
Journal of Theoretical and Applied Information Technology
15th March 2023. Vol.101. No 5

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2027

DAE-BILSTM: A FOG-BASED INTRUSION DETECTION
MODEL USING DEEP LEARNING FOR IOT

IBRAHIM MOHSEN SELIM1 , ROWAYDA A. SADEK2
1,2Information Technology Department, Faculty of Computers and Artificial Intelligence, Helwan

University, Cairo, Egypt
E-mail: 1ibrahiselim@fci.helwan.edu.eg, 2rowayda_sadek@fci.helwan.edu.eg

ABSTRACT

Fog computing efficiently brings services to the edge network because it facilitates processing,
communication, and storage to be closer to the edge devices. Fog computing is principally used for the
Internet of Things (IoT) instead of cloud computing as an ideal option to reduce latency, especially for time-
sensitive applications. Many different security challenges and cyber-attacks have emerged in the fog layer,
rendering typical defense solutions ineffective. The Network Intrusion Detection System (NIDS) is a security
system that uses various advanced learning approaches to detect and predict various attacks. IoT devices lack
the computing power and energy needed for such, hence, IDS must be at the fog node to monitor data coming
from different sources, such as IoT devices or neighboring fog nodes. To identify cyber-attacks and malicious
states in IoT network traffic, this paper proposes an intrusion detection model named DAE-BiLSTM based
on deep learning (DL) in the fog layer. The DAE-BiLSTM model employs a Deep AutoEncoder (DAE) in
conjunction with Bidirectional Long Short-Term Memory (BiLSTM). Many existing state-of-the-art studies
used the NSL-KDD dataset, which is now out of date and does not include new IoT cyber-attacks. The results
of these studies also need to be improved by using advanced DL techniques to be effective in detecting current
cyber-attacks. So the network-based ToN_IoT dataset is used for the training and testing of the DAE-
BiLSTM model. The ToN_IoT dataset comprises new and better-suited cyber-attacks for IoT. The DAE-
BiLSTM model obtained a high accuracy rate of 99.7%, 99.4% for precision, 99.7% for recall, and 99.5%
for the F1-score in classifying normal traffic data from attacked traffic data in the fog layer.

Keywords: Internet of Things (IoT), Fog Computing, Intrusion Detection System (IDS), ToN_IoT dataset,
Deep Learning (DL)

1. INTRODUCTION

The Internet of Things (IoT) has led to the large-
scale and high-speed development of many systems
in various fields of life. IoT is used in smart industrial
systems, healthcare systems, smart homes, smart
vehicles, and more. Given the nature of IoT, which
relies on the exchange of huge amounts of data
between large numbers of devices, the use of the
cloud is essential. The cloud provides an
infrastructure that enables users to acquire
computing and storage resources without suffering
high design and acquisition costs as needed [1].
However, dealing with the cloud layer directly is now
not suitable for latency-sensitive applications. The
most common architecture of fog computing can be
seen in Figure 1. Fog computing is distributed
computing that offers similar services as cloud
computing but on a smaller geographic scale [2].

Fog computing between the cloud and the IoT is

designed to solve the shortcomings and issues in the
cloud such as delays in response time, lack of
location awareness, lack of mobility support, as well
as lack of geographic distribution..

Journal of Theoretical and Applied Information Technology
15th March 2023. Vol.101. No 5

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2028

Figure 1: Fog Computing's Hierarchical Architecture

Because fog nodes are placed between the cloud
and IoT, they are vulnerable to many cyber threats
due to the presence of many insecure devices and the
inability to protect the network very efficiently. The
Fog Network is a connected network that handles
thousands of IoT devices. Any of these devices may
only generate small amounts of data, but when data
is received from so many devices, it becomes more
difficult to secure while it is being processed and
more vulnerable to hacking. Attackers also use these
vulnerabilities to hack fog devices, obtain sensitive
data, and compromise fog services. In addition,
there are new attacks specific to their new location
at the edge of the network, such as zero-day attacks,
flooding attacks, abuse of service, advanced
persistent threats, port scanning attacks, backdoor
attacks, and user-to-root attacks [3]. Fog layer
resources need to be secured and protected from
various threats to preserve them. For example, a
distributed denial of service (DDoS) attack targets a
fog node, which is one of the most powerful flood
attacks. Fog has fewer resources than the cloud.
These resources are consumed faster, and then the
network performance will decrease, which will
deprive users of its services. Therefore, there was a
need to monitor the packets coming into the fog

network and predict attacks before they happened,
so intrusion detection systems (IDSs) were used.

Intrusion Detection System (IDS) is widely
applied in many systems because it is a valuable
solution to reduce malicious attacks by keeping track
of network traffic and analyzing the behavior of
devices. IDS employs a variety of techniques,
including machine learning (ML) and deep learning
(DL), to predict and discover attacks before they
happen [4]. There are currently three layers in the
network architecture: cloud, fog, and edge. IDS can
be placed inside the cloud to perform this attack
analysis but it takes a lot of time, from hours to days.
That is not commensurate with the response speed
required for latency-sensitive applications.
Therefore, it is preferable to use IDS inside a fog
node rather than directly in the cloud to detect any
unwanted behavior faster and to monitor and analyze
data and files. From the above, we understand that
latency is one of the main reasons why we have IDS
inside fog nodes. IDS inside a fog node reduces
latency between edge devices and cloud servers.
Thus, normal network traffic data coming from high-
end devices is analyzed and monitored, and
malicious attacks are detected in the fog layer.

Journal of Theoretical and Applied Information Technology
15th March 2023. Vol.101. No 5

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2029

In the proposed work, a detailed, effective
intrusion detection model named DAE-BiLSTM for
detecting cyber-attacks via IoT in fog computing is
presented. Most of the current research [5], [6], and
[7] is evaluated using an outdated NSL-KDD [8]
dataset that is not useful for the current IoT
environment. In this context, the new ToN_IoT [9]
dataset was used to evaluate how effectively the
proposed work was done. The ToN_IoT dataset
contains all new threats to the fog layer. The popular
NSL-KDD dataset was also used in this research for
comparison with others to ensure the efficiency of
this work. Most of the previous work uses learning
techniques that have become weaker at detecting
attacks and take more time, and this is no longer
suitable for the fog layer. The DAE-BiLSTM uses
modern learning techniques to provide intrusion
detection within a fog node to reduce latency and
increase the accuracy of attack detection. The DAE-
BiLSTM model consists of a combination of Deep
AutoEncoder (DAE) and Bidirectional Long Short-
Term Memory (BiLSTM). BilSTM was used, which
is one of the most important deep learning
techniques that give the best results. By using
BilSTM, the amount of network information
available increases, which effectively improves the
context available for the algorithm. To improve its
results and reduce the evaluation time, DAE should
be used alongside it. The importance of DAE is to
compress the original data, remove the noise, extract
the most important features, and eliminate redundant
data. The proposed work also consists of several
phases. In the data preprocessing phase, the dataset
is optimized by removing irrelevant and redundant
data, validating the data type, dealing with missing
values, etc. Using different ML techniques to choose
the important features, the best one is selected for
this work to ensure the best performance in the next
phase. The DAE phase receives preprocessed data
and compresses this data into a low-dimensional
representation to extract useful knowledge. The
compressed data generated from the DAE is then
used to train the BiLSTM classifier based on binary
classification.

