
Journal of Theoretical and Applied Information Technology
28th February 2023. Vol.101. No 4

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1331

A HYBRID APPROACH FOR REQUIREMENTS
PRIORITIZATION IN AN INCREMENTAL DEVELOPMENT

MODEL

FATIMA THAHER ABUROMMAN

Al-Balqa Applied University, Princess Rahma University College, Al-Salt, Jordan
e-mail: fatmia_thaher@bau.edu.jo

ABSTRACT

In incremental development model (IDM) stakeholders are involved in the development process to add more
emphasis on the system implementation phases rather than the requirements analysis and system design,
which in turn may give better results in terms of the delivery of the components of the system which are
referred to as increments. Because the development process is shared with stakeholders’ experience, interest,
positions and other factors, it might not be easy to rely on the stakeholders’ opinions on deciding which
increment will be the next. This paper provides a solution to this problem by forming a mathematical
representation and model that is referred to as the Hybrid Approach (HA) which is a hybridization between
the dept-first search (DFS), the value-oriented prioritization (VOP), and the greedy algorithm. The HA model
is compared to the analytic hierarchy process (AHP) approach. The results show that the HA model
outperforms the AHP approach in terms of runtime.
Keywords: Increment Prioritization; Incremental Model; Software Engineering; Requirements

Prioritization; Hybrid Model; Value-Oriented Prioritization.

1. INTRODUCTION

Requirement prioritization (RP) is used in
managing software development projects to
determine the candidate requirements that should be
included in a certain release. The aim of RP is to
choose the requirements based on their importance
with accordance to the stakeholder’s understanding
or perception [1]. Afterwards, a decision is made on
which requirements to implement in each specific
release.

Requirements are classified into: (1)
functional, (2) non-functional, or (3) domain
requirements. Functional requirements describe the
behavior of the system, i.e., what the system will do,
such as validity checks on the inputs, exact sequence
of operations, and error handling and recovery, to
name a few.

On the other hand, non-functional
requirements (NFRs) are much related to the
quality of the software rather than what the
software do, such as availability, dependability, and
performance [2]. The last type of requirements is
domain requirements, which are the requirements
that come from the application domain of the
system and that reflect characteristics of that
domain.

In an incremental development model
(IDM), the emphasis is on the development process
which mainly comprises the following phases: (1)
system increment development, (2) increment
validation, (3) increment integration, and (4) system
validation.

An increment can be thought of as a
subsystem (or a component). Upon the completion
of these phases, which incorporate the development
of a component, development of another increment
can start, and it will follow the very same phases.

However, in IDMs, prioritizing increments
is an issue. Prioritizing means to decide which
component’s development should start before other
starting the development of another components.

In this paper, we propose a model in which
increments are prioritized based on some factors
related to the overall system rather than depending
on the stakeholders' needs.

Donald Firesmith in 2004 [3], proposed
dimensions to consider when prioritizing, namely,
personal preference, business value, harm
avoidance, risk, cost, difficulty, time to market,
requirements stability, dependencies among

Journal of Theoretical and Applied Information Technology
28th February 2023. Vol.101. No 4

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1332

requirements, implementation dependencies, legal
mandate, frequency of use, and reuse. The author
didn't introduce a formal method to use when
prioritizing requirements; the RP process is fully
dependent on the consensus between the
requirements teams and the stakeholders.

Khari and Kumar [4], compared six
techniques for prioritizing software requirements,
namely, analytic hierarchy process (AHP), value-
oriented prioritization (VOP), cumulative voting
(CV), numerical assignment technique (NAT),
binary search tree (BST), and planning game (PG).
They concluded that VOP is supposed to be the best
method for prioritizing software requirements,
because of its ease, accuracy, and comfortability to
handle.

Furthermore, Azar et al. [5] discussed VOP
as a case study on a small development organization.
They first identified the core business values of the
company and gave each of which a value. Then, they
gave each requirement a value of Scale of 1-to-10
against each of the business values. After all, they
have a value-oriented prioritization matrix.

