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ABSTRACT 

 
In today's world, computer models, especially those using deep learning, are helpful in diagnosing breast 
cancer by analyzing special images called histopathological images. Understanding and classifying these 
images for breast cancer diagnosis is crucial in the field of medical information technology. The existing 
deep learning models for breast cancer image classification include a lack of diversity in the training dataset, 
leading to reduced model robustness and an inability to accommodate variations in different imaging 
conditions. Furthermore, there exists a deficiency in the model's sensitivity and generalization capabilities, 
accompanied by suboptimal hyperparameter configurations. This inadequacy has the potential to hinder the 
model's efficiency in breast cancer classification. Additionally, the absence of regularization options 
heightens the susceptibility to overfitting.  These identified gaps directly impact the effectiveness of current 
technologies in addressing crucial issues encountered in clinical practice and biomedical research concerning 
breast cancer diagnosis and prognosis. This research aims to overcome these challenges by focusing on 
important factors like making the model work well with different types of images, avoiding unnecessary 
information, ensuring efficient performance, and handling difficulties when there are only a few cancer cells 
present. The proposed solution is a new model called OLGV3 Net Classifier, which combines enhanced 
Inception V3 for understanding images and LightGBM for making accurate classifications. By using 
Sequential Model-Based Optimization (SMBO) to fine-tune the model's settings, this research achieved a 
remarkable accuracy of 99.80%, surpassing other models and making a significant improvement in breast 
cancer image classification. 
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1. INTRODUCTION  
          The human body consists of trillions of cells, 
and the term "cancer" is used to describe when a cell 
undergoes abnormal and uncontrolled division, 
potentially affecting various parts of the body 
[1][2][3]. The classification of this disease is based 
on its location within the body [4][5].As it advances 
and spreads to other areas, it can become life-
threatening. Among the various types of cancer, 

breast cancer is the most frequently diagnosed form 
among women worldwide [6][7][8][9]. Early-stage 
diagnosis and treatment can substantially lower the 
mortality rate [10][11][12]. The gold standard for 
identifying breast cancer relies on a 
histopathological diagnosis using light microscopy 
[13][14].Non-invasive imaging methods might not 
effectively identify cancerous regions[15][16][17]. 
Pathologists proceed with microscopic analysis of 
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these slides to confirm the diagnosis of breast cancer 
[18][19][20]. Nevertheless, manually analyzing 
complex histopathological images is a time-
consuming and laborious task, which can be 
susceptible to errors [21][22][23]. The role of 
computer-assisted diagnosis is crucial in assisting 
pathologists with the analysis of histopathology 
images [24][25]. These methodologies primarily 
depend on feature extraction techniques such as 
scale-invariant feature transform, speed-robust 
features, and local binary patterns. These methods 
are all based on supervised information and may be 
susceptible to biased outcomes when classifying 
breast cancer histopathology images [26][27]. 
Hence, the demand for effective diagnosis has 
driven the development of advanced computational 
models built upon multiple layers of nonlinear 
processing units, known as deep learning 
[28][29][30]. In recent times, deep learning models 
[31][32][33] have achieved significant 
advancements in computer vision, particularly in the 
realm of biomedical image processing. Their 
capacity to autonomously acquire complex and 
advanced features from images has motivated 
numerous researchers to explore the application of 
these models in breast cancer histopathology 
classification [34]. In particular, convolutional 
neural networks (CNNs) are extensively employed 
in image-related tasks because of their effectiveness 
in parameter sharing across different layers within 
deep learning models. Over the last few years, 
numerous CNN-based architectures have been 
introduced [35][36][37][38]. The VGG16 network 
with linear SVM was used for Multi-Classification 
of Breast Cancer Histopathology Images [39]. The 
Graph-Based Adaptive Regularized Learning Deep 
Network (GARL-Net) is employed for breast cancer 
classification. To train the backbone network, 
DenseNet121, transfer learning is applied. The 
model employs cross-entropy loss as a strategy to 
address and mitigate misclassification issues [40]. A 
model based on optimal feature selection has been 
developed for the efficient prediction of breast 
cancer, utilizing a modified logistic regression 
approach [54]. An artificial neural network model in 
conjunction with a metaheuristic algorithm worked 
well on the types of datasets for Coronary Artery 
Disease Prediction [55]. Multi-disease prediction 
was done by the use of deep reinforcement 
Boltzmann machines [56]. The modified 
ResNet152v2 model demonstrated effective 
performance in predicting pneumonia from chest X-
rays [57]. The accuracy of brain tumor prediction is 
improved by enhancing the convolutional neural 
network layers, transfer learning fully connected 

