimum value, and Xmax represents the maximum 
value. 

4.2 DAE-BiLSTM Model 

The deep learning methods used in the DAE-
BiLSTM model are discussed in this section. These 
methods were tested using the enhanced dataset 
obtained through preprocessing. The DAE-BiLSTM 
model consists of DAE and BiLSTM.  

4.2.1 AutoEncoder (AE) 
One of the types of neural networks, called 

AutoEncoder (AE) [23], is used for feature 
extraction. AE learns a compressed representation 
of raw data and then uses it to train a different deep-
learning model. There are many types of AEs 
nowadays, such as deep AE, sparse AE, variational 
AE, denoising AE, etc. [23]. DAE is widely used for 
compressing data, reducing the feature dimensions, 
extracting relevant features, and removing noise. It 
aids in the selection of the most important features 
because it employs reduced encoding as a 
representative of the original data. The DAE 
consists of an encoder, bottleneck, and decoder, as 
shown in Figure 4. The encoder compresses the 
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input, while the decoder attempts to rebuild from the 
encoder's compressed version. The performance of 
the DAE and its effectiveness is evaluated by 
reconstruction loss. Reconstruction loss is done by 
evaluating the overall performance of the decoder 
and measuring the similarity between its output and 
the initial input. The reconstruction loss is estimated 
using the mean square error (MSE) method. DAE is 
used because it is used for datasets with real data 
values and because its encoding layer is compact 
and fast. 

 
 

Figure 4: AutoEncoder 

 
   (3) 

   (4) 

Where E represents the encoder 
function, X represents the input value, D represents 
the decoder function, Z represents the compressed 
value, and X′ represents the output value. 

4.2.2 LSTM 
One of the most important types of recurrent 

neural networks (RNN) is called long short-term 
memory (LSTM), which can learn from long 
dependencies and was introduced in 1997 [24]. 
LSTM can be an effective solution for the fog 
environment compared to other deep learning 
models. It is based on learning from long sequences 
by storing information about the network's previous 
state using the forget gate. LSTM can use the 
historical data stored from previous network traffic 
for a while [25]. The LSTM cell [24] contains a set 
of basic gates, namely input gates, forget gates, and 
output gates, and their function is to control cell 
states and their protection. LSTM reduces the long 
time it takes to detect attacks compared to other 
learning models such as DoS and DDoS, which are 
major threats to the fog network. The data generated 

by IoT devices is unstructured and has various 
forms. LSTM can effectively learn from 
unstructured data and extract effective insight. 
LSTM performance increases with more training 
data, and these conditions lead to LSTM’s 
superiority over other deep learning techniques. 

 BiLSTM 
Bidirectional LSTM (BiLSTM) [26] is a 

sequence processing model derived from the LSTM 
model, which consists of two LSTMs as shown in 
Figure 5, one of which takes the input in a forward 
direction while the other takes a backward direction 
Input layer, forward transmission layer, reverse 
transmission layer, and output layer are the four 
layers into which BiLSTM is divided [27]. BiLSTM 
has been developed for speech recognition and 
handwriting recognition, where one of its most 
important benefits is that it has an input sequence 
based on past and future sequences. BiLSTM 
increases the amount of network information 
available, which effectively improves the context 
available for the algorithm. It was found that, 
although it is expensive, training the data using 
BiLSTM models shows better predictions than 
LSTM models in the normal mode. 

 
 Figure 5: BiLSTM Architecture 

5. EXPERIMENT RESULTS AND 
DISCUSSION 

This section presents the DAE-BiLSTM model 
through different experiments, analysis of its 
performance, and comparison with the latest models 
currently used in the same environment. 
Experiments were conducted in Python using a 
Jupyter notebook on an Anaconda machine. For 
DAE, packages from Keras and Tensorflow are 
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used. For the BiLSTM method, packages from 
Keras are used. The ToN_IoT and NSL-KDD 
datasets are used to evaluate the performance of the 
DAE-BiLSTM model. These experiments were 
performed on a machine running 64-bit Windows 10 
with an Intel (R) Core i5-8265U CPU @ 1.80 GHz 
and 12 GB of memory. 