There are many researchers who studied
RP using algorithmic methods. For instance, Sadiq
and Devi [6] present a method for selecting
requirements using rough set theory. They tested
the applicability of their proposed model using an
examination system. The authors concluded that
their method captures the exact opinion of the
decision makers.

In essence, a software system is
decomposed into several subsystems. Recursively,
each subsystem is a system by itself. The
decomposition is agreed upon between the
development team and the stakeholders. In a VOP
approach, a VOP matrix is established, such that a
subsystem spans along a column of the VOP matrix.
The main idea behind VOP is to focus on the core
business values that lead to stakeholders’
satisfaction while prioritizing the product
requirements [5].

In order to enhance the performance of
requirements prioritization, the Ahuja et al. [7]
proposed a system that uses least-squares-based
random genetic algorithm. The system that was
proposed by Ahuja et al. uses genetic algorithm
which is a metaheuristic approach that is used to
solve combinatorial optimization problems [8].
Their main target was to reduce the time consumed

in requirements engineering which leads to lower
decision-making efforts.

Ali Khan et al. [9] compared different RP
techniques, namely, numerical assignment,
MoScoW, simple ranking, bubble sort, binary search
tree (BST), hundred-dollar method, AHP, Hierarchy
AHP, minimal spanning tree, and planning game.

New RP techniques emerge frequently by
researchers and scholars, due to the importance of
RP in the software development process. Shafiq et
al. [10] proposed a natural-language-processing-
based (NLP-based) approach for RP. Similarly, Aly
et al. [11] devised an approach for safety RP. Also,
Roy et al. [12] focused on NFR and presented an
approach that takes into consideration the conflicts
among NFRs in the RP phase and minimizes the
inconsistencies of software development.

In the modern software development arena,
Agile methodologies, such as, scrum, extreme
programming (XP), and DevOps, are dominating. In
fact, incremental development plays the pivotal role
in such models [13]. This incremental delivery
requires a formal approach for requirements
engineering in which RP is based on a well-defined
methodology [14]. In this context, this paper is
introducing a systematic approach for continuous
delivery (CD) of software increments. This approach
can be used in DevOps as well as all agile
development methodologies. The model that is
introduced in this paper is a novel model that
hybridizes exhaustive search algorithms, that is
depth-first search (DFS), with VOP, and the greedy
algorithm in the RP process. The proposed approach
fits in DevOps to help in the CD of software
components or increments.

One of the main important contributions of
this paper is that it intends to prioritize requirements
for fast delivery of software components, or
increments. Practically, this model incorporates
automatic assignment of weights of different system
components, rather than using a predetermined,
manual weigh assignment that depends on the
experience of the development teams as well as the
stakeholders, which, in fact, would lead to some
inconsistencies.

The rest of this paper is organized as
follows: in Sect. 2 the factors of the proposed hybrid
approach (HA) are discussed in detail. The HA
model is presented in Sect. 3. Section 4 contains the
experimental results. Finally, conclusion and future

Journal of Theoretical and Applied Information Technology
28th February 2023. Vol.101. No 4

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1333

work are presented in Sect. 5.

2. THE HYBRID APPROACH FACTORS
In the following subsections we discuss the

factors that are used to establish the hybrid approach
(HA), which is devised in this paper. Basically, HA
takes the following factors into consideration: (1)
dependencies between components, (2) functional
requirements, (3) users, (4) development time, and
(5) cost. For the HA to work perfectly, it is assumed
that both the requirements of the system are well
defined, and the architectural design is set.

2.1. Dependency
The dependency relationship between any

two components (or modules) implies that one
component, that is the successor, is dependent on
another component, that is the predecessor. In fact,
dependencies between components (or subsystems)
can be determined at early stages of the analysis and
design.