The main contribution of the paper is proposing
an efficient Fog based IDS to accurately detect the
vulnerabilities that penetrate fog devices to obtain
sensitive data and violate fog services. The following
is a summary of the contributions of the proposed
IDS model:
 It proposes a combination of DAE and BiLSTM to

enhance intrusion detection performance which
requires less amount of dataset used.

 The DAE model is trained to compress the
original data to further extract features and reduce
complexity.

 The compressed representation of the original
dataset is used to train the BiLSTM model to get
a better performance in predicting the intrusion or
not.

 The dataset is prepared, preprocessed, and
optimized by comparing multiple techniques to
select features and choosing the best one for the
model.

 A comparative analysis between the proposed
work and some related IDS works on the fog
environment using the ToN_IoT and NSL-KDD
datasets. The results of the experiments
demonstrate that the proposed work performs
better than other methods in terms of metrics like
accuracy, precision, recall, and F1-score.

The following is how the paper is organized: the
background knowledge of fog computing, some of
the security problems it faces, and the role of IDS as
an effective solution to these problems are presented
in Section 2. Section 3 presents some work related
to IDS based on ML and DL in a fog computing
environment and its results and limitations. The
DAE-BiLSTM model and some of its basic concepts
are also explained for clarity in Section 4. In Section
5, the different experiments were discussed, their
results were compared, their performance was
determined, and there was a comparison with other
methods already in use. In Section 6, the conclusion
resulting from the proposed work is drawn and
clarified, in addition to directions and improvements
that we hope will benefit future work being
presented.

2. BACKGROUND

In this section, more information will be
covered about fog computing, some security issues,
cyber-attacks on them, and how to use intrusion
detection systems to solve them. First, a simplified
view of fog computing and its importance is
presented, followed by a list of security issues and
malicious attacks that threaten IoT devices and fog.
Finally, intrusion detection systems, their
categories, and their importance in solving these
problems will be discussed.

2.1 Fog Computing

Fog systems have the lower computing power
for resources but can be scaled up as needed, such
as memory, processing, and storage. Fog is a mini-
cloud at the edge of the network that is closer to the

Journal of Theoretical and Applied Information Technology
15th March 2023. Vol.101. No 5

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2030

user to reduce latency and support real-time
applications. The fog layer includes fog nodes such
as access points, switches, embedded servers,
controllers, routers, gateways, and storage devices.
End-users interact with these nodes instead of
connecting to cloud data centers to reduce power
consumption and respond in real time. Different
scenarios of fog nodes were presented in [10], where
fog nodes were divided into two categories
according to the edge devices connected to them.
The first category is dumb fog nodes, which are
limited to producing and sensing data only. The
second category is smart fog nodes, which do not
stop at sensation but also preprocess data using
advanced computing capabilities. Fog computing
offers load balancing, lowers latency, and maintains
the quality of service (QoS), in addition to lowering
expenses and energy consumption within the
network [2].

2.2 Fog Security Issues

The fog platform is vulnerable to many attacks
due to its presence between users and the cloud,
which creates many vulnerabilities. Fog computing
is currently used to increase the performance of
websites. Fog computing enables them to deal with
HTTP requests, receiving and executing them at the
same time, as well as dealing with different user
files [11]. This makes fog computing vulnerable to
attacks based on malicious input without validation,
such as Cross-Site Scripting (XSS) and injection
attacks. Fog nodes communicate with each other
and with a huge number of IoT devices. This makes
them vulnerable to a network traffic interception
attack called Man-In-The-Middle (MITM) by a
malicious intermediary attacker who intercepts
communications, alters data, and destroys service
within the network [12]. As shown in Figure 1, the
fog platform connects to various types of IoT
devices for ordinary users, such as sensors, laptops,
phones, etc. This connection can be both wired and
wireless, which means the fog platform is easily
accessible, making it vulnerable to resource
violation attacks such as denial of service (DoS) and
distributed denial of service (DDoS) [13]. Some
attacks represent a great danger within the IoT and
affect its performance and lead to damage, such as
scanning attacks that aim to collect data (available
system services and open ports) and backdoor
attacks that use hidden malware to gain remote
control of IoT systems. Using different techniques
to hack the passwords of IoT devices is a common
attack within the fog environment. Fog computing
is vulnerable to ransomware attacks that prevent a
user from gaining access to an IoT device or service

[14]. The ToN_IoT dataset includes all of these
cyber-attacks that threaten the fog layer, such as
backdoors, ransomware, scanning, denial of service
(DoS), password attacks, Man-In-The-Middle
(MITM), distributed denial of service (DDoS), data
injection, and Cross-site Scripting (XSS) [15].

2.3 Intrusion Detection System

The fog network is vulnerable to many
intrusions. The intruder can eavesdrop, steal the
password, spread malicious programs, malicious
injections, or violate the resources of the network,
and thus he can access another user’s account
without permission or destroy the entire network.
Therefore, it is necessary to use advanced and
different methods of protection to limit these
attacks. There are many techniques and tools to
protect the network from this intrusion, such as
firewalls, encryption techniques, and intrusion
detection systems (IDSs). This research will focus
on IDS within the fog environment. IDS is a security
system that is applied inside fog nodes and monitors
data coming from different sources, such as IoT
devices or neighboring fog nodes. IDS uses various
advanced learning methods, such as machine
learning (ML) and deep learning (DL) models, to
detect undesirable and abnormal behavior within the
network [4]. IDS is categorized into two types:
Network Intrusion Detection Systems (NIDS) and
Host Intrusion Detection Systems (HIDS) [16].
Network-based IDS monitors network traffic, while
HIDS monitors and analyzes activities, logs, and
modifications to system files to identify intrusions.
IDS can be classified into two categories: anomaly-
based IDS and misuse-based IDS or signature-based
IDS [4]. NIDS monitors the behavior of fog network
traffic through various IoT devices and searches for
anomalies. If the behavior and patterns of current
network traffic differ, it issues an alert. The structure
of IDS consists of two methods: distributed or
centralized. Distributed IDS nodes are scattered
across the network, and each contributes to a portion
of the processing with the others to form a collective
data processing. Centerized IDS nodes process the
network data entirely. Having NIDS inside the fog
nodes helps to have a wider view of the network as
the fog nodes receive different data from the edge
subnetworks. IDS is constantly and rapidly being
developed in fog computing as new attacks have
emerged that need immediate solutions.

3. RELATED IDS WORKS

This section discusses the latest security
techniques and some previous work in the fog

Journal of Theoretical and Applied Information Technology
15th March 2023. Vol.101. No 5

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2031

computing environment that uses ML and DL to
detect attacks faced by IoT.

Kumar et al. [13] presented a design based on
IDS technology in fog computing using an ensemble
of different ML techniques. At the first level, K-
Nearest Neighbors, XGBoost, and Gaussian Naive
Bayes are combined as separate learners, and then
use the results of the first level to predict the second
level by Random Forest for classification. When it
was used on the UNSW-NB15 dataset, the detection
rates for backdoor attacks, analysis, reconnaissance,
and DoS attacks were 71.18%, 68.98%, 92.25%, and
85.42% respectively. Their work gives an overall
score of detection accuracy of 93.2%. The model is
computationally complex and has low detection
accuracy for the backdoor, analysis, and worm
attacks.

