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ABSTRACT 

In recent years, increasing the use of surveillance cameras with less manpower makes automatic video 
surveillance systems to become more important. Recent advances in video anomaly identification have 
mostly focused on improving performance with available datasets. We propose a Bidirectional Long-Short 
term memory-based Convolutional Autoencoder Generative Adversarial Network (BiLAE-GAN) method for 
video surveillance. During training the model learns the normal data distribution of data in the Generator and 
the detection of anomalies in the discriminator. Bidirectional Long-Short term network in Convolutional 
Autoencoder in Generator for reconstruction, Encoder features of Generated image and real image to 
discriminator to identify Anomaly. At the anomaly detection phase, anomalies are identified based on 
reconstruction error and discrimination results. Our proposed method validation benchmark datasets such as 
UCSD Ped1, UCSD Ped2, and CHUCK Avenue dataset with performance metrics AUC, EER. 

Keywords: BiLAE-GAN, Encoder-Decoder, BILSTM, Svdloss, Advloss 
 

1. INTRODUCTION 

The widespread use of closed-circuit 
television (CCTV) cameras has resulted in an 
enormous amount of real-time video data. The 
manual evaluation by human beings is no longer 
feasible. Detecting anomalous behavior in video 
surveillance is critical to public safety. Until now, 
video surveillance systems have been progressively 
distributed throughout our entire society, and the 
volume of surveillance video data has grown rapidly.  

 
Our Proposed System is useful in various 

areas like Human tracking results are further 
exploited to detect suspicious behaviors such as 
entering a secured place, running or moving around 
capriciously, loitering against traffic, dropping any 
suspicious things in public places. Other suspicious 
actions due to loitering such as drug-dealing, bank 
robbery, theft and picpocketing can be prevented by 
activity recognition and prediction approaches. 
Further, vision-based surveillance systems are more 
attractive and authenticative since it can be 
performed at a distance and secretly, whereas other 
biometric methods would require physical touch or 
close distance recognition. In entertainment 

environment, various events can be recognized. 
Safety can be assured in swimming pools. 

Despite significant research in intelligent 
video surveillance, the potential for continual 
learning from new data remains untapped While 
current anomaly detection approaches perform well 
on benchmark datasets such as UCSD Pedestrian1, 
UCSD Pedestrian2 and CUHK Avenue, advancement 
in this field has stalled. 

 
There are 3 types of approaches for video 

Anomaly Detection 1. Supervised, Semi Supervised, 
Unsupervised. Supervised Approach uses Labeled 
Data to train model. Semi-supervised anomaly 
detection approaches are broadly classified into two 
types: reconstruction-based techniques and 
prediction-based techniques. Previous reconstruction 
methods [1], [2], [4], [5], [9] relied on hand-crafted 
appearance and motion features. Then, using those 
features, a dictionary is acquired to sparsely encode 
all normal occurrences with minor reconstruction 
errors. During testing, the features correlating to 
anomalous occurrences may cause a high 
reconstruction mistake. However, the optimization of 
sparse coefficients can be extremely time-
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consuming, and the efficacy of anomaly detection is 
regulated by hand-crafted features, and These two 
factors limit the dictionary learning approach. Later, 
as deep learning advanced, various studies [6]-[8], 
[10]-[12],[23],[24] employed unsupervised approach 
to autonomously identify deep features rather than 
hand-crafted features. Hasan et al. [8] proposed using 
an auto-encoder to reconstruct typical occurrences 
with minor reconstruction errors. Because of its 
ability to represent high-dimensional image data, 
Generative Adversarial Networks (GANs) have 
recently become the state of the art in anomaly 
identification.  

Generative Adversarial Networks consist of 
two different networks, a generator and a 
discriminator, both trained with unlabeled data.The 
generator Ge aims to capture the data distribution and 
generate realistic video frames, by building a data 
distribution for the input data Xi via a mapping from 
a prior latent space noise distribution z. The objective 
of the discriminator Di, instead, is to find the 
probability of the sample being outputted by the 
generator. Generator and discriminator compete 
against each other by playing a zero-sum min-max 
game: minGe maxDi V (Di, Ge) = EX pdata(Xi ) log 
Di(Xi ) + EZ pz(Z) log(1 Di(Ge(Z))). Most 
unsupervised GAN architectures use shallow 
networks that are meant to learn only spatial 
characteristics while neglecting the critical temporal 
component of videos. 

