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ABSTRACT 
 

Brain imaging techniques play a crucial role in identifying the causes of brain cell injury. Consequently, early 
diagnosis of such conditions can yield significant benefits, improving treatment prospects and minimizing 
potential patient complications. Among the most formidable challenges in medical image analysis is brain 
tumor segmentation. Challenges include limited spatial context, increased occurrences of false positives and 
negatives, the inability to distinguish tumor components, and a lack of preprocessing. To address these issues, 
we propose an approach that combines Optimized Fuzzy C-Means (FCM) Clustering with DenseNet Features 
and employs efficient preprocessing techniques. Our improved DenseNet architecture meticulously extracts 
relevant features from preprocessed images. FCM assigns each feature vector to one or more clusters based 
on their degrees of membership and its output encompasses cluster centers and membership values, indicating 
the degree of association for each data point with each cluster. Hence, FCM improves interpretability by 
distinctly delineating tissue regions through the utilization of these features. Markov Random Field (MRF) 
Optimization is probabilistic graphical model that capture spatial dependencies among neighboring pixels or 
regions in an image. As each MRI modality possesses the unique ability to emphasize distinct tissue 
characteristics. All the MRI Modalities (Flair, T1, T1c, T2) can be combined to get valuable and 
complementary wealth of information regarding the tissues and structures undergoing examination. Our 
optimized FCM model is experimented on the Original FLAIR -MR images of patients and Combined MRI 
Modalities (Flair, T1, T1c, T2).The Optimized Fuzzy C-Means (FCM) Clustering achieved train Dice 
Coefficient score of 99.18% and test Dice Coefficient score 98.64%, and the Optimized Fuzzy C-Means 
(FCM) Clustering with Combined MRI modality feature achieved train Dice Coefficient score 100% and test 
Dice Coefficient score of 99.413%.The results shows that the proposed model out performs the existing 
models. 
Keywords: Brain Image, Segmentation, DenseNet, Fuzzy C-Means, Optimization, Diagnosis 
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1. INTRODUCTION 
 

Medical imaging analysis has been 
commonly involved in basic medical research and 
clinical treatment, e.g. computer-aided diagnosis 
[1]. Among various tasks in medical image analysis, 
brain tumor segmentation has attracted much 
attention in the research community [2]. Medical 
imaging techniques, such as positron emission 
tomography (PET) [3], magnetic resonance imaging 
(MRI) [4], computed tomography (ct) [5], x-ray [6], 
and ultrasound have been widely employed for 
disease detection, diagnosis, and treatment during 
the last few decades [7]. The development of 
anomalous cell clusters within or near the brain 
triggers the onset of a brain tumor [8], these 
irregular cells disrupt brain function and impact the 
patient's health [9]. Brain tumors can be broadly 
categorized into two types: malignant tumors, which 
are cancerous, and benign tumors, which are 
noncancerous [10].  

Numerous image-processing techniques 
and methods have been employed in the diagnosis 
and treatment of brain tumors. Among these, 
segmentation serves as a foundational step in image 
processing, allowing for the extraction of the 
affected brain tissue region from MRI scans [11]. 
Tumor region segmentation is a crucial undertaking 
in the realm of cancer diagnosis, treatment, and 
treatment outcome assessment. a wide array of both 
semi-automatic and automatic segmentation 
methods and techniques are employed for the 
purpose of tumor segmentation [12]. MRIs offer a 
range of features that are utilized in studies focused 
on the segmentation of brain tumors, including 
image textures [13], local histograms [14] and other 
features [15].  

Machine learning techniques are 
frequently employed for pattern classification in 
research related to the segmentation of tumors 
[16][17]. MRI includes various sequences, 
including t1-weighted (t1) and t1-weighted contrast-
enhanced (t1c), as well as t2-weighted and t2-
weighted fluid attenuated inversion recovery (flair) 
techniques. These sequences are utilized in the 
segmentation of brain tumors [18][19][20]. Deep 
learning methods have demonstrated cutting-edge 
performance in automatically segmenting brain 
tumors using Multi-modal MRI data [21][22][23]. A 
model based on optimal feature selection has been 
developed for the efficient prediction of breast 
cancer, utilizing a modified logistic regression 
approach [39]. An artificial neural network model in 
conjunction with a Meta-heuristic algorithm worked 

well on the types of datasets for coronary artery 
disease prediction [40].  

