
Journal of Theoretical and Applied Information Technology
15th February 2023. Vol.101. No 3

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1381

AUTOMATION OF TEST CASE PRIORITIZATION: A
SYSTEMATIC LITERATURE REVIEW AND CURRENT

TRENDS

JIJO JOSEPH C GEORGE1, D. PETER AUGUSTINE2

1Department of Computer Science, CHRIST (Deemed to be University), India
2Department of Computer Science, CHRIST (Deemed to be University), India

E-mail: 1jijo.joseph@res.christunversity.in, 2peter.augustine@christuniversity.in

ABSTRACT

 An Important stage in software testing is designing a test suite [18]. The test case repository consists of a
large number of test cases. However, only a portion of these test cases would be relevant and can find bugs.
Test case prioritization(TCP) is one such technique that can substantially increase the cost-effectiveness of
the testing activity. Using test case prioritization, more relevant test cases can be captured and tested in the
earlier stages of the testing phase. The objective of the study is to understand different techniques used and
a systemic study on the effectiveness of these approaches. The Literature consists of a few relevant articles
introducing novel techniques for test case prioritization between 2008 and 2022. Studies show that parameters
that are considered for test case prioritization are important. Hence, the current article also focuses on the
parameters considered in the literature. 40% of the articles used in the literature review use different test case
information as parameters. A systemic review and analysis of data sets involved in the literature are evaluated
in the study. The review also focuses on the different approaches used for comparing the newly introduced
approach and reveals a novel approach for prioritization.
Keywords :– Software Testing, Software Test Automation, Software Engineering, Test Case Prioritization,

Regression Testing

1. INTRODUCTION

Quality of the software is significant as
software shoulders a critical role. The cost of a single
defect could be enormous. Due to this reason, the
quality of the software is significant. Testing is a
method through which we can assure quality.
Different types of testing like sanity testing,
regression testing, unit testing, smoke testing, etc.
are conducted depending on multiple factors like
duration of testing, coverage, the phase at which
testing is conducted, etc.

Regression testing is performed when a
new version of an existing software is released. This
includes bug fixes from previous versions and
additional features in the software [15]. Regression
testing is essential to ensure that the new version of
the software has not caused any bugs. A large
number of test cases covering different scenarios
would be available in the regression test bucket. On
the contrary, only a few of these test cases would be
relevant [20]. Given the limited time and resources,
it would be difficult to execute all the test cases
available in the test case bucket. Hence, it is
important to choose relevant test cases for execution

which will reduce the execution cost significantly
and improve testing efficiency [23]. One solution for
this problem would be test case prioritization. Using
effective prioritization techniques, the total number
of tests case can be drastically reduced without
sacrificing the quality of the software. Realizing the
significance, prioritization technology has gained
importance in software industries [21].
Understanding the relevance lot of research has
already gone into different prioritization techniques.
Using different techniques, parameters, comparison
techniques, and datasets, there are different types of
test case prioritization techniques available today.
Due to this, uniqueness is visible in almost all
studies, it is very difficult to determine which
technique is most suitable for a given scenario. The
current paper is a scientific study of different
techniques that are currently available to understand
the scenarios where these techniques can be used.
For this purpose, we are looking at a few most
relevant papers published in the recent past which
are unique. Uniqueness could be observed in the
software tested, the approach used, the algorithm,
parameters selected, the data set available, strategies
used for comparison, etc.

Journal of Theoretical and Applied Information Technology
15th February 2023. Vol.101. No 3

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1382

2. LITERATURE REVIEW

In a given test suite T, the objective of Test
case prioritization is to reorder the test cases in such
a way that the probability of hitting a bug in the
initial stages would be higher [18]. This will help the
engineers spot the bugs sooner and have sufficient
time to fix them before the software is released. TCP
can be combined with regression test selection
(RTS) to generate a subset of T. This subset will
contain only prioritized relevant test cases that are
prioritized. This will help minimize the test duration
required for testing without sacrificing the quality.

Several approaches exist to automate TCP.
Over the years, various approaches have evolved
with the common objective of increasing quality. For
this study, the few most relevant articles from the
recent past were selected. These articles include
unique approaches to reach the common objective of
prioritizing test cases. In this section, we are briefly
analyzing these approaches.

