
Journal of Theoretical and Applied Information Technology

15th December 2023. Vol.101. No 23
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7520

AN IMPROVED MALWARE VARIANT DETECTION MODEL
BASED ON HOMOGENEOUS STATIC HYBRID FEATURES

AND A DATA AUGMENTATION TECHNIQUE

AZAABI CLETUS1, ALEX AKWASI OPOKU2, BENJAMIN ASUBAM WEYORI2

1School of Sciences, University of Energy and Natural Resources, Sunyani, Ghana & St. John Boscos
College of Education, Navrongo, Ghana. (Corresponding Author)

2School of Sciences, University of Energy and Natural Resources, Sunyani, Ghana, Email: Email .
2School of Sciences, University of Energy and Natural Resources, Department of Computer and Electrical

Engineering, Sunyani, Ghana.

Email: cleinhim@yahoo.com, alex.opoku@uenr.edu.gh, benjamin.weyori@uenr.edu.gh.

ABSTRACT

The use of Machine learning has become the de-facto standard for malware defense due to the limitations of
signature-based, heuristic-based and other cloud-based techniques. However, poor malware features, class
imbalance problems and malware obfuscation remain challenges facing malware researchers. To ensure
efficient and resilient detection in the face of these challenges requires novel models that adopt innovative
techniques to improve malware detection. The paper proposed an improved novel malware variant detection
model based on Homogeneous Multi-Static Hybrid features (HMSHF), obfuscated malware dataset and
Synthetic Minority Oversampling Technique (SMOTE). A malware dataset comprising 11678 malware files
from virusTotal.com and 3963 benign files obtained from windows environment was used for the study. We
extracted ‘fine-grained’ strings, APIs, and opcode features from static disassembly of the malware dataset.
We trained and tested a Random Forest (RF), Support Vector Machine (SVM), GradientBoost (GB), and
eXtremGradientBoost (XGB) ensemble algorithms before and after obfuscating the malware dataset. We
hybridized the features into HMSHF for training and testing the ensembles before and after the malware was
obfuscated. We evaluated the performance of the models using individual features and the hybrid features
before and after obfuscations. To overcome the class imbalance problem, we applied the SMOTE technique
on the training set with the HMSHF. The proposed hybrid features showed effectiveness and efficiency in
classifying malware with 99.87% accuracy without data augmentation and 98.8% accuracy with SMOTE
data augmentation. Consequently, the paper concluded that, the proposed technique improved malware
detection and demonstrated resilience against obfuscation compared with the state of the art. Thus, the
approach can be adopted for the detection of known, unknown and zero-day malware. Notwithstanding the
improved performance, this work is not without limitations; the use of feature selection instead of feature
extraction, and use of ensembles instead of other Deep learning techniques and SMOTE instead of other data
augmentation methods. Thus, future works will adopt the approach and use Principal Component Analysis
(PCA) dimensionality reduction techniques; employ deep learning techniques and apply other data
augmentation techniques to observe the performance.
Keywords: SMOTE, Malware, Ensemble Learning, Ransomware, Malware Features, Signature-Based

Detection

1. INTRODUCTION

Globally, there is an exponential growth in malware
samples and Potentially Unwanted Software (PUS).
These exploits limitations in existing signature-
based, heuristics and other non-intelligent detection
methods resulting in exposures [1], [2], [3], [4]. The
increased malware volumes, variety and complexity
coupled with the use of innovative obfuscation
techniques renders existing defense systems

inefficient and ineffective requiring the use of novel
and innovative defense techniques that are more
resilient and robust in the face of the prevailing
malware ecosystem [5], [6]. Malware are script,
codes and or software with malicious intension and
aimed at compromising systems mainly yo gain
unauthorized access, disclosure and or modification.
Malware attacks target military installations, critical
infrastructure, corporate entities, and individuals,
leading to exposures [3]. Malware exposure

Journal of Theoretical and Applied Information Technology

15th December 2023. Vol.101. No 23
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7521

compromises confidentiality, integrity, and
availability principles, leading to reputational loss,
financial loss, legal issues, and compliance issues,
among others. According to [2], one of the leading
malware-testing labs based in Germany, an average
of 450,000 malware and PUS are registered daily.
The authors or purveyors of this malware mainly aim
at stealing information, disrupting systems, and
ensuring command and control of systems, all
geared towards compromising information systems
for their parochial motivations [7]. Malware as
malicious software that performs malicious actions,
they comes in the form of codes or scripts [8]. Some
examples of malware include, but are not limited to,
rootkits, Trojans, worms, ransomware, spyware, and
others. These malware are not only increasing in
volume but also in complexity and variety and
exploits the existing signature-based or signature-
matching defense systems[9]. The increased
volumes, variety and complexity of current malware
renders traditional signature-based defense systems
and others such as heuristics and cloud-based
techniques inefficient and ineffective. In addition,
malware authors are adopting innovative
obfuscation techniques to conceal their identities
from being detected by these signature-based or
matching techniques [9]. These limitations coupled
with the need for adaptability and generalizability of
the tools and techniques has made automated
Machine Learning (ML) techniques the current
research focus for automated malware detection
[10]; [11].

However, even though ML techniques are
extensively explored in malware defense with
positive results, there are still some limitations or
challenges that militates against the achievement of
the full potentials of the techniques. These
limitations includes poor features for the training of
ML models and subsequent testing of the algorithms,
the problem of class imbalance in malware datasets
resulting in the ‘accuracy paradox’, and challenges
with the detection of obfuscated malware and their
variants [12]; [13].

To improve upon the existing works and to fill the
identified gaps requires novel approaches that
provides efficient features for efficient malware
detection and classification. In addition, there is the
need to improve the class imbalance problem to
overcome the ‘accuracy paradox’ in models leading
to improved detection accuracy, since the use of the
accuracy metric with imbalance datasets results in
models/algorithms being bias towards majority
samples at the expense of the minority. Finally,

improving resilience of ML models against
obfuscated malware by exposing the models to
variety of anti-static and advanced obfuscation
techniques. Therefore, to improve malware
classification, requires the use of innovative
techniques that overcomes these gaps based on the
application of various schemes that provides
efficient and effective malware features, techniques
that improves the accuracy paradox such as data
augmentation methods, and ample exposure of the
learning models to the relevant anti-static and
advanced obfuscation techniques.

In recent times, the use of different machine learning
approaches to enhance malware detection using
static-signature-based features has been explored. In
[15], the authors proposed a method for extracting
features from a malware dataset and using Random
Forest (RF), Deep Neural Network (DNN), and
XGBost for classification, and reported an accuracy
of 96.3%. Similarly, the authors in [16] proposed an
opcode-based frequency (opcode frequency) as a
malware vector for classification and used both
supervised and unsupervised models involving RF
and a DNN model with a reported accuracy of
99.78%. Similarly, the use of a combination of static
and dynamic features for the classification of
Android malware binaries using GradientBoost,
Decision Tree, Nave Bayes, and RF models was
proposed and implemented in [17] and reported an
accuracy level of 96% with the RF algorithm. While
the authors in [4] proposed a small-scale and easy
feature extraction that includes the sizes and
permissions of PE features to classify malware
families with machine-learning algorithms and
reported 99.40% with the RF model, Other
approaches used heterogeneous hybrids involving
static and dynamic features extracted from both
methods to train and test machine-learning
algorithms [18]; [10]; [19]. In the same vein, [20],
proposed the use of permissions with a lightweight
technique for malware detection. They
experimentally demonstrated its efficiency using
real android malware samples. They considered only
one aspect of the vulnerabilities of the features and
ignored the others such as API Calls. The use of
intents was explored in [21] where both explicit and
implicit intents as semantically rich features for the
encoding of malicious intensions were used for the
study. Their proposed system performed encoding
and extracted explicit and implicit intents, intent
filters and other permissions. Moreover, in [22], the
authors explored an approach called MalDozer
relying on neural network taking inputs from raw
API calls in the order as they show up in the .dex file

Journal of Theoretical and Applied Information Technology

15th December 2023. Vol.101. No 23
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7522

mainly for android. They reported that during
training, their approach could automatically classify
malicious patterns using only the sequences of the
raw method present in the assembly code. Besides,
the authors in [23] experimented with the use of a
framework with several multidimensional features
from applications useful for malware classification.
A multimodal deep learning network based on
opcode features APIs, permissions and string
features were used. Their experiment with malware
dataset from virus share received an accuracy of
98%. Finally, in [24], a hybrid deep learning model
using autoencoder and a convolutional neural
network (CNN) was proposed to improve accuracy
of the detection of malware using multiple features
and achieved 98.8% accuracy.