Multi-disease prediction was done by the 
use of deep reinforcement Boltzmann machines 
[41]. The modified resnet152v2 model 
demonstrated effective performance in predicting 
pneumonia from chest x-rays [42]. the accuracy of 
brain tumor prediction is improved by enhancing the 
convolutional neural network layers, transfer 
learning fully connected layers, and weights of the 
layers in the vgg-19 model [43][44][45]. the 
objectives of this research work are to improve brain 
tumor segmentation accuracy and dice coefficient 
score by fulfilling the gaps such as limited spatial 
context, inability to distinguish tumor components, 
increased false positives and negatives, and the risk 
of misinterpretation.  

The research paper effectively bridges 
critical technical gaps identified within existing 
models for brain image segmentation. the paper 
employs a well-rounded approach that 
systematically addresses these gaps through the 
utilization of various techniques: firstly, image 
preprocessing techniques, enhanced with 
augmentation, are deployed to tackle issues such as 
"limited spatial context" and "inability to distinguish 
tumor components." this preprocessing step 
enhances image quality and fosters improved spatial 
context by readying the data for subsequent 
analysis, including noise reduction and intensity 
normalization, which aids in distinguishing between 
different tumor components.  

Secondly, the paper leverages densenet 
feature extraction to combat concerns related to 
"increased false positives and negatives" and "less 
accuracy." by employing modified densenet 
architecture, relevant features are meticulously 
extracted from the preprocessed images. This 
strategic feature extraction approach significantly 
diminishes the occurrence of false positives and 
negatives, concurrently elevating the overall 
precision of segmentation. Thirdly, fuzzy c-means 
(FCM) clustering takes center stage, primarily 
addressing the "risk of misinterpretation." FCM 
clustering partitions the feature space into 
distinctive clusters representing different regions of 
brain tissue. Consequently, this process alleviates 
the risk of misinterpretation by providing a lucid 
delineation of tissue regions grounded in the 
extracted features.  

Lastly, the integration of Markov random 
fields (MRFs) for optimization firmly addresses 
concerns related to "limited spatial context" and 
"increased false positives and negatives." by 
incorporating MRFs as an optimization step, the 
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methodology substantially bolsters spatial context. 
MRFs adeptly model spatial relationships between 
voxels, fostering spatial coherence within the 
segmentation process. Consequently, this 
meticulous approach diminishes the likelihood of 
false positives and negatives, ultimately culminating 
in more precise and dependable segmentation 
outcomes. in summation, the research paper 
presents a holistic methodology systematically 
tailored to bridge identified technical gaps in current 
models for brain image segmentation. This 
multifaceted approach combines image 
preprocessing techniques with augmentation, 
densenet feature extraction, FCM clustering, and 
MRF-based optimization. The result is a robust and 
potent approach that not only amplifies 
segmentation accuracy but also diminishes 
misinterpretation, thereby significantly enhancing 
the overall performance of brain image 
segmentation. 
 
2. LITERATURE REVIEW 
 

In 2018, Sharif et al.[24] proposed a new 
method for the segmentation and classification of 
brain tumors based on improved saliency 
segmentation and the best feature selection 
approach. The proposed method achieved an 
average classification accuracy of above 90%, but 
this approach suffers from an over segmentation 
problem, because of which the classification 
accuracy is affected by irrelevant features. In 2021, 
Hu et al.[25]  introduced a fuzzy system for 
predicting brain diseases. They employed the HPU-
Net (Hybrid Pyramid U-Net Model) to enhance the 
model's safety and performance. The HPU- Net 
achieved impressive results with a DSC (Dice 
Similarity Coefficient) of 93.6% and an accuracy 
coefficient of 84.5%. One notable advantage of this 
model is its lower energy consumption and greater 
stability compared to other models operating under 
similar conditions.  

However, it's worth mentioning that this 
model did not incorporate texture and shape features 
into its experimental setup. In 2020, Kwon et al. [26] 
introduced an uncertainty-quantification-based 
Bayesian neural network approach for classification 
and segmentation applications. This method 
effectively leverages both aleatoric and epistemic 
uncertainty. The proposed approach offers several 
advantages compared to existing methods. Notably, 
it expresses inherent variability through the 
underlying distribution of outcomes, ensuring 
numerical stability. However, it's important to note 

that this method has not been explored from various 
angles in terms of experimentation.  