Sudqi Khater et al. [17] proposed a lightweight
IDS for a fog computing environment using a
Multilayer Perceptron (MLP) model with a
Raspberry Pi as a fog node. It was applied on a
dataset (ADFA-WD) with 74% accuracy, 74%
recall, and 74% F1-score and on a dataset (ADFA-
LD) with 94% accuracy, 95% recall, and 92% F1-
score for detecting various attacks. Their model still
has to be improved in terms of computational
efficiency and detection accuracy by using modern
learning models. It cannot detect current IoT
network attacks.

Prabavathy et al. [5] presented an intrusion
detection model for a fog computing environment

using an online sequential extreme learning machine
(OS-ELM) to detect incoming attacks from the
Internet of Things and implemented it on the NSL-
KDD dataset. The authors reached a detection
accuracy of 97.36% when implemented in fog
computing. The dataset used was unbalanced and
needed sophisticated preprocessing before use.
Although all the features available in the dataset are
used, it is unable to detect current or unknown
network attacks.

Kalaivani et al. [6] proposed a deep learning-
based intrusion detection model for use in fog layer
devices that combines CNN with LSTM called
ICNN-FCID to classify attacks. They also compared
three activation functions (relu, sigmoid, and tanh),
with relu obtaining the best accuracy of 96.5%,
85.2% for precision, 91.1% for recall, and 86.4% for
F1-score. The model was evaluated using NSL-
KDD and this evaluation resulted in an attack
detection accuracy of 96.5%. This accuracy needs to
be improved. They also had to evaluate their best
model on new and different datasets that correspond
to the fog layer to determine its performance for
different types of cyber-attacks. The proposed
method was only trained to identify basic network
attacks.

 Sadaf et al. [7] presented a method to detect
abnormal and intrusive attacks based on deep
learning using AutoEncoder and Isolation Forest
techniques within a fog computing environment.
They called it (Auto-IF) and it was verified using the
NSL-KDD dataset with an accuracy rate of 95.4%,

Authors Methods Dataset Accuracy Limitations

Kumar et al
[13]

Ensemble of KNN,
XGBoost, Gaussian
Naive Bayes, and
Random Forest

UNSW-
NB15

93.2%
The model is computationally complex

and has low detection accuracy for
backdoor, analysis, and worm attacks.

Sudqi Khater
et al [17]

Multilayer Perceptron
(MLP)

ADFA-WD 74% The model's 94% attack detection
accuracy has to be increased. It cannot
detect current IoT network attacks. ADFA-LD 94%

Prabavathy et
al [5]

Online Sequential
Extreme Learning

Machine (OS-ELM)
NSL-KDD 97.36%

Although all the features available in the
dataset are used, it is unable to detect
current or unknown network attacks.

Kalaivani et al
[6]

CNN with LSTM
(ICNN-FCID)

NSL-KDD 96.5%
The proposed method was only trained to

identify basic network attacks.

Sadaf et al [7]
Autoencoder and

Isolation Forest (Auto-
IF)

NSL-KDD 95.4%

Attack detection accuracy for the model
is 95.4%, which needs to be improved. It
cannot detect recent or unknown IoT
network threats.

Maharani et al.
[18]

K-Means
KDD
Cup'99

93.3%

Attack detection accuracy for the model
is 93.3%, which can be higher. It
cannot detect recent or unknown IoT
network threats.

Table 1: Existing Works of IDS at Fog Layer

Journal of Theoretical and Applied Information Technology
15th March 2023. Vol.101. No 5

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2032

94.8% for precision, 97.2% for recall, and 96% for
F1-score for detecting different attacks in real-time.
Although the isolation forest is used to increase the
accuracy of their results, the accuracy of their final
model still needs to be improved. It cannot detect
recent or unknown IoT network threats. It also needs
to be evaluated with recent datasets.

Maharani et al. [18] proposed an IDS
framework for fog computing to detect attacks using
ML techniques, namely Decision Tree, K-Means,
and Random Forest. The evaluation was performed
using the KDD Cup'99 dataset. It found that K-
Means has the highest accuracy of 93.3% among
other algorithms. KDD Cup'99 is one of the oldest
and most outdated datasets, so it was preferable to
evaluate this model with newer datasets. Their
accuracy is small compared to the current works, so
they should improve it by using new and effective
learning algorithms. It cannot detect recent or
unknown IoT network threats.

IDS has been used in all the above-mentioned
works to scan network data packets and identify
different types of attacks, but it still has some
shortcomings that were discussed above that need to
be worked on and improved. It was found that there
are repeated shortcomings in most of these works,
such as:
 As shown in Table 1, the accuracy rates of the

used models need to be improved to ensure the
efficiency of the intrusion detection system and
reduce the high rate of false alarms.

 Most of the work was evaluated on older datasets
that lack modern attack types in the fog layer.
Therefore, it is not compatible with current
Internet of Things devices.

In this paper, to overcome these shortcomings,
an IDS model based on deep learning was
implemented in the fog layer. A network-based IoT
dataset called ToN_IoT is used that contains nine
types of cyber-attacks that have been gathered from
huge, realistically tested networks.

4. PROPOSED IDS ARCHITECTURE

 As mentioned earlier, the network structure
consists of three layers: edge, fog, and cloud. These
layers collaborate in dealing with traffic from
various devices to detect intrusion and record it in
blacklists so that similar packages are not included
again.

As shown in Figure 2, fog layer nodes receive
IoT device packets. By building an intrusion
detection system model inside these nodes using

DL, this data is analyzed and the intrusion is
detected. The fog node intrusion detection system
collects traffic, generates security alerts if an
intrusion is detected, then logs those alerts and sends
them to the cloud servers.

Figure 2: Flow-graph for the proposed IDS Architecture

IDSs must be enhanced to ensure effective
intrusion detection and lower the high rate of false
alarms as new generations of cyber-attacks appear
every day. Enhancements are presented by utilizing
advanced DL techniques to guarantee great results
in identifying intrusions and a recent dataset to feed
these technologies. The DAE-BiLSTM model
includes several phases. The outputs of each phase
are used as inputs to the next, as shown in Figure 3.
The proposed IDS model has been tested on the
network ToN_IoT dataset and consists of several
phases; each phase has separate functions as
follows:

Phase (1): Preprocessing techniques should be
used that aim to improve and prepare the data before
it is used by deep learning techniques. In the
proposed model, preprocessing consists of:

 Data cleaning is done to get rid of messy and
ineffective data and to ensure the correctness of
the types of features.

 Feature selection for defining the most important
features of data by using the appropriate method.

 Feature encoding encodes feature values into
numerical values.

 Feature scaling for scaling feature values into
specific ranges.

Journal of Theoretical and Applied Information Technology
15th March 2023. Vol.101. No 5

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2033

Phase (2): Deep AutoEncoder (DAE), which is
also a good option for guaranteeing data privacy and
further feature selection.

