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ABSTRACT 
 

The use of Machine learning has become the de-facto standard for malware defense due to the limitations of 
signature-based, heuristic-based and other cloud-based techniques. However, poor malware features, class 
imbalance problems and malware obfuscation remain challenges facing malware researchers. To ensure 
efficient and resilient detection in the face of these challenges requires novel models that adopt innovative 
techniques to improve malware detection. The paper proposed an improved novel malware variant detection 
model based on Homogeneous Multi-Static Hybrid features (HMSHF), obfuscated malware dataset and 
Synthetic Minority Oversampling Technique (SMOTE). A malware dataset comprising 11678 malware files 
from virusTotal.com and 3963 benign files obtained from windows environment was used for the study. We 
extracted ‘fine-grained’ strings, APIs, and opcode features from static disassembly of the malware dataset. 
We trained and tested a Random Forest (RF), Support Vector Machine (SVM), GradientBoost (GB), and 
eXtremGradientBoost (XGB) ensemble algorithms before and after obfuscating the malware dataset. We 
hybridized the features into HMSHF for training and testing the ensembles before and after the malware was 
obfuscated. We evaluated the performance of the models using individual features and the hybrid features 
before and after obfuscations. To overcome the class imbalance problem, we applied the SMOTE technique 
on the training set with the HMSHF. The proposed hybrid features showed effectiveness and efficiency in 
classifying malware with 99.87% accuracy without data augmentation and 98.8% accuracy with SMOTE 
data augmentation. Consequently, the paper concluded that, the proposed technique improved malware 
detection and demonstrated resilience against obfuscation compared with the state of the art. Thus, the 
approach can be adopted for the detection of known, unknown and zero-day malware. Notwithstanding the 
improved performance, this work is not without limitations; the use of feature selection instead of feature 
extraction, and use of ensembles instead of other Deep learning techniques and SMOTE instead of other data 
augmentation methods. Thus, future works will adopt the approach and use Principal Component Analysis 
(PCA) dimensionality reduction techniques; employ deep learning techniques and apply other data 
augmentation techniques to observe the performance. 
Keywords: SMOTE, Malware, Ensemble Learning, Ransomware, Malware Features, Signature-Based 

Detection 
 
1. INTRODUCTION 

Globally, there is an exponential growth in malware 
samples and Potentially Unwanted Software (PUS). 
These exploits limitations in existing signature-
based, heuristics and other non-intelligent detection 
methods resulting in exposures [1], [2], [3], [4]. The 
increased malware volumes, variety and complexity 
coupled with the use of innovative obfuscation 
techniques renders existing defense systems 

inefficient and ineffective requiring the use of novel 
and innovative defense techniques that are more 
resilient and robust in the face of the prevailing 
malware ecosystem [5], [6].  Malware are script, 
codes and or software with malicious intension and 
aimed at compromising systems mainly yo gain 
unauthorized access, disclosure and or modification. 
Malware attacks target military installations, critical 
infrastructure, corporate entities, and individuals, 
leading to exposures [3]. Malware exposure 
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compromises confidentiality, integrity, and 
availability principles, leading to reputational loss, 
financial loss, legal issues, and compliance issues, 
among others. According to [2], one of the leading 
malware-testing labs based in Germany, an average 
of 450,000 malware and PUS are registered daily. 
The authors or purveyors of this malware mainly aim 
at stealing information, disrupting systems, and 
ensuring command and control of systems, all 
geared towards compromising information systems 
for their parochial motivations [7]. Malware as 
malicious software that performs malicious actions, 
they comes in the form of codes or scripts [8]. Some 
examples of malware include, but are not limited to, 
rootkits, Trojans, worms, ransomware, spyware, and 
others. These malware are not only increasing in 
volume but also in complexity and variety and 
exploits the existing signature-based or signature-
matching defense systems[9]. The increased 
volumes, variety and complexity of current malware 
renders traditional signature-based defense systems 
and others such as heuristics and cloud-based 
techniques inefficient and ineffective. In addition, 
malware authors are adopting innovative 
obfuscation techniques to conceal their identities 
from being detected by these signature-based or 
matching techniques [9]. These limitations coupled 
with the need for adaptability and generalizability of 
the tools and techniques has made automated 
Machine Learning (ML) techniques  the current 
research focus for automated malware detection 
[10]; [11].  

However, even though ML techniques are 
extensively explored in malware defense with 
positive results, there are still some limitations or 
challenges that militates against the achievement of 
the full potentials of the techniques. These 
limitations includes poor features for the training of 
ML models and subsequent testing of the algorithms, 
the problem of class imbalance in malware datasets 
resulting in the ‘accuracy paradox’, and challenges 
with the detection of obfuscated malware and their 
variants [12]; [13].  