In 2021, Díaz-Pernas et al. [27] proposed 
an automated model for brain tumor segmentation 
and classification, leveraging a Deep Convolutional 
Neural Network (CNN). To enhance the training 
dataset and mitigate overfitting, data augmentation 
was implemented through elastic transformation. 
This approach yielded impressive results, achieving 
a tumor classification accuracy of 97.3%, an average 
Dice index of 82.8%, an average sensitivity of 
94.0%, and an average positive predictive total 
agreement score (PTTAS) of 96.7%. However, it's 
worth noting that this method did not involve the 
removal of skull and vertebral column parts, and it 
encountered challenges related to the variability of 
the three tumor types, which led to occasional false 
positives in some images.  

In 2020, Ali et al. [28] introduced an 
ensemble technique that incorporates both 3D CNN 
and U-Net architectures. Through this approach, 
they achieved dice scores of 75% for the enhancing 
tumor, 90.6% for the whole tumor, and 84.6% for 
the tumor core. One limitation of this approach is 
that it did not undergo extensive preprocessing of 
neither the dataset nor employ comprehensive post-
processing of the results.  

In 2021, Gunasekara et al.[29] introduced 
a systematic approach for MRI brain tumor 
localization and segmentation, leveraging deep 
learning-based active contouring techniques. This 
method yielded a Dice Score of 92% and 
demonstrated a high level of accuracy in regions of 
interest (RI) with a score of 99.36%. One limitation 
of this approach is the absence of a discussion 
regarding the number of training epochs and the 
complexity of the model, which could impact the 
method's reproducibility and understanding.  

In 2020, Inbarani and Azar [30] introduced 
an innovative approach called the Hybrid 
Histogram-Based Soft Covering Rough K-Means 
Clustering (HSCRKM) algorithm for segmenting 
leukemia nucleus images. This method heavily 
relied on features derived from gray level co-
occurrence matrix (GLCM), color, and shape 
information. The HSCRKM clustering algorithm 
achieved a prediction accuracy of 80%, while 
logistic regression and neural network models 
consistently delivered accuracy rates exceeding 
90%. However, it's worth noting that this approach 
did not incorporate optimization principles into its 
methodology. 

In 2022, Habib et al. [31] presented a 
hybrid approach for brain tumor segmentation, 
classification, and feature extraction. This approach 
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employed threshold segmentation and the watershed 
algorithm. The experimental results demonstrate 
that this novel method improves the detection of 
brain tumor images, achieving an accuracy rate 
exceeding 90%. However, it's worth noting that the 
accuracy falls somewhat short when compared to 
certain recent methods. In 2022, Dang et al.[32] 
introduced a novel deep learning framework that 
incorporated preprocessing techniques in 
conjunction with the Unet architecture, as well as 
utilizing VGG and GoogleNet implementations to 
classify various types of gliomas. Their model 
achieved a notable Dice coefficient score of 82% 
and exhibited high accuracy, reaching 
approximately 93%.  

However, a notable limitation of this 
framework is its struggle to accurately segment 
regions of the glioma images that fall outside the 
established ground truth annotations. This limitation 
introduces a significant bias into the classification 
results, particularly when dealing with the exclusion 
of poorly performing data records. In 2022, Li et al. 
[33] introduced a region-based framework for EDL 
(Edge Detection and Labeling) segmentation that 
generated dependable uncertainty maps. This 
framework achieved a Dice score of 76.9%, 
highlighting its effectiveness in segmentation tasks. 
However, one notable drawback of this approach is 
its substantial computational cost. In 2023,  

Balamurugan and Gnanamanoharan 
[34] introduced an innovative hybrid deep 
Convolutional neural network (DCNN). This 
DCNN leveraged the LuNet classifier to effectively 
detect and classify brain tumors. Impressively, this 
network achieved an accuracy rate of 99.7%. 
However, it's worth noting that this model exhibits 
a certain level of complexity within its network 
architecture. In 2023, Asiri et al. [35] introduced an 
innovative tumor detection and classification 
approach. Their method harnessed the power of a 
Fine-Tuned CNN, incorporating both ResNet50 and 
U-Net models. Remarkably, this methodology 
achieved impressive performance metrics, with a 
Dice Similarity Coefficient (DSC) of 95%, an F1 
score of 93%, and an accuracy rate of 94%. 
However, it is important to note that this method did 
not provide specific information regarding the types 
of tumors it was designed to detect and classify. 