Phase (3): Bidirectional long short-term
memory (BiLSTM), which is currently one of the
most effective deep learning models employed. The
use of BiLSTM has increased the accuracy of results
and the ability to detect attacks effectively.

Figure 3: DAE-BiLSTM Model.

As shown in Figure 3, the DAE-BiLSTM model
includes several stages. The outputs of each stage
are used as inputs for the next. The ToN_IoT dataset
is initially prepared and optimized by preprocessing
techniques including data cleaning and
segmentation, feature selection, feature encoding,
and feature scaling. The output is used as input to
DAE for further feature selection and encoding. The
DAE output is then used as input into BiLSTM to
increase the accuracy of the results and the ability to
detect attacks efficiently.

The following is a brief explanation of the

proposed IDS model, the methods used for each of
its phases, and their advantages.

4.1 Data Preprocessing

Fog nodes exist between IoT devices and the
cloud layer. They receive incoming traffic from IoT
devices with various feature categories as numeric
and categorical contents. To improve the efficiency

of the DAE-BiLSTM model, the traffic must be
analyzed and preprocessed as described below.

4.1.1 Data cleaning
Data cleaning is an important process for

identifying bad data and systematically
restructuring it correctly, as data must be cleaned
before processing to ensure the quality of the results
of the machine and deep learning models. There are
many methods of data cleaning, such as removing
irrelevant and redundant data, checking the
correctness of the data type, handling missing
values, etc.

 Remove Duplicate Rows and Check Data Types
The presence of duplicate data rows leads to

data distortion, which then negatively affects the
results, so it is preferable to remove them. It is also
necessary to ensure the data type for each feature
within the datasets, whether it is numeric, nominal,
boolean, or other.

 Dealing with Missing Values
Lots of datasets currently in use have missing

values. Ignoring missing values can be a mistake
because it weakens your data, and you won't get
accurate results. These values can be dealt with in
two ways: either by removing them or by inputting
them.

Removing the missing value is a sensitive
process as it either benefits the data set or leads to
the removal of useful insights from your data. You
must verify and analyze these values before
removing them. The missing values should not be
ignored and must be filled in. They are analyzed
according to the nature of the dataset used.

4.1.2 Feature selection
One of the most crucial steps is feature

selection, as the best features have to be chosen from
many features. This process removes redundant and
irrelevant features to reduce computation time,
improve accuracy, and build a DL model that
achieves higher performance. In the proposed
model, Random Forest Classifier, Chi-square test,
and Extra-Trees are applied for feature selection.

 Chi-square Test
A statistical test known as the Chi-square test

[19] that belongs to the filter method category can
be effectively used to select important features. It is
applied to a set of features to evaluate the correlation
between them by calculating the Chi-square

Journal of Theoretical and Applied Information Technology
15th March 2023. Vol.101. No 5

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2034

statistical value of the feature concerning the output
class. The Chi-square formula is applied using
equation (1).

 (1)

Where Oi represents the observed value and Ei
represents the expected value.

 Random Forest Classifier
Using the Random Forest Classifier to select

features falls under the category of embedded
methods that combine the properties of filter and
wrapper methods [20]. The algorithm's work
depends on classification and regression trees
(CART). Each tree in the random forest calculates
the importance of the feature according to the purity
of its leaves. There is a direct relationship between
the increase in the purity of leaves and the increase
in the importance of the feature. The average is
calculated for all trees, and this average is
normalized to 1.

 Extra-Trees
The extra-trees classifier is an embedded

method to extract relevant features [21]. They
generate from the training dataset a large number of
individual decision trees. The algorithm chooses a
random split rule from the sub-features and a
random cut point relative to the root node. The
parent node is randomly divided into two child
nodes, and this process is repeated until the leaf
node has no child nodes. A majority vote of all the
trees' predictions determines the final prediction.
The Gini importance of each feature during forest
construction is calculated and arranged in
descending order of importance. The best features
are chosen as an introduction to the different
learning models.

The chi-square is used in the model because of
its many advantages. It is considered robust and
flexible in dealing with data. It was also found that
it is distinguished by its ease and faster
computations, in addition to the specific information
that can be obtained from the test [19]. When
applying the methods, it was found that using the
chi-square method led to higher results than other
methods.

4.1.3 Feature encoding
This step is one of the most important processes

for dealing with data, as categorical data is encoded
into numeric data because dealing with numbers is

generally easier and faster. Categorical data can be
encoded in a variety of ways, including label
encoding and one-hot encoding. Label encoding is
used because there is a lot of categorical data in the
dataset. Using label encoding makes it fast and easy
and does not create a messy frame of data as in one-
hot encoding, which adds a lot of columns.

4.1.4 Feature scaling
The values of the features in the network traffic

coming from IoT devices vary, some of them have
very high values, while others have very small
values, so there is a need to use feature scaling.
Feature scaling is one of the most important steps
during data preprocessing. Scaling can make a
difference during the creation of a deep learning
model as it determines whether a model is weak or
strong. The most common scaling techniques are
normalization and standardization. The Min-Max
scaling [22] is used, to apply normalization as it
scales and translates each feature individually so
that it is within the specified range. It can be
calculated as follows:

 (2)

Where Xsc represents the output of scaling, X

represents the input value, Xmin represents the
minimum value, and Xmax represents the maximum
value.

4.2 DAE-BiLSTM Model

The deep learning methods used in the DAE-
BiLSTM model are discussed in this section. These
methods were tested using the enhanced dataset
obtained through preprocessing. The DAE-BiLSTM
model consists of DAE and BiLSTM.

4.2.1 AutoEncoder (AE)
One of the types of neural networks, called

AutoEncoder (AE) [23], is used for feature
extraction. AE learns a compressed representation
of raw data and then uses it to train a different deep-
learning model. There are many types of AEs
nowadays, such as deep AE, sparse AE, variational
AE, denoising AE, etc. [23]. DAE is widely used for
compressing data, reducing the feature dimensions,
extracting relevant features, and removing noise. It
aids in the selection of the most important features
because it employs reduced encoding as a
representative of the original data. The DAE
consists of an encoder, bottleneck, and decoder, as
shown in Figure 4. The encoder compresses the

Journal of Theoretical and Applied Information Technology
15th March 2023. Vol.101. No 5

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2035

input, while the decoder attempts to rebuild from the
encoder's compressed version. The performance of
the DAE and its effectiveness is evaluated by
reconstruction loss. Reconstruction loss is done by
evaluating the overall performance of the decoder
and measuring the similarity between its output and
the initial input. The reconstruction loss is estimated
using the mean square error (MSE) method. DAE is
used because it is used for datasets with real data
values and because its encoding layer is compact
and fast.

Figure 4: AutoEncoder

 (3)

 (4)

Where E represents the encoder
function, X represents the input value, D represents
the decoder function, Z represents the compressed
value, and X′ represents the output value.