Notwithstanding the plethora of studies using ML
techniques as catalogued above, a critical analysis of
the works shows that, not much effort is placed on
the provision of efficient features from
homogeneous sources such as static-static
hybridization, the handling of the accuracy paradox
and the exposure of the models to sufficient anti-
static and advanced obfuscation methods as
explained in the proceeding paragraphs

Firstly, the analysis of the performance measures
used in the evaluation of the models show that, most
authors employ the accuracy metric as a
performance measure with class imbalance datasets.
This results in the usual ‘accuracy paradox’ where
the models tend to skew or be bias towards the
majority sample at the neglect of the minority class
to be predicted. Using the accuracy metric with an
imbalance class dataset without the treatment of the
imbalance results in poor classification accuracy.
This occurs where the model is bias towards the
majority class at the expense of the minority.

 In addition, whiles a plethora of works employs
heterogeneous hybridization of features, there is less
focus on the use of homogeneous hybridization of
features for efficient and improved malware
detection. Thus, the paper demonstrates that the use
of homogeneous hybridization of static-based
features results in improved effectiveness and
efficiency in malware detection accuracy.

 Besides, the use of obfuscation as a means to outwit
automated detection systems where the malware
changes its form and shape (mutation) resulting in
polymorphic, metamorphic, oligomorphic and other
variants of known malware remain a challenge in the

current ML research [14]; [20]; [26]. Improving the
resilience and robustness of the models against
obfuscation requires adequate exposure of the
models to various obfuscation techniques during the
training phase of the modelling.

Consequently, this paper filled these gaps by
proposing an improved malware variant detection
model based on homogeneous multi-static hybrid
features and a data augmentation technique aimed at
improving efficiency and resilience of models
against malware attacks and variants of known and
unknown malware. To achieve this goal, the
following objectives guided the study:

1. To provide efficient malware features with
high feature importance for efficient
malware classification

2. Apply data augmentation technique to
improve malware classification and avoid
the ‘accuracy paradox’ associated with
class imbalances in malware dataset.

3. Improve malware variant detection by
using obfuscation techniques in malware
detection and classification.

Following these objectives, the paper provided
efficient homogeneous hybrid features with high
feature importance for efficient malware variant
detection and classification. We applied the SMOTE
data augmentation technique to overcome the
problem of class imbalance, thereby overcoming the
‘accuracy paradox’, and improved malware
detection. Finally, we demonstrated the resilience
and robustness of the approach to malware variant
detection by exposing the models to various forms of
obfuscated malware samples.

We achieved this by proposing a HMSHF with
ensemble classifiers based on the hybridization of
string, Opcode, and API Call features extracted
using static disassembly techniques for the training
and evaluation of RF, SVM, GB, and XGB
classifiers. The purpose was to provide efficient
malware features for the efficient classification of
malware and variants, improve performance
accuracy, reduce false-positive rates, achieve
resilience and robustness against malware
obfuscation and other evasive techniques, and
ultimately overcome the ‘accuracy paradox’. We
obtained an imbalanced malware dataset comprising
11,678 malware and 3,963 benign ware from
virusTotal.com and malwr.com. The dataset was
preprocesses and Features were obtained based on

Journal of Theoretical and Applied Information Technology

15th December 2023. Vol.101. No 23
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7523

the static disassembly of the malware dataset. Unlike
the usual case of using all the features from the
disassembly, we extracted only ‘fine-grained’
features; features with the highest predictive
capability for the training of the models. We
extracted static API Calls, Opcodes, and String
features to train and test a RF SVM, GB, and XGB
ensemble techniques. This is because our aim was to
improve accuracy and stability where ensembles
have shown to be good at that [27]. Using the
individual features as our baseline mark, and to test
the classification accuracy of our features in
classifying malware, we evaluated the performance
of the models on the individual features before and
after the malware was obfuscated. Having obtained
the baseline results with the features, we then
hybridized or integrated the three extracted features
into a integrated feature set and used it to train and
test the models before and after obfuscating the
malware dataset. The performance of the hybrid was
compared with the individual features. The results of
the proposed approach performed better than the
individual features. With our dataset being
imbalanced, we applied SMOTE to the training
dataset to overcome the problem of imbalanced data
and avoid overfitting and/or the "accuracy paradox."
We evaluated the performance of the ensembles on
accuracy and false-positive rate (FPR) on the hybrid
features. Lastly, we compared the performance of
our hybrid approach with that of the cited literature.
From the results, our proposed approach (HMSHF)
demonstrated the efficiency of the features for
efficient malware classification, demonstrated
improvement over the ‘accuracy paradox’, and
finally, improved classification by the
implementation of the SMOTE data augmentation
technique, and showed resilience and robustness
against malware obfuscation by exposing the models
to various obfuscation techniques for learning and
generalization.

 On the basis of these achievements, our approach
shows moderate novelty, the findings and results are
exciting, and have some value, and our work
therefore makes a modest contribution to the body of
knowledge in malware detection in particular and the
use of artificial intelligence (AI) or ML in
cybersecurity in general. The moderate to high
relevance of the approach to malware practitioners,
its innovativeness, the rigorous technical procedures
employed contributes to malware defense in
particular and cybersecurity in general. Specifically,
this study contributed to knowledge as follows:

 We proposed a novel (HMSHF) comprising
strings, opcodes, and API call features
through static disassembly of malware
binaries resulting in improvement in
malware and malware variant detection. By
this, we have contributed to malware
feature engineering, which is essential in
building efficient classifiers for automated
detection of malware, and offers unique
feature set for known, unknown and
variants of known malware.

 The application of SMOTE in balancing the
imbalance dataset used in our study
overcome the ‘accuracy paradox’ inherent
in the imbalance dataset resulting in
providing true performance accuracy
compared to the cited state literature.
Malware environments are highly
imbalance as well as the datasets used for
the experiments. This imbalances tends to
make algorithms to be bias towards the
majority class. This results in the ‘accuracy
paradox’. To overcome this phenomenon
requires oversampling and under sampling
techniques. Hence, the use of the SMOTE
technique as data augmentation improved
the accuracy of the models, which resulted
in fare classification of both minority and
majority sample in the dataset.

 Demonstrated the resilience of the
proposed approach in overcoming malware
obfuscations that malware authors employ
to evade detection in signature-based
detection systems. The use of static and
advanced obfuscation techniques are used
by malware authors to compromise
systems. The use of different obfuscation
techniques and the ability of the models to
show high and same classification
performance demonstrate the resilience and
robustness of the model against malware
and malware variant attacks.

Organization of the Paper.

We structured the rest of the paper as follows: we
present the Materials and Methods in Section 2; in
Section 3, the Results and Discussion is presented;
whiles in Section 4, we present the Conclusion and
future works of the study.

Journal of Theoretical and Applied Information Technology

15th December 2023. Vol.101. No 23
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7524

2. MATERIALS AND METHODS

This section of the paper discusses the methods and
materials of the study following the methodological
framework as shown in Figure 1 below. The
methodology starts by providing: (1) context and
motivation for the proposed approach, (2)
description of the malware dataset and the
preprocessing activities, (3) static disassembly of
malware samples to extraction features using IDA
Pro (4) feature selection technique used to select
features (5) feature integration or hybridization (6)
feature representation (7) selection and training of
the models (8) evaluation of the performance. The
description of each stage of the process follows.

Figure 1. Methodological Framework Of The Study.

2.1. Context and Motivation for the Proposed
Approach

This sub-section discussed the context and
motivation for the proposed approach. Specifically,
we gave a brief description of static analysis and its
limitations. The obfuscation methods or techniques
used by malware attackers to evade detection.
Finally, we present the motivation and justification
for the use of our proposed approach.