Table-1 explains the gaps in existing brain 
tumor segmentation models are outlined here. These 
include the absence of optimization techniques for 
refining reproduced models, the potential 
introduction of errors due to cross-entropy loss 
usage, and the model's relatively high computational 
complexity. There are also issues related to 

sensitivity to irrelevant features, the omission of 
critical texture and shape features, variability 
problems, misinterpretation issues and the absence 
of comprehensive preprocessing steps. Furthermore, 
the model's high complexity, combined with the 
lack of optimization principles, gives rise to 
concerns regarding computational costs and model 
interpretability. Additionally, the challenging task 
of detecting and segmenting small or subtle lesions 
in brain images, especially in early-stage diseases, 
remains a formidable obstacle. 
 
3. PROPOSED METHODOLOGY 
 
3.1 Dataset 

The "RSNA-MICCAI Brain Tumor 
Radiogenomic" dataset is a collection of medical 
images and associated data used for brain tumor 
segmentation and radiogenomic analysis. This 
dataset was created as part of the RSNA-MICCAI 
Brain Tumor Radiogenomic Classification 
Challenge, an initiative that aims to advance the 
field of brain tumor research and classification using 
machine learning techniques. The dataset includes a 
variety of brain MRI images of 2040 patients 
available at the source 
https://www.kaggle.com/competitions/rsna-miccai-
brain-tumor-radiogenomic-classification/data.  

The dataset also provides metadata and 
clinical information for each patient, including 
genomic data. The primary data type in this dataset 
is medical images in the form of DICOM (Digital 
Imaging and Communications in Medicine) files. 
DICOM is a standard format for storing and 
transmitting medical images. These images capture 
various types of MRI sequences (T1-weighted, T1-
weighted contrast-enhanced (T1c), T2-weighted, 
FLAIR, etc.) that offer different perspectives on 
brain structures and pathology. The dataset provides 
annotations that segment brain tumors in the images. 
These annotations are often in the form of pixel-
level masks or region-of-interest labels, indicating 
the boundary and location of tumor regions within 
the images. 
3.2 Preprocessing 

The techniques include smoothing, 
filtering, normalization, and histogram equalization. 
The resulting images and the differences between 
them are visualized, and annotations are added to 
explain the effects of each preprocessing step. Here, 
DICOM files are loaded from the specified path 
using the pydicom library. DICOM files are 
commonly used in medical imaging to store data 
such as MRI or CT scans. The pixel data from the 
DICOM image is extracted into a NumPy array 
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called pixel_array. The pixel values are then 
rescaled to the range [0, 255] to ensure consistent 
visualization across different images.  

A Gaussian filter with a specified sigma 
value is applied to the pixel_array. Gaussian 
smoothing helps reduce noise in the image by 
blurring it slightly. A median filter with a specified 
kernel size is applied to the pixel_array. Median 
filtering helps remove noise while preserving edges 
in the image. The pixel values of the pixel_array is 
Z-score normalized using the mean and standard 
deviation of the image.  

This process brings the pixel values to a 
standard distribution with a mean of 0 and a standard 
deviation of 1. Histogram equalization is applied to 
the pixel_array to enhance the contrast of the image. 
This process redistributes the intensity values to 
cover a wider range and improve visual clarity. 
Difference images are calculated by subtracting the 
preprocessed images (smoothed, filtered, 
normalized, and equalized) from the original 
pixel_array. These images highlight the changes 
introduced by each preprocessing step. 
3.3 System Model 

Figure-1 illustrates the Proposed 
architecture of optimized FCM clustering with 
DenseNet-169. The architecture begins with an 
initial convolutional layer featuring numerous filters 
(e.g., 64 filters) using a small kernel size (e.g., 7x7) 
and is followed by a max-pooling layer (3x3 pool 
size, stride of 2) to reduce spatial dimensions. 
DenseNet introduces dense blocks, comprised of 
multiple dense layers stacked together. Each dense 
layer consists of convolutional layers, batch 
normalization, and ReLU activation. Crucially, each 
layer receives input from all prior layers in the same 
dense block. This "dense connectivity" fosters 
feature reuse and gradient flow. Transition layers 
separate dense blocks, incorporating batch 
normalization, 1x1 convolutions for dimensionality 
reduction, and average pooling to reduce spatial 
dimensions, controlling model parameters and 
computation.  

Global Average Pooling (GAP) follows 
multiple dense blocks, resulting in 1x1 spatial 
dimensions and averaged feature maps. A fully 
connected layer processes GAP output, with 
neurons equating class count for classification tasks. 
Softmax activation yields class probabilities. To 
work with features from DenseNet-169, select a 
layer to extract features depending on desired 
abstraction levels (e.g., lower layers capture 
textures, while higher layers capture abstract 
patterns). Features are flattened into 1D vector for 
each image and normalized for consistent scale. For 

Fuzzy C-Means (FCM) clustering, apply a custom 
membership function to calculate data point (feature 
vector) membership degrees to clusters.  