layers, and weights of the layers in the VGG-19 
model [58][59]. The research problem revolves 
around addressing critical gaps in the existing breast 
cancer image classification models. These gaps 
include insufficient diversity in the training dataset, 
resulting in reduced model robustness and the 
inability to handle variations in different imaging 
conditions. Additionally, the absence of an existing 
breast cancer classification model with enhanced 
sensitivity to anomalies and robustness to variations 
poses a challenge, potentially leading to lower 
diagnostic accuracy. Suboptimal hyperparameter 
configurations, which are crucial for model training 
and generalization, may further hinder the overall 
performance in breast cancer classification. 
Moreover, the inadequacy of handling categorical 
features and the absence of regularization options 
contribute to potential difficulties in capturing 
essential categorical characteristics in breast cancer 
images, consequently raising the risk of overfitting. 
Addressing these research gaps is crucial for 
advancing the effectiveness and reliability of breast 
cancer image classification models in real-world 
medical scenarios. Therefore, the objective is to 
create a model that not only ensures precise image 
classification but also showcases resilience across 
diverse datasets, optimally utilizes features, and 
performs effectively under varying magnification 
levels and instances where cancerous cells are 
limited. The model's generalizability across diverse 
datasets is achieved through data augmentation 
techniques such as rotation, shifting, flipping, shear, 
and zoom, which augment the training dataset and 
improve the model's performance on unseen data. 
To tackle redundancy in feature extraction and 
utilization, a dual-model approach is adopted, 
combining InceptionV3 for feature extraction and 
LightGBM for classification. This strategic 
amalgamation captures and utilizes high-level 
image features efficiently, enhancing the overall 
effectiveness of the model. Furthermore, to optimize 
overall performance, the research employs 
sequential model-based optimization (SMBO) for 
hyperparameter tuning, mitigating efficiency 
concerns by systematically and efficiently selecting 
the most favorable hyperparameter configurations. 
The proposed OLGV3 Net classifier seamlessly 
integrates deep learning, SMBO, and LightGBM, 
presenting an advanced architecture for the accurate 
multi-classification of breast cancer 
histopathological images. The improved Inception 
V3 plays a pivotal role in hierarchically extracting 
features from these images, capturing information 
from low-level features to high-level patterns. This 
comprehensive approach aims to improve model 
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generalization, classification accuracy, and overall 
efficiency in the critical task of breast cancer image 
classification. 

 

2. LITERATURE REVIEW 
        This review section explains the various 
breast cancer image classification techniques. 
Alirezazadeh and Dornaika[41] introduced Boosted 
Additive Angular Margin Loss (BAM) as a means 
to acquire exceptionally discriminative features. 
One notable benefit of this approach is its 
consideration of the angles between deep features 
and non-target class weights. When applied, this 
model achieved accuracy rates of 99.79% at 40X 
magnification and 97.65% at 400X magnification. 
It's worth noting that results may vary across 
different magnification levels. Chhipa et al.[42] 
introduced the Magnification Prior Contrastive 
Similarity (MPCS) method. This approach 
leverages only 20% of the labels during fine-tuning, 
making use of magnification factors, inductive 
transfer, and the reduction of human priors. 
Remarkably, this method demonstrated substantial 
enhancements compared to other techniques, 
achieving an impressive 98.18% in fine-tuning and 
96.36% in linear evaluation. However, one 
limitation of this method is its susceptibility to 
redundancy issues. Xu, C et al.[43] introduced the 
Multi-Dimensional Feature Fusion Network 
(MDFF-Net), which integrates one-dimensional and 
two-dimensional features within a dedicated feature 
fusion network. MDFF-Net demonstrates 
remarkable performance with an accuracy of 
98.86% on the BreakHis dataset and 86.25% on the 
BACH dataset. However, a limitation of this model 
lies in the need to effectively identify and address 
redundancy in the fused features. Doing so is crucial 
to avoid unnecessary computational overhead and to 
enhance the interpretability of the fused 
features. Ahmed et al.[44] introduced a Transfer 
Learning approach for Breast Cancer Diagnosis, 
enhancing results through upsampling and image 
augmentation techniques. Their method achieved an 
impressive F1-score of 96.2%. Nevertheless, this 
work faces a limitation related to tissue preparation 
and staining duration, which can introduce 
variability in image appearance and quality. This 
variability can pose challenges in establishing 
consistent patterns or features for diagnosis. In their 
study, Vesal et al.[45] introduced a transfer learning 
approach leveraging the Inception-V3 network, 
which yielded an impressive average test accuracy 
of 97.08% across four distinct classes. To address 
color variations introduced during slide preparation, 