2.1.1. Static Malware Analysis and Limitations

The first stage in malware analysis is usually static
techniques using tools in the form of cryptographic
hashes, fuzzy hashes, import hashes, and others [26].
It is the analysis of a malware binary without the
actual execution of the code. Static malware
detection is based on conventional malware analysis

techniques based on the extraction of static features
using reverse engineering methods. To perform
static analysis, therefore, requires unpacking or
decoding the malware sample, through which
features can be obtained. Examples of static features:
pefiles, strings, opcodes, n-grams, and function
length frequencies. Static analysis techniques are
faster, cheaper, and always the first point of call for
malware analysts. However, their limitations or
drawbacks include but are not limited to obfuscation
(packing, crypting), dynamic code loading, which
results in poor detection accuracy, and susceptibility
when a malware binary is obfuscated. This is
because these techniques (signature- based or
matching) assumes that, once a malware is
identified, its byte sequence remains the same. This
is not the same with the current malware as they can
change their shape and form depending on the
environment. Hence, this requires the use of machine
learning and other adaptable methods that learn from
experience instead of static codes [26]; [5].
Notwithstanding the limitations in the face of
obfuscation and other evasive techniques, the use of
static disassembly is known to reveal some malware
features that can be used for training adaptive
algorithms [26].

Thus, we envisaged that using different static
analysis techniques to extract some features and
training ensembles has the potential to improve
performance accuracy and resilience against
obfuscation and other evasive techniques employed
by malware developers to exploit static techniques.
To be able to develop novel tools and techniques,
requires an understanding of the the types of
obfuscation techniques employed by malware
attackers and how we employed obfuscation in our
dataset to test the resilience of the models against
malware obfuscation.

2.1.2. Obfuscating the Malware
Malware obfuscation is the deliberate hiding of a
malware binary's identity with the goal of evading
detection by the detection system. This is essential
because malware defenders have developed methods
throughout time to prevent malware from causing
damage to their computing systems. Its created to
avoid detection by anti-virus software or malware
detectors disguise Malware, opening the door to
exploitation. [12] claims that several methods are
used to mask the genuine nature of malware. He
indicated that, malware is obfuscated using
techniques such as, dead code insertion, code
transposition, subroutine reordering, instruction

Journal of Theoretical and Applied Information Technology

15th December 2023. Vol.101. No 23
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7525

replacement, register reassignment and others. The
strategies and their descriptions are listed in Table 1.

For the purpose of this study, we used dead code
insertion and code transposition to disguise the
malware. We inserted null codes into the binaries
and in some of the samples we transposed the codes.
The aim was to conceal the identity of the malware
samples to observe the performance of the models
after obfuscation. The use of the obfuscation
techniques changes the byte sequence and hash
values of the malware binary making it difficult for
the signatures to be matched for detection. However,
the potency of the malware is still maintained in the
masked state. This phenomenon has posed detection
challenges requiring the use of novel adaptable
techniques with generalizability, and memorability
for improved malware detection. Hence, the
motivation for our proposed approach to use the
static disassembly to obtained relevant features to
train adaptable methods for improved detection.

2.1.3. Motivation for Our Proposed
Homogeneous Hybrid Approach

Current arguments on the use of heterogeneous
hybrids between static and dynamic environments
with base machine learners have been explored with
some considerable success [19]. However, the issue
of poor features, class imbalances, and the use of
obfuscation techniques remain some of the
challenges [28]. We argued that static disassembly
of malware samples can reveal relevant features that
can be used to improve malware classification. By
statically disassembling the malware binaries,
extracting only ‘fine-grained’ instead of the usual
collection of all features revealed in the disassembly
process can produce relevant features for effective
and efficient malware classification. Additionally,
the use of SMOTE data augmentation technique to
rebalance the dataset leads to improvement in
malware classification accuracy and overcome the

class imbalance problem where the models tend to
be bias towards majority sample at the expense of
the minority sample. Thirdly, we proposed that to
improve resilience against obfuscation requires the
exposure of the models to the various obfuscation
techniques during the training phase of the Ensemble
techniques. The choice of the ensembles is based on
the fact that, the traditional of conventional ML
techniques are largely unstable in non-stationary
environments, susceptible to bias, variability and
noise. Therefore, motivated by this, we proposed a
HMSHF with ensemble and data augmentation
technique (SMOTE) for efficient and resilient
malware classification. The purpose was to provide
efficient features for malware classification, using
data augmentation technique (SMOTE) to overcome
the problem of class imbalance resulting ‘accuracy
paradox’, and the demonstration of resilience and or
robustness of the proposed technique against
obfuscated malware detection.

2.2. Malware Dataset and Preprocessing

This section discusses the modelling process from
including datasets and processing activities, feature-
engineering process, the description of the ensemble
models, the performance evaluation methods.

2.2.1. Dataset and Preprocessing

For this experiment, we collected malware samples
from two main sources; VirusTotal.com and for a
four year period (2017-2019) and (2019-2021). This
was necessary because malware landscape is
evolving and revolving and new, novel and variants
of known malware come into being [29]. By
including these malware samples, we are sure to
have almost all new and variants of known malware.
To obtain benign samples for this study, we
extracted these files from the windows operating
systems. Using virusTotal.com, we checked whether
a sample is benign or malicious when all the virus
scanners flags it as malware or non-malware.
Consequently, we combined these malware and
benign ware to form our experimental dataset
comprising 11,678 malware and 3,963 benign ware
and made up of different malware families. Tables 3
and 4 shows the malware categories and the total
dataset size used for the study respectively.

Journal of Theoretical and Applied Information Technology

15th December 2023. Vol.101. No 23
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7526

From the data exploration stage, it was realized that,
the malware dataset was imbalanced. This
phenomenon if not managed well may result in what
is usually known as the “accuracy Paradox” where
the prediction would be skewed or bias towards the
majority sample. Consequently, the composition of
the dataset shows that it is imbalance made up of
74.66% and 25.34% making it mildly skewed as
shown in figure 2. To overcome data imbalance to
obtain true accuracy of models, there are a number
of methods to apply as a means of resampling. The
most common are undersampling and oversampling
with most users adopting the oversampling
techniques relative to the undersampling. This is
because; undersampling may remove instances of
data with relevant information [25]. For this reason,
we opted to use oversampling technique known as
Synthetic Minority Oversampling Technique
(SMOTE).

Figure 2. Imbalance Dataset

2.2.2. Applying SMOTE
 To overcome this imbalance in the data, a number
of under sampling and over sampling techniques can
be applied based on the merits and demerits [30]. For
the purpose of this study, we used the SMOTE using
SMOTE algorithm in python. This creates synthetic
data points from the minority sample to balance the
dataset. This approach using the algorithm results in
balancing the data as shown in figure 3. The two data
samples are now balanced which leads to prediction
of both malware and benign ware equally and
presents the true prediction or classification of the
models. By this approach, the bias and or

skewedness of the model is prevented resulting in
overcoming the ‘accuracy paradox’.

Figure 3. Balanced Data After Applying SMOTE.

Thus, to test the proposed approach, we applied this
data augmentation techniques at the hybrid level for
improved accuracy using sklearn. The code snippet
of the SMOTE algorithm from the sklearn is as
shown below in figure 4:

From imbalance.over_sampling import SMOTE
Counter = counter (y_train)
Print (‘before’, counter)
oversampling the traini dataset using SMOTE
Smt = SMOTE ()
#X_train, y_train =smt.fit _resample (X_train,
y_train)
X_train_sm, y_train_sm =
smt.fit_resample(X_train, y_train)

Figure 4. Code Snippet of the Smote Algorithm
2.3. Feature Engineering.
Feature Engineering (FE) the use of domain
knowledge to identify or select and transform the
most relevant variables or attributes from a given
raw data for training MLs for predictive modelling.
It refers to the process of representing a real-world
problem in a manner that makes it possible for
machine learning techniques [32]. Thus, in searching
for relevant features, FE process transforms the
extracted features/data into relevant representative
features that underlies the problem leading to
improvement in the performance of the ML.

2.3.1. Static disassembly of Malware and Feature
Selection
Features play a critical role in machine learning. [31]
suggest that machine-learning detectors start and die
based on the features. Malware features can be
obtained using static analysis or dynamic analysis
[26]. To obtain features for the training of our
ensemble models, we extracted three features:
strings, opcodes, and API calls. For the purpose of
this work, we used static disassembly of malicious
binaries to extract the needed string, opcode, and

0

5000

10000

15000

Malware Benignware

0

5000

10000

15000

Malware Benignware

Journal of Theoretical and Applied Information Technology

15th December 2023. Vol.101. No 23
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7527

API call features as input for the training of our
ensemble models. Generally, most works tend to use
all the features revealed during disassembly to train
models. This is problematic because, some of the
features are not representative of the malware but
packed and crypted features that does not contribute
to the predictive value of the model. This often result
in poor prediction or classification and results in
redundancy and the usual curse of dimensionality.
Thus, we extracted only the ‘fine-grained’ features
with high predictive importance to form our feature
set. This approach was relevant to obtain the needed
features to train our models, which are the inputs for
the models to learn from and use that experience to
generalize [31]; [5]. Hence, increasing the quality of
our prediction, avoiding redundancy of features and
improved processing time. In all, 16 features from
each of the Strings, Opcodes, and API Call features
were retained after the feature selection process as
shown in Table 4.