To improve upon the existing works and to fill the 
identified gaps requires novel approaches that 
provides efficient features for efficient malware 
detection and classification. In addition, there is the 
need to improve the class imbalance problem to 
overcome the ‘accuracy paradox’ in models leading 
to improved detection accuracy, since the use of the 
accuracy metric with imbalance datasets results in 
models/algorithms being bias towards majority 
samples at the expense of the minority. Finally, 

improving resilience of ML models against 
obfuscated malware by exposing the models to 
variety of anti-static and advanced obfuscation 
techniques. Therefore, to improve malware 
classification, requires the use of innovative 
techniques that overcomes these gaps based on the 
application of various schemes that provides 
efficient and effective malware features, techniques 
that improves the accuracy paradox such as data 
augmentation methods, and ample exposure of the 
learning models to the relevant anti-static and 
advanced obfuscation techniques. 

In recent times, the use of different machine learning 
approaches to enhance malware detection using 
static-signature-based features has been explored. In 
[15], the authors proposed a method for extracting 
features from a malware dataset and using Random 
Forest (RF), Deep Neural Network (DNN), and 
XGBost for classification, and reported an accuracy 
of 96.3%. Similarly, the authors in [16] proposed an 
opcode-based frequency (opcode frequency) as a 
malware vector for classification and used both 
supervised and unsupervised models involving RF 
and a DNN model with a reported accuracy of 
99.78%. Similarly, the use of a combination of static 
and dynamic features for the classification of 
Android malware binaries using GradientBoost, 
Decision Tree, Nave Bayes, and RF models was 
proposed and implemented in [17] and reported an 
accuracy level of 96% with the RF algorithm. While 
the authors in [4] proposed a small-scale and easy 
feature extraction that includes the sizes and 
permissions of PE features to classify malware 
families with machine-learning algorithms and 
reported 99.40% with the RF model, Other 
approaches used heterogeneous hybrids involving 
static and dynamic features extracted from both 
methods to train and test machine-learning 
algorithms [18]; [10]; [19]. In the same vein, [20], 
proposed the use of permissions with a lightweight 
technique for malware detection. They 
experimentally demonstrated its efficiency using 
real android malware samples. They considered only 
one aspect of the vulnerabilities of the features and 
ignored the others such as API Calls. The use of 
intents was explored in [21] where both explicit and 
implicit intents as semantically rich features for the 
encoding of malicious intensions were used for the 
study. Their proposed system performed encoding 
and extracted explicit and implicit intents, intent 
filters and other permissions. Moreover, in [22], the 
authors explored an approach called MalDozer 
relying on neural network taking inputs from raw 
API calls in the order as they show up in the .dex file 
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mainly for android. They reported that during 
training, their approach could automatically classify 
malicious patterns using only the sequences of the 
raw method present in the assembly code. Besides, 
the authors in [23] experimented with the use of a 
framework with several multidimensional features 
from applications useful for malware classification. 
A multimodal deep learning network based on 
opcode features APIs, permissions and string 
features were used. Their experiment with malware 
dataset from virus share received an accuracy of 
98%. Finally, in [24], a hybrid deep learning model 
using autoencoder and a convolutional neural 
network (CNN) was proposed to improve accuracy 
of the detection of malware using multiple features 
and achieved 98.8% accuracy.  

Notwithstanding the plethora of studies using ML 
techniques as catalogued above, a critical analysis of 
the works shows that, not much effort is placed on 
the provision of efficient features from 
homogeneous sources such as static-static 
hybridization, the handling of the accuracy paradox 
and the exposure of the models to sufficient anti-
static and advanced obfuscation methods as 
explained in the proceeding paragraphs 

Firstly, the analysis of the  performance measures 
used in the evaluation of the models show that, most 
authors employ the accuracy metric as a 
performance measure with class imbalance datasets. 
This results in the usual ‘accuracy paradox’ where 
the models tend to skew or be bias towards the 
majority sample at the neglect of the minority class 
to be predicted. Using the accuracy metric with an 
imbalance class dataset without the treatment of the 
imbalance results in poor classification accuracy. 
This occurs where the model is bias towards the 
majority class at the expense of the minority. 

 In addition, whiles a plethora of works employs 
heterogeneous hybridization of features, there is less 
focus on the use of homogeneous hybridization of 
features for efficient and improved malware 
detection. Thus, the paper demonstrates that the use 
of homogeneous hybridization of static-based 
features results in improved effectiveness and 
efficiency in malware detection accuracy. 

 Besides, the use of obfuscation as a means to outwit 
automated detection systems where the malware 
changes its form and shape (mutation) resulting in 
polymorphic, metamorphic, oligomorphic and other 
variants of known malware remain a challenge in the 

current ML research [14]; [20]; [26]. Improving the 
resilience and robustness of the models against 
obfuscation requires adequate exposure of the 
models to various obfuscation techniques during the 
training phase of the modelling. 