Contributions: 

Our proposed model BILAE-GAN 
(Bidirectional LSTM Auto Encoder Generative 
Adversarial Networks) can identify anomalous easily 
than Less parameterized SVD-GAN architecture 
scored well on benchmark datasets, however model 
training requires more iterations. Less iterations are 
needed to train the model with our suggested 
architecture [4]. 

 The use of Conv BiLSTM layers in the Auto 
Encoder structure of the Generator with 
forward and backward directions maintains 
a prior history, which increases learning and 
hence the generator's reconstruction 
capabilities. 

 A generator structure based on our own time 
distributed depth-wise convolution layers, 
resulting in greater efficiency without 
sacrificing feature extraction, providing a 

model that is both lightweight and more 
efficient. 

2.  RELATED WORK 
 

The aim of an anomaly detection system is 
to predict and prevent anomalous (criminal) 
behaviour. In [20], Liu et al. introduced a future 
frame prediction framework (FFP) for anomaly 
identification, inspired by the good efficiency of the 
video prediction model in [19]. The frame 
discriminator's role is to compare the predicted future 
frame with the actual future frame to determine 
whether the input is from a real distribution or is 
generated by the generator, which can effectively 
enhance the generator's durability and the accuracy 
of the predicted frame via an interactive game with 
the generator. 

 
To encourage the generator to predict video 

frames that are consistent with the real sequence in 
the temporal connection, a sequence discriminator is 
employed to support the temporal consistency of the 
predicted frame in [21]. This tool determines whether 
the frame sequence contains false frames or not. 
Motivated by the research in [22]. An end-to-end 
trainable bidirectional retrospective generative 
adversarial network is available for video anomaly 
detection. The prediction network may more 
completely exploit the bidirectional mapping 
relationship between video frame sequences by 
implementing the bidirectional prediction paired with 
the retrospective prediction in [25]. This will lead to 
more accurate future-frame predictions of typical 
events. 

 
In an encoder-decoder model for frame 

prediction and anomaly detection by reconstruction, 
Jefferson et al. developed a Conv-LSTM network 
[26]. The same design was shown to be effective for 
detecting video anomalies [27]. The convolutional 
LSTM is then used to extract features from the input 
video frames before utilizing deconvolution to 
rebuild the video frames. In fact, LSTM autoencoders 
are well-suited for extracting spatial-temporal data. 
Shi et al. [28] and Patraucean et al. [29] used 
multilayer convolutional LSTMs in an autoencoder 
architecture for feature extraction in video sequence 
data. Conv-LSTMs exhibit a clear capacity to 
forecast the next frames and can extract both spatial 
representations and spatiotemporal data from a series 
of video frames. 

Anomaly localization accuracy and false-
positive anomaly detection are improved by.DR-
cGAN. The somewhat lengthy computation time and 
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need for numerous training samples of typical 
occurrences are two drawbacks of DR-cGAN[1]. Our 
proposed system take less time to train the Model 
with available train data. Simple gaussian models 
cannot handle the complexity of real data, whereas 
ConvLSTM-VAE models have an advantage in terms 
of training time [2].ConvBiLSTM layer of our 
proposed model can handle real data and less time to 
train model. 

 
Encoder-decoder LSTM [34] is presented 

for unsupervised learning. Spatiotemporal networks 
(STNs) are becoming popular for learning spatial and 
temporal features [35], where RNNs and CNNs 
extract spatiotemporal data concurrently for anomaly 
detection. The ConvLSTM [36] is another model in 
which a convolutional layer filters the output of 
CNNs before feeding it to an LSTM. A convolutional 
layer, an alternative to the fully connected layer in 
LSTM, drastically reduces the number of parameters. 
When GRU is used instead of LSTM in ConvLSTM, 
the parameters are reduced even further. The 
parameters have been reduced by 25%. 

 
The capacity to train a deeper network with 

fewer parameters and less memory use is provided by 
multi-scale U-Net architecture. A scene's ambiguous 
anomalous objects cannot be distinguished by 
limitation [3].  
 
3. PROPOSED VIDEO SURVEILLANCE 
ANOMALY DETECTING SYSTEM 
 

 
Figure 1: Proposed video Surveillance Anomaly Detection 
System 

This paper presents a unique frame 
prediction framework as model for anomaly 
detection known as a Bidirectional Long-Short term 
memory-based Convolutional Autoencoder 
Generative Adversarial Network (BiLAE-GAN) that 
overcomes these restrictions. The BiLAE-GAN 
comprises a generator and a discriminator that are 
both made up of 2-Dimensional (2D) Bidirectional 
convolutional LSTM autoencoder networks that can 
be trained end-to-end. 
 