The HA model expresses dependencies
between different component by means of
dependency graphs. A dependency graph is a
directed graph in which components are represented
by vertices, and the dependencies between
components are represented by edges [15].
Formally, let 𝐴 and 𝐵 be two components of a given
subsystem 𝑆, then a directed graph 𝐺 = (𝑉, 𝐸) is
created to represent the dependency graph of 𝑆, and
a directed edge 𝑒஺஻ exists from vertex 𝐴 to vertex 𝐵,
if the component 𝐵 is dependent on component 𝐴,
i.e., component 𝐴 is a predecessor of component B.

In this paper, each component is assigned a
weight 𝑤, provided that predecessors must be
assigned weights higher than successors’ weights. In
the previous example, this indicates that the weight
of component 𝐴 must be greater than the weight of
component 𝐵. In this context, a dependency
relationship between the two components 𝐴 and 𝐵,
in the dependency graph, is expressed as follows:
𝑒஺஻: 𝐴 → 𝐵|𝑤஺ > 𝑤஻ .

The algorithm shown in Algorithm 1 is a
modified DFS algorithm that is used to calculate the
weight of each vertex, i.e., component. Algorithm 1
takes one parameter, that is 𝐺 = (𝑉, 𝐸), which is the
directed graph which represent the dependency
graph of the system 𝑆.

In the beginning of Algorithm 1, all vertices
are set to -1, which is an equal weight. The output of
Algorithm 1 is the dependency graph with all its

vertices are assigned weights based on the
dependencies between the components. In fact, one
main contribution of this paper is the automatic
assignment of weights to the system components.

Algorithm 1: Component Dependency
Algorithm
Input: 𝐺 = (𝑉, 𝐸) a directed graph of the

components of the system
Output: Weights of components
1 Dependency(𝐺){
2 //such that 𝐺 =< 𝑉, 𝐸 > is a directed

graph
3 //initialize all component weights to -1
4 //𝑉 is the set of vertices of graph 𝐺
5 for each vertex 𝑣 ∈ 𝑉{
6 weight[𝑣]= -1;
7 parent[𝑣] = NULL;
8 finished[𝑣] = false;
9 }
10 for each vertex 𝑣 ∈ 𝑉
11 if (NOT finished[𝑣])
12 Weight(𝑣);
13 Adjust_roots();
14 }

Algorithm 2 shows the logic of computing
the weights of different vertices in the directed
graph.

While traversing the graph, there may arise
some cases in which some vertices do not have
predecessors neither do they have any successors, in
this case, they will have the following state at the end
of traversal: finished = true, parent = NULL and
weight = 0.

Algorithm 2: Weight Computation Procedure
Input: The vertex 𝑣
Output: Weights of components that are

dependent on 𝑣

Journal of Theoretical and Applied Information Technology
28th February 2023. Vol.101. No 4

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1334

1 Weight(v){
2 for each vertex 𝑢 ∈ 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡[𝑣]
3 if (NOT finished[𝑢]){
4 parent[𝑢]= 𝑣;
5 Weight(𝑢);
6 }
7 Else
8 weight[𝑣] = weight[𝑢];
9 weight[𝑣] = weight[𝑣] + 1;
10 finished[𝑣] = true;
11 if (weight[parent[𝑣]] ≤ weight[𝑣])
12 weight[parent[𝑣]] = weight[𝑣];
13 }

Line 13 of Algorithm 1 calls the
Adjust_roots() procedure which is shown in
Algorithm 3. The Adjust_roots() procedure
finds the vertex which has the maximum weight
between root nodes in the graph and sets the weights
of all root nodes to the maximum weight that has just
been found, thus giving all root components an equal
priority.