2.3.2. Feature Selection
In ML application and in real-life, it is seldom that
the attributes in a given dataset would all have
usefulness in the prediction of a phenomenon. Thus,
when there are many attributes it results in
redundancies that reduces the generalizability of the
model, impact negatively on the accuracy of the
model of classifier and also results in the model
complexity leading to high computational resource
requirements[31]; [26]. Feature selection is a
technique of finding the best set of features that
enables the building of optimized models of a
studied phenomenon. For example, given data N,
with input dimension d, and selected dimension k,
selecting features k that gives the most information
of the problem and discarding the others, i.e. (d-k)
dimensions [31].
These techniques can be Filters, wrappers and
embedded and each of them has their potentials and
limitations. Filter-based selection methods checks
for correlation with the dependent variable. They are
faster and less overfitting. They include information
gain, chi-square, and variance methods. In wrapper
techniques, models are build and the best model is
chosen. Examples of these are genetic algorithms
(finding subset of the features with relevant
information and using them). Recursive techniques

(removes all the weakest features with low feature
importance) and sequential methods (add highest
features together). They are computationally
expensive and prune to overfitting. However, they
have best performance and select only optimal
features. Embedded feature technique also makes a
model and select the model features with the best
feature. They are faster as filters, have more
accuracy that filters, less prune to overfitting.
String features are plain text in nature usually
encoded in executable files used by malware
attackers. They are usually found in windows
systems such as GetLayOut, SendMailFail,
SendMail, GetCurrentProcess. Thus, to extract
string features we used the String Utility from
Microsoft to search for the executable files or
binaries from both ASCII and Unicode. In addition,
we used IDA Pro for the automatic disassembly of
the codes to obtain the string features. The
disassembly revealed several features. However, a
critical analysis of the features showed that most of
the revealed features were packed and obfuscated
and would not contribute to the predictive capability
of the model, hence, only feature with high
importance was used.
Opcodes (operational code) is an instructional level
machine language used to identify operations to be
executed. We disassembled the collected files to
extract the instruction level sequence in assembler
language using ndisasm tool. Examples of opcode
sequences include Mov, Pop, and Push [17].
 Finally, we disassembled Portable Executable (PE)
files from dynamic link libraries of windows systems
in the Win32 PE binaries. We extracted API Call
features using windows systinternals found in
Microsoft systems. The table below show the sample
API Call features extracted for the study. Sample of
all the Features are as shown in table 5.
Table 5. Sample Features From Static Analysis Methods.

Therefore to reduce the dimensionality of the
features extracted , we used a feature selection
Fisher’s Score which is one of the filter methods. it
is one of the most widely used supervised feature
selection methods. this algorithm works by
calculation the score of the features and ranking
them in descending order of magnitude. Based on
this rank, we extracted the relevant features for the

Journal of Theoretical and Applied Information Technology

15th December 2023. Vol.101. No 23
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7528

training and integration. The code snippet of the
Fisher Score algorithm is as shown figure 5.

1. from skfeature . function. similarity_based
import fisher_score

2. import matplotlib.pyplot as plt
3. % matplotlib inline
4.
5. # calculating scores
6. Ranks =fisher_score. Fisher_score (X, Y)
7.
8. #plotting the ranks
9. Feat_impotances =pd. Series(dataframe.

Columns(0: len(dataframe. Columns)-1])
10. Feat_impotances .plot(kind=’barh’, color

= ‘teal’)
11. Plot. Show ()

Figure 5. Code snippet of the Fisher’s Score
Algorithm

2.3.3. Hybrid Integrated Malware Feature set
and Representation

To obtained uniform features for the training of our
models, the extracted strings, opcodes sequence and
API Call features extracted were integrated into a
HIMF. This is shown diagrammatically in figure 6
below. The features were concatenated and
vectorized into binary 0 and 1 for benign and
malware respectively.

Figure 6. Architecture of our Proposed Hybrid Features

For machine-learning algorithms to be able to learn
the patterns, the features needs to be converted into
a vector form. For malware features such as strings,
Opcodes and API Calls, the creation of
representative vector can be done using a number of
ways including frequency feature vector, frequency
weighted feature representation and or binary feature
representation [28]. For the purpose of this work, we
used the binary frequency vector approach as
described by [28] and [26]. In binary representation,
the features are represented as a binary feature F
signifies the presence of absence of a malware binary

given a resulting feature vector as VFb= (bs1,

bs2………………bsn), where bsi is 1 if F contains an
instance of si or 0 if otherwise, where n is the size of
the sample or dataset. With this, our chosen
ensembles were trained with the training dataset and
tested with the testing dataset. The complete feature
set and their importance in percentages is shown in
figure 7 below.

Figure 7. Proposed Hybrid Features

2.4. Selecting and Description of the Ensemble

Algorithms

Four-machine learning algorithms were explored;
Random Forest (RF) Model, Support Vector
Machine (SVM), GradientBoost and
eXtremeGradient Boost were trained using 80% for
training and 20% for testing. We chose these
techniques because they are good at binary
classification. The train–test process was necessary
to ensure that the model achieve optimum
performance. This was to avoid over generalization
of the model or the under fitting or overfitting
problem usually encountered in machine learning.
The next section discusses the algorithms used in the
experiment.

2.4.2. Random Forest (RF)
RF model is used in many fields such as banking,
health care, stock market prediction, e-commerce
and cybersecurity with very good success (Balram,
Hsieh & Mcfall, 2019). Security community has
used decision tree-based algorithm but it is always
not used alone. Many trees are trained and used
together to make a prediction in a fashion known as
Random Forest. This ensures that each tree sees the
data differently to improve detection outcomes. To
make the prediction as to whether a binary is
malware or benign, the trees are allowed to vote and

Journal of Theoretical and Applied Information Technology

15th December 2023. Vol.101. No 23
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7529

the most popular vote wins. More precisely, suppose
D = {(𝑥ଵ,𝑦ଵ), … , (𝑥௡ , 𝑦௡)} is data sampled from
ℝௗ × 𝑆-valued random vector (𝑋, 𝑌) with possibly
known distribution, for some positive integer 𝑑 ≥ 1.
The objective of the random forest (RF) algorithm is
to predict 𝑦 from 𝑥 using an ensemble ℎ
={ℎଵ(𝑥), … ,ℎ௞(𝑥)} of classifiers for decision trees.
The decision tree for the classifier ℎ௞(𝑥) is

determined by the parameter 𝜃௞ = ቀ𝜃௞భ
, … , 𝜃௞೛

ቁ

that is a realization of a known random variable 𝜃,
that describes the subsets of the data set 𝐷 that
constitute the decision trees of the classifiers in ℎ.
Thus
ℎ௞(𝑥)
= ℎ௞(𝑥|𝜃௞). (1)
Each tree in the random forest cast a vote for the
most popular class 𝑦 ∈ 𝑆 for the input data 𝑥. The
vote of the 𝑘௧௛ tree is the output of the
classifier ℎ௞(𝑥). The class with the most votes wins.
Therefore the decision function is then given as

𝐻(𝑥) = 𝑎𝑟𝑔 max
௬∈ௌ

෍ 𝐼

௞

௜ୀଵ

(ℎ௜(𝑥)

= 𝑦), (2)
where 𝐼(ℎ௜(𝑥) = 𝑦) is the indication function. The
margin function for the best class 𝑦 ∈ 𝑆 of a random
forest is given
𝑚(𝑥, 𝑦) = 𝑃ఏ(ℎ(𝑥|𝜃) = 𝑦) − max

௨ஷ௬
𝑃ఏ(ℎ(𝑥|𝜃) =

𝑢), (3)
where 𝑃ఏ is the probability distribution of the
decision tree generating random variable 𝜃. Note that
𝑚(𝑥, 𝑦) is the measure of extent the probability of
votes for best class exceeds the probability for the
next-best class. Therefore, the generalization error
ℯ takes the
ℯ = 𝑃௫,௬(𝑚(𝑥, 𝑦) < 0) ≤
௏௔௥ೣ ,೤൫௠(௫,௬)൯

ቀ𝔼ೣ,೤൫௠(௫,௬)൯ቁ
మ (4)

where 𝑃௫,௬ , 𝔼௫,௬ and 𝑉𝑎𝑟௫,௬ are respectively the
probability distribution, expectation and variance of
the random vector (𝑋, 𝑌). The inequality follows
from the Chebyshev’s inequality.