5.1 Datasets  

5.1.1 Common existing datasets 
As mentioned earlier in the related IDS work in 

this research, one of the most important datasets 
used in IDS at the fog layer is the NSL-KDD dataset. 
It is used to identify attacks like DoS, SQL injection, 
and brute force [28]. It contains 41 numerical and 
nominal features [8]. Currently, NSL-KDD has 
some limitations and is an outdated and widely used 
dataset for network intrusion detection. KDD 
Cup'99 [29], UNSWNB15 [30], and CICIDS [31], 
like NSL-KDD, are outdated with existing networks 
and not sufficient to represent the normal state of 
fog-based IoT networks that include many different 
standards [32]. There are also other shortcomings, 
such as the fact that datasets do not contain 
heterogeneous data, such as DEFCON and LBNL 
datasets. Other new datasets have been adopted that 
are in line with the nature of IoT and depend on the 
new network architecture, such as ToN_IoT, 
Aposemat IoT-23 [33], and N-BaIoT [34]. 

5.1.2 ToN_IoT dataset 
One of the most important datasets currently is 

the ToN_IoT dataset. It represents new generations 
of IoT, industrial IoT, operating systems, and 
network traffic datasets. ToN_IoT datasets have 
been gathered from huge testbed networks 
realistically with a testbed design that has three 
layers: edge/IoT, fog, and cloud [35]. They include 
raw and processed data sources gathered from 
Windows and Linux operating system datasets, 
network traffic datasets, and IoT service telemetry 
datasets [9]. The ToN_IoT network traffic dataset is 
used for network intrusion detection to evaluate 
several AI-based cyber security solutions. They are 
not limited to general network features, but also 
include a set of services to aid in the detection of 
attacks, such as FTP, DNS, and HTTP. The 
ToN_IoT dataset contains hundreds of records. 
Each file contains 45 attributes categorized into four 
groups that include connection, statistics, user, and 
violation attributes [36]. Among the ToN_IoT 
datasets, the ToN_IoT network dataset was used 
since it contains traffic data from IoT devices 
connected to the fog network. There are 46 features 

in the ToN_IoT network dataset; two of them are 
class label and type which is either normal or 
attacked. The "Train_Test_Network" file, a 
simplified sample file, was used. 

It was used to evaluate the effectiveness of 
current cyber-security solutions using different AI 
methods. There are 300,000 records of normal 
network traffic and 161,043 records of attacks in this 
dataset, totaling 461,043 records. Table 2 shows the 
number of network traffic records for each type in 
the dataset. 
  
Table 2: Number of Records for Each Type of Network-

based train-test Dataset of ToN_IoT 
Type Numbers of records 

normal 300000 

backdoor 20000 

ransomware 20000 

DoS 20000 

DDoS 20000 

injection 20000 

XSS 20000 

password 20000 

scanning 20000 

MITM 1043 

 
Table 3 shows different types of cyber-attacks 

in the ToN_IoT dataset that threaten the fog layer, 
such as: backdoor, ransomware, scanning, denial of 
service (DoS), password attack, Man-In-The-
Middle (MITM), distributed denial of service 
(DDoS), data injection, and Cross-site Scripting 
(XSS). 
 

Table 3: ToN_IoT Attack Types 
Attack 

Category 
Attack Type 

Fog network 
vulnerabilities 

Flooding 
Attacks 

DoS The normal traffic 
of fog servers is 

overwhelmed by a 
flood of data 

packets, making 
them inaccessible. 

DDoS 

Injection 
Attacks 

XSS 

Sending malicious 
scripts to fog and 

IoT devices, 
through which 

sensitive 
information can be 

obtained. 

Data Injection 

Injecting input for 
reading, modifying, 

and deleting 
sensitive data inside 

the fog devices. 

Information 
Gathering 

Scanning 
Identifying fog 

network security 
vulnerabilities. 
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Malware 
attacks 

Backdoor 

Control components 
of the fog network 

by installing 
backdoors. 

Password 

Identifying a 
password to a fog 
device to obtain 

unauthorized access 
to fog resources. 

Ransomware 

Encrypting data and 
systems of fog 

devices to pay a fee 
to the attacker. 

Eavesdropping MITM 

Communication 
interception 
between IoT 

devices and a server 
such as DNS and 
ARP spoofing. 

5.1.3 Experiment scenarios  

 Preprocessing Process 
Preprocessing datasets helps learn models to 

save time and reduce computation while ensuring 
increased model performance. The ToN_IoT dataset 
is new, with new attacks and feature values not 
found in previous datasets. So data problems within 
it had to be worked on, such as removing irrelevant 
and redundant data, validating data types, handling 
missing values, etc. The ToN_IoT dataset contains 
records with features that may be nominal, binary, 
or numeric. The stages of the preprocessing phase 
were applied as follows: 

o Data Cleaning 

These steps are taken to prepare and clean the 
ToN_IoT network dataset: 
1) The dataset was modified by removing the 

redundant rows. 
2) Null values are expressed within the data set 

with the symbol "-". The used "-" symbol has 
been replaced with an actual null value to help 
us with the next process. 