Normalized feature vectors serve as input 
to FCM, specifying the desired number of clusters 
(K). In Markov Random Field (MRF) optimization, 
nodes (voxels) represent random variables for tissue 
labels (e.g., gray matter). An energy function 
combines data likelihood (label fit to MRI data) and 
smoothness (neighbor similarity) terms. The final 
output is a segmentation map assigning each voxel 
to a tissue class, aiding brain structure identification. 

Figure 2 illustrates the overall flow 
diagram of Optimized Fuzzy C-Means (FCM) 
Clustering with DenseNet-169. DenseNet-169 is 
designed specifically for handling grayscale images, 
usually with dimensions of 224x224 pixels and a 
sole grayscale channel. In grayscale imagery, pixel 
intensity serves as a measure of brightness, where 
elevated values correspond to brighter regions, 
while diminished values correspond to darker areas. 
Feature Extraction from DenseNet-169: Features 
are gleaned from images using the pre-trained 
DenseNet-169 model. Typically, these features are 
extracted from one of the intermediate layers, 
depending on the desired level of abstraction. 
Feature Preprocessing: Normalization of extracted 
features is imperative to ensure consistent scales.  

This normalization is crucial for 
subsequent clustering and optimization algorithms. 
Fuzzy C-Means (FCM) Clustering: The Fuzzy C-
Means (FCM) clustering algorithm is applied to the 
preprocessed feature vectors. FCM is a soft 
clustering method that assigns each feature vector to 
one or more clusters based on their degrees of 
membership. The FCM output encompasses cluster 
centers and membership values, indicating the 
degree of association for each data point with each 
cluster. The segmentation process is guided by 
cluster assignments or membership values derived 
from Fuzzy C-Means (FCM). This can involve 
assigning each pixel to the cluster with the highest 
membership value.  

Alternatively, membership values can be 
utilized as weights in a segmentation algorithm to 
generate a segmented image. Markov Random Field 
(MRF) Optimization is probabilistic graphical 
model that capture spatial dependencies among 
neighboring pixels or regions in an image. They are 
instrumental for modeling smoothness constraints in 
image processing tasks. Construction of an MRF 
model is undertaken, where nodes represent pixels 
or image regions, and edges denote pairwise 
interactions. An energy function is defined as 
consisting of two components: a data term, which 
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reflects how well the segmentation fits the data, and 
a smoothness term, which encodes continuity 
constraints between neighboring entities.  

 
Figure 2: Flow Diagram of Optimized Fuzzy C-Means 

(FCM) Clustering with DenseNet 169 
 

The energy function is carefully 
formulated to incentivize consistency between the 
FCM-derived segmentation and spatial relationships 
among pixels. The outcome of MRF optimization 
yields the ultimate segmented image, where pixels 
or regions are allocated to specific classes or clusters 
based on both data and spatial considerations. By 
combining FCM clustering, which groups features 
effectively, with MRF optimization, which 
enhances spatial coherence, we create a powerful 
image segmentation approach. This method 
effectively utilizes both feature similarity and 
smoothness constraints, making it especially 
valuable in tasks where achieving precise results 
depends on balancing local and global information, 
such as image segmentation. 

 
 
 

 

4. RESULTS AND ANALYSIS 
 

This section explains the results derived 
from the proposed model of the Optimized Fuzzy C-
Means (FCM) Clustering method for High-
Precision Brain Image Segmentation and Diagnosis 
utilizing DenseNet features.  
4.1 Performance Metrics 
  Normally, the results of brain tumor 
segmentation consist of four types of measures: 
Dice Similarity Coefficient (DSC) and Accuracy. 
The ground truth mask and expected segmentation 
mask are compared using the Dice coefficient to 
determine how similar or overlapped they are. The 
masks must perfectly match for the Dice coefficient 
to be 1, which ranges from 0 to 1. The formula for 
calculating the Dice coefficient is shown in equation 
(1). 
 