Algorithm 3: Root Adjustment Procedure
Input: 𝐺 = (𝑉, 𝐸) a directed graph of the

components of the system
Output: Adjusted weights of root components
1 Adjust_roots(G){
2 𝑚𝑎𝑥 = find_max_weight(𝑉);
3 for each vertex 𝑣 ∈ 𝑉
4 if (parent[𝑣] is null)
5 weight[𝑣]= 𝑚𝑎𝑥;
6 }

2.2. Requirements Grouping
A system 𝑆 can be decomposed into a set of

Components 𝐶 = {𝑐௜ | 𝑖 = 1, 2, … , 𝑚}. At an earlier
stage, a set of functional requirements 𝑅 = {𝑟௜ | 𝑖 =
1, 2, … , 𝑛} were specified. Thus, a component-
requirement matrix (CRM), which is an 𝑚 × 𝑛
matrix, is constructed as a relationship between 𝐶 in
the columns and 𝑅 in the rows, such that the values
that are allowed in the CRM are only 1 if the
requirement 𝑟௜ corresponds to the component 𝑐௝, or 0
otherwise.

The summation of each column in the CRM
is computed. The result is the set 𝑇 = {𝑡௜ | 𝑖 =
1, 2, … , 𝑛} which has a size of 𝑛, such that each
element of the set 𝑇 corresponds to one requirement
of the set of requirements 𝑅.

2.3. Users
Another important contribution to this

paper is that it gives weight to the domains of

application, i.e., the domain to which the system is
to provide services to. The intuition here is that
domains are given values with respect to how much
they are offered services by the system.

Formally, a system 𝑆 can offer services or
functions to one or multiple domains. Domains of
applications are expressed according to their
relevancy of the system 𝑆 as a scale, e.g., from 0 to
5 or from 0 to 10. A domain relevancy matrix 𝐷 =
{𝑑௜௝|𝑖 = 1,2, … 𝑚, 𝑗 = 1, 2, … , 𝑘}, is an 𝑚 × 𝑘
matrix, that is constructed as a relationship between
the components in the rows and the domains in the
columns. Each instance of 𝐷 represents the value
that is assigned to the component according to its
relevancy with the component. In other words, 𝑑௜௝
can range from zero, if the domain is not relevant to
the component (or vice versa); the upper bound is the
value given to that domain based on the
predetermined scale.

Because resulting system is expected to
provide services to a predetermined of users, a rank
between 1 and 4 is given to each user based on the
managerial position. In this paper, users are
categorized into four levels: (1) top-level
management who ranked 4, (2) mid-level
management ranked 3, (3), low-level management
with rank 2, and (4) employees who are ranked as 1.

Based on this categorization, the set of
users 𝑈 = {𝑢௜|𝑖 = 1, 2, … , 𝑙} contains the users of
the system such that each element of the set
represents the weight of the user which is computed
with respect to domain of application and the desired
component, i.e., the domain relevancy matrix, as
follows: 𝑤௜ = 𝑝 × 𝑟𝑎𝑛𝑘௜, such that 𝑝 is the average
of domain relevancy matrix instances that
correspond to the specific user, or in other words, the
domains and components that the specific user will
be using in the system.

It is worth to mention that categorizing the
users based on their managerial positions is another
contribution to add to this paper. The idea is that
users with higher managerial positions have greater
influence on the system development and the
requirements engineering process, and as a result RP
will be affected by the managerial position of the
user.

2.4. Development Time
Each component has an estimated length. Lengths
are not necessarily equal. Based on the number of the
development team members, the nature of the

Journal of Theoretical and Applied Information Technology
28th February 2023. Vol.101. No 4

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1335

software system, its size, availability of resources,
and some other factors that might be relevant to one
team or another, each development team can preset
the maximum time required for each component to
finish its development. The overall development
time of the system (DT) is the sum of all
development times of all the components, 𝐷𝑇 =
 ∑ 𝑑𝑡௜

௠
௜ୀଵ , such that 𝑑𝑡௜ is the development time of

component 𝑖.

2.5. Development Cost
The development cost of a component depends on
the development time, number of team members,
size of the component, and hardware and software
resources, to name a few. The total cost of system
development is the summation of the costs of
development of each component of the system and
is computed as follows: 𝐷𝐶 = ∑ 𝑑𝑐௜

௠
௜ୀଵ , such that

𝑑𝑐௜ is the development cost of component 𝑖.

3. THE HYBRID APPROACH MODEL
The HA model is a greedy algorithm [16] that uses
the greedy approach to select the requirements based
on a well-defined model of factor computation as
illustrated in detail in this section.