The overall architecture of Bidirectional Long-Short 
term memory-based Convolutional Autoencoder 

Generative Adversarial Network (BiLAE-GAN) is 
shown in Figure 1. This framework has the following 
traits:  
 
1) It can thoroughly investigate the bidirectional 
mapping relationship between video frame sequences 
in order to more precisely establish the mapping 
model from certain frames in the past to a 
reconstruction of a future frame for normal events;  
2) The motion constraint can be carried out from the 
perspective of long-term temporal consistency in 
order to ensure that the predicted frame and the actual 
frame coincide with normal events, in terms of the 
motion. 
 
3.2 Network Architecture 
 

 
Figure 1 Proposed BiLAE-GAN Architecture 

 
3.1 Video Pre-Processing 

Reading all videos in folder and dividing 
video into frames at the rate of 24 frames for second. 
Resizing frame and Reading difference between each 
frame and its neighboring frame is computed in order 
to take spatial motion and loading frames stride by 
stride. In Conv-LSTMs the amount of information 
from the previous time step received by the hidden 
state is partly determined by the size of convolutional 
filter in the hidden-to-hidden connection. To capture 
faster motions large transitional kernels are used, 
while for slower motions small kernels can do [41]. 
GAN performance, however, degrades drastically as 
the number of parameters increases, leading GANs to 
often fail on high dimensional data. To overcome 
this, in our model depth-wise separable convolutions 
are used within the ConvBiLSTM, reducing the size 
of the model and the chance of overfitting during 
GAN training. Depth wise separable convolution is 
followed by pointwise convolution to deal with the 
spatial and depth dimensions of the video frames, 
thus splitting a 3×3 kernel into 3×1 and 1×3 kernels. 
Each input frame is processed using three separate 
filters for the R, G and B channels. 
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We specifically suggest a Bidirectional 

ConvLSTM autoencoder to properly exploit the 
bidirectional mapping link among video frame 
sequences. Because of the bidirectional ConvLSTM, 
the generator can forecast both the future and the 
past. In the bidirectional prediction process, 
backward prediction refers to predicting a previous 
frame by watching present frames, and forward 
prediction refers to predicting a future frame by 
watching present frames. Then, in order to execute 
prediction for review verification, the forward 
forecasted frame and the backward predicted frame 
are separately added to the matching input sequence. 
By losses and gradient loss between the predicted or 
reconstrcuted frame and the actual frame, the 
appearance constraint is then applied. 

The proposed method tackles two key issues 
preventing a GAN-based architecture from reliably 
reconstructing video frames. Overfitting is addressed 
by reducing the number of parameters via depth-wise 
separable convolution.  
3.2.1. Generator 

Our proposed architecture (Figure 1) is 
based on the generative adversarial network principle 
and uses an encoder-decoder-encoder pipeline as the 
Generator with Time Distributed separable and 
Bidirectional ConvLSTM layers, 
BatchNormalization, tanh activation function which 
learns feature representations with LeakyReLU 
directly from the input samples, and an encoder-
based.  

At each time step, a batch of fixed-duration 
video frames is passed as input to both the generator 
G and the discriminator D. Each input image X is 
passed to the encoder E in the generator G, which 
maps it to a latent space Z = E(X). The decoder then 
transposes these latent space vectors back to the 
image data space, implementing a mapping. The first 
contribution of this paper is an original Generator 
architecture, shown in Figure 2, where it can be seen 
how the generator learns the temporal dependencies 
within a video sequence using temporal blocks of 
frames.  

At training time, the network learns the 
joint posterior distribution of the data Ge(Z, Xi ), and 
each input sample Xi is encoded using its latent 
representation. Training is performed using the 
inverse mapping from image data to latent space 
proposed by Lipton et al [18]. 
 

 
Figure 2 Encoder and Decoder Structure 

3.2.2 discriminator 
We also incorporate a frame discriminator 

to detect whether the image created by the generator 
is real or false, which deters the generator from 
producing blatantly fraudulent images and enhances 
the resilience of the generator and the quality of the 
predicted or reconstructed frames. Furthermore, we 
suggest a discriminator built of 2D convolutional 
neural networks to capture the long-term temporal 
information between video frame sequences in order 
to make the predicted or reconstructed frame 
consistent with the real object in motion. 
 