Consequently, this paper filled these gaps by 
proposing an improved malware variant detection 
model based on homogeneous multi-static hybrid 
features and a data augmentation technique aimed at 
improving efficiency and resilience of models 
against malware attacks and variants of known and 
unknown malware. To achieve this goal, the 
following objectives guided the study:  

1. To provide efficient malware features with 
high feature importance for efficient 
malware classification 

2. Apply data augmentation technique to 
improve malware classification and avoid 
the ‘accuracy paradox’ associated with 
class imbalances in malware dataset. 

3. Improve malware variant detection by 
using obfuscation techniques in malware 
detection and classification. 

Following these objectives, the paper provided 
efficient homogeneous hybrid features with high 
feature importance for efficient malware variant 
detection and classification. We applied the SMOTE 
data augmentation technique to overcome the 
problem of class imbalance, thereby overcoming the 
‘accuracy paradox’, and improved malware 
detection. Finally, we demonstrated the resilience 
and robustness of the approach to malware variant 
detection by exposing the models to various forms of 
obfuscated malware samples.  

We achieved this by proposing a HMSHF with 
ensemble classifiers based on the hybridization of 
string, Opcode, and API Call features extracted 
using static disassembly techniques for the training 
and evaluation of RF, SVM, GB, and XGB 
classifiers. The purpose was to provide efficient 
malware features for the efficient classification of 
malware and variants, improve performance 
accuracy, reduce false-positive rates, achieve 
resilience and robustness against malware 
obfuscation and other evasive techniques, and 
ultimately overcome the ‘accuracy paradox’. We 
obtained an imbalanced malware dataset comprising 
11,678 malware and 3,963 benign ware from 
virusTotal.com and malwr.com. The dataset was 
preprocesses and Features were obtained based on 
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the static disassembly of the malware dataset. Unlike 
the usual case of using all the features from the 
disassembly, we extracted only ‘fine-grained’ 
features; features with the highest predictive 
capability for the training of the models. We 
extracted static API Calls, Opcodes, and String 
features to train and test a RF SVM, GB, and XGB 
ensemble techniques. This is because our aim was to 
improve accuracy and stability where ensembles 
have shown to be good at that [27].  Using the 
individual features as our baseline mark, and to test 
the classification accuracy of our features in 
classifying malware, we evaluated the performance 
of the models on the individual features before and 
after the malware was obfuscated. Having obtained 
the baseline results with the features, we then 
hybridized or integrated the three extracted features 
into a integrated feature set and used it to train and 
test the models before and after obfuscating the 
malware dataset. The performance of the hybrid was 
compared with the individual features. The results of 
the proposed approach performed better than the 
individual features.  With our dataset being 
imbalanced, we applied SMOTE to the training 
dataset to overcome the problem of imbalanced data 
and avoid overfitting and/or the "accuracy paradox." 
We evaluated the performance of the ensembles on 
accuracy and false-positive rate (FPR) on the hybrid 
features. Lastly, we compared the performance of 
our hybrid approach with that of the cited literature. 
From the results, our proposed approach (HMSHF) 
demonstrated the efficiency of the features for 
efficient malware classification, demonstrated 
improvement over the ‘accuracy paradox’, and 
finally, improved classification by the 
implementation of the SMOTE data augmentation 
technique, and showed resilience and robustness 
against malware obfuscation by exposing the models 
to various obfuscation techniques for learning and 
generalization.  

 On the basis of these achievements, our approach 
shows moderate novelty, the findings and results are 
exciting, and have some value, and our work 
therefore makes a modest contribution to the body of 
knowledge in malware detection in particular and the 
use of artificial intelligence (AI) or ML in 
cybersecurity in general. The moderate to high 
relevance of the approach to malware practitioners, 
its innovativeness, the rigorous technical procedures 
employed contributes to malware defense in 
particular and cybersecurity in general. Specifically, 
this study contributed to knowledge as follows: 

 We proposed a novel (HMSHF) comprising 
strings, opcodes, and API call features 
through static disassembly of malware 
binaries resulting in improvement in 
malware and malware variant detection. By 
this, we have contributed to malware 
feature engineering, which is essential in 
building efficient classifiers for automated 
detection of malware, and offers unique 
feature set for known, unknown and 
variants of known malware. 

 The application of SMOTE in balancing the 
imbalance dataset used in our study 
overcome the ‘accuracy paradox’ inherent 
in the imbalance dataset resulting in 
providing true performance accuracy 
compared to the cited state literature. 
Malware environments are highly 
imbalance as well as the datasets used for 
the experiments. This imbalances tends to 
make algorithms to be bias towards the 
majority class. This results in the ‘accuracy 
paradox’. To overcome this phenomenon 
requires oversampling and under sampling 
techniques. Hence, the use of the SMOTE 
technique as data augmentation improved 
the accuracy of the models, which resulted 
in fare classification of both minority and 
majority sample in the dataset. 