Miairab et al. [1] (2008) have implemented
TCP using a Bayesian network (BA). Where the
parameters considered include the average
percentage of faults detected, running duration of
test cases, feedback mechanism using BA, source
code differences using Unix diff, and source code
similarities using constant pool difference. The Data
set includes open-source programs namely ant,
Jmeter, xml, nanoxml, and galileo. The system was
compared using different BA algorithms like BA
without feedback with Unix diff (D), BA with
feedback with D, BA without feedback with
Constant pool diff (CP), and BA with feedback with
CP. Carlson et al. [2] (2011) used a clustering
algorithm. Parameters used include Code coverage,
Code complexity, and Fault history information. The
data set comprises Microsoft Dynamics Ax 2009
including the initial release and SP1 release. Current
TCP was compared against all combinations of
parameters with and without clustering. Frang Wang
et al. [3] (2011) use neural networks and slicing
techniques to prioritize test cases. Parameters used
include execution traces and source code changes.
The efficiency was compared by testing all test
cases, randomly picking test cases, and using neural
networks with and without slicing techniques. Md.
Junaid et al. [4] (2013) use k-means clustering to
prioritize. The parameters include term extraction
and requirement term-document matrix to create a
requirement cluster, Lines of code, Nested block
depth, and McCabe Cyclomatic Complexity. The
data set include two college student project namely
Capstone and iTrust. The results were compared
against the original and random cluster order with

and without code metric. Using hamming distance to
analyze the changes in the code, and test case failure
history as parameters, Pang et al. [5] (2013) uses k-
means clustering to segregate test cases to execute.
A comparison was made by running the solution on
different versions of datasets. The dataset includes
nanoxml, jtopas, JMeter, xml-security, and ant. Di
Nardo et al. [6] (2013) using coverage-based
strategies have implemented TCP. The parameter
consists of code coverage. The dataset used for the
study was an industrial software named Noisegen. A
comparison was made using function entry, function
return, block, basic block, and decision. Chaurasia,

Geetanjali et al. [7] (2015) use clustering to
prioritize test cases. The parameters include Code
coverage, fault history, Source code info, Execution
time, and test-case execution history. The data set
consists of two open-source software called Jmeter
and Apache ANT. The results were compared using
other TCP methods like Untreated, Random,
function-total, function-additional, agglomerative
hierarchical clustering, and K-means clustering.
Saha et al. [8] (2015) use information retrieval (IR)
for TCP. Parameters include different levels of code
changes between versions. A comparison was made
using different TCP strategies like Untreated test
prioritization, Random test prioritization, Method
coverage using the Additional strategy, Method
coverage using the total strategy, Statement
coverage using the additional strategy, Statement
coverage using the total strategy, and JUPTA. The
data set used for the study includes open-source
programs namely Time and Money, Mime4J, Jaxen,
XML-Security, XStream, Commons-Lang, Joda-
Time, and Apache Ant. Noor et al. [9] (2015) used a
similarity-based approach for a solution for TCP.
The parameters used for this study include Test case
history and code changes. A Comparison was made
with other approaches like Hamming distance, the
traditional history-based approach, Edit distance,
basic counting, and improved basic counting. The
data set used for this study includes 5 Java programs:
Commons Lang, JodaTime, JFreeChart, Commons
Math, and Closure Compiler.

Using the SVM rank algorithm, Busjaeger
et al. [10] (2016) implemented TCP. Parameters
used for this study include text content similarity,
text path similarity, failure history, Java code
coverage, test age, and test case list. Automation live
software Salesforce was used as part of the data set
constituting 45000 test cases. A comparison was
made with other TCP approaches including random,
coverage, text path, text content, History, and Test
age. Lachmann et al. [11] (2016) used SVM rank

Journal of Theoretical and Applied Information Technology
15th February 2023. Vol.101. No 3

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1383

algorithm for TCP. Parameters include test case
description, requirements coverage, failure count,
failure age, failure priority, and execution costs. The
data set used includes one internal project named
Body comfort system and automotive industrial data.
A comparison was made using SVM rank with and
without test case description, and random. Chen et
al. [12] (2016) used a clustering algorithm. Test case
information is the only parameter used for this study.
Data sets include programs like CCoinBox,
WindShieldWiper, SATM, RabbitAndFox, and
WaveletLibrary. A comparison was made using
other TCP approaches including
MoClustering_means Algorithm, MOClustering –
medoid, and random testing with method sequence.