Discriminator with Time Distributed Dense 
layer, GlobalAveragepooling2D, Sigmoid Function, 
which aims to discern real from fake images. The 
generated image X¯ = Ge(X ) and the input image X 
are then passed to the discriminator, which 
discriminates real from generated frames using a 
sigmoid activation function and backpropagates the 
loss to the generator itself. 
3.2.3 losses 

By calculating losses and updating weights 
of model, we trained our model efficiently. 
SVD loss Our proposal is to minimise the empirical 
expectation of the L2 norm of the difference between 
the low-rank SVD approximations of the input image 
X and of the generated image Ge(Xi), which we term  
SVDloss = EX∼P(X) |Xbr −Ge[(Xi)r |                     (1)  
where Xbr and Ge[(X)r are the rank-r approximations 
of X and Ge(Xi), respectively. Our conjecture, which 
we empirically validate in this paper, is that 
minimising the SVD loss is indeed correlated with 
minimising the KL divergence between real and 
generated data, and should thus have positive effects 
on the convergence of our model. The use of the 
original SVDloss in the generator allows us to 
minimize the distance between low-rank optimal 
approximations of input and generated images, 
aiding network convergence. As a result, our 
Bidirectional Long-Short term memory-based 
Convolutional Autoencoder Generative Adversarial 
Network (BiLAE-GAN) model by using 
Bidirectional  LSTM  reconstructed image within less 
iterations comparing with LSTM. 
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The adversarial loss ADVloss is the Jensen-
Shannon divergence of the output of the 
discriminator Di for the input image X and the 
corresponding generated image Ge(Xi) [32], namely:  
ADVloss = EX∼P(X) |Di(Xi)−Di(Ge(Xi))|.                  
(2) 
A contextual loss based on the L1 norm is used for 
penalising the distance between the input image X 
and the reconstructed image Ge(Xi) [13]:  
CONTloss = EX∼P(Xi) |Xi −Ge(Xi)|                          (3) 
SVD loss can thus be seen as a an efficient form of 
contextual loss, based on the L2 norm. Compared to 
the L1 norm, L2 better penalises out liers, as 
deviations are magnified by taking the square.  
Finally, the encoder loss minimises the distance 
between the bottleneck features of the input Z = E(Xi) 
and the encoded features of the generated image. 
 
In our model, more stable GAN training is achieved 
by using as overall loss:  
SVDloss +ADVloss +CONTloss +ENCODloss.     (4) 

3.2.4 metrics 

The model’s frame-level performance is 
analysed using the Area Under the ROC Curve 
(AUC), after plotting the Receiver Operating 
Characteristics (ROC) curve. The latter plots the 
True Positive Rate (TPR) vs the False Positive Rate 
(FPR) as a function of the detection threshold in the 
range [0,1], thus summarising the trade-off between 
TPR and FPR for a predictive model using different 
probability thresholds. AUC measures the two-
dimensional area under the entire ROC curve from 
(0,0) to (1,1), providing an aggregate measure of 
performance across all possible detection thresholds 
which amounts to a sort of probability distribution 
over the range of thresholds. The AUC thus 
represents the degree of separability the model can 
enforce between anomalous and non-anomalous 
frames. The higher the AUC value, the better the 
performance.  
 
 
4. EXPERIMENTS 
4.1 Dataset 

We validate our approach over several 
benchmark datasets portraying complex anomalous 
events in various scenarios involving multiple scenes 
captured from different angles. All datasets comprise 
‘normal’ video frames for training and a combination 
of anomalous and non-anomalous frames for testing.  

The CHUK Avenue dataset contains 16 
normal videos for training and 21 videos for testing, 
for a total of 30,652 frames [20]. Test videos include 
anomalies like the throwing of objects, walking in the 

wrong direction, running, and loitering.  
The UCSD anomaly detection dataset 

contains surveillance videos of pedestrian walkways 
[23]. Anomalies include presence of skaters, bikers, 
small carts and people walking sideways in 
walkways. The dataset is divided into two parts: Ped1 
and Ped2. Ped1 contains 34 normal video samples for 
training with some perspective distortion and 36 
videos samples for testing. Ped2 por trays pedestrians 
walking parallely to the camera plane, with 16 videos 
for training and 12 for testing. 

 
4.2 Training 

We trained ours Bidirectional Long-Short 
term memory-based Convolutional Autoencoder 
Generative Adversarial Network (BILAE- GAN) 
model on an 8-GPU machine with Quadro RTX 6000 
cards having 24 GB VRAM each. Input frames were 
resized to 128×128 pixels and passed to the BiLAE-
GAN architecture. The proposed architecture uses 
tanh activations in the generator and LeakyRelu ones 
in the discriminator. Batch normalisation with tanh at 
the end of each layer helps scaling and adjusting the 
input features to the interval [−1,1].  