2.4.3. Support Vector Machine
Consider the following training data 𝑥ଵ, 𝑥ଶ, … , 𝑥௡ ∈
ℝ஽, the D-dimensional Euclidean space. The aim is
to classify the points as
S = {(𝑥ଵ,𝑦ଵ), (𝑥ଶ, 𝑦ଶ), … , (𝑥௠ , 𝑦௠)} ⊂ ℝ஽ ×
{−1, +1},
with the help of a separating hyperplane 𝑤⋅x+b=0. A
training data 𝑥௜ will get

𝑦௜ = ൜
+1, 𝑖𝑓 𝑥௜ 𝑖𝑠 𝑎𝑏𝑜𝑣𝑒 𝑡ℎ𝑒 ℎ𝑦𝑝𝑒𝑟𝑝𝑙𝑎𝑛𝑒
−1, 𝑖𝑓 𝑥௜ 𝑖𝑠 𝑏𝑒𝑙𝑜𝑤 𝑡ℎ𝑒 ℎ𝑦𝑝𝑒𝑟𝑝𝑙𝑎𝑛𝑒

The training points closest to the separating
hyperplane are called the support vectors and the
objective of the Support Vector Machine is to
orientate the hyperplane, by tuning w and b, to
ensure it is as far as possible from the support
vectors. Thus, we want to maximize the margin 𝜌 =

 min
௫∈{௫భ,௫మ,…,௫೘}

|௪⋅୶ାୠ|

‖௪‖
 (5)

By choosing 𝑤 and b such that the support vectors
satisfying |𝑤 ⋅ x + b| = 1 we get that

𝜌 =
1

‖𝑤‖

Therefore, the resulting maximization problem
becomes

 max
 ௪,ୠ

1

‖𝑤‖

 subject to 𝑦௜(𝑤 ⋅ 𝑥௜ + 𝑏) ≥
1, for all 𝑖 = 1, … , 𝑚
which 𝑖𝑠 equivalent to
 min

 ௪,ୠ

భ

మ
‖௪‖మ (ଵଵ)

 subject to 𝑦௜(𝑤 ⋅ 𝑥௜ + 𝑏) ≥
1, for all 𝑖 = 1,2, … , 𝑚
The Lagrangian to this convex quadratic
optimization problem is
𝐿(𝑤, 𝑏, 𝛼) = భ

మ
‖𝑤‖ଶ – ∑ 𝛼௜

௠
௜ୀଵ (𝑦௜(𝑤 ⋅ 𝑥௜ + 𝑏) −

1 (6)
 with 𝛼௜ ≥ 0, for all 𝑖 = 1,2, … , 𝑚.

Note that for all 𝑖 = 1,2, … , 𝑚,
𝛼௜[(𝑦௜(𝑤 ⋅ 𝑥௜ + 𝑏) − 1
= 0. (7)

This last condition implies that 𝛼௜ ≥ 0, for support
vectors 𝑥௜ and 𝛼௜ = 0 if 𝑥௜ is not a support vector.
Taking the gradients of L with respect to 𝑤 and b and
putting them to zero result in the equations

𝑤 = ෍ 𝛼௜𝑦௜𝑥௜ (8)

௠

௜ୀଵ

and

෍ 𝛼௜𝑦௜

௠

௜ୀଵ

= 0 (9)
Putting the above equations into L(𝑤,b,𝛼) results in
the dual optimization problem,

max
ఈ

𝐿(𝛼)=∑ 𝛼௜
௠
௜ୀଵ −

ଵ

ଶ
∑ 𝛼௜𝛼௝𝑦௜𝑦௝(𝑥௜𝑥௝)௠

௜,௝ୀଵ

subject to: ∑ 𝛼௜𝑦௜
௠
௜ୀଵ = 0,

 and 𝛼௜ ≥ 0, for all 𝑖 = 1,2, … , 𝑚.
Substituting the unique solution 𝛼ത of the above dual
problem into the above expression for 𝑤 gives us
required expression for
𝑤 =
∑ 𝛼ത௜𝑦௜𝑥௜

௠
௜ୀଵ (10)

Journal of Theoretical and Applied Information Technology

15th December 2023. Vol.101. No 23
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7530

For the expression for b observe that if 𝑥௜ is a support
vector then

𝑦௜(𝑤 ⋅ 𝑥௜ + 𝑏) = 𝑦௜ ൮ቌ෍ 𝛼ఫഥ 𝑦௝𝑥௝

௠

௝ୀଵ

ቍ 𝑥௜ + 𝑏൲

= 1 (11)
Thus, if 𝑥௜ is a support vector then

෍ 𝛼ఫഥ 𝑦௝(𝑥௝

௠

௝ୀଵ

. 𝑥௜) + 𝑏

= 𝑦௜ (12)
Hence 𝑏௜ = 𝑦௜ −
∑ 𝛼௝𝑦௝

௠
௝ୀଵ (𝑥௝ . 𝑥௜) (13)

Now averaging over all the various support vectors
we get

b =
ଵ

ேೄೇ
∑ ൫𝑦௜ − ∑ 𝛼ത௝𝑦௝൫𝑥௝ ⋅௠

௝ୀଵ௜∈ௌ௏

𝑥௝൯൯ (14)
where SV is the index set of all support vectors and
𝑁ௌ௏ is the number of support vectors.

2.4.4. AdaBoost
AdaBoost is one of the most popular ensemble
techniques (Balram, Hsieh & Mcfall, 2019). It is the
best-known family of algorithms using boosting
(Adaptive Boosting). In adaptive boosting
(AdaBoost), an initial classifier is trained on a
training set. The weights of incorrectly classified
samples are incremented. A second classifier is
again trained on the dataset that contains the
incremented or updated weights. This iterative or
recursive process terminates when the
predetermined estimator number is reached or an
optimal predictor is found. The down side of the
model is the fact that, it is sequential and cannot be
executed in parallel. However, due to its skill and
stability in prediction, we used it for our
classification. The description of the AdaBoost
algorithm is given below.

Let us consider the labeled data
൛൫𝑥ଵ,𝑦ଵ,൯, … , ൫𝑥ே 𝑦ே,൯ൟ , with 𝑥௜ ∈ ℝௗ, 𝑑 ≥ 1 and
𝑦௜ ∈ 𝑆 = {−1, +1}. The objective of Adaboost
algorithm is to use a collection of weak classifies
{ℎଵ, ℎଶ, … , ℎ௄} and optimally constructed weights
{𝛼ଵ, 𝛼ଶ, … , 𝛼௄} to generate a strong classifier

ℎ(𝑥)

= sign ൭෍ 𝛼௞ ℎ௞(𝑥)

௄

௞ୀଵ

 ൱ (15)

The weights 𝛼ଵ, 𝛼ଶ, … , 𝛼௄ are generated
incrementally with the help of the following
algorithm:

 Initialize by putting 𝑤௜
(ଵ)

= 1 for all 𝑖 =

1,2,3, … , 𝑁
 for k=1 to K do
 Fit classifier ℎ௞ to data to
minimize the error

 𝜀௞ =
∑ ௪೔

(ೖ)
ூ(௛ೖ(௫೔)ஷ௬೔)ಿ

೔సభ

∑ ௪
೔
(ೖ)ಿ

೔సభ

 where 𝐼(ℎ௞(𝑥௜) ≠ 𝑦௜)=1 if
ℎ௞(𝑥௜) ≠ 𝑦௜ and 0 otherwise

 𝛼௞ = log ቀ
ଵିఌೖ

ఌೖ
ቁ

 for all 𝑖 = 1,2,3, … , 𝑁, do

 𝑤௜
(௞ାଵ)

= 𝑤௜
(௞)

𝑒ఈೖூ(௛ೖ(௫೔)ஷ௬೔)
 end for
 end for

Note that the updated weight 𝑤௜
(௞ାଵ) is the same as

𝑤௜
(௞) if the classifier ℎ௞ correctly classified the data

point𝑥௜, otherwise the weight 𝑤௜
(௞ାଵ) is 𝑤௜

(௞) scaled
by 𝑒ఈೖ.
After the training and testing the four algorithms
their performances were measured.