To calculate the component weight, the set
𝑊 is established as a set of component weights 𝑊 =
{𝑤௜ | 𝑖 = 1, 2, … , 𝑚}, such that 𝑤௜ is the initial
weight of component 𝑖, and 𝑚 is the number of
components (or increments).

Algorithm 4 contains the hybrid approach
that is devised by this paper for RP. The algorithm
starts by establishing the component dependency
graph (CDG) that shows the dependencies between
the modules. Then, the dependency algorithm, that
is explained in Algorithm 1, is started to compute
module weights.

Algorithm 4 establishes the CRM and
computes the total requirements of each component
𝑇.

Afterwards, Algorithm 4 needs to find out
the user value of each module. First, weights of
domains of applications are determined by means of
the domain relevancy matrix 𝐷. The algorithm needs
to be fed with the list of users to compute their
weights based on the domains of applications and
managerial positions weights.

The algorithm computes the total system
development time based on the development times
of each individual component of the system. and

each module development time. It also computes the
total system development cost as the summation of
the cost of development of each individual
component.

When all the factors are computed,
Algorithm 4 computes the weight of each component
according to Eq. 1.

𝑐௜ = 𝑤௜ + 𝑡௜ + 𝑢௜ +
𝑑𝑡௜

𝐷𝑇
+

𝑑𝑐௜

𝐷𝐶
 Eq. 1

Such that 𝑐௜ is the component (or increment) weight,
𝑤௜ is the initial weight as computed from the
dependency matrix, 𝑡௜ is the total requirements of
component 𝑖, 𝑢௜is the weight of user 𝑖, 𝑑𝑡௜ is the
development time of component 𝑖, 𝐷𝑇 is the total
system development time, 𝑐௜ is the cost of
development of component 𝑖, and 𝐷𝐶 is the total cost
of development of the system.

Algorithm 4: The HA Algorithm
Input: 𝐺 = (𝑉, 𝐸): a directed graph of the

components of the system,
𝑈: the set of users of the system.

Output: Weights of components
1 HA(𝐺){
2 Dependency(𝐺);
3 𝐶𝑅𝑀 = Create_CRM();
4 𝑇 = Compute_total_requirements(𝐶𝑅𝑀);
5 𝐷 =

Create_domain_relevancy_matrix(𝑈);
6 𝐷𝑇 = ∑ 𝑑𝑡௜

௠
௜ୀଵ ;

7 𝐷𝐶 = ∑ 𝑑𝑐௜
௠
௜ୀଵ ;

8 for each component 𝑐௜ ∈ 𝐶
9 𝑐௜ = 𝑤௜ + 𝑡௜ + 𝑢௜ +

ௗ௧೔

஽்
+

ௗ௖೔

஽஼
 ;

10 sort (non-decreasing order) by weights;
11 decide on RP (greedy);
12 }

As shown in Eq. 1, the effect of both
development time and cost on the RP decision is
mitigated by dividing on the total development time
and total development cost. This mitigates the
influence of predetermined estimation that is set by
the development teams, and thus reducing the
chances of lack of accuracy of the HA model.

Finally, Algorithm 4 orders the components
in a non-increasing order according to their weights.
The greedy algorithm is then set to choose items
based on their weights.

As shown in Algorithm 4, the HA algorithm
is a hybrid approach that uses: (1) DFS, (2) greedy

Journal of Theoretical and Applied Information Technology
28th February 2023. Vol.101. No 4

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1336

algorithm, and (3) a customization of the VOP based
on customized factors.

Figure 1 depicts a graphical representation
of the steps that are incurred by the HA algorithm.

Figure 1. The HA Algorithm Depicted As A Flowchart

4. EXPERIMENTAL RESULTS
A library information system is considered

in this context to prove the correctness of the
approach presented earlier. This information system
is presented by Al-Shaikh et al. [17].