 
The generator uses an Adam optimiser with 

first-order derivatives. The discriminator uses 
RMSProp with a 0.00005 learning rate for weight 
optimisation. In our Generator, each batch of n 
rescaled input frames goes through two layers of 
depth wise convolution and 4 layers of Bidirectional 
convolutional LSTM for spatio-temporal feature 
learning, as shown in Figure 2. Frames are convolved 
with a kernel of size 5×5 and stride 2 to produce a 
feature map of size n×64×64×128. Subsequently, a 
small kernel of size 3×3 is applied to the respective 
feature maps to capture spatiotemporal features using 
a block of Bidirectional convolutional LSTMs. Input 
frames are encoded to a latent space Z of size 
n×16×16×128 to be then passed to the decoder for 
reconstruction. 

 
 The decoder uses convolutional 2D 

transpose layers and batch normalisation to decode 
the bottleneck features back to the image space (X̄  ).  
The reconstructed data is remapped to the latent 
space (Z̄ ) for a consistent comparison between Z and 
Z̄ .  Finally, the generated image X̄   and the input 
image X are given as inputs to the discriminator 
which has the same encoder architecture as the 
generator, with an additional sigmoid activation for 
discrimination.Losses are back propagated to the 
generator for an accurate reconstruction of the input 
image X . 
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Avneue   Dataset                    UCSD Dataset 
                           Reconstruction Images 

 

To Train the model our proposed model 
with BiLSTM take very less time to reconstruct the 
image within less iterations comparing with LSTM. 
Table 1 :Comparision of  iterations to Train Model LSTM 
with BiLSTM 

 No. of Iterations 

Data set BiLSTM LSTM 

UCSD Ped1 3350 45800 

UCSD Ped2 6500 60500 

CHUK Avenue 4000 75100 

 
4.3 Testing 

During testing, Video is divided into frames 
and tried to find anomaly by loading trained model. 
By finding the scores of frames. where low score 
represents anomaly and high score represents normal 
frames. 
 
To find the Anomaly Score A(X), the square L2 
distance between input and reconstructed images, 
rescaled to the interval [0,1]:  
 
sequences_reconstruction_cost=np.array([np.linalg.
norm(np.subtract(test_data[i],gan_x[i])) ----------(5) 
 
sa = (sequences_reconstruction_cost - 
np.min(sequences_reconstruction_cost)) / 
np.max(sequences_reconstruction_cost)—(6) 
 

sr = 1.0 – sa----------------------------------(7) 
Threshold taken here to identify anomaly by using 
statistics. 

m=statistics.median(score)                     (8) 
sd=statistics.stdev(score)                        (9) 
threshold=m-sd ----------------------------(10) 
 
Note that we committed to the median of 

standard deviation of scores of threshold, assess the 
performance of a model over the whole range of 
thresholds by measuring the Area Under the ROC 
Curve (AUC), after plotting the model’s Receiver 
Operating Characteristics (ROC) curve. 

 
4.4 Datasets 

We validate our approach over several 
benchmark datasets portraying complex anomalous 
events in various scenarios involving multiple scenes 
captured from different angles. All datasets comprise 
‘normal’ video frames for training and a combination 
of anomalous and non-anomalous frames for testing.  
The CHUK Avenue dataset contains 16 normal 
videos for training and 21 videos for testing, for a 
total of 30,652 frames [5]. Test videos include 
anomalies like the throwing of objects, walking in the 
wrong direction, running, and loitering.  
The UCSD anomaly detection dataset contains 
surveillance videos of pedestrian walkways [6]. 
Anomalies include the presence of skaters, bikers, 
small carts, and people walking sideways in 
walkways. The dataset is divided into two parts: Ped1 
and Ped2. Ped1 contains 34 normal video samples for 
training with some perspective distortion and 36 
video samples for testing. Ped2 portrays pedestrians 
walking parallel to the camera plane, with 16 videos 
for training and 12 for testing. 