Using Linux utilities like cal, comm, look, spline,
and unique and Siemens Suite from Software-
artifact Infrastructure Repository (SIR) as data set
Zhang et al. [13] (2016) prioritized test cases using
Adaptive random sequence algorithm (ARS). The
parameter includes test execution history. The
results were compared using ARS-pass, ARS-all,
and Ledru algorithms. Using differences found in 2
subsequent versions of software, Panda et.al [14]
(2016) solve the TCP problem with the help of a
slice-based approach. A comparison was made using
a previous study by [19].

Lachmann et al. [15] (2018) used different
machine-learning approaches to understand a
suitable solution for TCP. Parameters include Test
case description (natural language), Test case age,
Number of linked requirements, Number of linked
defects (history), Severity of linked defects, Test
case execution cost (time), and Project-specific
features (e.g., market). The data set includes a test
suit from an automotive industry and an academic
project. Spieker et al. [16] (2018) use reinforcement
learning as a solution to the TCP problem.
Parameters include test case history. The data set
used for this study are paint control, IOF/ROL, and
Google Shared dataset of Test Suite Results
(GSDTSR). Results were compared using test case
failure reward, test case count reward, and time
reward.

Pradhan et al. [17] (2019) use REMAP, a
combination of rule mining and multi-objective
search algorithms to evaluate TCP. The parameter
for the study includes test case history. The data set
used for this study are VCS products from Cisco,
open source case studies from ABB Robotics for
Paint Control, IOF/ROL, and "Google Shared
Dataset of Test Suite Results (GSDTSR)". Yu, Zhe,
et al. formulated a novel TCP technique using the
total recall algorithm. Parameters consist of

execution history, test case description, and
feedback from previous runs. With the help of the
LexisNexis database, they have compared the
solution with random, history-based, cost-based, test
case description-based, and feedback-based. Using
the tag-based IR algorithm Azizi, Maral proposed a
TCP technique using source code changes and the
details from the test case as parameters. The data set
consists of open-source tools namely nopCommerce,
Umbraco-CMS, Joda-Time, JFreeChart, Commons-
Lang, and XStream. A comparison was made using
untreated, random, total Statement, additional
Statement, and text Retrieval Based. Chen, Jinfu, et
al. used clustering-based random sequencing for
TCP using the parameters Test case pool (TCP),
Number of test cases to be selected from TCP, and
Number of clusters to be generated. A comparison
was made using MOClustering_mean,
MOClustering_medoids, DMClustering, method
coverage, and random sequencing. The Data set
consisted of open-source software which includes
CCoinBox, WindShieldWiper, SATM,
RabbitsAndFoxes, WaveletLibrary, IceChat, and
CSPspEmu.ss. Using test sequence and code
coverage as parameters, Chi, Jianlei, et al. has
demonstrated the impact of relation-based
algorithms on TCP. The dataset consisted of open-
source programs Commons.lang, Jodatime, Log4j-
core, Commons.math, Jfreechart, Ant,
Commons.math3, Google Closure Compiler, and
Average. A comparison was made using different
search-based, greedy, adaptive algorithms, and
natural order. Di Nucci, Dario, et al. uses a
hypervolume-based genetic algorithm for TCP.
Parameters include execution cost, statement
coverage, and past fault coverage. The dataset
includes GNU utilities namely Bash, Flex, Grep,
GZip, and Sed. A Comparison was made using
GDE3 [24] and MOEA/D-DE [25]. Bagherzadeh,
Mojtaba, et al. analyze different reinforcement
learning algorithms in their study. The parameter
includes test case details. The data set used includes
Paint, IOFROL Simple, Codec Enriched, Compress
Enriched, Imaging Enriched, IO Enriched, Lang
Enriched, and Math. A Comparison was made using
different existing reinforcement learning algorithms.

3. FINDINGS

In this article, we are focusing on some
important and most common attributes used in each
of the TCP articles. These attributes include the
algorithm used in the article, the parameters
considered, the type of data set used, similar
algorithms used for comparison, and the research

Journal of Theoretical and Applied Information Technology
15th February 2023. Vol.101. No 3

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1384

question asked in each article. Though most articles
have used the Average Percentage of Faults
Detected (APFD) metric introduced by Rothermel
et al [22]. As a standard metric, we haven’t
compared the results as most of the articles have
formulated their problem and solution in favor of
the attributes discussed above. Comparing these
results could be biased. The frequency of articles
discussing TCP has increased over the years. Also,
considering relatively newer articles will give us the
latest trends used to prioritize test cases. Bearing
these points in mind, we have considered more
articles from recent years. Figure 1 is a
representation of the year these articles were
published.