The system is composed of the following

components: Book, Borrower, and Borrowing, as
shown in Figure 2. The functional requirements of
the system are [18]:

R1. Issue a book to a borrower.
R2. Receive a book returned by a borrower.
R3. Create information about a newly acquired

book.
R4. Display a list of the books on loan to a

particular borrower.

Journal of Theoretical and Applied Information Technology
28th February 2023. Vol.101. No 4

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1337

Figure 2. System Decomposition And Representation Using The Module Dependency Graph

In Figure 2, all component weights are

initially set to -1. After applying Algorithm 4, the
weights of the components will be as follows: Book:
1, Borrower: 1, and Borrowing: 0.

Then, CRM is CRM by Algorithm 4, as
shown in Table 1.

Table 1 CRM
 Book Borrower Borrowing
R1 1 1 1
R2 1 1 1
R3 1 0 0
R4 1 1 1
Total 4 3 3

The domain of application of this system is

the library, and it is assumed that there are no further
domains of applications to this system. This implies
that all values of domain of application would be set
to 1. Thus, the value of domain of application will be
mitigated and will not have any effect on any
component.

Let the users of the system are as listed in
Table 2, assume users of the system as follows:

Table 2 User Weights

User
Domain Position

p
Name d Title value

User 1

Library 1

Director 4 4
User 2 Supervisor 3 3
User 3 Data Entry 1 1
User 4 Data Entry 1 1
User 5 Borrower 1 1
User 6 Borrower 1 1

Afterwards, the user-value matrix is

constructed as follows:

Table 3 User-Value Matrix
 Book Borrower Borrowing
User 1 (4) 1 1 1
User 2 (3) 1 1 1
User 3 (1) 1 1 0
User 4 (1) 1 1 0
User 5 (1) 0 1 1
User 6 (1) 0 1 1
Total 9 11 9

Assuming that the development time and

development cost for each component is given as
follows:

Table 4 Components Development Times And Costs
Component 𝑫𝑻 𝒅𝒕𝒊/𝑫𝑻 𝑫𝑪 𝒅𝒄𝒊/𝑫𝑪
Book 2 0.25 250 0.16
Borrower 2 0.25 350 0.22
Borrowing 4 0.5 1000 0.62
Total 8 1600

Finally, we group them together as shown

in Table 5.

Table 5 Final Calculations
Component 𝑾 𝑻 𝑼 𝑫𝑻 𝑫𝑪 𝑪
Book 1 4 9 0.25 0.16 14.41
Borrower 1 3 11 0.25 0.22 15.47
Borrowing 0 3 9 0.5 0.62 13.12

The final step of Algorithm 4 is to sort the

modules in a non-decreasing order to obtain the
result: (1) Borrower, (2) Book, and (3) Borrowing.
Using the greedy approach of HA, the first
component to start with is Borrower, then Book, and
at the end we finish up with the Borrowing
component.

Intuitively, the borrowing component
cannot be the first component to start with, from a
logical explanation of the function of the system.
Also, not matter which component to start with, i.e.,
Book or Borrower, as shown in Figure 2. However,
we cannot start with the Borrowing module until we

Journal of Theoretical and Applied Information Technology
28th February 2023. Vol.101. No 4

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1338

finish the two other modules, and this was reflected
by the devised HA model.

Experimentally, the HA model was tested
against the AHP method. The tests are set to run on
an Intel Core(TM) i5-3230M CPU with 2.60 GHz
and 3 MB cache with 4 cores. Memory size of the
computer in use is 4 GB of RAM (2.87GB is only
usable). The PC runs windows 7 Enterprise edition
32-bit.

The datasets with different sizes between
100 and 10000 requirements were generated
randomly. For each algorithm, the algorithm was set
to run 30 times on each dataset. The factors that are
related with each component and requirement were
set randomly by the program, too.

Table 6 shows a comparison between the
runtimes of the AHP method and HA model. The
results show that the HA model outperforms the
AHP in terms of runtime for most of dataset sizes as
well as in the average runtime of the algorithm.