4.5 Metrics Used For Evaluation 

The model’s frame-level performance is 
analysed using the Area Under the ROC Curve 
(AUC), after plotting the Receiver Operating 
Characteristics (ROC) curve. AUC measures the two-
dimensional area under the entire ROC curve from 
(0,0) to (1,1), providing an aggregate measure of 
performance across all possible detection thresholds 
which amounts to a sort of probability distribution 
over the range of thresholds. The AUC thus 
represents the degree of separability the model can 
enforce between anomalous and non-anomalous 
frames. The higher the AUC value, the better the 
performance. The Equal Error Rate (EER) which 
corresponds to error rate at which the False Negative 
Rate equals the False Positive Rate 

4.6 Comparison With State Of The Art 

The AUC thus represents the degree of 
separability the model can enforce between normal 
and anomalous frames. It is worth mentioning that 
the higher the AUC values, the higher the diagnostic 
ability of an anomaly detection system. The 
performance of our BiLAE-GAN on all datasets is 
compared with that of state-of-the-art un-supervised 
anomaly detection systems in Table 2. The 
architecture with Convolutional Bidirectional LSTM 
achieves state-of-the-art results, by a very large 
margin, with an AUC of 81.9% and EER of 26.5% on 
CHUK Avenue. On UCSD Ped1 AUC 99 .1% 
and EER 0 .84%,  UCSD Ped2 99 .4% and 
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EER 5.8%. This is likely due to the relatively short 
duration (200 frames) of the available training 
sequences. 

Table 2: Comparistion of Metrics with state of the Art 

 UCSD Ped1 UCSD Ped2 Avenue 

Unsupervised 
Methods 

AU
C 

EER AU
C 

EER AU
C 

EER 

MLAD [2019] 
[8] 

82.3
4 

23.5
0 

99.2
1 

2.49 52.8
2 

38.8
2 

ITAE+NFs 
[2020] [9] 

– – 97.3 – 85.8 – 

ROADMAP 
[2021] [10] 

83.4 – 96.3 – 88.3 – 

SVD 
GAN[2021] 
[4] 

73.2
6 

28.7
5 

76.9
8 

23.4
6 

89.8
2 

21.5
5 

Deep 
Generative 
Network[2021
][3] 

85.3 23.6 95.7 12.0 86.9 20.2 

DF-
ConvLSTM-
VAE[2022][2] 

88.4 16.7 88.8 12.2 87.2 18.9 

DR-
STN[2022][1] 

98.8 2.9 97.6 6.9 90.8 11.0 

BiLAE-GAN 
Model 

99.1 0.84 94.1
1 

5.8 81.9 26.5 

Performance comparison in terms of AUC and EER 
among state-of-art unsupervised anomaly detection 
architectures, including ours. 

In this situation the model tends to 
reconstruct well the anomalous frames too and falls 
short when detecting certain anomalies. E.g., the 
AUC is comparatively low for videos portraying 
skaters or cyclists in pedestrian pathways these 
anomalies look closer to normal from the angle (top 
view) from which the video is captured. This 
behaviour is to be expected, for Bidirectional LSTM-
based models need sufficient sequential data to be 
excited and perform well.  

5. CONCLUSIONS 

The proposed Bidirectional LSTM 
AutoEncoder Generative Adversarial Network 
(BiLAE-GAN) architecture has a clear edge over 
state-of-the-art un-supervised anomaly detection 
methods while using fewer parameters, thanks to 
using temporal blocks with Bidirectional LSTM for 
better spatiotemporal feature learning within fewer 
iterations in training. Our experiments show that our 
system widely outperforms prior art on the UCSD 

Ped1 with AUC 99.1,EER 0.84, UCSD Ped2 with AUC 
94.11, EER 5.8, and CHUCK Avenue datasets with AUC 
81.9,EER 26.5 and can leverage large-scale datasets. 
The costs of employing ConvBILSTM Lyers are 
not discussed, nor is it possible to lower them. In 
the future, the system's accuracy can be further 
improved by using a 3D feature extractor and we 
need to validate our architecture on real-time 
datasets. 
 

REFERENCES: 

[1] Y.Cong,J.Yuan,and J.Liu ‘Sparse  Reconstruction 
cost for abnormal  event  detection,’’ in Proc. 
IEEE Conf. Comput.  Vis. Pattern Recognit., 
Jun. 2011,       pp. 3449–3456.  

[2]  B. Zhao, L. Fei-Fei, and E. P. Xing, ‘‘Online 
detection of unusual events in videos via 
dynamic sparse coding,’’ in Proc.CVPR, Jun. 
2011, pp. 3313–3320.  

[3] G. Pang, C. Yan, C. Shen, A. van den Hengel,       
and  X. Bai, ‘‘Self-trained deep ordinal       
regression for end-to-end video anomaly  ,’’      
2020, arXiv:2003.06780.    [Online].  

     Available: http://arxiv.org/abs/2003.06780  
[4] W. Li, V. Mahadevan, and        

N.Vasconcelos,‘‘Anomaly detection       and  
localization in crowded scenes,’’        IEEE 
Trans. Pattern Anal. Mach. Intell.,    vol. 36, no. 
1, pp. 18–32, Jan. 2014.  