normalization techniques were employed. Feature 
extraction was performed using both the Inception-
V3 and ResNet50 architectures. However, a 
noteworthy limitation of this study is the reliance on 
majority voting. This approach may be susceptible 
to instances where cancerous cells are only present 
in a limited portion of the image, with the remainder 
depicting healthy or benign tissue. Vo et al.[46] 
introduced an innovative boosting strategy, 
employing deep learning models with convolutional 
layers to extract highly informative visual features 
for breast cancer classification. This approach 
yielded impressive test accuracies of 95.1% at 40X, 
96.3% at 100X, 96.9% at 200X, and 93.8% at 400X 
magnification levels. However, a limitation of this 
approach is the potential occurrence of feature 
redundancy due to feature fusion.  Mehra[47] 
introduced a pre-trained VGG16 model coupled 
with a logistic regression classifier, which yielded 
exceptional results with an accuracy rate of 92.60%. 
It's worth noting that the network's capacity plays a 
pivotal role in influencing its performance, 
potentially leading to overfitting if it's excessively 
large or underfitting if it's too small. Nazeri  et al. 
[48]introduced a patch-based approach wherein 
they employed an auto-encoder to capture the key 
features of image patches. Simultaneously, a second 
"image-wise" network was employed for the overall 
image classification task. The reported accuracy for 
this model was an impressive 95%. However, in our 
experimental trials, we observed that this model 
demands an excessively large amount of memory, 
rendering it unfeasible for practical applications. 
Koné and Boulmane[49] introduced a hierarchical 
system of convolutional neural networks (CNNs) 
achieving an impressive accuracy rate of 99%. 
However, it's worth noting that this model utilized a 
relatively small dataset, which can potentially make 
it susceptible to overfitting if not appropriately 
regularized. Xie et al.[50]  introduced SHISRCNet, 
a novel super-resolution and Classification Network 
designed specifically for enhancing low-resolution 
breast cancer histopathology images. This 
comprehensive model incorporates Super-
Resolution (SR) and Classification (CF) modules, 
achieving an impressive accuracy rate of 92.78%. 
However, it's important to note that the 
computational demands of super-resolution and 
classification networks may pose challenges for 
real-time or near-real-time processing, potentially 
limiting their application in scenarios where rapid 
diagnosis is of utmost importance. Sun et al.[51] 
introduced FabNet, a novel convolutional neural 
network (CNN) known as FabNet A, designed for 
the classification of multiscale breast cancer 
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histopathology images using feature agglomeration. 
This model demonstrated remarkable performance, 
achieving impressive 98.2% test accuracy when 
applied to a colon cancer dataset, all without the 
need for any data augmentation techniques. 
Furthermore, the tightly integrated architecture 
effectively addressed the data imbalance issue 
within the dataset, leading to only marginal impacts 
on the model's overall performance. In their study, 
Kode & Pranjit Das et al.[52][60] introduced a 
hybrid approach involving Deep Learning (DL) and 
Expert Knowledge-Based Feature Extraction for the 
evaluation of performance in classifying Breast 
Histopathology Images. This model demonstrated 
impressive results, achieving accuracy rates of up to 
98% when using Neural Networks. Although 
expert-based systems offer greater interpretability, 
it's worth noting that the features selected by experts 
may not consistently align with the most pertinent 
or informative aspects of a particular classification 
task. Guleria et al.[53] introduced an approach that 
utilized a Variational Autoencoder (VAE). This 
VAE-based model achieved an accuracy of 73%. 
However, a limitation of this model is its tendency 
to exhibit a high loss value, which in turn leads to 
degradation in its overall performance. The 
considerations encompass a range of limitations and 
challenges in the context of developing and applying 
machine learning models for breast cancer diagnosis 
from histopathological images. These limitations 
include generalizability concerns, which pertain to 
the model's ability to perform well on unseen data 
and across different magnification levels. 
Susceptibility to redundancy implies the risk of 
duplicating or inefficiently using certain features, 
impacting the model's efficiency. Efficiency 
implications highlight the need for optimizing 
hyperparameters effectively. Redundancy in feature 
fusion emphasizes the importance of avoiding 
duplicative information when combining features. 
Variability due to tissue preparation and staining 
duration can introduce challenges to maintaining 
consistent image quality and appearance. 
Consistency in pattern recognition is vital for 
reliable diagnosis. The limited presence of 
cancerous cells may require specialized handling. 
Accuracy implications stress the need for high 
precision in classification. Feature redundancy due 
to fusion concerns duplicative information when 
combining different features. Misalignment with 
pertinent aspects underscores the importance of 
feature extraction aligning with the most critical 
aspects of the classification task. Knowledge-based 
feature extraction impact pertains to the reliance on 
expert knowledge, which may not consistently align 

with the most informative aspects. High loss values 
highlight potential performance degradation. 
Performance implications emphasize the need for 
efficient and effective model performance in breast 
cancer diagnosis. These challenges highlight the 
complexity of the task and the importance of 
addressing them to develop accurate and reliable 
diagnostic models. 

3. PROPOSED METHODOLOGY 
      In order to address technical gaps associated 
with generalizability, redundancy, performance, 
efficiency of the deep learning models, the proposed 
architecture of the OLGV3 Net classifier 
harmoniously integrates a deep learning feature 
extraction model, sequential model-based 
optimization (SMBO) for hyperparameter 
optimization, and the LightGBM classifier for the 
classification of breast cancer histopathological 
images. Our OLGV3 Net classifier's design has 
several advantages. It improves the understanding 
of intricate details in breast cancer images by using 
the Inception V3 model for feature extraction. This 
makes the model better at capturing subtle and 
complex patterns, leading to more accurate 
classification. Sequential Model-Based 
Optimization (SMBO) is then applied to fine-tune 
the model's settings, improving efficiency. For the 
final classification, the LightGBM classifier is used, 
known for making quick and accurate decisions. 
The combination of these elements creates an 
advanced model specifically tailored for multi-class 
breast cancer classification, offering valuable 
insights for diagnosis.  