 Demonstrated the resilience of the 
proposed approach in overcoming malware 
obfuscations that malware authors employ 
to evade detection in signature-based 
detection systems. The use of static and 
advanced obfuscation techniques are used 
by malware authors to compromise 
systems. The use of different obfuscation 
techniques and the ability of the models to 
show high and same classification 
performance demonstrate the resilience and 
robustness of the model against malware 
and malware variant attacks. 

Organization of the Paper. 
 
We structured the rest of the paper as follows: we 
present the Materials and Methods in Section 2; in 
Section 3, the Results and Discussion is presented; 
whiles in Section 4, we present the Conclusion and 
future works of the study. 
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2. MATERIALS AND METHODS 

This section of the paper discusses the methods and 
materials of the study following the methodological 
framework as shown in Figure 1 below. The 
methodology starts by providing: (1) context and 
motivation for the proposed approach, (2) 
description of the malware dataset and the 
preprocessing activities, (3) static disassembly of 
malware samples to extraction features using IDA 
Pro (4)  feature selection technique used to select 
features (5) feature integration or hybridization (6) 
feature representation (7) selection and training of 
the models (8) evaluation of the performance. The 
description of each stage of the process follows.

 

Figure 1. Methodological Framework Of The Study. 

2.1. Context and Motivation for the Proposed 
Approach 

This sub-section discussed the context and 
motivation for the proposed approach. Specifically, 
we gave a brief description of static analysis and its 
limitations. The obfuscation methods or techniques 
used by malware attackers to evade detection. 
Finally, we present the motivation and justification 
for the use of our proposed approach. 

2.1.1. Static Malware Analysis and Limitations 

The first stage in malware analysis is usually static 
techniques using tools in the form of cryptographic 
hashes, fuzzy hashes, import hashes, and others [26]. 
It is the analysis of a malware binary without the 
actual execution of the code. Static malware 
detection is based on conventional malware analysis 

techniques based on the extraction of static features 
using reverse engineering methods. To perform 
static analysis, therefore, requires unpacking or 
decoding the malware sample, through which 
features can be obtained. Examples of static features: 
pefiles, strings, opcodes, n-grams, and function 
length frequencies. Static analysis techniques are 
faster, cheaper, and always the first point of call for 
malware analysts. However, their limitations or 
drawbacks include but are not limited to obfuscation 
(packing, crypting), dynamic code loading, which 
results in poor detection accuracy, and susceptibility 
when a malware binary is obfuscated. This is 
because these techniques (signature- based or 
matching) assumes that, once a malware is 
identified, its byte sequence remains the same. This 
is not the same with the current malware as they can 
change their shape and form depending on the 
environment. Hence, this requires the use of machine 
learning and other adaptable methods that learn from 
experience instead of static codes [26]; [5].  
Notwithstanding the limitations in the face of 
obfuscation and other evasive techniques, the use of 
static disassembly is known to reveal some malware 
features that can be used for training adaptive 
algorithms [26].  

Thus, we envisaged that using different static 
analysis techniques to extract some features and 
training ensembles has the potential to improve 
performance accuracy and resilience against 
obfuscation and other evasive techniques employed 
by malware developers to exploit static techniques. 
To be able to develop novel tools and techniques, 
requires an understanding of the the types of 
obfuscation techniques employed by malware 
attackers and how we employed obfuscation in our 
dataset to test the resilience of the models against 
malware obfuscation. 

2.1.2. Obfuscating the Malware 
Malware obfuscation is the deliberate hiding of a 
malware binary's identity with the goal of evading 
detection by the detection system. This is essential 
because malware defenders have developed methods 
throughout time to prevent malware from causing 
damage to their computing systems.  Its created to 
avoid detection by anti-virus software or malware 
detectors disguise Malware, opening the door to 
exploitation. [12] claims that several methods are 
used to mask the genuine nature of malware. He 
indicated that, malware is obfuscated using 
techniques such as, dead code insertion, code 
transposition, subroutine reordering, instruction 
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replacement, register reassignment and others. The 
strategies and their descriptions are listed in Table 1. 

 
For the purpose of this study, we used dead code 
insertion and code transposition to disguise the 
malware. We inserted null  codes into the binaries 
and in some of the samples we  transposed the codes. 
The aim was to conceal the identity of the malware 
samples to observe  the performance of the models  
after obfuscation.  The use of the obfuscation 
techniques changes the byte sequence and hash 
values of the malware binary making it difficult for 
the signatures to be matched for detection. However, 
the potency of the malware is still maintained in the 
masked state. This phenomenon has posed detection 
challenges requiring the use of novel adaptable 
techniques with generalizability, and memorability 
for improved malware detection. Hence, the 
motivation for our proposed approach to use the 
static disassembly to obtained relevant features to 
train adaptable methods for improved detection. 
 