[5]  J. K. Dutta and B. Banerjee, ‘‘Online       detection 
of abnormal events using       incremental coding 
length,’’ in Proc. AAAI       Conf. Artif. Intell., 
2015, pp. 3755–3761.  

[6]  J. R. Medel and A. Savakis, ‘‘Anomaly       
Detection in video using predictive       
Convolutional long short-term memory  
networks,’’ 2016,        arXiv:1612.00390. 
[Online].  

       Available: http://arxiv.org/abs/1612.00390  
[7]  Y. S. Chong and Y. H. Tay, ‘‘Abnormal        event 

detection in videos using        spatiotemporal 
autoencoder,’’ in Proc. Int.        Symp. Neural 
Netw., vol. 10262. Long Beach, CA, USA: 
Springer, Dec. 2017,        pp. 189–196.  

[8]  M. Hasan, J. Choi, J. Neumann,        A.K.Roy-
Chowdhury,andL. S. Davis,       ‘‘Learning 
temporal regularity in   video sequences,’’ in 
Proc. CVPR,       Jun. 2016,  pp. 733–742.  

[9]   C. Lu, J. Shi, and J. Jia, ‘‘Abnormal         event   
detection at 150 FPS in MATLAB,’’         in Proc. 
IEEE Int. Conf. Comput. Vis.,         Dec. 2013, 
pp. 2720–2727. [10]  W. Luo, W. Liu, and S. 
Gao,          ‘‘Remembering  history with          



Journal of Theoretical and Applied Information Technology 
31st December 2023. Vol.101. No 24 

© 2023 Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
8245 

 

convolutional LSTM for anomaly  detection,’’  
in Proc. IEEE Int.  

         Conf. Multimedia Expo(ICME), Jul. 2017,           
pp. 439–444.  

[11]   H. Park, J. Noh, and B. Ham, ‘‘Learning 
memory-guided normality for anomaly 
detection,’’ in Proc. IEEE/ CVF  Conf. Comput. 
Vis. Pattern          Recognit. (CVPR), Jun. 2020,  
pp. 14360–14369.  

[12]   J. T. Zhou, J. Du, H. Zhu, X. Peng, Y. Liu,          
and R. S. M. Goh, ‘‘Anomalynet:    An anomaly 
detection network for vdeo surveillance,’’ IEEE 
Trans. Inf. Forensics Security, vol. 14, no. 10,           
pp. 2537–2550, Oct. 2019. 

[13]   M. Mathieu, C. Couprie, and Y. LeCun,           
‘‘Deep multi-scale video prediction beyond 
mean square error,’’ in Proc. Int. Conf. Learn. 
Represent., 2016, pp. 1–14.  

[14]   W. Liu, W. Luo, D. Lian, and S. Gao,          
‘‘Future frame prediction for           anomaly 
detection—A new baseline,’’            in Pro. IEEE   
Conf. Comput. Vis.           Pattern Recognit., Jun. 
2018, pp. 6536–6545. 

[15]   Weixin Li, Vijay Mahadevan, and           Nuno 
Vasconcelos. Anomaly detection           and 
localization in crowded scenes.           IEEE 
transactions on pattern analysis            and 
machine intelligence, 36(1):18–32, 2013.  

[16]   Wen Liu, Weixin Luo, Dongze Lian,           and 
Shenghua Gao. Future frame           predition for 
anomaly detection– a new baseline. In 
Proceedings of the   IEEE Conference on 
Computer Vision          and Pattern Recognition,          
pages 6536–6545, 2018.  

[18]   Cewu Lu, Jianping Shi, and Jiaya           Jia.  
Abnormal event detection at 150 fps in matlab. 
In Proceedings of the IEEE international 
conference on           computer vision, pages 
2720–2727, 2013. 

[19]   M. Mathieu, C. Couprie, and  Y. LeCun,‘‘Deep 
multi-scale video prediction beyond mean 
square error,’’ in Proc. Int. Conf. Learn. 
Represent.,           2016, pp. 1–14.  

[20]   W. Liu, W. Luo, D. Lian, and S. Gao,           
‘‘Future frame prediction for anomaly detection    
A new baseline,’’ in Proc. IEEE Conf.  Comput. 
Vis.            Pattern Recognit.,   Jun. 2018,  pp. 
6536–6545. 