2.4. Training and Testing the Ensembles.
Ensemble algorithms are also called committee-
based learners. When the data is non-stationary and
in the presence of class imbalances, the use of
conventional ML techniques produces suboptimal
performance [27]. When this happens, the need for
the use of combination of models is recommended.
He content that an ensemble is always better than the
base classifiers. Therefore, the main purpose of
ensembles is to improve the accuracy of the models
compared with the individuals. [27] suggested that,
ensembles can be combined in many ways; majority
voting where the modal classifier is considered(the
class with highest frequency).

The need for ensembles in ML is established as
means for more accurate prediction than the base or
individual classifiers. This dates back to the 1990s
[28]. They are known as committees whose aim is to
aggregate the classification or prediction of the
individual classifiers. They include random forest,
gradient boosting and others. Generally, ensembles
can take the form of bagging, boosting, stacking and
heterogeneous ensembles. Many authors in the
current literature apply machine-learning
approaches to malware classification, and the
approach is on a continuum [8]; [18]; [5]. Our
analysis of the various literature and an initial
experiment conducted on the use of machine
learning and homogeneous features led us to identify
four algorithms for this study. After obtaining the

Journal of Theoretical and Applied Information Technology

15th December 2023. Vol.101. No 23
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7531

dataset, conducting Exploratory Data Analysis
(EDA) or preprocessing, and the feature
engineering, the need for model selection was
obvious. The Random Forest (RF) Model, Support
Vector Machine (SVM), AdaBoost, and eXtreme
Gradient Boost ensemble algorithms. We chose
these techniques because they are good at binary
classification and robust against imbalanced data.
After the selection of the models, we trained them
using the dataset and features based on the simple
train-test split. We divided the dataset into two,
using 80% of the data for training and 20% for
testing.

We trained and tested the models first with the
individual features before and after the malware,
dataset was obfuscated. This was to test the
performance accuracy of the models and form the
baseline performance of the features. Secondly, we
trained and tested the models on the hybrid features
before and after the obfuscation of the malware
dataset. The rationale of this was to observe the
performance of the proposed approach in handling
obfuscated malware and to compare the performance
with the performance of the models on the single
features. Thirdly, having established the
performance of the models, the need to deal with the
problem of class imbalance that leads to the
‘accuracy paradox’ was considered. Since our
dataset is imbalanced, as witnessed in many malware
detection environments, the use of ensemble
techniques with SMOTE and other imbalance data
handling techniques would lead to improvements in
classification performance [25]. Thus, we applied
the SMOTE technique on the training set with the
hybrid features and tested to observe the
performance of the models. This was to observe the
effect or impact of the accuracy paradox without and
with data augmentation. Fourthly, the performance
of the proposed technique is compared with cited
literature.

2.5. Performance Evaluation
Therefore, having evaluated the performance of the
models on the individual features before and after
the malware dataset was obfuscated, we evaluated
same using the hybrid features before and after the
obfuscation, and the performance of the models with
the hybrid and SMOTE. The performance of the
models were obtained from the confusion matrix or
the contingency table.
To be able to determine the efficiency of a model, it
has to be evaluated using performance metrics.
These refers to standards used to assess the
characteristic and the behavior of an artifact [31].

The following performance metrics were used;
Accuracy, Sensitivity/Hit Rate/Recall/True positive
Rate (TPR), False positive Rate(FPR)/Precision,
True Negative Rate/specificity(TNR). These
measures are obtained from the confusion matrix or
contingency table as shown in table 3 below.

Sensitivity is the proportion of correctly classified
malware samples in the dataset. False Positive Rate
= 1-specificity. Accuracy is the proportion of
correctly classified observations in the dataset and is
represented as shown in equation 17. Other metrics
such as True Positive Rate (TPR), False Positive
Rate (FPR), True Negative Rate(TNR) are as shown
as in equation 18-20.

𝐴ccuracy =
TP + TN

TP + TN + FP + FN
… (16)

Precision =
TP

TP + FP
… … … … … . . (17)

Recall =
TP

TP + FN
… … … … …. (18)

F1 − Score =
2 ∗ TP

2 ∗ TP + FP + FN
… . (19)

For the purpose of this work, we used accuracy, false
positive rate as performance metrics that is
recommended if accuracy is the aim of the work. The
next section presents the results of the study.

3. RESULTS AND DISCUSSION OF THE

STUDY.

The study proposed an improved malware variant
detection model based on the use of improved
homogeneous hybrid features, SMOTE data
augmentation technique and exposure to various
malware obfuscation techniques. The purpose was to
provide efficient homogeneous static-based malware
features, employ SMOTE data augmentation
technique to overcome the accuracy paradox, and
exposing ensemble algorithms to sufficient
obfuscation techniques during the training of the
models to improve resilience against obfuscated
malware attacks. This section present the results and
discussion of this experiment using charts, figures,
tables and other visuals.

3.1. Performance of Ensemble Techniques on

Individual Features Malware Obfuscation
In order to be able to test the accuracy of the
extracted features, we used each of them in training

Journal of Theoretical and Applied Information Technology

15th December 2023. Vol.101. No 23
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7532

and testing of the models. We evaluated the
performance of the models on the individual, or
mono features in classifying malware samples
(strings, opcode sequence, and API call features). As
depicted in figure 8, the string features showed
relatively good classification performance with the
dataset, with the eXtreme Gradient Boost ensemble
scoring 85.6% accuracy and 3.2% false positives.
The rest of the models scored below with relatively
high false-positive values compared with the XGB
Model.
The relative moderate performance of the models
might be because the malware dataset comprised a
variety of malware families with different features or
attributes, while the models were trained on single
features. Thus, using a single feature for the training
meant that the models would not gain sufficient
experience to be able to generalize with other new
malware samples, resulting in poor classification
accuracy. This finding or result is consistent with or
supported by [27]; [12], who suggested that malware
detectors start and die based on features and that if
poor and insufficient features are used to train a
model, it leads to suboptimal performance. This
requires that when training a model, there be
sufficient features with enough variety to enable the
model to generalize with the unseen data or sample
later on.

Figure 8. Performance Of Ensembles On Individual
Features Before Obfuscation

3.2. Performance of Ensemble Techniques on

Individual Features after Malware
Obfuscation

Similarly, we tested performance the models'
resilience or robustness to obfuscated malware using
the individual features. The malware samples were
obfuscated and the experimented repeated to

determine how resilient the models are to malware
obfuscation or changes. As indicated in the figure 9,
the performance of the models remains unchanged
with the obfuscated dataset.
This result suggests that, unlike static and or
signature-based detection systems that are unable to
adapt to new and previously unknown malware, our
approach using the ensemble produces adaptability,
learnability, and robustness with respect to changes
that occurred to the malware dataset. Hence, the
changes in the malware binaries had no effect on the
predictability of the models. This is in tandem with
[27] who opined that, the exponential growth in
malware volumes, variety and complexity leading to
variants of known malware requires the use of ML
techniques.
Consequently, the changes introduced into the
malware by the obfuscation did not affect the
classification potential of the models. This is in
tandem with [29]; [26]; [27], who hold the view that
the limitations of the existing signature-based
detection system are a result of malware authors
adopting obfuscation and other encryption
techniques, leading to variants of malware such as
polymorphic, metamorphic, and oligomorphic that
evade detection.
 As signature-based static techniques, including
many anti-virus scanners, operate on the assumption
that, once a malware is identified, its characteristics
remain the same for its entire lifespan, the use of
obfuscation defeats such a position as the technique
leads to new and or variants of the known malware,
making detection impossible due to the inflexibility.
Thus, the use of the adaptable ensemble classifiers
with our proposed technique allows the machines to
learn and adapt to the changes introduced in the
obfuscated malware, leading to the maintenance of
the same classification performance. Therefore,
using the features as input and training the ensemble
ensured that they were able to generalize to detect
even hitherto unseen malware. This is required to
detect not only known malware but also unknown
malware, including zero-day vulnerabilities.