The literature shows that each article is based
on a particular algorithm or model. Most of the
articles in the study use more than one algorithm to
define the system. However, those articles play a
subsidiary role in the formulation of the approach.
The following figure is a representation of the
primary algorithms used in the articles discussed in
the literature review. If we look closely at the
literature review we can see the articles have
different algorithms under a common domain. For
simplicity, we have broadly classified the algorithms
under four major domains.

Figure 1: Published year

This includes IR, Machine learning (ML),
clustering, and others. Close to 50% of articles
involve some kind of ML algorithm. Over the years
the popularity of ML has increased due to its
accuracy in finding relevant test cases and
simplicity. IR is the second most used algorithm with
27%, followed by clustering with 20%. Others
include articles that do not include algorithms that
are usually not used in solving TCP problems. In our

case, these algorithms include rule mining, graph-
based, genetic algorithm, relation-based, and multi-
objective search algorithms.

Parameters are lists of dependent properties that
impact the prioritization. Each article considers a set
of variables that have the potential to define the
prioritization list. Data has a significant role in
defining the parameters used for the study. In some
cases only the test suit is available. In such scenarios,
it is difficult to find an optimal solution. In most of
the articles in the literature review, Test case details
like execution history, creation date, past test
execution results, test case status, etc., are available.
In these cases, ML algorithms perform well. On the
other hand in a few articles, data including different
versions of the program under test are available. In
those scenarios using IR is preferable. These
parameters play a key role in the result. Figure 3 is a
broad classification of the parameters used in the
literature. For simplicity, similar parameters are
grouped under a single category. Table 1 is a list of
parameters considered in each category. Data sets
consist of different versions of the software under
test. Industrial data sets, open-source data sets, and
academic-related projects are three major categories
of data sets used for testing the approaches. Each
data set has its significance. Industrial data sets can
capture real-world issues.

Figure 2: Algorithms

However, obtaining industrial data sets and
testing is generally difficult. Academic and open-
source data sets are easily accessible. One advantage
of academic data set over an open-source data set is
that; in academics, we can add any number of new
parameters. Many articles consider a combination of
two of the three categories.

0

1

2

3

4

5

6

2005 2010 2015 2020 2025

Information retrieval Clustering algorithm

Machine learning others

Journal of Theoretical and Applied Information Technology
15th February 2023. Vol.101. No 3

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1385

 Table 1: Categories

61% of articles considered in the literature use open-
source data set. Followed by industrial data set with
23%. The least used type is academic-related data set
with just 14%. To verify the results obtained by a
new approach, it is essential to compare results with
other similar approaches. This serves as evidence for
the claim that a particular TCP technique
outperforms others. The two methods usually seen in
the literature are compared with different algorithms
and the same algorithm but different parameters.
Generally, in most articles, APFD is used as the
standard scale of measure. One approach most
articles commonly used for comparison is random
search. Other important comparison algorithms
include; testing all the test cases, Logistic regression,
neural, Ensemble, SVM, SVM rank, hamming
distance, clustering, Distance equations, text path,
History based, etc. Algorithms used for comparison
help us understand alternative approaches that can be
used in a particular scenario. Hence, is important to
understand the comparison techniques used in the
literature.

Figure 3: Parameters

4. SCOPE OF FUTURE RESEARCH

The articles used for literature were
obtained by searching google scholar for
“prioritization automation“, and “prioritization
techniques“. Relevant articles which define the
properties discussed in the current article were
cherry-picked. Certainly, all alternative approaches,
parameters, algorithms, and comparison techniques
are discussed in the current article. However, this
article helps us get an idea of the different properties
we need to look at closely when we are defining a
TCP approach. The findings clearly show that each
article has an algorithm, data set used, method,
parameters, and comparison in common. Further
research must focus on defining all possible
parameters and algorithms we can use for TCP. This
defined list can be prepared with an extensive

0
2
4
6
8

10
12
14
16
18
20

Others
Cost Source code Test case Coverage

The average
percentage of
faults detected

Execution
costs

Source code changes
using Unix diff

Fault history information Code coverage

Feedback
mechanism using
Bayesian network

Code
complexity

Source code
consistencies using
Constant Pool diff

Execution traces Requirements
coverage

test case list
Execution time Source code info Number of linked defects Number of linked

requirements

 Project-specific
features (e.g.,
market)

text content similarity The severity of linked

defects
Test case coverage

text path similarity test age statement coverage
Java code coverage failure count past fault coverage

Difference between the
current version and the
previous version

failure age
failure priority

Journal of Theoretical and Applied Information Technology
15th February 2023. Vol.101. No 3

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1386

literature review. The user can then define the
weightage of each parameter according to the
available data. Using this data we can decide on the
algorithm or approach we can use for a particular
problem. Table 2 is a representation demonstrating
the system. The table is a sample parameter
weightage list. Here all the parameters related to the
source code are assigned 0. This is because the
sample data set did not have source code
information.