4.2.2 LSTM
One of the most important types of recurrent

neural networks (RNN) is called long short-term
memory (LSTM), which can learn from long
dependencies and was introduced in 1997 [24].
LSTM can be an effective solution for the fog
environment compared to other deep learning
models. It is based on learning from long sequences
by storing information about the network's previous
state using the forget gate. LSTM can use the
historical data stored from previous network traffic
for a while [25]. The LSTM cell [24] contains a set
of basic gates, namely input gates, forget gates, and
output gates, and their function is to control cell
states and their protection. LSTM reduces the long
time it takes to detect attacks compared to other
learning models such as DoS and DDoS, which are
major threats to the fog network. The data generated

by IoT devices is unstructured and has various
forms. LSTM can effectively learn from
unstructured data and extract effective insight.
LSTM performance increases with more training
data, and these conditions lead to LSTM’s
superiority over other deep learning techniques.

 BiLSTM
Bidirectional LSTM (BiLSTM) [26] is a

sequence processing model derived from the LSTM
model, which consists of two LSTMs as shown in
Figure 5, one of which takes the input in a forward
direction while the other takes a backward direction
Input layer, forward transmission layer, reverse
transmission layer, and output layer are the four
layers into which BiLSTM is divided [27]. BiLSTM
has been developed for speech recognition and
handwriting recognition, where one of its most
important benefits is that it has an input sequence
based on past and future sequences. BiLSTM
increases the amount of network information
available, which effectively improves the context
available for the algorithm. It was found that,
although it is expensive, training the data using
BiLSTM models shows better predictions than
LSTM models in the normal mode.

 Figure 5: BiLSTM Architecture

5. EXPERIMENT RESULTS AND
DISCUSSION

This section presents the DAE-BiLSTM model
through different experiments, analysis of its
performance, and comparison with the latest models
currently used in the same environment.
Experiments were conducted in Python using a
Jupyter notebook on an Anaconda machine. For
DAE, packages from Keras and Tensorflow are

Journal of Theoretical and Applied Information Technology
15th March 2023. Vol.101. No 5

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2036

used. For the BiLSTM method, packages from
Keras are used. The ToN_IoT and NSL-KDD
datasets are used to evaluate the performance of the
DAE-BiLSTM model. These experiments were
performed on a machine running 64-bit Windows 10
with an Intel (R) Core i5-8265U CPU @ 1.80 GHz
and 12 GB of memory.

5.1 Datasets

5.1.1 Common existing datasets
As mentioned earlier in the related IDS work in

this research, one of the most important datasets
used in IDS at the fog layer is the NSL-KDD dataset.
It is used to identify attacks like DoS, SQL injection,
and brute force [28]. It contains 41 numerical and
nominal features [8]. Currently, NSL-KDD has
some limitations and is an outdated and widely used
dataset for network intrusion detection. KDD
Cup'99 [29], UNSWNB15 [30], and CICIDS [31],
like NSL-KDD, are outdated with existing networks
and not sufficient to represent the normal state of
fog-based IoT networks that include many different
standards [32]. There are also other shortcomings,
such as the fact that datasets do not contain
heterogeneous data, such as DEFCON and LBNL
datasets. Other new datasets have been adopted that
are in line with the nature of IoT and depend on the
new network architecture, such as ToN_IoT,
Aposemat IoT-23 [33], and N-BaIoT [34].

5.1.2 ToN_IoT dataset
One of the most important datasets currently is

the ToN_IoT dataset. It represents new generations
of IoT, industrial IoT, operating systems, and
network traffic datasets. ToN_IoT datasets have
been gathered from huge testbed networks
realistically with a testbed design that has three
layers: edge/IoT, fog, and cloud [35]. They include
raw and processed data sources gathered from
Windows and Linux operating system datasets,
network traffic datasets, and IoT service telemetry
datasets [9]. The ToN_IoT network traffic dataset is
used for network intrusion detection to evaluate
several AI-based cyber security solutions. They are
not limited to general network features, but also
include a set of services to aid in the detection of
attacks, such as FTP, DNS, and HTTP. The
ToN_IoT dataset contains hundreds of records.
Each file contains 45 attributes categorized into four
groups that include connection, statistics, user, and
violation attributes [36]. Among the ToN_IoT
datasets, the ToN_IoT network dataset was used
since it contains traffic data from IoT devices
connected to the fog network. There are 46 features

in the ToN_IoT network dataset; two of them are
class label and type which is either normal or
attacked. The "Train_Test_Network" file, a
simplified sample file, was used.

It was used to evaluate the effectiveness of
current cyber-security solutions using different AI
methods. There are 300,000 records of normal
network traffic and 161,043 records of attacks in this
dataset, totaling 461,043 records. Table 2 shows the
number of network traffic records for each type in
the dataset.

Table 2: Number of Records for Each Type of Network-

based train-test Dataset of ToN_IoT
Type Numbers of records

normal 300000

backdoor 20000

ransomware 20000

DoS 20000

DDoS 20000

injection 20000

XSS 20000

password 20000

scanning 20000

MITM 1043

Table 3 shows different types of cyber-attacks

in the ToN_IoT dataset that threaten the fog layer,
such as: backdoor, ransomware, scanning, denial of
service (DoS), password attack, Man-In-The-
Middle (MITM), distributed denial of service
(DDoS), data injection, and Cross-site Scripting
(XSS).

Table 3: ToN_IoT Attack Types
Attack

Category
Attack Type

Fog network
vulnerabilities

Flooding
Attacks

DoS The normal traffic
of fog servers is

overwhelmed by a
flood of data

packets, making
them inaccessible.

DDoS

Injection
Attacks

XSS

Sending malicious
scripts to fog and

IoT devices,
through which

sensitive
information can be

obtained.

Data Injection

Injecting input for
reading, modifying,

and deleting
sensitive data inside

the fog devices.

Information
Gathering

Scanning
Identifying fog

network security
vulnerabilities.

Journal of Theoretical and Applied Information Technology
15th March 2023. Vol.101. No 5

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2037

Malware
attacks

Backdoor

Control components
of the fog network

by installing
backdoors.

Password

Identifying a
password to a fog
device to obtain

unauthorized access
to fog resources.

Ransomware

Encrypting data and
systems of fog

devices to pay a fee
to the attacker.

Eavesdropping MITM

Communication
interception
between IoT

devices and a server
such as DNS and
ARP spoofing.

5.1.3 Experiment scenarios

 Preprocessing Process
Preprocessing datasets helps learn models to

save time and reduce computation while ensuring
increased model performance. The ToN_IoT dataset
is new, with new attacks and feature values not
found in previous datasets. So data problems within
it had to be worked on, such as removing irrelevant
and redundant data, validating data types, handling
missing values, etc. The ToN_IoT dataset contains
records with features that may be nominal, binary,
or numeric. The stages of the preprocessing phase
were applied as follows:

o Data Cleaning

These steps are taken to prepare and clean the
ToN_IoT network dataset:
1) The dataset was modified by removing the

redundant rows.
2) Null values are expressed within the data set

with the symbol "-". The used "-" symbol has
been replaced with an actual null value to help
us with the next process.

3) The validity of each data type for each feature
within the dataset, whether numeric, nominal,
or boolean, was also verified.

4) The missing categorical values are replaced by
a category called "other" and the missing
numeric values are replaced by 0.

5) Some features with null values above 99% have
been removed as being unimportant to the
dataset.

6) The features of IP addresses and ports have also
been removed based on the recommendation
found in [35] when using new learning models
to increase detection efficiency and reduce the
false alarm rate.