 
3.1 Dataset 

      A comprehensive and annotated dataset was 
meticulously curated and made accessible to the 
research community for the BACH challenge. This 
dataset encompasses both microscopy images, 
geared towards a classification task, and whole-slide 
images, tailored for segmentation tasks. The 
response from the scientific community was 
overwhelmingly positive, with a total of 64 
submissions entering the competition out of the 677 
registrations received. The dataset classifies 
microscopy images into four categories: normal, 
benign, in situ carcinoma, and invasive carcinoma, 
according to the primary cancer type apparent in 
each image. For the classification task, the dataset 
includes two primary folders labeled 'train' and 'test.' 
Inside the 'image' directory, the four previously 
mentioned classes are discovered: benign, in situ, 
invasive, and normal. Furthermore, a ground truth 
CSV file is included to facilitate the labeling process 
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for these images, all of which are in the.tiff format. 
The dataset consists of a total of 400 microscopy 
images, with an equal distribution among four 
categories: a) Normal: 100 images, b) Benign: 100 
images, c) In situ carcinoma: 100 images d) Invasive 
carcinoma: 100 images. These microscopy images 
follow specific specifications, including a color 
model in Red, Green, Blue (RGB), dimensions of 
2048 x 1536 pixels, a pixel scale of 0.42 µm x 0.42 
µm, memory space consumption ranging from 
approximately 10 to 20 megabytes, and they are 
labeled using an image-wise classification 
approach. 

3.2 Preprocessing 

      Data augmentation is a process used to increase 
the diversity and quantity of training data for 
machine learning models, particularly in image 
classification tasks. In this context, data 
augmentation techniques are applied to the training 
data using a tool called the ImageDataGenerator. 
The purpose of these techniques is to introduce 
variations and perturbations to the original images 
while preserving their inherent characteristics. By 
doing so, the augmented dataset becomes more 
robust and helps improve the model's 
generalization, which means it can perform better on 
unseen or real-world data. Rotation entails the 
adjustment of images by different degrees, such as 
90 degrees or 180 degrees, to replicate diverse 
orientations. Shifting introduces horizontal and 
vertical translations to the images. Flipping results 
in the creation of mirror images, either horizontally 
or vertically. Shearing involves distorting the image 
along a designated axis, producing a slanted or tilted 
effect. Zooming, on the other hand, includes 
magnifying or reducing the image, thereby 
simulating variations in scale. By applying these 
augmentation techniques, the training dataset is 
artificially expanded in size, creating a more 
extensive and diverse set of training examples. This 
diversity helps the deep learning model learn 
different patterns, textures, and variations present in 
the data, making it better equipped to handle various 
real-world scenarios and improving its overall 
performance in classifying breast cancer histology 
images. 

3.3 Proposed System Model 
 
      Figure 1 illustrates the proposed architecture of 
the OLGV3 Net classifier. This architecture 
harmoniously integrates a deep learning feature 
extraction model, sequential model-based 
optimization (SMBO) for hyperparameter 
optimization, and the LightGBM classifier for the 

classification of breast cancer histopathological 
images.  

3.3.1 Improved Inception V3  

    The Inception V3 model comprises several 
layers, each with distinct functions. It begins with a 
3x3 convolution layer featuring 32 filters and a 
stride of 2, which reduces the feature map's spatial 
dimensions while capturing basic image features. 
This is followed by another 3x3 convolution layer 
with 32 filters, without any stride, focusing on more 
detailed patterns. A subsequent 3x3 convolution 
layer employs 64 filters, delving into complex and 
abstract feature extraction. The architecture includes 
a Max-Pooling layer with a 3x3 pool size and a 
stride of 2, which conducts down sampling to 
maintain essential information while reducing 
computational complexity.  

    The improved Inception V3 model incorporates a 
modified stem block that introduces several 
enhancements to elevate feature extraction. First, it 
increases the number of filters to 64 in each 
convolutional layer, widening the range for feature 
and pattern recognition. Batch normalization is 
applied after each convolutional layer, promoting 
training stability, accelerating convergence, and 
mitigating issues like vanishing gradients. The 
Rectified Linear Unit (ReLU) activation function 
follows each convolutional layer, infusing non-
linearity and enabling the model to learn intricate 
mappings. The max-pooling layer is adjusted to 
employ a 2x2 pool size with a stride of 2, facilitating 
more aggressive spatial dimension reduction while 
retaining crucial information. Notably, in the initial 
convolutional layer, an activation function is 
omitted, permitting the network to capture both 
positive and negative features in its early stages. 
Overall, these modifications aim to make the stem 
block more effective in capturing and representing 
features from input images. By increasing the 
number of filters, adding batch normalization and 
ReLU activations, and fine-tuning pooling 
parameters, the network can extract more 
informative features, potentially improving its 
performance in subsequent layers and blocks of the 
architecture.   