2.1.3. Motivation for Our Proposed 
Homogeneous Hybrid Approach 

Current arguments on the use of heterogeneous 
hybrids between static and dynamic environments 
with base machine learners have been explored with 
some considerable success [19]. However, the issue 
of poor features, class imbalances, and the use of 
obfuscation techniques remain some of the 
challenges [28]. We argued that static disassembly 
of malware samples can reveal relevant features that 
can be used to improve malware classification. By 
statically disassembling the malware binaries, 
extracting only ‘fine-grained’ instead of the usual 
collection of all features revealed in the disassembly 
process can produce relevant features for effective 
and efficient malware classification. Additionally, 
the use of SMOTE data augmentation technique to 
rebalance the dataset leads to improvement in 
malware classification accuracy and overcome the 

class imbalance problem where the models tend to 
be bias towards majority sample at the expense of 
the minority sample. Thirdly, we proposed that to 
improve resilience against obfuscation requires the 
exposure of the models to the various obfuscation 
techniques during the training phase of the Ensemble 
techniques. The choice of the ensembles is based on 
the fact that, the traditional of conventional ML 
techniques are largely unstable in non-stationary 
environments, susceptible to bias, variability and 
noise.  Therefore, motivated by this, we proposed a 
HMSHF with ensemble and data augmentation 
technique (SMOTE) for efficient and resilient 
malware classification. The purpose was to provide 
efficient features for malware classification, using 
data augmentation technique (SMOTE) to overcome 
the problem of class imbalance resulting ‘accuracy 
paradox’, and the demonstration of resilience and or 
robustness of the proposed technique against 
obfuscated malware detection.  

2.2. Malware Dataset and Preprocessing 

This section discusses the modelling process from 
including datasets and processing activities, feature-
engineering process, the description of the ensemble 
models, the performance evaluation methods. 

2.2.1. Dataset and Preprocessing  

For this experiment, we collected malware samples 
from two main sources; VirusTotal.com and for a 
four year period (2017-2019) and (2019-2021). This 
was necessary because malware landscape is 
evolving and revolving and new, novel and variants 
of known malware come into being [29]. By 
including these malware samples, we are sure to 
have almost all new and variants of known malware. 
To obtain benign samples for this study, we 
extracted these files from the windows operating 
systems. Using virusTotal.com, we checked whether 
a sample is benign or malicious when all the virus 
scanners flags it as malware or non-malware. 
Consequently, we combined these malware and 
benign ware to form our experimental dataset 
comprising 11,678 malware and 3,963 benign ware 
and made up of different malware families. Tables 3 
and 4 shows the malware categories and the total 
dataset size used for the study respectively. 
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From the data exploration stage, it was realized that, 
the malware dataset was imbalanced. This 
phenomenon if not managed well may result in what 
is usually known as the “accuracy Paradox” where 
the prediction would be skewed or bias towards the 
majority sample. Consequently, the composition of 
the dataset shows that it is imbalance made up of 
74.66% and 25.34% making it mildly skewed as 
shown in figure 2. To overcome data imbalance to 
obtain true accuracy of models, there are a number 
of methods to apply as a means of resampling. The 
most common are undersampling and oversampling 
with most users adopting the oversampling 
techniques relative to the undersampling. This is 
because; undersampling may remove instances of 
data with relevant information [25]. For this reason, 
we opted to use oversampling technique known as 
Synthetic Minority Oversampling Technique 
(SMOTE). 

 
Figure 2. Imbalance Dataset 

 
2.2.2. Applying SMOTE 
 To overcome this imbalance in the data, a number 
of under sampling and over sampling techniques can 
be applied based on the merits and demerits [30]. For 
the purpose of this study, we used the SMOTE using 
SMOTE algorithm in python. This creates synthetic 
data points from the minority sample to balance the 
dataset. This approach using the algorithm results in 
balancing the data as shown in figure 3. The two data 
samples are now balanced which leads to prediction 
of both malware and benign ware equally and 
presents the true prediction or classification of the 
models. By this approach, the bias and or 

skewedness of the model is prevented resulting in 
overcoming the ‘accuracy paradox’.  
 

 
Figure 3. Balanced Data After Applying SMOTE. 