Dice coefficient =
(𝟐 ∗  |𝐀 ∩  𝐁|)

(|𝐀|  +  |𝐁|)
                (1) 

 
Where A denote the predicted segmentation mask 
(as a set of pixels), B represents the ground truth 
segmentation mask (a collection of pixels), |A ∩ B| 
demonstrates the cardinality (number of elements) 
of the intersection between A and B (similar pixels 
between the expected and ground truth masks), |A| 
represents the cardinality of A (total number of 
pixels in the predicted mask), and |B| represents the 
cardinality of B (The ground truth mask's overall 
pixel count). The numerator (2 * |A ∩ B|) represents 
the predicted and ground truth masks both share 
twice as many pixels. The total of the number of 
pixels in the predicted and ground truth masks is 
represented by the denominator (|A| + |B|).  

The anticipated and ground truth masks 
must match exactly for the Dice coefficient to be 1; 
otherwise, there is no overlap or similarity. The Dice 
coefficient is frequently employed in the 
segmentation of medical images since it gives an 
indication of how well and closely the segmented 
regions match the ground truth annotations. It is 
frequently employed in additional picture 
segmentation tasks to assess the accuracy of the 
results. Accuracy measures the overall correctness 
of the segmentation predictions. It measures how 
many pixels in the image were correctly identified 
(including true positives and true negatives) as 
shown in equation (2). 

 

Accuracy =
TP + TN  

TP + TN + FP + FN
                     (2) 
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4.2 Results of the preprocessing Stage 
As illustrated in the figure 3, the techniques 

encompass smoothing, filtering, normalization, and 
histogram equalization. The resulting images and 
the disparities between them are presented visually, 
accompanied by annotations to elucidate the 
impacts of each preprocessing step. 
4.3 Segmentation Results and Analysis 

The input for the proposed Optimized 
Fuzzy C-Means (FCM) Clustering for High-
Precision Brain Image Segmentation and Diagnosis 
Using DenseNet Features consists of original 
FLAIR-MR images from patients. These images 
undergo a series of preprocessing steps to enhance 
their suitability for analysis. Following 
preprocessing, the improved DenseNet-169 model 
is employed to extract features from the images. 
These extracted features then undergo further 
preprocessing to refine and prepare them for 
subsequent analysis. The next step involves the 
application of Fuzzy C-Means (FCM) Clustering to 
segment the preprocessed features, effectively 
grouping similar elements within the images.  

Subsequently, the segmented features are 
optimized using Markov Random Field techniques, 
enhancing the accuracy and coherence of the 
segmentation results. Finally, the outcomes of this 
comprehensive process are presented in the form of 
three key images: Figure 4a) is the original image 
with the tumor, which provides an unaltered view of 
the input image. Figure 4b) is an image with the 
tumor clearly highlighted, showcasing the 
segmented regions of interest. Figure 4c) is an image 
displaying the predicted segmentation, offering a 
visual representation of the identified areas of 
interest within the brain images. This workflow 
aims to provide precise brain image segmentation 
and diagnosis, leveraging advanced techniques and 
optimized feature extraction for improved accuracy 
and clinical relevance. 

Figure 5a displays the Combined MRI 
Modalities (FLAIR, T1, T1c, T2), while 5b 
illustrates the Predicted Segmentation. The fusion of 
various MRI (Magnetic Resonance Imaging) 
modalities within MRI scans offers a valuable and 
complementary wealth of information regarding the 
tissues and structures undergoing examination. Each 
MRI modality possesses the unique ability to 
emphasize distinct tissue characteristics. For 
example, T1-weighted images excel at revealing 
anatomical intricacies, T2-weighted images are 
adept at detecting fluid content and edema, and 
diffusion-weighted imaging unravels insights into 
tissue microstructure. Incorporating T1c in 
conjunction with complementary modalities such as 

FLAIR, T1, and T2 expands the scope of 
visualization, resulting in a more comprehensive 
and intricate portrayal of tumor boundaries. This 
enhancement significantly boosts the ability to 
detect and characterize tumor lesions and their 
specific attributes. By uniting these modalities, both 
radiologists and clinicians gain a comprehensive 
and all-encompassing perspective of the tissues 
under scrutiny. The amalgamation of MRI 
modalities in imaging stands as an adaptable 
approach that fosters a deeper and more informative 
understanding of imaged tissues and structures. This 
holistic approach is particularly invaluable in realms 
such as clinical diagnosis, treatment planning, and 
advanced research, enabling a profound exploration 
of the intricacies within brain imaging. 