3) The validity of each data type for each feature 
within the dataset, whether numeric, nominal, 
or boolean, was also verified. 

4) The missing categorical values are replaced by 
a category called "other" and the missing 
numeric values are replaced by 0. 

5) Some features with null values above 99% have 
been removed as being unimportant to the 
dataset. 

6) The features of IP addresses and ports have also 
been removed based on the recommendation 
found in [35] when using new learning models 
to increase detection efficiency and reduce the 
false alarm rate. 

Table 4 shows the new number of network 
traffic records for each type in the dataset after the 
data cleaning process. 

Table 4: Number of Records for Each Type of the 
Dataset after Data Cleaning Process 

Type Numbers of records 

normal 259962 

backdoor 17984 

ransomware 17972 

DoS 16417 

DDoS 18002 

injection 17973 

XSS 17947 

password 17972 

scanning 17993 

MITM 961 

o Feature Selection 

Random Forest Classifier, Chi-square Test, and 
Extra-Trees are applied for feature selection to 
reduce the number of features and identify the most 
important ones. The chi-square test is used because 
it is robust and flexible in dealing with data. 
Furthermore, it is distinguished by being faster and 
easier to calculate. When applying the Chi-square 
Test, Random Forest Classifier, and Extra-Trees, it 
was found that using the Chi-square method to 
select the most important features as part of the 
proposed model led to higher results in accuracy 
than the rest of the applied methods, as shown in 
Figure 6. 

 
Figure 6: Performance of the DAE-BiLSTM Model using 

ToN_IoT Dataset with Different Feature Selection 
Techniques 

The most important features are selected using 
the Chi-square test according to their score. The top 

99.70%

99.40%

99.50%

99.20%

99.30%

99.40%

99.50%

99.60%

99.70%

99.80%

Accuracy

Performance of DAE-BiLSTM Model

Chi-square Random Forest Extra Trees
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15 highest-scoring features in the dataset are 
selected. Table 5 presents the features selected in the 
ToN_IoT dataset using the Chi-square Test in the 
proposed model. 

Table 5:  Features Selected from ToN_IoT Dataset Using 
Chi-square Test 

No. Selected Features Feature Description 

1 proto 
Flow traffic protocols at 
the transport layer 

2 service 
Other additional protocols 
found 

3 conn_state Connection states 

4 duration Flow duration 

5 src_bytes Source bytes number 

6 dst_bytes Destination bytes number 

7 missed_bytes Missing bytes number 

8 src_pkts Number of source packets 

9 src_ip_bytes 
Number of source IP 
bytes 

10 dst_pkts 
Number of destination 
packets 

11 dst_ip_bytes 
Number of destination IP 
bytes 

12 dns_qclass DNS query classes 

13 dns_qtype DNS query types 

14 http_response_body_len 
Transferred data content 
sizes from the HTTP 
server 

15 http_status_code 
Status codes of HTTP 
server 

o Feature Encoding 

Deep Learning models in general, and DAE in 
particular, can only work with numeric data, so 
features must be encoded for numeric. The label 
encoder method is used for encoding because there 
is a lot of categorical data in the dataset. Using a 
label encoder makes it fast and easy and does not 
create a messy frame of data. The label encoder 
converts all categorical or nominal values of 
features into an integer to be added to their index. 
For example, the "proto" feature, which expresses 
the transport layer protocols of flow connections, is 
converted from categorical values (tcp, udp, icmp) 
to numeric values (1, 2, 3).  

o Feature Scaling 

The remaining features after the label encoding 
stage need to be scaled and translated. Min-Max 
scaling functions are used for normalization. Each 
feature value is individually scaled into the specified 
range between 0 and 1 in the dataset. The resulting 
dataset is then split into train and test, with the train 
comprising 70% of the dataset and the test 

comprising 30% of the dataset. As a result, the DAE 
receives a set of preprocessed features.  

 DAE Process 
The encoder is defined as having three hidden 

layers to avoid overfitting and increase efficiency. 
The first layer has twice the number of inputs, the 
second has one and a half number of inputs, the third 
has the same number of inputs, and the bottleneck 
layer has half the number of inputs. Batch 
normalization and dropout ReLU activation are used 
to increase model learning efficiency. The decoder 
has three hidden layers, the first with the number of 
inputs, the second with the number of one and a half 
inputs, and the third with twice the number of inputs. 
DAE was applied with 100 epochs, 32-batch size, 
Adam optimizer, ReLU activation, and MSE loss. 
Figure 7 illustrates the difference between the 
reconstruction loss for the train and the test when 
applied to the ToN_IoT dataset. The output of the 
DAE process is reshaped to be suitable as a process 
input for BiLSTM.   