78.4

21.5

77.2

23

82

3.8

74.769.1

26.5

70.7

29

84.5

3.5

81.6

18

85.8

3.2

0

20

40

60

80

100

API Call FeaturesOpcode FeaturesString Features

Ensemble Performance with API Calls,
Opcodes and String Features

RF SVM Gboost eXtremGboos

Journal of Theoretical and Applied Information Technology

15th December 2023. Vol.101. No 23
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7533

Figure 9. Performance of Ensembles on Individual

Features after Obfuscation

3.3. Performance of Ensemble Techniques with
Hybrid Features before and after Malware
Obfuscation

In order to improve the performances of the models,
we proposed a hybridization of string, opcode, and
API call features, all extracted from static
disassembly, to form an integrated feature set. We
used these features to train and test the ensemble
techniques in harmony with [26]; [10], who
suggested that the weaknesses in signature-based
detection methods could be improved by the
integration of the techniques in malware analysis. As
shown in Figure 10, all the models performed
moderately well, with the eXtreme Gradient Boost
ensemble outperforming the others in classification
accuracy and false positive rates.

Figure 10. Performance Of The Proposed Approach
Before Obfuscation

The relative good performance of the models might
be a demonstration of the fact that ensembles always
outperform their individual classifiers and are good
for non-stationary datasets. The XGBoost algorithm,
which is an extension of the usual gradient boosting,
has shown to be resilient and robust with large
datasets due to its scalability. Thus, with the
relatively larger dataset and due to its scalability, the
XGB demonstrates superior classification
performance in terms of accuracy and false-positive
rates compared with the others. This is in line with
[22], who suggested that the ability of XGB to
handle large data coupled with its scalability makes
it a good choice to reduce the residual error of
estimators leading to improved prediction and a
suitable candidate for parallel computing and cloud
computing, where malware attacks are common
3.4. Performance of Ensemble Techniques on

Hybrid Features after Malware Obfuscation
Similarly, the performance of the models was
evaluated after the malware dataset was obfuscated.
This was to test the resilience and robustness of the
homogeneous hybrid in classifying obfuscated
malware and malware variants such as polymorphic,
metamorphic, oligomorphic, and other mutant
malware. The results of the models with the
obfuscated malware dataset are shown in Figure 11.
As depicted from the figure, there was no variations
in performance of the models after the obfuscation.
Again, the XGB model led in performance accuracy
and false-positive rates. As explained earlier, the
lack of variation in performance of the models and
the relatively high performance accuracy
demonstrates the resilience and robustness of the
homogeneous hybrid technique or features as an
efficient technique for malware classification, which
is in line with [28].

Figure 11. Performance Of The Proposed Approach
After Obfuscation

81.6

15

80.7

18

85.8

3.2
0

20

40

60

80

100

API Call FeaturesOpcode FeaturesString Features

Ensemble Performance with API Calls,
Opcodes and Pefile Features

RF SVM Gboost eXtremGboos

0
20
40
60
80

100
97.8 97.9 98.9 99.87

1.8 1.7 1.6 1.3

Ensemble Performance on Proposed Hybrid
(HMST)

Hybrid Features Accuracy Hybrid Features FPR

0
50

100
97.8 97.9 98.9 99.87

1.8 1.7 1.6 1

Ensemble Performance on Proposed
Hybrid (HMST)

Hybrid Features Accuracy

Hybrid Features FPR

Journal of Theoretical and Applied Information Technology

15th December 2023. Vol.101. No 23
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7534

3.5. Comparing the performance of the proposed
approach with the individual features

Similarly, comparing the performance of the hybrid
with the individual features, there was a vast
improvement in the performance of the proposed
technique over the individual features,
demonstrating the ability of the proposed approach
to detect and classify many malware categories. As
shown in Figure 12, the hybrid approach largely
outperformed the individual features. This is
necessary because with the current increase in
malware volumes, variety, and complexity, there is
a need for automated tools to not only target a single
malware family but to be able to detect and classify
a variety of these malware forms. Thus, the variety
of malware included in our dataset and the high
performance in terms of classification accuracy and
false positive rates demonstrate the resilience of the
approach in handling diverse malware families. This
is necessary to avoid the adoption and installation of
many detection tools at the same premises for
malware analysis and defense.

Figure 12. Comparison Of Hybrid With Individual
Features

3.6. Overcoming the ‘Accuracy Paradox’ in Class

Imbalance using the Proposed Hybrid
Features

To overcome the class imbalance problem in the
dataset, data augmentation techniques such as
oversampleing or undersampling methods can be
applied. Undersampling is where some random
samples are extracted from the majority class; whiles
in oversampling, synthetic samples are added to the
minority class. Each of these have their trade-offs

depending on the circumstances. Oversampling
methods mostly used due to the advantage explained
earlier. Thus, we applied SMOTE technique, which
is an oversampling method to rebalance the dataset
and reduce the skewedness of the model and
provides for the true classification accuracy.
As depicted in table 7, the accuracy of the models
after the application of the SMOTE technique
reduced. These results suggest that, with the
imbalance dataset, there was some form of bias,
which lead to the higher accuracy. However, when
the data augmentation technique (SMOTE) was
applied, the true classification accuracy of the
models were obtained that led to the reduction of the
accuracy. This position is in tandem with [27], who
suggested that to efficiently manage the imbalance
data asymmetry, requires the use of sampling
methods that rebalances the dataset leading to better
performance of the classifiers.

Table 7. Performance of Models without and with SMOTE

This implies that, with imbalance dataset as
experienced in most security domains, the use of
accuracy as a performance measure or metric
without data augmentation may result in inaccurate
results when accuracy is used as performance
measure. [27] contents that, under such
circumstances the use of Area Under Curve(AUC)
and F1-Score or measure provides a better
evaluation measure.

3.7. Comparison of the Proposed Approach with

similar cited Literature
Generally, since our approach is largely different
from the rest of the works, comparison is a
challenge. Under such conditions, the recommended
strategy is the use similar works and situate the new
work in context. Consequently, to situate the
performance of our approach within the context of
literature, we compared the performance of our
technique with similar studies from 2017 to date. As
depicted in Table 8, our approach performed
comparably better with all the cited literature. It is to
be noted that [29] achieved 99.78% with the use of
only opcodes. This is contrary to our approach, in
which we used multiple features (strings, opcodes,
and API calls) where we obtained 99.87% without
data augmentation and 98.8%. This allows our

Journal of Theoretical and Applied Information Technology

15th December 2023. Vol.101. No 23
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7535

model to gain more training experience with a
variety of features, which results in the detection of
a variety of malware compared with their approach,
which has limitations in detecting malware without
opcode features. In addition, all authors used
imbalanced data for their models; however, none of
them used data balancing techniques to avoid
skewed and biased classification. Consequently,
their classification accuracy may be subject to the
accuracy paradox.
Overall, our proposed approach used relatively
larger dataset size, efficient homogenous features,
we used the SMOTE data augmentation technique in
handling the imbalance data; avoiding the usual
‘accuracy paradox’ and tested the resilience of our
approach with obfuscated malware samples. In our
approach we showed that our classification accuracy
is unbiased and unskewed, which is necessary for
handling imbalance data. This observation is
consistent with [30], who suggest that one way of
overcoming the data imbalance problem is to use
ensemble with the oversampling techniques and
variants of these techniques.
Table 8. Comparison Of Our Proposed Technique With

Cited Literature.

Consequently, our proposed technique outperformed
the cited literature, gave a true measure of the models
as we have included the SMOTE to handle
imbalances, demonstrated resilience to malware
obfuscation, and used a relatively larger dataset in
our classification. Thus, to the best of our
knowledge, they demonstrate considerable novelty
or value and therefore present a huge potential for
malware classification in general and enhancing
static techniques in particular.

4. CONCLUSION AND FUTURE WORKS.

As the volumes, variety and complexity of malware
increases exponentially, the efficiency and efficacy
of signature-based detectors is compromised
requiring the use of automated Artificial Intelligence
and ML techniques. However, poor malware
features, poor classification accuracy due to the class

imbalances and the use of obfuscated malware
techniques to evade detection remains a major
challenge in malware detection systems. We have
demonstrated an efficient hybrid malware features
based made up of only ‘fine-grained’ features and
used an ensemble technique with SMOTE data
augmentation method to overcome malware
obfuscation and improve malware variant detection.
Specifically, we have demonstrated the efficiency of
the hybrid technique in classifying malware and
variants, overcome the ‘accuracy paradox’ usually
encountered with imbalanced data using the SMOTE
Technique, and finally, demonstrated the resilience
of the technique against malware obfuscation. We
therefore conclude that on the bases of the achieved
objectives, the proposed technique provided
efficient features that improved the performance
accuracy of the models in classifying unknown
malware, demonstrated resilience and robust against
obfuscated malware and variants of previously
unknown and known malware, including zero-day
malware. Thus, the proposed approach provides an
improved malware variant detection approach and
presents huge promise and potential for malware
detection including variants of known and unknown
malware.