Table 4 shows the new number of network
traffic records for each type in the dataset after the
data cleaning process.

Table 4: Number of Records for Each Type of the
Dataset after Data Cleaning Process

Type Numbers of records

normal 259962

backdoor 17984

ransomware 17972

DoS 16417

DDoS 18002

injection 17973

XSS 17947

password 17972

scanning 17993

MITM 961

o Feature Selection

Random Forest Classifier, Chi-square Test, and
Extra-Trees are applied for feature selection to
reduce the number of features and identify the most
important ones. The chi-square test is used because
it is robust and flexible in dealing with data.
Furthermore, it is distinguished by being faster and
easier to calculate. When applying the Chi-square
Test, Random Forest Classifier, and Extra-Trees, it
was found that using the Chi-square method to
select the most important features as part of the
proposed model led to higher results in accuracy
than the rest of the applied methods, as shown in
Figure 6.

Figure 6: Performance of the DAE-BiLSTM Model using

ToN_IoT Dataset with Different Feature Selection
Techniques

The most important features are selected using
the Chi-square test according to their score. The top

99.70%

99.40%

99.50%

99.20%

99.30%

99.40%

99.50%

99.60%

99.70%

99.80%

Accuracy

Performance of DAE-BiLSTM Model

Chi-square Random Forest Extra Trees

Journal of Theoretical and Applied Information Technology
15th March 2023. Vol.101. No 5

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2038

15 highest-scoring features in the dataset are
selected. Table 5 presents the features selected in the
ToN_IoT dataset using the Chi-square Test in the
proposed model.

Table 5: Features Selected from ToN_IoT Dataset Using
Chi-square Test

No. Selected Features Feature Description

1 proto
Flow traffic protocols at
the transport layer

2 service
Other additional protocols
found

3 conn_state Connection states

4 duration Flow duration

5 src_bytes Source bytes number

6 dst_bytes Destination bytes number

7 missed_bytes Missing bytes number

8 src_pkts Number of source packets

9 src_ip_bytes
Number of source IP
bytes

10 dst_pkts
Number of destination
packets

11 dst_ip_bytes
Number of destination IP
bytes

12 dns_qclass DNS query classes

13 dns_qtype DNS query types

14 http_response_body_len
Transferred data content
sizes from the HTTP
server

15 http_status_code
Status codes of HTTP
server

o Feature Encoding

Deep Learning models in general, and DAE in
particular, can only work with numeric data, so
features must be encoded for numeric. The label
encoder method is used for encoding because there
is a lot of categorical data in the dataset. Using a
label encoder makes it fast and easy and does not
create a messy frame of data. The label encoder
converts all categorical or nominal values of
features into an integer to be added to their index.
For example, the "proto" feature, which expresses
the transport layer protocols of flow connections, is
converted from categorical values (tcp, udp, icmp)
to numeric values (1, 2, 3).

o Feature Scaling

The remaining features after the label encoding
stage need to be scaled and translated. Min-Max
scaling functions are used for normalization. Each
feature value is individually scaled into the specified
range between 0 and 1 in the dataset. The resulting
dataset is then split into train and test, with the train
comprising 70% of the dataset and the test

comprising 30% of the dataset. As a result, the DAE
receives a set of preprocessed features.

 DAE Process
The encoder is defined as having three hidden

layers to avoid overfitting and increase efficiency.
The first layer has twice the number of inputs, the
second has one and a half number of inputs, the third
has the same number of inputs, and the bottleneck
layer has half the number of inputs. Batch
normalization and dropout ReLU activation are used
to increase model learning efficiency. The decoder
has three hidden layers, the first with the number of
inputs, the second with the number of one and a half
inputs, and the third with twice the number of inputs.
DAE was applied with 100 epochs, 32-batch size,
Adam optimizer, ReLU activation, and MSE loss.
Figure 7 illustrates the difference between the
reconstruction loss for the train and the test when
applied to the ToN_IoT dataset. The output of the
DAE process is reshaped to be suitable as a process
input for BiLSTM.

Figure 7: Reconstruction Loss of Train and Test Using

ToN_IoT Dataset

 BiLSTM Process
Some different scenarios have been tested on

BiLSTM to ensure high efficiency and accuracy.
The model was implemented using a different
number of BiLSTM layers in addition to changing
the values of cells used for learning in each layer to
choose the appropriate model for work. All
scenarios with different numbers of layers were
compared to choose the model with the highest
efficiency and the fewest false alarms. It has been
observed that as the number of layers increases, it

Journal of Theoretical and Applied Information Technology
15th March 2023. Vol.101. No 5

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2039

requires more learning time, and the accuracy
decreases, which is not useful for this work. The
proposed model consists of two BiLSTM layers,
each with 32 cells, and one output layer with one cell
using a sigmoid. It gives the highest accuracy for
training and overcomes overfitting between training
and testing. To overcome overfitting, dropout layers
of 0.2 were also added. BiLSTM is applied with 50
epochs, the Adam optimizer, and ReLU activation
in each layer except the last layer with sigmoid and
binary_crossentropy loss. In terms of performance
for binary classification, Figure 8 illustrates the
BiLSTM's accuracy for both training and testing of
the ToN_IoT dataset. It shows the increase in the
train and the test accuracy with the increase in
epochs to reach the best accuracy after 50 epochs
with a 32-batch size. It also shows that the
maximum training accuracy is 99.82% and the
maximum testing accuracy is 99.87%.

Figure 8: Accuracy for Binary Classification Using
ToN_IoT Dataset

5.1.4 Evaluation metrics

The DAE-BiLSTM model has been validated
on the new ToN_IoT dataset that is suitable for the
fog computing environment. Then it was applied to
the NSL-KDD dataset and compared to other
models applied to the same dataset. This work
achieves superior and very high results compared to
others. Performance was evaluated by some
metrics:

 Accuracy (Acc)

 (5)

 Precision (P)

 (6)

 Recall (R)

 (7)

 F1-score

 (8)

Where TP (True Positive): Only when the
attack class is correctly predicted.
FP (False Positive): Only when the attack class is
incorrectly predicted.
FP (True Negative): Cases in which the normal class
is correctly predicted.
FN (False Negative): Only when the normal class is
predicted incorrectly.

The performance of the DAE-BiLSTM model
was evaluated on all datasets using the above-
mentioned measures. On the ToN_IoT dataset, the
DAE-BiLSTM model was tested, and the results
were high compared to other models previously
used, with high accuracy rates of 99.7%, 99.4% for
precision, 99.7% for recall, and 99.5% for the F1-
score. As shown in Figure 9, a comparison of the
results of the proposed model with and without DAE
is presented. From the results, we find an increase in
all evaluation measures used. The DAE-BiLSTM
model's evaluation time is 7.57% shorter than the
model without DAE. Therefore, using a
combination of DAE and BiLSTM improves the
detection performance of malicious attacks.