Table 2: Parameter weightage

Parameter Weightage

text content similarity 0

text path similarity 0

failure history 3

Code coverage 0

test age 1

fault history 2

Source code info 0

Execution time 5

test-case execution history 5

Code differents between 2
versions

0

code complexity 0

Requirement information 0

5. CONCLUSION

The article discussed the different
algorithms used, the importance of choosing the
right parameter, different types of data sets, and
algorithms used for comparison. We also discussed
the current trends in algorithms. Currently, we do not
see prioritization automation in the mainstream
because of the complexities, overheads, and
inaccurate results. Though research has proven the
effectiveness of TCP, most industries are still not
willing to adopt TCP. This is due to the risk and time
involved to create a TCP solution. However, we
have found significant growth in research dealing
with different TCP approaches. As discussed above,
a repository that defines all possible parameters and
choosing the algorithms according to the parameters
and available data set could simplify the problem
significantly. With further research and fine-tuning,
prioritization automation has scope in the future. The
current study has thrown light on different aspects
which need further research. We understood the data
that must be considered before prioritization, and the
multiple drawbacks of the available prioritization

methodologies. In future work, with the help of
further literature review, we are planning to develop
a system similar to the proposed solution and test
with industrial data set with the aim to simplify the
TCP problem.

REFERENCES

[1] Mirarab, Siavash, and Ladan Tahvildari. "An
empirical study on bayesian network-based
approach for test case prioritization." 2008 1st
International Conference on Software Testing,
Verification, and Validation. IEEE, 2008.

[2] Carlson, Ryan, Hyunsook Do, and Anne Denton.
"A clustering approach to improving test case
prioritization: An industrial case study." 2011
27th IEEE International Conference on
Software Maintenance (ICSM). IEEE, 2011.

[3] Wang, Farn, Shun-Ching Yang, and Ya-Lan
Yang. "Regression testing based on neural
networks and program slicing
techniques." Practical Applications of
Intelligent Systems. Springer, Berlin,
Heidelberg, 2011. 409-418.

[4] Arafeen, Md Junaid, and Hyunsook Do. "Test
case prioritization using requirements-based
clustering." 2013 IEEE sixth international
conference on software testing, verification and
validation. IEEE, 2013.

[5] Pang, Yulei, Xiaozhen Xue, and Akbar Siami
Namin. "Identifying effective test cases through
k-means clustering for enhancing regression
testing." 2013 12th International Conference on
Machine Learning and Applications. Vol. 2.
IEEE, 2013.

[6] Di Nardo, Daniel, et al. "Coverage-based test
case prioritisation: An industrial case
study." 2013 IEEE Sixth International
Conference on Software Testing, Verification
and Validation. IEEE, 2013.

[7] Chaurasia, Geetanjali, Sonali Agarwal, and
Swarnima Singh Gautam. "Clustering based
novel test case prioritization technique." 2015
IEEE Students Conference on Engineering and
Systems (SCES). IEEE, 2015.

[8] Saha, Ripon K., et al. "An information retrieval
approach for regression test prioritization based
on program changes." 2015 IEEE/ACM 37th
IEEE International Conference on Software
Engineering. Vol. 1. IEEE, 2015.

[9] Noor, Tanzeem Bin, and Hadi Hemmati. "A
similarity-based approach for test case
prioritization using historical failure data." 2015
IEEE 26th International Symposium on
Software Reliability Engineering (ISSRE).
IEEE, 2015.

Journal of Theoretical and Applied Information Technology
15th February 2023. Vol.101. No 3

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1387

[10] Busjaeger, Benjamin, and Tao Xie. "Learning
for test prioritization: an industrial case
study." Proceedings of the 2016 24th ACM
SIGSOFT International symposium on
foundations of software engineering. 2016.

[11] Lachmann, Remo, et al. "System-level test case
prioritization using machine learning." 2016
15th IEEE International Conference on
Machine Learning and Applications (ICMLA).
IEEE, 2016.