Thus, to test the proposed approach, we applied this 
data augmentation techniques at the hybrid level for 
improved accuracy using sklearn. The code snippet 
of the SMOTE algorithm from the sklearn is as 
shown below in figure 4: 
 
From imbalance.over_sampling import SMOTE 
Counter = counter (y_train) 
Print (‘before’, counter) 
# oversampling the traini dataset using SMOTE 
Smt = SMOTE () 
#X_train, y_train =smt.fit _resample (X_train, 
y_train) 
X_train_sm, y_train_sm = 
smt.fit_resample(X_train, y_train) 
 
Figure 4. Code Snippet of the Smote Algorithm 
2.3. Feature Engineering. 
Feature Engineering (FE) the use of domain 
knowledge to identify or select and transform the 
most relevant variables or attributes from a given 
raw data for training MLs for predictive modelling. 
It refers to the process of representing a real-world 
problem in a manner that makes it possible for 
machine learning techniques [32]. Thus, in searching 
for relevant features, FE process transforms the 
extracted features/data into relevant representative 
features that underlies the problem leading to 
improvement in the performance of the ML.  
 
2.3.1. Static disassembly of Malware and Feature 
Selection 
Features play a critical role in machine learning. [31] 
suggest that machine-learning detectors start and die 
based on the features. Malware features can be 
obtained using static analysis or dynamic analysis 
[26]. To obtain features for the training of our 
ensemble models, we extracted three features: 
strings, opcodes, and API calls. For the purpose of 
this work, we used static disassembly of malicious 
binaries to extract the needed string, opcode, and 
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API call features as input for the training of our 
ensemble models. Generally, most works tend to use 
all the features revealed during disassembly to train 
models. This is problematic because, some of the 
features are not representative of the malware but 
packed and crypted features that does not contribute 
to the predictive value of the model. This often result 
in poor prediction or classification and results in 
redundancy and the usual curse of dimensionality.  
Thus, we extracted only the ‘fine-grained’ features 
with high predictive importance to form our feature 
set. This approach was relevant to obtain the needed 
features to train our models, which are the inputs for 
the models to learn from and use that experience to 
generalize [31]; [5]. Hence, increasing the quality of 
our prediction, avoiding redundancy of features and 
improved processing time. In all, 16 features from 
each of the Strings, Opcodes, and API Call features 
were retained after the feature selection process as 
shown in Table 4.  

 
 
2.3.2. Feature Selection 
In ML application and in real-life, it is seldom that 
the attributes in a given dataset would all have 
usefulness in the prediction of a phenomenon. Thus, 
when  there are many attributes it results in 
redundancies that reduces the generalizability of the 
model, impact negatively on the accuracy of the 
model of classifier and also results in the model 
complexity leading to high computational resource 
requirements[31]; [26]. Feature selection is a 
technique of finding the best set of features that 
enables the building of optimized models of a 
studied phenomenon. For example, given data N, 
with input dimension d, and selected dimension k, 
selecting features k that gives the most information 
of the problem and discarding the others, i.e. (d-k) 
dimensions [31].  
These techniques can be Filters, wrappers and 
embedded  and each of them has their potentials and 
limitations. Filter-based selection methods checks 
for correlation with the dependent variable. They are 
faster and less overfitting. They include information 
gain, chi-square, and variance methods.  In wrapper 
techniques, models are build and the best model is 
chosen. Examples of these are genetic algorithms 
(finding subset of the features with relevant 
information and using them).  Recursive techniques 

(removes all the weakest features with low feature 
importance) and sequential methods (add highest 
features together). They are computationally 
expensive and prune to overfitting. However, they 
have best performance and select only optimal 
features. Embedded feature technique also makes a 
model and select the model features with the best 
feature. They are faster as filters, have more 
accuracy that filters, less prune to overfitting. 
String features are plain text in nature usually 
encoded in executable files used by malware 
attackers. They are usually found in windows 
systems such as GetLayOut, SendMailFail, 
SendMail, GetCurrentProcess. Thus, to extract 
string features we used the String Utility from 
Microsoft to search for the executable files or 
binaries from both ASCII and Unicode. In addition, 
we used IDA Pro for the automatic disassembly of 
the codes to obtain the string features. The 
disassembly revealed several features. However, a 
critical analysis of the features showed that most of 
the revealed features were packed and obfuscated 
and would not contribute to the predictive capability 
of the model, hence, only feature with high 
importance was used.  
Opcodes (operational code) is an instructional level 
machine language used to identify operations to be 
executed. We disassembled the collected files to 
extract the instruction level sequence in assembler 
language using ndisasm tool. Examples of opcode 
sequences include Mov, Pop, and Push [17]. 
 Finally, we disassembled Portable Executable (PE) 
files from dynamic link libraries of windows systems 
in the Win32 PE binaries.  We extracted API Call 
features using windows systinternals found in 
Microsoft systems. The table below show the sample 
API Call features extracted for the study. Sample of 
all the Features are as shown in table 5. 
Table 5. Sample Features From Static Analysis Methods. 