    The improved Inception V3 model allows for 
more effective extraction of high-level features from 
complex structures in breast cancer images. The 
model's improved architecture enhances its 
sensitivity to anomalies or irregularities in breast 
tissue. This heightened sensitivity is essential for the 
early detection of potential cancerous regions and 
the classification of images, contributing to 
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improved diagnostic accuracy. It handles variations 
in image scales, orientations, and textures. This 
robustness is crucial when dealing with diverse 
datasets of breast cancer images, ensuring reliable 
feature extraction across different imaging 
conditions. The Improved Inception V3 enhances 
feature extraction and the capabilities of a deep 
learning model in discerning critical details from 
breast cancer images. Its sophisticated architecture, 
sensitivity to abnormalities, and robustness to 
variability contribute to improved diagnostic 
accuracy and performance in real-world medical 
scenarios. 

3.3.2 Sequential Model-Based Optimization 
(SMBO) 
   The architecture of Sequential Model-Based 
Optimization (SMBO) comprises several integral 
components. SMBO, an adept technique for 
optimizing intricate, high-dimensional, and noisy 
objective functions, finds common application in 
the hyperparameter optimization of machine 
learning models. A fundamental element of SMBO 
is the surrogate model, typically adopting a 
probabilistic guise such as Gaussian Process (GP) or 
Random Forest. This surrogate model endeavors to 
approximate the objective function and discern the 
connection between hyperparameters and the 
objective function's performance. Guiding the quest 
for optimal hyperparameters is the acquisition 
function, tasked with weighing the exploration of 
uncharted territories against the exploitation of 
promising regions. Noteworthy acquisition 
functions encompass Probability of Improvement 
(PI), Expected Improvement (EI), and Upper 
Confidence Bound (UCB). The optimization 
journey commences with an initial set of 
hyperparameter configurations, often randomly 
chosen or curated via approaches like Latin 
Hypercube Sampling. The optimization loop, the 
crux of SMBO, systematically enhances the 
surrogate model and selects fresh hyperparameter 
configurations for assessment. These iterations 
involve updating the surrogate model post-objective 
function evaluation, maximizing the acquisition 
function to pinpoint the next configuration, 
assessing the selected configuration using the actual 
objective function (e.g., validation accuracy), and 
adhering to a predefined convergence criterion. 
Ultimately, the configuration exhibiting the highest 
estimated performance, as per the surrogate model, 
emerges as the best configuration when SMBO 
concludes its iterative process. 

SMBO explores hyperparameter combinations that 
are likely to perform well with the complex feature 

representations extracted by the Inception V3 
architecture. Applying sequential model-based 
optimization to hyperparameter tuning in breast 
cancer classification tasks following feature 
extraction using the Inception V3 model offers an 
intelligent and efficient approach. It helps navigate 
the complex hyperparameter space, reducing the 
number of model evaluations needed and ultimately 
improving the overall performance and accuracy of 
the deep learning model in classifying breast cancer 
images. 

3.3.3 LightGBM classifier 

     The LightGBM classifier's architecture, used for 
classifying breast cancer into four distinct categories 
(Benign, InSitu, Invasive, and Normal), presents 
several significant features. First and foremost, 
LightGBM is rooted in the concept of gradient 
boosting, constituting an ensemble learning 
technique that amalgamates multiple weak learners, 
typically in the form of decision trees, to assemble a 
robust predictive model. Notably, LightGBM stands 
out due to its utilization of histogram-based splitting 
during the tree construction process, which involves 
binning continuous features into discrete bins and 
constructing histograms. This methodology 
expedites and streamlines the process of selecting 
optimal split points, particularly advantageous for 
high-dimensional datasets. Further setting 
LightGBM apart is its leaf-wise tree growth 
approach, in which the algorithm prioritizes 
expanding the leaves of the tree that result in the 
most significant reduction in the loss function. This 
often results in shorter trees with fewer levels, 
mitigating overfitting and optimizing computational 
efficiency. To bolster its robustness, LightGBM 
incorporates regularization techniques such as L1 
(Lasso) and L2 (Ridge) regularization, penalizing 
substantial feature importance values and fostering 
model simplicity. This regularization is especially 
valuable in preventing overfitting. LightGBM also 
boasts native support for categorical features, 
obviating the need for one-hot encoding and 
facilitating efficient handling of non-numeric data. 
Its parallel and distributed training capabilities make 
it well-suited for large-scale datasets and parallel 
processing environments, potentially accelerating 
training. The inclusion of an early stopping 
mechanism further refines training efficiency by 
monitoring validation performance and halting 
training if the model's performance ceases to 
improve. Ultimately, LightGBM's efficiency, speed, 
and versatility have made it a favored choice for 
machine learning tasks, including classification and 
regression, with its architectural elements enhancing 
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the overall performance in the context of breast 
cancer classification. LightGBM model exhibits 
proficiency in handling substantial datasets and 
high-dimensional feature spaces. In the realm of 
breast cancer image classification, where datasets 
often possess extensive dimensions, LightGBM 
model’s capacity to efficiently scale to large data 
sizes is particularly advantageous. Moreover, it is 
aptly designed for datasets containing categorical 
features, rendering it well-suited for scenarios where 
specific image characteristics assume a categorical 
nature. This suitability proves relevant in the context 
of breast cancer classification, where certain visual 
features, such as distinct morphological patterns, 
may exhibit categorical attributes. Furthermore, 
LightGBM offers regularization options, a critical 
feature in mitigating overfitting concerns in medical 
image classification tasks. Mitigating overfitting is 
essential to facilitate effective generalization of the 
model to unseen data. 