The comparison results are depicted in
Figure 3. It is obvious from Figure 3 that HA
outperforms AHP in terms of runtime. There might
be some cases in which runtime values for AHP are
better than those of HA. However, this behavior has
no effect on the average runtime. Also, the reason of
this behavior is the random nature of the datasets
because the datasets are generated randomly.

Table 6 Comparison Between AHP And HA In Terms Of
Runtime In Seconds.

Dataset size AHP HA

100 0.206165 0.045097

200 0.237553 0.047081

300 0.26894 0.139259

400 0.300328 0.231437

500 0.331716 0.323615

600 0.363104 0.415793

700 0.394491 0.507971

800 0.425879 0.600149

900 0.457267 0.692327

1000 2.160758 0.784505

2000 4.146739 1.706284

3000 6.132719 2.628064

4000 8.1187 3.549843

5000 10.10468 4.471622

6000 12.09066 5.393402

7000 14.07664 6.315181

8000 16.06262 7.23696

9000 18.0486 8.15874

10000 20.03458 9.080519

Average 5.998008 2.754097

Figure 3. Comparison between HA and AHP runtimes

Using runtime analysis and comparison
between the proposed HA and the AHP is of a great
importance. In fact, agile methodologies, such as
DevOps, requires swift methods in dealing with
increments. This implies that time is a major factor
in determining appropriateness of the proposed
model with agile and DevOps. A slow RP process
will delay will slow down the CD of software
components, or increments. Consequently, the
appropriateness of the proposed model to fit in
DevOps is proved.

In a nutshell, having HA to outperform
AHP in terms of runtime indicates that the proposed
approach is a fast approach that can be used with
agile development methodologies and in DevOps. It
also shows preference on the methods or approaches
that are found in the literature, in the sense that this
approach uses multiple techniques to prioritize the
components as well as it is a fast approach that fits
in modern software development approaches.

5. CONCLUSION AND FUTURE WORK

This work presented a model of evaluating
increments weights based on some factors, like the
dependency between components, requirements that
each component aggregate, users of each component
and their values, in addition to the relevancy between
different domains of application and the overall
software system, plus some actuators which are the
development time and the development cost of each

Journal of Theoretical and Applied Information Technology
28th February 2023. Vol.101. No 4

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1339

component. The model computes the values of the
factors and then applies a greedy algorithm to
prioritize the components, such that the higher
weight is selected first, followed by the one with less
weight and thus until reaching the last component (or
increment) to deliver, and a result the whole system
in total is delivered. Most of the analysis done in this
context was conducted using value-oriented
prioritization (VOP) matrices.

The resulted HA algorithm was compared
to the AHP algorithm in terms of runtime. results
show that the HA algorithm outperformed AHP in
terms of runtime.

As a future work, some NFRs can be
considered and added to this model, such as
availability of resources, staffing, team knowledge,
experience, and fields of interest, and working hours,
to name a few. Also, another metaheuristic
algorithms can be used instead of the greedy
algorithm, such as the most-valuable player (MVP),
duelist algorithm (DA), or others.

REFERENCES:

[1] F. Hujainah, R. B. A. Bakar, A. B. Nasser, B.

Al-haimi and K. Z. Zamli, "SRPTackle: A
semi-automated requirements prioritisation
technique for scalable requirements of
software system projects," Information and
Software Technology, vol. 131, 2021.
https://doi.org/10.1016/j.infsof.2020.106501

[2] D. Ameller, C. Ayala, J. Cabot and X. Franch,
"How do software architects consider non-
functional requirements: An exploratory
study," in 2012 20th IEEE International
Requirements Engineering Conference (RE),
Chicago, IL, USA, 2012.

[3] D. Firesmith, "Prioritizing Requirements,"
Journal of Object Technology, vol. 3, no. 8, pp.
35-47, 2004.

[4] M. Khari and N. Kumar, "COMPARISON OF
SIX PRIORITIZATION TECHNIQUES FOR
SOFTWARE REQUIREMENTS," Journal of
Global Research in Computer Science, vol. 4,
no. 1, pp. 38-43, 2013.