Journal of Theoretical and Applied Information Technology
15th March 2023. Vol.101. No 5

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2040

Figure 9: Performance of the DAE-BiLSTM Model

Using the ToN_IoT Dataset

Table 6 compares the DAE-BiLSTM model's
performance on the ToN_IoT dataset and the NSL-
KDD dataset, along with the detailed accuracy,
precision, recall, and F1-score outcomes for each
dataset. Given the results, using the ToN_IoT
dataset resulted in higher results compared to using
the NSL-KDD dataset in the model, which
reinforces the idea of using the ToN_IoT dataset. In
addition, the ToN_IoT dataset is recent and more
appropriate to the nature of IoT, based on the
network hierarchy that includes the fog layer.

Table 6: Performance of the DAE-BiLSTM Model Using
Different Datasets

Dataset Accuracy Precision Recall F1-score

ToN_IoT 99.7% 99.4% 99.7% 99.5%

NSL-KDD 97.7% 97.6% 96.9% 97.1%

Table 7 compares the accuracy of the DAE-
BiLSTM model to the accuracy of other state-of-
the-art works. These works were chosen for
comparison because they use IDSs in the same fog
layer and have previously been mentioned in related
works. The DAE-BiLSTM model was applied using
the NSL-KDD dataset to compare our results with
the results of previous works [5], [6], and [7] of
IDSs in the fog layer. In comparison to these works,
our model achieved a high accuracy of 97.7% by
using previously demonstrated preprocessing
techniques as well as using DAE to extract
important features and reduce the evaluation time
for training the BiLSTM model. Because of the
development and emergence of new attacks daily, it
was necessary to use the ToN_IoT dataset. The
ToN_IoT dataset is compatible with the nature of
the fog layer and its interactions with each other and

with IoT devices. The ToN_IoT dataset was
prepared and preprocessed before applying the
DAE-BiLSTM model. Achieved high results of
99.7% and high efficiency in detecting cyber-
attacks. The results of the research [9] have been
added to the comparison table. Although these
results do not apply to IDSs on fog nodes, they apply
different learning techniques to the same new
ToN_IoT dataset used in the proposed work.
Compared to all of these works, high results were
obtained using the modern ToN_IoT dataset, which
is more suitable for fog computing, and also using
the NSL-KDD dataset.

Table 7: Comparison of the DAE-BiLSTM Model with
the Previous Methods Used Before

Authors Methods Dataset Accuracy

Kumar et
al [13]

Ensemble of
KNN, XGBoost,
Gaussian Naive

Bayes, and
Random Forest

UNSW-
NB15

93.2%

Sadaf et al
[7]

Autoencoder and
Isolation Forest

(Auto-IF)

NSL-
KDD

95.4%

Sudqi
Khater et

al [17]

Multilayer
Perceptron (MLP)

ADFA-
WD

74%

ADFA-
LD

94%

Prabavathy
et al [5]

Online Sequential
Extreme Learning

Machine (OS-
ELM)

NSL-
KDD

97.36%

Kalaivani
et al [6]

CNN with LSTM
(ICNN-FCID)

NSL-
KDD

96.5%

Booij et al
[9]

Multilayer
Perceptron (MLP)

ToN_IoT

97.8%

Gradient Boosting
Machine (GBM)

94.6%

Random Forest
(RF)

98%

DAE-
BiLSTM

model

Deep
AutoEncoder

(DAE) and
Bidirectional

Long Short-Term
Memory

(BiLSTM)

ToN_IoT 99.7%

NSL-
KDD

97.7%

6. CONCLUSION AND FUTURE WORK

Fog computing is used to handle incoming network
traffic in real-time. Intrusion Detection System
(IDS) is one of the most important ways to identify
families of new attacks. An intrusion detection
model based on deep learning, called DAE-
BiLSTM, was presented to the fog layer for IoT
devices. To improve performance and effectively
detect cyber-attacks on the fog layer, advanced DL
techniques were used. The proposed IDS model

99.70% 99.40% 99.70%
99.50%

99.21% 99.29%

98.53%
98.85%

97.50%

98.00%

98.50%

99.00%

99.50%

100.00%

Accuracy Precision Recall F1-score

Performance of proposed model with DAE and
without DAE

DAE-BiLSTM BiLSTM without DAE

Journal of Theoretical and Applied Information Technology
15th March 2023. Vol.101. No 5

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2041

consists of a combination of two different DL
techniques. First, DAE is used to accurately select
additional features without losing information and
to reduce complexity. Second, the BiLSTM model
is used to avoid penetrating fog devices by getting
high accuracy in attack detection. Different test
scenarios are performed on different datasets. Many
current works use the NSL-KDD dataset, which is
outdated and lacks new IoT cyber-attacks. In this
context, the network-based ToN_IoT dataset is new
and more suitable for IoT. It includes nine new types
of cyber-attacks that threaten the fog layer. With a
high accuracy rate of 99.7%, 99.4% for precision,
99.7% for recall, and 99.5% for the F1-score, the
model was validated on the network-based
ToN_IoT dataset to ensure avoiding violating fog
services. This model was then validated using the
widely used NSL-KDD dataset, and in comparison
to other works used, it achieved a high accuracy rate
of 97.7%%, 97.6% for precision, 96.9% for recall,
and 97.1% for the F1-score. Future improvements to
this work will come from applying more advanced
deep learning techniques such as generative
adversarial networks (GANs). Additionally, we plan
to highlight the efficiency of the work by comparing
many datasets in order to obtain the best results
while taking into account the real-time handling of
the IoT devices that are currently in use.

REFERENCES:

[1] Ometov, A., Molua, O. L., Komarov, M., &
Nurmi, J., “A survey of security in cloud, edge,
and fog computing”, Sensors, vol. 22, 2022, p.
927.

[2] I. Stojmenovic, S. Wen, X. Huang, and H. Luan,
“An overview of fog computing and its security
issues”, Concurrency and Computation:
Practice and Experience, vol. 28, no. 10, Apr
2015, pp. 2991–3005.

[3] N. Moustafa, “A systemic IoT–fog–cloud
architecture for big-data analytics and cyber
security systems: a review of fog computing”,
Secure Edge Computing, 2021, pp. 41–50.

[4] Mohamed, Rehab Hosny, Faried Ali Mosa, and
Rowayda A. Sadek, "Efficient Intrusion
Detection System for IoT
Environment", International Journal of
Advanced Computer Science and Applications,
vol. 13, no. 4, 2022.

[5] S. Prabavathy, K. Sundarakantham, and S. M.
Shalinie, “Design of cognitive fog computing
for intrusion detection in Internet of Things”,
Journal of Communications and Networks, vol.
20, no. 3, 2018, pp. 291–298.

[6] K. Kalaivani and M. Chinnadurai, “A Hybrid
Deep Learning Intrusion Detection Model for
Fog Computing Environment”, INTELLIGENT
AUTOMATION AND SOFT COMPUTING, vol.
30, no. 1, 2021, pp. 1–15.

[7] K. Sadaf and J. Sultana, “Intrusion detection
based on autoencoder and isolation forest in fog
computing”, IEEE Access, vol. 8, 2020, pp.
167059–167068.

[8] Eshak Magdy, M., M MATTER, A. H. M. E. D.,
HUSSIN, S., HASSAN, D., & Elsaid, S, “A
Comparative study of intrusion detection
systems applied to NSL-KDD Dataset”, The
Egyptian International Journal of Engineering
Sciences and Technology, 2022.