[21]    P. Isola, J. Y. Zhu, T. Zhou, and     A. A. Efros, 
‘‘Image-to-image    translation  with conditional           
adversarial networks,’’ in Proc. CVPR,           Jul. 
2017, pp. 5967–5976 

[22]    J. Wu, C. Zhang, T. Xue, W. T. Freeman,           
and J. B. Tenenbaum, ‘‘Learning a probabilistic 
latent space of object  shapes via 3D generative-         

adversarial  modeling,’’ in Proc. Adv. Neural 
Inf. Process. Syst., 2016, pp. 82–90. 

[23]    J. Li, X. Mei, D. Prokhorov, and D. Tao, 
‘‘Deep neural network for  structural prediction 
and lane detection   in traffic scene,’’ IEEE 
Trans. Neural  

           Netw. Learn. Syst., vol. 28, no. 3, pp. 690–703, 
Mar. 2017.  

[24]    A. Stuhlsatz, J. Lippel, and    T. Zielke,  
‘‘Feature extraction with deep     neural networks 
by a generalized   discriminant analysis,’’ IEEE 
Trans.          Neural Netw. Learn. Syst., vol. 23, 
no. 4,          pp. 596–608, Apr. 2012. 

[25]   Zhiwei Yang , Jing Liu , (Senior Member, 
Ieee), And Peng Wu “Bidirectional 
Retrospective           Generation Adversarial 
Network for Anomaly Detection in Videos” in 
IEEE Access current version August 9,  20 pp. 
107842 to 107857. 

[26]   J. Medel. Anomaly detection using          
predictive convolutional long short term 
memory units. 2016. 

[27]   W. Luo, W. Liu, and S. Gao.           
Remembering history with convolutional           
lstm for anomaly detection. In 2017 IEEE 
International Conference on  Multimedia and 
Expo (ICME), pages 439–444, Los Alamitos, 
CA,  USA, jul 2017. IEEE Computer Society. 
doi: 10.1109/ICME.2017.8019325.  

URL  
https://doi.ieeecomputersociety.org/10.1109/IC
ME.2017.8019325. 

[28]    Xingjian Shi, Zhourong Chen, Hao  Wang, Dit-
Yan Yeung, Wai-Kin Wong, and Wang chun 
Woo. Convolutional LSTM network: A machine 
learning            approach for precipitation 
nowcasting. In Advances in Neural  Information  
Processing Systems 28: AnnualConference on 
Neural Information Processing Systems 2015, 
December 7-12, 2015,            Montreal, Quebec, 
Canada,  pages 802–810, 2015. 

[29]    Viorica Patraucean, Ankur Handa, and Roberto 
Cipolla. Spatio-temporal video autoencoder with            
differentiable memory. CoRR, abs/1511.06309, 
2015.             

doi: https://doi.org/10.17863/CAM.26485. 
[30]    Dinesh Jackson Samuel Fabio Cuzzolin  

Faculty of Technology, Design and  
Environment Visual Artificial Intelligence 
Laboratory Oxford Brookes University Oxford, 
” SVD-GAN for Real-Time  Unsupervised 
Video Anomaly Detection”           15 pages. 

[31]    Lin Wang,Haishu Tan, Fuqiang Zhou,Wangxia            
Pengfei Sun”Unsupervised Anomaly Video 
Detection via a Double  Flow ConvLSTM          



Journal of Theoretical and Applied Information Technology 
31st December 2023. Vol.101. No 24 

© 2023 Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
8246 

 

Variational Autoencoder” Digital Object 
Identifier           10.1109 
/ACCESS.2022.3165977, VOLUME 
10,2022,Pages:44278-44289. 

[32]    Savath Saypadith,Takao Onoye ”An  Approach 
to Detect Anomaly in video  using Deep 
Generative Network”IEEE Access 
2021.3126335, Volume 9,2021  pages: 150903-
150910 

[33]    Thittaporn Ganokratanna, Supavadee 
aramvith,Nicu Sebe “Video anomaly detection 
using deep residual-spatiotemporal translation           
network”, ELSEVIER-o167-8655/2021 Pattern 
Recognition Letters 155(2022)143-150 

[34]    W. Gorr, A. Olligschlaeger, Y.  Thompson  
Assessment of crime forecasting accuracy for 
deployment of police Int. J. Forecast. (2000), 
pp. 743-754 

[35]    C.H. Yu, M.W. Ward, M. Morabito, W.  Ding 
Crime forecasting using data mining techniques 
2011 IEEE  11th International Conference on 
Data          Mining Workshops, IEEE (2011, 
December),          pp. 779-786 

[36]    L.G. Alves, H.V. Ribeiro, F.A. Rodrigues 
Crime prediction through urban metrics and 
statistical learning Phys. Stat. Mech. 
Appl., 505 (2018), pp. 435-443 