[5] J. Azar, R. K. Smith and D. Cordes, "Value-
Oriented Requirements Prioritization in a
Small Development Organization," IEEE
Software, vol. 24, no. 1, 2007.
https://doi.org/10.1109/MS.2007.30

[6] M. Sadiq and V. S. Devi, "A rough-set based
approach for the prioritization of software
requirements," International Journal of

Information Technology, vol. 447–457, p.
447–457, 2022.
https://doi.org/10.1007/s41870-021-00749-0

[7] H. Ahuja, Sujata and U. Batra, "Performance
Enhancement in Requirement Prioritization by
Using Least-Squares-Based Random Genetic
Algorithm," in Innovations in Computational
Intelligence, Singapore, Springer, 2018, p.
251–263.

[8] A. Al-Shaikh, B. A. Mahafzah and M.
Alshraideh, "Hybrid harmony search algorithm
for social network contact tracing of COVID-
19," Soft Computing, 2021.
https://doi.org/10.1007/s00500-021-05948-2

[9] J. A. Khan, I. U. Rehman, Y. H. Khan, I. J.
Khan and S. Rashid, "mparison of
Requirement Prioritization Techniques to
Find Best Prioritization Technique,"
International Journal of Modern Education
and Computer Science, vol. 7, no. 11, pp. 53-
59, 2015.
https://doi.org/10.5815/ijmecs.2015.11.06

[10] S. Shafiq, A. Mashkoor, C. Mayr-Dorn and A.
Egyed, "NLP4IP: Natural Language
Processing-based Recommendation
Approach for Issues Prioritization," in 2021
47th Euromicro Conference on Software
Engineering and Advanced Applications
(SEAA), Palermo, Italy, 2021.

[11] S. Aly, J. Tyrychtr, R. Kvasnicka and I.
Vrana, "Novel methodology for developing a
safety standard based on clustering of experts’
assessments of safety requirements," Safety
Science, vol. 140, 2021.
https://doi.org/10.1016/j.ssci.2021.105292

[12] M. Roy, N. Deb, A. Cortesi, R. Chaki and N.
Chaki, "NFR-aware prioritization of software
requirements," Systems Engineering, vol. 24,
pp. 158-176, 2021.
https://doi.org/10.1002/sys.21572

[13] K. Pal and B. Karakostas, "Software Testing
Under Agile, Scrum, and DevOps," in Agile
Scrum Implementation and Its Long-Term
Impact on Organizations, 2021.

[14] C. Ebert, G. Gallardo, J. Hernantes and N.
Serrano, "DevOps," IEEE Software, vol. 33,
no. 3, pp. 94-100, 2016.
https://doi.org/10.1109/MS.2016.68

[15] A. Al-Shaikh, B. A. Mahafzah and M. A.
Alshraideh, "Metaheuristic approach using
grey wolf optimizer for finding strongly
connected components in digraphs," Journal
of Theoretical and Applied Information
Technology, vol. 97, no. 16, pp. 4439-4452,
2019.

Journal of Theoretical and Applied Information Technology
28th February 2023. Vol.101. No 4

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1340

http://www.jatit.org/volumes/Vol97No16/17
Vol97No16.pdf

[16] A. Al-Shaikh, H. Khattab, A. Sharieh and A.
Sleit, "Resource Utilization in Cloud
Computing as an Optimization Problem,"
International Journal of Advanced Computer
Science and Applications, vol. 7, no. 6, pp.
336-342, 2016.
http://doi.org/10.14569/IJACSA.2016.07064
3

[17] A. Al-Shaikh, H. Khattab, A. Moubaiddin and
N. Obeid, "A defeasible description logic for
representing bibliographic data," in Social
Media Shaping e-Publishing and Academia,
Springer, Cham, 2017, pp. 90-105.

[18] D. Bell, Software Engineering for Students –
A Programming Approach, vol. 4th, Addison-
Wesley, 2005.