[9] T. M. Booij, I. Chiscop, E. Meeuwissen, N.
Moustafa, and F. T. den Hartog, “ToN_IoT: The
role of heterogeneity and the need for
standardization of features and attack types in
IoT network intrusion data sets”, IEEE Internet
of Things Journal, vol. 9, no. 1, 2021, pp. 485–
496.

[10] E. M. Tordera, X. Masip-Bruin, J. Garcia-
Alminana, A. Jukan, G. J. Ren, J. Zhu, and J.
Farre, “What is a fog node a tutorial on current
concepts towards a common definition”, arXiv
preprint arXiv:1611.09193, 2016.

[11] Díaz-Verdejo, J., Muñoz-Calle, J., Estepa
Alonso, A., Estepa Alonso, R., & Madinabeitia,
G, “On the detection capabilities of signature-
based Intrusion Detection Systems in the context
of web attacks”, Applied Sciences, vol. 12, no. 2,
2022, p. 852.

[12] A. Mallik, “Man-in-the-middle-attack:
Understanding in simple words”, Cyberspace:
Jurnal Pendidikan Teknologi Informasi, vol. 2,
no. 2, 2019, pp. 109-134.

[13] P. Kumar, G. P. Gupta, and R. Tripathi, “A
distributed ensemble design based intrusion
detection system using fog computing to protect
the internet of things networks”, Journal of
Ambient Intelligence and Humanized
Computing, vol. 12, no. 10, 2021, pp. 9555–
9572.

[14] D. Grzonka, A. Jakobik, J. Kołodziej, and S.
Pllana, “Using a multi-agent system and
artificial intelligence for monitoring and
improving the cloud performance and
security”, Future generation computer systems,
vol. 86, 2018, pp. 1106–1117.

[15] N. Moustafa, “A new distributed architecture for
evaluating AI-based security systems at the
edge: Network TON_IoT datasets”, Sustainable
Cities and Society, vol. 72, 2021, p. 102994.

Journal of Theoretical and Applied Information Technology
15th March 2023. Vol.101. No 5

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2042

[16] Gamal, M, Abbas, HM, Moustafa, N,
Sitnikova, E & Sadek, RA, “Few-Shot
Learning for Discovering Anomalous
Behaviors in Edge Networks”, Computers,
Materials and Continua, vol. 69, no. 2, 2021,
pp. 1823-1837.

[17] B. Sudqi Khater, A. W. B. Abdul Wahab, M. Y.
I. B. Idris, M. Abdulla Hussain, and A. Ahmed
Ibrahim, “A lightweight perceptron-based
intrusion detection system for fog computing”,
applied sciences, vol. 9, no. 1, 2019, p. 178.

[18] Maharani, M. P., Daely, P. T., Lee, J. M., &
Kim, D. S, “Attack detection in fog layer for
IIoT based on machine learning approach”,
2020 International Conference on Information
and Communication Technology Convergence
(ICTC). IEEE, 2020, pp. 1880-1882.

[19] M. L. McHugh, “The chi-square test of
independence”, Biochemia medica, vol. 23, no.
2, 2013, pp. 143–149.

[20] Christo, V. E., Nehemiah, H. K., Brighty, J., &
Kannan, A, “Feature selection and instance
selection from clinical datasets using co-
operative co-evolution and classification using
random forest”, IETE Journal of Research, vol.
68, no. 4, 2022, pp. 2508-2521.

[21] Kharwar, Ankit Rajeshkumar, and Devendra V.
Thakor, “An ensemble approach for feature
selection and classification in intrusion detection
using extra-tree algorithm”, International
Journal of Information Security and Privacy
(IJISP), vol. 16, no. 1, 2022, pp. 1-21.

[22] A. Pandey and A. Jain, “Comparative analysis of
KNN algorithm using various normalization
techniques”, International Journal of Computer
Network and Information Security, vol. 9, no.
11, 2017, p. 36.

[23] S. Zavrak and M. ˙ Iskefiyeli, “Anomaly-based
intrusion detection from network flow features
using variational autoencoder”, IEEE Access,
vol. 8, 2020, pp. 108 346–108 358.

[24] Kumar, Ajay, and Amita Rani, “LSTM-Based
IDS System for Security of IoT”, Advances in
Micro-Electronics, Embedded Systems and IoT.
Springer. Singapore, 2022, pp. 377-390.

[25] B. Lindemann, B. Maschler, N. Sahlab, and M.
Weyrich, “A survey on anomaly detection for
technical systems using LSTM networks”,
Computers in Industry, vol. 131, 2021, pp.
103498.

[26] Z. Huang, W. Xu, and K. Yu, “Bidirectional
LSTM-CRF models for sequence tagging”,
arXiv preprint arXiv:1508.01991, 2015.

[27] Z. Fu, “Computer network intrusion anomaly
detection with recurrent neural network”,
Mobile Information Systems, 2022.

[28] M. S. Al-Daweri, K. A. Zainol Ariffin, S.
Abdullah, and M. F. E. Md. Senan, “An analysis
of the KDD99 and UNSW-NB15 datasets for the
intrusion detection system”, Symmetry, vol. 12,
no. 10, 2020, p. 1666.

[29] Yusof, Nur Nadiah Mohd, and Noor Suhana
Sulaiman, “Cyber attack detection dataset: A
review”, Journal of Physics: Conference Series,
Vol. 2319, no. 1. IOP Publishing, 2022.

[30] N. Moustafa and J. Slay, “UNSW-NB15: a
comprehensive data set for network intrusion
detection systems (UNSW-NB15 network data
set)”, 2015 military communications and
information systems conference (MilCIS). IEEE,
2015, pp. 1–6.

[31] A. Yulianto, P. Sukarno, and N. A. Suwastika,
“Improving adaboost-based intrusion detection
system (IDS) performance on CIC IDS 2017
dataset”, Journal of Physics: Conference Series,
vol. 1192, no. 1. IOP Publishing, 2019, p.
012018.

[32] N. Chaabouni, M. Mosbah, A. Zemmari, C.
Sauvignac, and P. Faruki, “Network intrusion
detection for IoT security based on learning
techniques”, IEEE Communications Surveys &
Tutorials, vol. 21, no. 3, 2019, pp. 2671–2701.

[33] A. Guerra-Manzanares, J. Medina-Galindo, H.
Bahsi, and S. Nõmm, “Using MedBIoT Dataset
to Build Effective Machine Learning-Based IoT
Botnet Detection Systems”, International
Conference on Information Systems Security
and Privacy. Springer, 2020, pp. 222–243.

[34] Y. Meidan, M. Bohadana, Y. Mathov, Y.
Mirsky, A. Shabtai, D. Breitenbacher, and Y.
Elovici, “N-baiot—network-based detection of
iot botnet attacks using deep autoencoders”,
IEEE Pervasive Computing, vol. 17, no. 3, 2018,
pp. 12–22.

[35] N. Moustafa, M. Ahmed, and S. Ahmed, “Data
analytics-enabled intrusion detection:
Evaluations of ToN_IoT linux datasets”, 2020
IEEE 19th International Conference on Trust,
Security and Privacy. Computing and
Communications (TrustCom). IEEE, 2020, pp.
727–735.