 
Figure 7: Reconstruction Loss of Train and Test Using 

ToN_IoT Dataset 

 BiLSTM Process 
Some different scenarios have been tested on 

BiLSTM to ensure high efficiency and accuracy. 
The model was implemented using a different 
number of BiLSTM layers in addition to changing 
the values of cells used for learning in each layer to 
choose the appropriate model for work. All 
scenarios with different numbers of layers were 
compared to choose the model with the highest 
efficiency and the fewest false alarms. It has been 
observed that as the number of layers increases, it 
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requires more learning time, and the accuracy 
decreases, which is not useful for this work. The 
proposed model consists of two BiLSTM layers, 
each with 32 cells, and one output layer with one cell 
using a sigmoid. It gives the highest accuracy for 
training and overcomes overfitting between training 
and testing. To overcome overfitting, dropout layers 
of 0.2 were also added. BiLSTM is applied with 50 
epochs, the Adam optimizer, and ReLU activation 
in each layer except the last layer with sigmoid and 
binary_crossentropy loss. In terms of performance 
for binary classification, Figure 8 illustrates the 
BiLSTM's accuracy for both training and testing of 
the ToN_IoT dataset. It shows the increase in the 
train and the test accuracy with the increase in 
epochs to reach the best accuracy after 50 epochs 
with a 32-batch size. It also shows that the 
maximum training accuracy is 99.82% and the 
maximum testing accuracy is 99.87%.  

 

Figure 8: Accuracy for Binary Classification Using 
ToN_IoT Dataset 

5.1.4 Evaluation metrics  

The DAE-BiLSTM model has been validated 
on the new ToN_IoT dataset that is suitable for the 
fog computing environment. Then it was applied to 
the NSL-KDD dataset and compared to other 
models applied to the same dataset. This work 
achieves superior and very high results compared to 
others. Performance was evaluated by some 
metrics:   

 Accuracy (Acc) 

 

  (5) 
 

 Precision (P) 

 

   (6) 
 

 Recall (R) 

 

   (7) 

 F1-score 

 

  (8) 
 

Where TP (True Positive): Only when the 
attack class is correctly predicted. 
FP (False Positive): Only when the attack class is 
incorrectly predicted. 
FP (True Negative): Cases in which the normal class 
is correctly predicted. 
FN (False Negative): Only when the normal class is 
predicted incorrectly. 

The performance of the DAE-BiLSTM model 
was evaluated on all datasets using the above-
mentioned measures. On the ToN_IoT dataset, the 
DAE-BiLSTM model was tested, and the results 
were high compared to other models previously 
used, with high accuracy rates of 99.7%, 99.4% for 
precision, 99.7% for recall, and 99.5% for the F1-
score. As shown in Figure 9, a comparison of the 
results of the proposed model with and without DAE 
is presented. From the results, we find an increase in 
all evaluation measures used. The DAE-BiLSTM 
model's evaluation time is 7.57% shorter than the 
model without DAE. Therefore, using a 
combination of DAE and BiLSTM improves the 
detection performance of malicious attacks. 
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Figure 9: Performance of the DAE-BiLSTM Model 

Using the ToN_IoT Dataset 

Table 6 compares the DAE-BiLSTM model's 
performance on the ToN_IoT dataset and the NSL-
KDD dataset, along with the detailed accuracy, 
precision, recall, and F1-score outcomes for each 
dataset. Given the results, using the ToN_IoT 
dataset resulted in higher results compared to using 
the NSL-KDD dataset in the model, which 
reinforces the idea of using the ToN_IoT dataset. In 
addition, the ToN_IoT dataset is recent and more 
appropriate to the nature of IoT, based on the 
network hierarchy that includes the fog layer. 