We examine the following key metrics: 
"Training Accuracy," "Validation Accuracy," and 
the "Dice Coefficient." Training Accuracy assesses 
the model's proficiency in correctly assigning 
segmentation labels to the training dataset. It 
provides insight into how well the model performs 
on the data it was trained on. Validation Accuracy, 
on the other hand, offers an indication of the model's 
generalization capability. It measures the model's 
accuracy in predicting segmentation labels for 
previously unseen data. Higher validation accuracy 
implies that the model excels at precisely 
segmenting objects or identifying regions of interest 
in new and unprocessed data.  As shown in figure 6, 
the Optimized Fuzzy C-Means (FCM) Clustering 
achieved train accuracy of 99.78% and test accuracy 
of 98.25%, and the Optimized Fuzzy C-Means 
(FCM) Clustering with Combined MRI modality 
feature achieved train accuracy of 100% and test 
accuracy of 99.813% for the Epochs 35.  

The Dice Coefficient, typically used as an 
evaluation metric rather than a training metric, 
quantifies the degree of overlap between the 
predicted segmentation and the ground-truth 
segmentation. It provides a valuable measure of the 
segmentation model's performance in terms of 
accuracy and consistency with the ground-truth 
data. As shown in figure 7, the Optimized Fuzzy C-
Means (FCM) Clustering achieved train Dice 
Coefficient score of 99.18% and test Dice 
Coefficient score 98.64%, and the Optimized Fuzzy 
C-Means (FCM) Clustering with Combined MRI 
modality feature achieved train Dice Coefficient 
score 100% and test Dice Coefficient score of 
99.413% for the Epochs 35.  

The given figure-8 illustrates a 
comparative analysis between the Optimized FCM 
model, integrated with combined MRI modalities, 
and an existing segmentation model. This analysis 
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is based on accuracy, a common metric for 
evaluating segmentation accuracy. Notably, the 
Optimized FCM model exhibits significantly higher 
Dice coefficient values compared to the existing 
models. Specifically, the Dice coefficients for the 
Optimized FCM model are 9.04, 1.74 and 1.6, 
surpassing the corresponding values achieved by the 
following existing models: Improved saliency 
segmentation method[24], Deep CNN[27], and DL 
framework [32].  

The given figure-9 illustrates a 
comparative analysis between the Optimized FCM 
model, integrated with combined MRI modalities, 
and an existing segmentation model. This analysis 
is based on the Dice coefficient. Notably, the 
Optimized FCM model exhibits significantly higher 
Dice coefficient values compared to the existing 
models. Specifically, the Dice coefficients for the 
Optimized FCM model are 5.8, 16.61, 8.81, 7.41, 
39.4, 22.51, 10.913, and 20.213, surpassing the 
corresponding values achieved by the following 
existing models: HPU-Net [25], Deep CNN [27], 
Ensemble technique [28], contouring techniques 
[29], K-Means Clustering [30], Edge Detection and 
Labeling [33], Multimodal AD-Net [36], Hybrid 
Transformer [37], and Semi-supervised multiple 
evidence fusion [38]. Our Optimized Fuzzy C-
Means technique significantly differs from existing 
brain tumor segmentation methods, particularly in 
the realm of preprocessing. While most methods 
focus solely on image augmentation techniques, our 
proposed technique incorporates both image 
augmentation and preprocessing methods. This dual 
approach has proven effective in refining the brain 
tumor image dataset, contributing to the enhanced 
accuracy and dice scores observed in our results. 
The inclusion of combined MRI modality features 
further distinguishes our model, leading to notable 
improvements in segmentation outcomes compared 
to traditional methods. 

5. CONCLUSION AND FUTURE SCOPE 
 

Our research work introduces an 
innovative approach that combines Optimized 
Fuzzy C-Means (FCM) Clustering with DenseNet 
Features, coupled with efficient preprocessing 
techniques. This enhanced DenseNet architecture 
adeptly extracts pertinent features from 
preprocessed images, leading to enhanced 
interpretability. Furthermore, the integration of 
Markov Random Fields (MRFs) ensures seamless 
spatial coherence during the segmentation process. 
The results of our study are highly promising. The 
Optimized FCM Clustering achieves a training Dice 
Coefficient score of 99.18% and a testing Dice 