3.4   Working Flow of the OLGV3 Net 
Classifier 

   The figure 2 represents the Workflow of the 
OLGV3 Net Classifier in detail. The necessary 
libraries, encompassing TensorFlow, Keras, 
ImageDataGenerator, Hyperopt, and others, have 
been imported for the purpose of constructing and 
optimizing the breast cancer image classification 
model. Upon loading the image dataset, the image 
dimensions (img_width and img_height) and batch 
size (batch_size) are defined, with these parameters 
determining the input image size and batch size for 
training. Data generators are then created for the 
train, validation, and test datasets, all facilitated by 
the ImageDataGenerator. The pixel values are 
normalized to the [0, 1] range via rescaling, serving 
to standardize pixel values and enhance training 
stability. Additionally, data augmentation 
techniques, encompassing rotation, shifting, 
flipping, shear, and zoom, are applied to the training 
data using the ImageDataGenerator. This 
augmentation process artificially amplifies the 
training dataset's size and contributes to the 
refinement of model generalization.  Regarding data 
loading, there are no alterations required at this 
stage. The process will persist by loading the 
training and validation data via the 
flow_from_directory method, where the target size, 
batch size, and class mode (categorical, for multi-
class classification) will be specified. Moving on to 
the model architecture, the train_model(params) 
function will be expanded to encompass both a deep 
learning model (InceptionV3) and a gradient 
boosting model (LightGBM). The procedure 
unfolds as follows: Following the neural networks 

(InceptionV3) training on the training data, the 
features (predictions) of the validation set will be 
extracted from the penultimate layer, which is 
positioned just before the final dense layer. This 
particular step effectively captures high-level image 
features that have been acquired through the neural 
network's learning process. Subsequently, a 
LightGBM classifier will be trained using these 
extracted features. LightGBM, being a gradient 
boosting framework, proves to be particularly adept 
at handling tabular data, rendering it well-suited for 
the task of managing the extracted image features. 
Expanding upon the hyperparameter search space, it 
encompasses LightGBM-specific parameters such 
as num_leaves, lgb_learning_rate, and 
lgb_num_boost_round. Within this extended space, 
Hyperopt will explore diverse combinations of these 
parameters to discern the most optimal 
configurations for the model. The optimization 
setup retains the Trials object for ongoing tracking 
of the optimization process. This Trials object 
maintains a record of the outcomes associated with 
each tested parameter combination during the 
hyperparameter optimization endeavor. 
Subsequently, employing the fmin function from 
Hyperopt, Sequential Model-Based Optimization 
(SMBO) is executed. Hyperopt diligently explores 
the specified hyperparameter search space, 
endeavoring to ascertain the most favorable 
hyperparameters for both the neural network and 
LightGBM. With the best hyperparameters secured, 
the final model training entails creating a fresh 
instance of InceptionV3. Custom classification 
layers are appended to the InceptionV3 base model, 
akin to prior steps. The final model is then 
configured, incorporating the best learning rate and 
other optimized hyperparameters. This 
configuration is pivotal as it tailors the model to 
perform optimally. Consequently, the model is 
trained utilizing the complete training dataset, a step 
that ensures the neural network is exposed to the 
most advantageous settings. Lastly, the evaluation 
of the ensemble model's performance is conducted 
on the test dataset, which currently encompasses 
images classified into four distinct categories: 
Benign, InSitu, Invasive, and Normal. This 
evaluation leverages appropriate metrics to gauge 
the model's proficiency in classifying these images. 
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Figure 2: Flow Diagram of the OLGV3 Net Classifier 

4. RESULTS AND ANALYSIS 
 
4.1 Performance Metrics 

Accuracy is determined by the correlation of 
samples that were precisely recognized as positive 
to every sample that was identified as positive. The 
model’s accuracy measures how accurately it 
classifies a sample as positive as shown in equation 
(1). 

Accuracy =
(TP + TN)

(TP + TN + FP + FN)
                   (1) 

"TP," "TN," "FP," and "FN" stand for "true 
positive," "true negative," "false positive," and 
"false negative," respectively. The denominator 
increases and the precision become low when the 
model only seldom classifies positive data correctly 
or frequently classifies positive data incorrectly as 
shown in equation (2). 

  precision  =
(TP )

(TP + FP)
                                   (2) 

Anyhow, when the conditions listed below are 
satisfied, the precision is high: 1.The model 
generates a lot of precisely positive classifications 
(maximize True Positive). 2. There are lesser in 
accurate positive classifications formed by the 
model (which minimizes false positives). 
Calculating recall involves dividing the proportion 
of properly labeled positive samples by the total 
count of positive samples. How successfully the 
model can detect positive samples is assessed by 
recall as shown in equation (3). 