Even though our approach achieved relatively high
performance, it has some limitations such as not
using the AUC and F1-Score, not using a rigorous
feature dimensionality reduction technique and the
use of ensemble not deep learning methods. in
future, we will use AUC and F1-Score as a measure
instead of the accuracy to see the effect. Also, we
shall apply Principal Component Analysis (PCA) as
a feature dimensionality reduction technique to
observe the performance of the models and finally,
apply deep learning techniques such as
convolutional neural networks (CNN) and or
Generative Adversarial Networks (GANs) to
observe the performance of the models in detecting
known, unknown and variants of known malware
including zero-day malware.

CONFLICT OF INTEREST: There is no
Known Conflict

AUTHOR CONTRIBUTION: Azaabi Cletus.
Main author. Worked on the experiments,
analysis, and writing up of the manuscript.

ALEX AKWASI OPOKU: Review of equations
and structure of the paper.

Journal of Theoretical and Applied Information Technology

15th December 2023. Vol.101. No 23
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7536

BENJAMIN ASUBAM WEYORI: Review of the
paper for experimental accuracy of the results

FUNDING : No External Funding.

REFERENCES

[1] Rajesh Kumar, Geetha, S. Effective Malware
Detection using Shapely Boosting Algorithm.
(IJACSA) International Journal of Advanced
Computer Science and Application, Vol. 13,
No.1, 2022.

[2] AV-Test Institute. Annual Malware statistics”
Malware Statictics. Retrieved online at
www.av-test.org/en/statistics/malware. 26th
February 2023.

[3] Bassett, G., Hylender, C.D., Langloise, P., Pinto,
A., and Widup, S. (DBIR Team), ” Verizon Data
Breach Investigations Report 2022”.Results and
Analysis.
https://www.verizon.com/business/resources/re
port. Retrieved 26th February, 2023.

[4] Chen, Z, Brophy, E, and Ward, T .Malware
Classification using Static Disassembly and
Machine Learning. CEUR-WS.org, 2021.

[5] Qussai M. Yaseen, Esraa Odat and Batool
Alazzam. Detecting Malware Families and Sub-
families using Machine-learning Algorithms:
An Empirical Study. (IJACSA) International
Journal of Advanced Computer Science and
Application, Vol. 13, No.2, 2022.

[6] Rosli, N., Warusia, Y., Faisal, M. A, Salamat, S.
R . Clustering Analysis for Malware Behavioral
Detection using Registry Data. (IJACSA)
International Journal of Advanced Computer
Science and Application, Vol. 10, No.12, 2019.

[7] Chritopher Hadnagy. Social Engineering: The
Science of Human Hacking. Wiley,
Indianapolise. URL: www.wiley.com.

[8] Ravi Kiran Vedrma, PLN Raju, K V Suba Raju,
Akhila Kalidindi . Feature Selection and
performance Improvement of Malware
Detection System using Cuckoo Sear
Optimization and Rough Sets. (IJACSA)
International Journal of Advanced Computer
Science and Application, Vol. 11, No.5, 2020.

[9] Saleh Alyahyan .Machine learning ensemble
methods for classifying multi-media data. A
thesis submitted for the degree of doctor of
philosophy at the University of East Anglia,
September 2020 (A dissertation).

[10] Javier Bermejo Higuera, Carlos, Abad,
Aramburu, Juan-Ramon Bermejo Hieguera,
Miguel Angel Sicilia Urban and Juan Antonio
sicilia Montalvo. Systematic approach to

malware analysis (SAMA). Applied Science,
2021 MDPI.
https://doi.org/10.3390/app10041360.

[11] Hemant Dhamija, Ajay, K. Dhamija. Malware
detection using Machine Learning
Classification Algorithms. International
Journal of Computational Intelligence
Research. Research India Publications, 2021.

[12] Jagsir Singh and Jaswinder Singh. Challenges
of malware Analysis: Obfuscation Techniques.
International journal of information security
science, vol.7. No. 3, 2018.

[13] Heena, A., and Mehtre, B., M. Advances in
malware detection-An overview. Institute for
Development and Research in Banking
Technology. arXiv:2104.01835v2[cs.CR]8May
2021.

[14] Kang, J., Won, Y. A study on Variant Malware
Detection Techniques using Static and Dynamic
Features. Journal of Information Processing
Systems , 2020
Https//:doi.org/10.3745/jips.03.0145.

[16] Rathore, H., Agarwal, S., Sahey, S.K., Sewak,
M. Malware Detection using Machine Learning
and Deep Learning. Journal of Information
Systems, 2020.

[17]] Hussain, S.J., Ahmed, U., Liaquat, H., Mir, S.,
Jhanjhi, N.Z., and Humayu, M. IMIAD:
Inteeleleigent Malware Identification for
Android platform, in proceedings of the
international conference on computer and
information sciences. Pp.1-6, Sakaka, Saudi
Arabia, April, 2019.

 [18] ABM. Adam et al. Performance Analysis of
Machine Learning Classifiers for Detecting PE
Malware. (IJACSA) International Journal of
Advanced Computer Science and Application,
Vol. 11, No.1, 2020.

[19] Yunus, K. B. M., and Ngah, S. B. Review of
hybrid analysis technique for malware
detection. IOP Conf. Ser. Mter.Sci.Eng. 769-
012075, 2022.

[20] Arora, A., Peddoju, S.K., and Permpair, M.C.
Android malware detection using permission
pairs” IEEE Transactions on Information
Forensics and Security, vol. 15, pp.1968-1982,
2020.

[21] F. Ali, N.B. Anuar, R.Salleh, G. Suarez-Tengil
and S. Funell “ AndroiDialysis: Analysis of the
android intent effectiveness in security and
communication networks. Computers &
security, vol.65.pp.121-134, 2017.

[22] Karbab, E.B., Debbabi, A., and Maldozer, D.M.

Automatic Framework for android malware

Journal of Theoretical and Applied Information Technology

15th December 2023. Vol.101. No 23
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7537

detection using deep learning. Digital
Investigation, vol. 24, no. S48-S59, 2018.

[23] Kim, T., Kang, B., Rho, M., Sezer, S., and IM,
G.E. A multimodal deep learning method for
android malware detection using various
features, IEEE Transactions on Information,
Forensics and security, vol.14. no. 3, pp.773-
778, 2019.

[24] Wang, W., Zhao, M., and Wang, J. Effective
android malware detection with a hybrid modal
based on deep autoencoder and convolutional
neural network. Journal of Ambient Intelligence
and Humanized Computing, vol. 10, no. 8.
Pp.3035-3043, 2019.

[25]] Rami Sihwail, Khairuddin Omar, Khairul
Akram Zaninol Ari Sanad Al-Afghani. Malware
Detection Approach Based on Artefacts in
Memory Image and Dynamic Analysis. Applied
Sciences. MDPI, 2019.
https://doi.org/10.3390/app9183680 .

[26] Monnappa, K. A. Learning malware analysis:
explore the concepts, tools and the techniques.
www.packt.com, 2018. Birmingham, Mumbai.

[27] Alexsandro Parisi. Hands-on artificial
intelligence for cybersecurity. Implement smart
AI System for preventing cyber-attacks and
detecting threats and network anomalies, Packt.
www.packt.com, 2020.

[28] Danny Kim. Improving Existing Static and
Dynamic Malware Detection Techniques with
Intrusion-level Behaviour. (Dissertation, 2019).

[29] Darabian et al. Detecting cryptomining
Malware: a Deep learning approach for static
and dynamic analysis. J.Grid Computing, 2020,
https://doi.org/10.1007/s10723-020-09510-6. .

[30] Ravi, Diwakar. Handling imbalance data with
imbalance-learn in python. Published, may 30,
2020. Data Science Blogathon. Retried 3rd
march, 2023.

[31] Soma, Halder & Sinan Ozdemir “Hands-on
machine learning for cybersecurity. Safeguard
your systems but making your machines
intelligent using the python ecosystem”. Packt.
Birmingham-Mumbai. www.packt.com. 2018.

[32] Pablo Duboue. The art of feature engineering:
Essentials for machine learning. Textualization
software Ltd, 2020.
https://doi.org/10.1017/9781108671682