[12] Chen, Jinfu, et al. "An adaptive sequence
approach for OOS test case prioritization." 2016
IEEE International Symposium on Software
Reliability Engineering Workshops (ISSREW).
IEEE, 2016.

[13] Zhang, Xiaofang, Xiaoyuan Xie, and Tsong
Yueh Chen. "Test case prioritization using
adaptive random sequence with category-
partition-based distance." 2016 IEEE
International Conference on Software Quality,
Reliability and Security (QRS). IEEE, 2016.

[14] Panda, Subhrakanta, Dishant Munjal, and
Durga Prasad Mohapatra. "A slice-based
change impact analysis for regression test case
prioritization of object-oriented programs."
Advances in Software Engineering 2016 (2016).

[15] Lachmann, Remo. "Machine learning-driven
test case prioritization approaches for black-box
software testing." The European test and
telemetry conference, Nuremberg, Germany.
2018.

[16] Spieker, Helge, et al. "Reinforcement learning
for automatic test case prioritization and
selection in continuous
integration." Proceedings of the 26th ACM
SIGSOFT International Symposium on
Software Testing and Analysis. 2017.

[17] Pradhan, Dipesh, et al. "Employing rule mining
and multi-objective search for dynamic test case
prioritization." Journal of Systems and
Software 153 (2019): 86-104.

[18] de Castro-Cabrera, M. del Carmen, Antonio
García-Dominguez, and Inmaculada Medina-
Bulo. "Trends in prioritization of test cases:
2017-2019." Proceedings of the 35th annual
acm symposium on applied computing. 2020.

[19] Panigrahi, Chhabi Rani, and Rajib Mall. "A
heuristic-based regression test case
prioritization approach for object-oriented
programs." Innovations in Systems and
Software Engineering 10.3 (2014): 155-163.

[20] Broekman, Bart, and Edwin
Notenboom. Testing embedded software.
Pearson Education, 2003.

[21] Zhang, Weixiang, Bo Wei, and Huisen Du.
"Test case prioritization based on genetic
algorithm and s-points coverage." International
Conference on Algorithms and Architectures for
Parallel Processing. Springer, Cham, 2014.

[22] Rothermel, Gregg, et al. "Prioritizing test cases
for regression testing." IEEE Transactions on
software engineering 27.10 (2001): 929-948.

[23] Lenz, Alexandre Rafael, Aurora Pozo, and
Silvia Regina Vergilio. "Linking software
testing results with a machine learning
approach." Engineering Applications of
Artificial Intelligence 26.5-6 (2013): 1631-
1640.

[24] Kukkonen, Saku, and Jouni Lampinen. "GDE3:
The third evolution step of generalized
differential evolution." 2005 IEEE congress on
evolutionary computation. Vol. 1. IEEE, 2005.

[25] Li, Hui, and Qingfu Zhang. "Multiobjective
optimization problems with complicated Pareto
sets, MOEA/D and NSGA-II." IEEE
transactions on evolutionary computation 13.2
(2008): 284-302.

[26] Chen, Jinfu, et al. "Test case prioritization for
object-oriented software: An adaptive random
sequence approach based on
clustering." Journal of Systems and
Software 135 (2018): 107-125.

[27] Azizi, Maral, and Hyunsook Do. "Graphite: A
greedy graph-based technique for regression
test case prioritization." 2018 IEEE
International Symposium on Software
Reliability Engineering Workshops (ISSREW).
IEEE, 2018.

[28] Di Nucci, Dario, et al. "A test case prioritization
genetic algorithm guided by the hypervolume
indicator." IEEE Transactions on Software
Engineering 46.6 (2018): 674-696.

[29] Yu, Zhe, et al. "Terminator: Better automated ui
test case prioritization." Proceedings of the 2019
27th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the
Foundations of Software Engineering. 2019.

[30] Chi, Jianlei, et al. "Relation-based test case
prioritization for regression testing." Journal of
Systems and Software 163 (2020): 110539.

[31] Azizi, Maral. "A tag-based recommender
system for regression test case prioritization."
2021 IEEE International Conference on
Software Testing, Verification and
Validation Workshops (ICSTW). IEEE, 2021.

[32] Bagherzadeh, Mojtaba, Nafiseh Kahani, and
Lionel Briand. "Reinforcement learning for test
case prioritization." IEEE Transactions on
Software Engineering (2021).