   Recall  =
(TP )

(TP + FN)
                               (3) 

The Recall (Re) grows in proportion to the number 
of positive samples found. The recall relies heavily 
on how the positive samples are categorized. The 
way the negative samples are categorized, such as 
for precision, has nothing to do with this. If the 
model correctly identifies the entire positive 
samples as positive. The sensitivity of a machine 
learning model determines how well it can locate 
successful examples. It is termed the "true positive 
rate" (TPR) or recalls. It is used to evaluate model 
performance because recall tells us how many 
samples the model was able to properly identify. A 
high sensitivity model might be missing some of the 
positive cases, according to a few false negatives. In 
other words, sensitivity evaluates how well a model 
can distinguish between good data. 

Specificity =
TN

TN + FP
                          (4) 

In multiclass classification with four categories 
(Benign, InSitu, Invasive, and Normal), the 
confusion matrix is typically organized as a 4x4 
matrix. Each row of the matrix represents the 
instances in a predicted class, and each column 
represents the instances in an actual (true) class. The 
elements of the matrix are as follows: 

 True Positives (TP): These are the 
instances where both the predicted and actual 
classes are the same. In other words, the model 
correctly predicted that an instance belongs to a 
particular class. 

 True Negatives (TN): In a multiclass 
problem, this term isn't applicable because we are 
not considering binary negative and positive 
outcomes for each class. Instead, we focus on the 
correct classification of each individual class. 
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 False Positives (FP): These are instances 
where the model predicted a class, but the actual 
class is different. In other words, the model 
incorrectly predicted that an instance belongs to a 
particular class. 

 False Negatives (FN): Again, in a 
multiclass problem, this term isn't commonly used 
because we don't usually focus on binary negative 
and positive outcomes for each class. Instead, we 
focus on the correct classification of each individual 
class. 

4.2 Results of the preprocessing Stage 

   The figure 3 illustrates the practice of image data 
augmentation, a widely adopted technique within 
the computer vision and deep learning domains. Its 
primary objective is to enhance the diversity of the 
training dataset, thereby contributing to the 
refinement of machine learning models' 
performance. To facilitate this, the code imports 
essential libraries, including numpy for numerical 
operations, matplotlib.pyplot for image display, 
ImageDataGenerator from Keras for image data 
augmentation, and various Keras functions like 
load_img, img_to_array, and array_to_img for 
efficient image manipulation. The code commences 
by initializing an ImageDataGenerator object 
devoid of specific augmentation parameters, which 
subsequently serves as the tool for applying various 
data augmentation techniques. These techniques 
include image rotation at distinct angles (0 and 40 
degrees), width shifting (horizontally) employing 
variable shift values (0 and 0.2), height shifting in 
both horizontal and vertical directions with different 
magnitudes (0 and 0.2), shear transformations using 
diverse shear values (0 and 0.2), and zooming with 
varying factors (1 and 1.2) in both the x and y 
directions. Furthermore, it introduces the concept of 
horizontal flipping, generating mirrored versions of 
the original image. 

4.3 Classification Results and Analysis 
    During the training and evaluation of a deep 
learning model, we take into account key metrics 
such as 'train accuracy,' 'validation accuracy,' 'train 
loss,' and 'validation loss.' The 'train accuracy' 
metric assesses the model's capability to classify 
instances within the training dataset accurately. In 
contrast, the 'validation accuracy' metric evaluates 
the model's performance on a separate validation 
dataset, providing insights into its accuracy when 
dealing with previously unseen data. 

 

Figure 4: The OLGV3 Net Classifier's Train and Test 
Accuracy on the BACH Dataset for Epochs 55 

As illustrated in the figure 4, the OLGV3 Net 
classifier achieved peak training accuracy, reaching 
100%, and validation accuracy of 99.80% during 
Epoch 55. The training accuracy curve began at 
11.91% and progressively rose to the maximum of 
100%, while the validation accuracy curve began at 
42.86% and reached its peak at 99.80%. In the 
validation process, the model's performance is 
assessed using the validation dataset, which 
contains unobserved data. The 'train loss,' also 
referred to as 'training loss' or 'training error,' 
quantifies the disparity between the expected model 
outputs and the actual target values within the 
training dataset. Similarly, 'validation loss' is 
computed using the validation dataset, determining 
the divergence between the model's predictions and 
the genuine target values for the validation data.  

 

Figure 5: The OLGV3 Net Classifier's Train and Test 
Loss on the BACH Dataset for Epochs 55 

As illustrated in figure 5 ,  the training loss curve 
initiates at 0.0033 and reaches its peak loss value of 
19.4451 during the training process. Conversely, the 
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validation loss curve starts at 0.0045 and attains its 
highest validation loss value of 11.3472. 