Table 6: Performance of the DAE-BiLSTM Model Using 
Different Datasets 

Dataset Accuracy Precision Recall F1-score 

ToN_IoT 99.7% 99.4% 99.7% 99.5% 

NSL-KDD 97.7% 97.6% 96.9% 97.1% 

Table 7 compares the accuracy of the DAE-
BiLSTM model to the accuracy of other state-of-
the-art works. These works were chosen for 
comparison because they use IDSs in the same fog 
layer and have previously been mentioned in related 
works. The DAE-BiLSTM model was applied using 
the NSL-KDD dataset to compare our results with 
the results of previous works [5], [6], and [7] of 
IDSs in the fog layer. In comparison to these works, 
our model achieved a high accuracy of 97.7% by 
using previously demonstrated preprocessing 
techniques as well as using DAE to extract 
important features and reduce the evaluation time 
for training the BiLSTM model. Because of the 
development and emergence of new attacks daily, it 
was necessary to use the ToN_IoT dataset. The 
ToN_IoT dataset is compatible with the nature of 
the fog layer and its interactions with each other and 

with IoT devices. The ToN_IoT dataset was 
prepared and preprocessed before applying the 
DAE-BiLSTM model. Achieved high results of 
99.7% and high efficiency in detecting cyber-
attacks. The results of the research [9] have been 
added to the comparison table. Although these 
results do not apply to IDSs on fog nodes, they apply 
different learning techniques to the same new 
ToN_IoT dataset used in the proposed work. 
Compared to all of these works, high results were 
obtained using the modern ToN_IoT dataset, which 
is more suitable for fog computing, and also using 
the NSL-KDD dataset. 

Table 7: Comparison of the DAE-BiLSTM Model with 
the Previous Methods Used Before 

Authors Methods Dataset Accuracy 

Kumar et 
al [13] 

Ensemble of  
KNN, XGBoost, 
Gaussian Naive 

Bayes, and  
Random Forest 

UNSW-
NB15 

93.2% 

Sadaf et al 
[7] 

Autoencoder and 
Isolation Forest 

(Auto-IF) 

NSL-
KDD 

95.4% 

Sudqi 
Khater et 

al [17] 

Multilayer 
Perceptron (MLP) 

ADFA-
WD 

74% 

ADFA-
LD 

94% 

Prabavathy 
et al [5] 

Online Sequential 
Extreme Learning 

Machine (OS-
ELM) 

NSL-
KDD 

97.36% 

Kalaivani 
et al [6] 

CNN with LSTM 
(ICNN-FCID) 

NSL-
KDD 

96.5% 

Booij et al 
[9] 

Multilayer 
Perceptron (MLP) 

ToN_IoT 

97.8% 

Gradient Boosting 
Machine (GBM) 

94.6% 

Random Forest 
(RF) 

98% 

DAE-
BiLSTM 

model 

Deep 
AutoEncoder 

(DAE) and 
Bidirectional 

Long Short-Term 
Memory 

(BiLSTM) 

ToN_IoT 99.7% 

NSL-
KDD 

97.7% 

6. CONCLUSION AND FUTURE WORK 

Fog computing is used to handle incoming network 
traffic in real-time. Intrusion Detection System 
(IDS) is one of the most important ways to identify 
families of new attacks. An intrusion detection 
model based on deep learning, called DAE-
BiLSTM, was presented to the fog layer for IoT 
devices. To improve performance and effectively 
detect cyber-attacks on the fog layer, advanced DL 
techniques were used. The proposed IDS model 

99.70% 99.40% 99.70%
99.50%

99.21% 99.29%

98.53%
98.85%

97.50%

98.00%

98.50%

99.00%

99.50%

100.00%

Accuracy Precision Recall F1-score

Performance of proposed model with DAE and 
without DAE

DAE-BiLSTM BiLSTM without DAE
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consists of a combination of two different DL 
techniques. First, DAE is used to accurately select 
additional features without losing information and 
to reduce complexity. Second, the BiLSTM model 
is used to avoid penetrating fog devices by getting 
high accuracy in attack detection. Different test 
scenarios are performed on different datasets. Many 
current works use the NSL-KDD dataset, which is 
outdated and lacks new IoT cyber-attacks. In this 
context, the network-based ToN_IoT dataset is new 
and more suitable for IoT. It includes nine new types 
of cyber-attacks that threaten the fog layer. With a 
high accuracy rate of 99.7%, 99.4% for precision, 
99.7% for recall, and 99.5% for the F1-score, the 
model was validated on the network-based 
ToN_IoT dataset to ensure avoiding violating fog 
services. This model was then validated using the 
widely used NSL-KDD dataset, and in comparison 
to other works used, it achieved a high accuracy rate 
of 97.7%%, 97.6% for precision, 96.9% for recall, 
and 97.1% for the F1-score. Future improvements to 
this work will come from applying more advanced 
deep learning techniques such as generative 
adversarial networks (GANs). Additionally, we plan 
to highlight the efficiency of the work by comparing 
many datasets in order to obtain the best results 
while taking into account the real-time handling of 
the IoT devices that are currently in use. 
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