Coefficient score of 98.64%. Notably, the 
Optimized FCM Clustering with Combined MRI 
modality features attains even more impressive 
results, with a training Dice Coefficient score of 
100% and a testing Dice Coefficient score of 
99.413%. In terms of accuracy, the Optimized FCM 
Clustering demonstrates a training accuracy of 
99.78% and a testing accuracy of 98.25%, while the 
Optimized FCM Clustering with Combined MRI 
modality features achieves a training accuracy of 
100% and a testing accuracy of 99.813%. These 
outcomes underscore the significant advancements 
our proposed model has achieved, showcasing a 
remarkable test accuracy of 99.813% and a test Dice 
Coefficient score of 99.413%. These results notably 
outperform existing models, emphasizing the 
substantial potential impact of our approach in the 
realm of medical image analysis and brain tumor 
segmentation. Most of the existing brain tumor 
segmentation methods used only image 
augmentation techniques for preprocessing, but our 
proposed Optimized Fuzzy C-Means techniques 
used both image augmentation techniques and 
image preprocessing techniques, which has given 
good results in refining the Brain tumor image 
dataset. Because of the combined MRI modality 
features, the overall accuracy and dice score of the 
segmentation have improved. 
     In future endeavors, we plan to augment our 
proposed approach by incorporating alternative 
feature extraction methods and integrating it with 
diverse optimization techniques. We aim to assess 
its performance on various medical image datasets, 
thereby ensuring its versatility and robustness across 
different clinical scenarios. Additionally, we intend 
to extend the model's capabilities to handle 3D 
medical images, a prevalent format in brain 
imaging. This 3D analysis will enable a more 
comprehensive exploration of the spatial 
characteristics of tumors, further enhancing our 
understanding of their complexity and distribution. 
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Table 1: Literature on Brain Tumor Segmentation and Diagnosis 

S. 
No 

Methods 
Performance 

metrics 
(Dice score) 

Advantages Gap identified 

1 
Improved saliency 
segmentation method[24] 

90% 
(Accuracy) 

Produced Good 
accuracy 

classification accuracy is 
affected by irrelevant 
features 

2 HPU-Net[25] 93.6% 
lower energy 
consumption 

this model did not 
incorporate texture and 
shape features 

3 
Deep convolutional 
Neural Network[27] 

82.8% to 
97.3% 

(accuracy) 

Produced Good 
accuracy 

This model has variability 
problem 

4 Ensemble technique[28] 
75% to 
90.6% 

Produced Good 
Result 

This model did not 
undergo extensive 
preprocessing 

5 Contouring techniques[29] 92% 
Produced Good 
Result 

The model complexity is 
high. 

6 
Soft Covering Rough K-
Means Clustering[30] 

90% 
Produced Good 
Result 

did not incorporate 
optimization principles 

7 
Edge Detection and 
Labeling[33] 

76.9% 

Model produced 
generated 
dependable 
uncertainty maps 
effectively 

computational cost 

8 multimodal AD-Net [36] 90% 

The model 
constrained the 
convolutional 
weights for 
downsampling, 
thereby hastening 
the convergence of 
the overall model 
weights. 

The model did not 
employ an optimization 
method to refine the 
reproduced models. 
Instead, it utilized cross-
entropy loss, which could 
potentially introduce 
errors. 

9 Hybrid Transformer [37] 88.50 % 

The integration of 
multiple modalities 
enhanced the quality 
of the segmentation 
results. 

The computational 
complexity is little bit 
higher. 

10 
Semi-supervised multiple 
evidence fusion [38] 

79.2% 

The decrease in 
performance with 
only 50% of labeled 
data has been 
mitigated 

Average dice score 
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Figure 3 : Preprocessed Brain Tumor Images a) Original image b) Gaussian smoothed  
c) Difference (smoothed) d) Median filtered e) Difference (Median filtered) f) Z –score Normalized   

g)Difference (Normalized) h)Equalized i)Difference(Equalized) 

 

 
 

Figure 1: Proposed architecture of optimized FCM clustering with DenseNet-169 
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Figure 4: a) Original FLAIR -MR images of patients with tumor   b) Tumor Highlighted 
c) Predicted Segmentation 
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Figure 6: Optimized Fuzzy C-Mean’s Train and Test Accuracy on the Brain Tumor Dataset for Epochs 35 

 
Figure 5: a) Combined MRI Modalities (Flair, T1, T1c, T2) b) Predicted Segmentation 
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Figure 8: Comparison of the Optimized Fuzzy C-Means (FCM) with existing models based on Accuracy 

 
 

Figure 7: Optimized Fuzzy C-Mean’s Train and Test Dice Coefficient on the Brain Tumor Dataset for Epochs 35 
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Figure 9: Comparison of the optimized fuzzy c-means (FCM) with existing models based on dice coefficient 