 

Figure 6: The Results of the OLGV3 Net Classifier on 
the BACH Dataset for Epochs 55 

 
 Figure 6   illustrates results of our multi-
classification experimentation on the breast cancer 
dataset, where we strategically selected 30% of the 
dataset for analysis. Employing the OLGV3 Net 
classifier, our findings revealed outstanding 
performance across multiple key metrics. Most 
notably, our model demonstrated a remarkable 
sensitivity of 100%, underscoring its ability to 
accurately identify positive cases. In addition, it 
exhibited a strong specificity of 99%, highlighting 
its proficiency in correctly identifying negative 
cases. Impressively, the model achieved a precision 
rate of 99.75%, indicating its precision in classifying 
positive cases. In summary, the classifier achieved 
an exceptional overall accuracy of 99.8%, 
confirming its effectiveness in accurately 
classifying breast cancer instances. 

In the figure 7, the cells along the diagonal represent 
the accurate classifications by our model for 
different categories. In the first cell of the diagonal, 
we observe that all 30 benign cases were correctly 
classified. Similarly, in the second cell, 29 out of 30 
InSitu cases were correctly classified. The third cell 
in the diagonal corresponds to 30 out of 30 correctly 
classified invasive cases. Lastly, the fourth cell 
represents the accurate classification of all 30 
normal cases by our model.  As shown in figure 8, 
the construction of the normalized confusion matrix 
involved utilizing test set samples. The matrix's 
rows correspond to the actual class of each sample, 
while the columns represent the class assigned by 
the classifier. The diagonal of the matrix displays 
the percentage of correctly predicted movement 
types. In the context of our analysis, we conducted 
experiments on a 30% subset of the dataset, 
comprising 120 diverse breast images classified into 

four distinct categories: 'benign,' 'InSitu,' 'invasive,' 
and 'normal.' Our evaluation focused on comparing 
true values and predicted values for each category, 
yielding the following results: True values were 1 
for all categories, including 'benign,' 'in-situ,' 
'invasive,' and 'normal.' The predicted values were 
1, 0.96, 1, and 1 for the corresponding categories. 
These findings served as the basis for creating a 
visual representation of the multi-classification 
results, offering valuable insights into the model's 
performance. 

 

Figure 7: The Confusion Matrix for Multi-Classification 
by the OLGV3 Net Classifier 

 

Figure 8: The Normalized Confusion Matrix for Multi-
Classification by the OLGV3 Net Classifier 

     As illustrated in the figure 9, the proposed 
OLGV3 Net classifier demonstrates significant 
superiority over the existing models in the dataset in 
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terms of accuracy. The difference in percentage 
between the proposed OLGV3 Net and each of the 
other models is as follows: a mere 0.01% difference 
with BAM[41], a substantial 0.94% difference with 
MDFF-Net[43], a notable 2.72% difference with 
Transfer Learning[45], a substantial 7.20% 
difference with Logistic Regression Classifier with 
VGG16[47], a significant 4.80% difference with 
Auto-Encoder[48], a modest 0.80% difference with 
CNN, a considerable 7.02% difference with Super-
Resolution and Classification Network, a notable 
1.60% difference with CNN[51] , and a noteworthy 
1.80% difference with the Hybrid Approach 
Involving Deep Learning (DL)[52]. The most 
considerable deviation in accuracy is observed with 
the Variational Autoencoder (VAE)[53], with a 
substantial 26.80% difference. These results 
underscore the outstanding performance of the 
proposed OLGV3 Net classifier, which consistently 
outperforms its counterparts across a range of 
models, often by a significant margin in terms of 
accuracy. 

5. CONCLUSION AND FUTURE SCOPE 
 
This research work addresses the critical challenges 
in multi-class breast cancer image classification 
using deep learning models. A lack of diversity in 
the training dataset, sensitivity, generalization 
deficiencies, feature redundancy, suboptimal 
hyperparameter configurations, the absence of 
regularization and model overfitting are addressed 
by the proposed OLGV3 Net Classifier, which 
integrates a deep learning feature extraction model, 
sequential model-based optimization (SMBO) for 
hyperparameter optimization, and the LightGBM 
classifier for the classification of breast cancer 
histopathological images. The proposed OLGV3 
Net Classifier produced an overall sensitivity of 
100%, a specificity of 99%, a precision rate of 
99.75%, an overall accuracy of 99.8%, and 
outperformed all the existing models. In future 
research work, the proposed OLGV3 Net Classifier 
will undergo experimentation with diverse disease 
image datasets. It will be coupled with a range of 
deep learning models and fuzzy techniques. 
Additionally, exploration will extend to the 
integration of supplementary clinical data, including 
patient history, genetic information, and other 
pertinent factors. This is aimed at refining the 
model's predictive capabilities and achieving a more 
comprehensive understanding of breast cancer 
cases.  
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Figure 1: Proposed Architecture of the OLGV3 Net Classifier 
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Figure 3: Sample Preprocessed BACH Dataset Images 

 
 
 

Figure 9: Comparison of the OLGV3 Net Classifier with existing models based on accuracy 

 