 
Therefore to reduce the dimensionality of the 
features extracted , we used a feature selection 
Fisher’s Score which is one of the filter methods. it 
is one of the most widely used supervised feature 
selection methods. this algorithm works by 
calculation the score of the features and ranking 
them in descending order of magnitude. Based on 
this rank, we extracted the relevant features for the 
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training and integration. The code snippet of the 
Fisher Score algorithm is as shown figure 5. 

1. from skfeature . function. similarity_based 
import fisher_score 

2. import matplotlib.pyplot as plt 
3. % matplotlib inline 
4.  
5. # calculating scores 
6. Ranks =fisher_score. Fisher_score (X, Y) 
7.  
8. #plotting the ranks 
9. Feat_impotances =pd. Series(dataframe. 

Columns(0: len(dataframe. Columns)-1]) 
10. Feat_impotances .plot(kind=’barh’, color 

= ‘teal’) 
11. Plot. Show () 

Figure 5. Code snippet of the Fisher’s Score 
Algorithm 

2.3.3. Hybrid Integrated Malware Feature set 
and Representation 

To obtained uniform features for the training of our 
models, the extracted strings, opcodes sequence and 
API Call features extracted were integrated into a 
HIMF. This is shown diagrammatically in figure 6 
below. The features were concatenated and 
vectorized into binary 0 and 1 for benign and 
malware respectively.  
 

 
Figure 6. Architecture of our Proposed Hybrid Features 

 
For machine-learning algorithms to be able to learn 
the patterns, the  features needs to be converted into 
a vector form. For malware features such as strings, 
Opcodes and API Calls, the creation of 
representative vector can be done using a number of 
ways including frequency feature vector, frequency 
weighted feature representation and or binary feature 
representation [28].  For the purpose of this work, we 
used the binary frequency vector approach as 
described by [28] and [26]. In binary representation, 
the features are represented as a binary feature F 
signifies the presence of absence of a malware binary 

given a resulting feature vector as VFb= (bs1, 

bs2………………bsn), where bsi is 1 if F contains an 
instance of si or 0 if otherwise, where n is the size of 
the sample or dataset. With this, our chosen 
ensembles were trained with the training dataset and 
tested with the testing dataset. The complete feature 
set and their importance in percentages is shown in 
figure 7 below.  

 
 

Figure 7. Proposed Hybrid Features 
 
2.4. Selecting and Description of the Ensemble 

Algorithms 
 
Four-machine learning algorithms were explored; 
Random Forest (RF) Model, Support Vector 
Machine (SVM), GradientBoost and 
eXtremeGradient Boost were trained using 80% for 
training and 20% for testing. We chose these 
techniques because they are good at binary 
classification. The train–test process was necessary 
to ensure that the model achieve optimum 
performance. This was to avoid over generalization 
of the model or the under fitting or overfitting 
problem usually encountered in machine learning. 
The next section discusses the algorithms used in the 
experiment. 
 
2.4.2. Random Forest (RF) 
RF model is used in many fields such as banking, 
health care, stock market prediction, e-commerce 
and cybersecurity with very good success (Balram, 
Hsieh & Mcfall, 2019). Security community has 
used decision tree-based algorithm but it is always 
not used alone. Many trees are trained and used 
together to make a prediction in a fashion known as 
Random Forest. This ensures that each tree sees the 
data differently to improve detection outcomes. To 
make the prediction as to whether a binary is 
malware or benign, the trees are allowed to vote and 
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the most popular vote wins. More precisely, suppose 
D = {(𝑥ଵ,𝑦ଵ), … , (𝑥௡ , 𝑦௡)} is data sampled from 
ℝௗ × 𝑆-valued random vector (𝑋, 𝑌) with possibly 
known distribution, for some positive integer 𝑑 ≥ 1. 
The objective of the random forest (RF) algorithm is 
to predict 𝑦 from 𝑥 using an ensemble ℎ 
={ℎଵ(𝑥), … ,ℎ௞(𝑥)} of classifiers for decision trees. 
The decision tree for the classifier ℎ௞(𝑥) is 

determined by the parameter 𝜃௞ = ቀ𝜃௞భ
, … , 𝜃௞೛

ቁ 

that is a realization of a known random variable 𝜃, 
that describes the subsets of the data set  𝐷 that 
constitute the decision trees of the classifiers in  ℎ. 
Thus 
ℎ௞(𝑥)
= ℎ௞(𝑥|𝜃௞).                                                                             (1) 
Each tree in the random forest cast a vote for the 
most popular class 𝑦 ∈ 𝑆 for the input data  𝑥. The 
vote of the 𝑘௧௛ tree is the output of the 
classifier  ℎ௞(𝑥). The class with the most votes wins. 
Therefore the decision function is then given as 

𝐻(𝑥) = 𝑎𝑟𝑔 max
௬∈ௌ

෍ 𝐼

௞

௜ୀଵ

(ℎ௜(𝑥)

= 𝑦),                                             (2) 
where  𝐼(ℎ௜(𝑥) = 𝑦) is the indication function. The 
margin function for the best class 𝑦 ∈ 𝑆 of a random 
forest is given 
𝑚(𝑥, 𝑦) = 𝑃ఏ(ℎ(𝑥|𝜃) = 𝑦) − max

௨ஷ௬
𝑃ఏ(ℎ(𝑥|𝜃) =

𝑢),               (3) 
where 𝑃ఏ  is the probability distribution of the 
decision tree generating random variable 𝜃. Note that 
𝑚(𝑥, 𝑦) is the measure of extent the probability of 
votes for best class exceeds the probability for the 
next-best class.  Therefore, the generalization error 
ℯ takes the  
ℯ = 𝑃௫,௬(𝑚(𝑥, 𝑦) < 0) ≤
௏௔௥ೣ ,೤൫௠(௫,௬)൯

ቀ𝔼ೣ,೤൫௠(௫,௬)൯ቁ
మ                                     (4)  

where 𝑃௫,௬ ,  𝔼௫,௬  and  𝑉𝑎𝑟௫,௬ are respectively the 
probability distribution, expectation and variance of 
the random vector (𝑋, 𝑌). The inequality follows 
from the Chebyshev’s inequality. 
 
2.4.3. Support Vector Machine 
Consider the following training data 𝑥ଵ, 𝑥ଶ, … , 𝑥௡ ∈
ℝ஽, the D-dimensional Euclidean space. The aim is 
to classify the points as  
S = {(𝑥ଵ,𝑦ଵ), (𝑥ଶ, 𝑦ଶ), … , (𝑥௠ , 𝑦௠)} ⊂ ℝ஽ ×
{−1, +1}, 
with the help of a separating hyperplane 𝑤⋅x+b=0. A 
training data 𝑥௜  will get 

𝑦௜ = ൜
+1, 𝑖𝑓 𝑥௜  𝑖𝑠 𝑎𝑏𝑜𝑣𝑒 𝑡ℎ𝑒 ℎ𝑦𝑝𝑒𝑟𝑝𝑙𝑎𝑛𝑒
−1, 𝑖𝑓 𝑥௜  𝑖𝑠 𝑏𝑒𝑙𝑜𝑤 𝑡ℎ𝑒 ℎ𝑦𝑝𝑒𝑟𝑝𝑙𝑎𝑛𝑒

 

The training points closest to the separating 
hyperplane are called the support vectors and the 
objective of the  Support Vector Machine is to 
orientate the hyperplane, by tuning w and b, to 
ensure it is as far as possible from the support 
vectors. Thus, we want to maximize the margin 𝜌 =

 min
௫∈{௫భ,௫మ,…,௫೘}

|௪⋅୶ାୠ|

‖௪‖
                                         (5) 

By choosing 𝑤 and b such that the support vectors 
satisfying |𝑤 ⋅ x + b| = 1 we get that 

𝜌 =  
1

‖𝑤‖
 

Therefore, the resulting maximization problem 
becomes 

                             max
                                                      ௪,ୠ

1

‖𝑤‖
                                                                                    

                            subject to      𝑦௜(𝑤 ⋅ 𝑥௜ + 𝑏) ≥
1,    for all     𝑖 = 1, … , 𝑚 
which 𝑖𝑠 equivalent to  
                             min

                                        ௪,ୠ

భ

మ
‖௪‖మ                                                                                (ଵଵ)          

                             subject to     𝑦௜(𝑤 ⋅ 𝑥௜ + 𝑏) ≥
1,   for all   𝑖 = 1,2, … , 𝑚 
The Lagrangian to this convex quadratic 
optimization problem is  
𝐿(𝑤, 𝑏, 𝛼) = భ

మ
‖𝑤‖ଶ – ∑ 𝛼௜

௠
௜ୀଵ (𝑦௜(𝑤 ⋅ 𝑥௜ + 𝑏) −

1                   (6) 
      with  𝛼௜ ≥ 0,   for all   𝑖 = 1,2, … , 𝑚.     

Note that for all 𝑖 = 1,2, … , 𝑚, 
𝛼௜[(𝑦௜(𝑤 ⋅ 𝑥௜ + 𝑏) − 1
= 0.                                                                         (7) 

This last condition implies that 𝛼௜ ≥ 0, for support 
vectors 𝑥௜ and 𝛼௜ = 0 if 𝑥௜ is not a support vector. 
Taking the gradients of L with respect to 𝑤 and b and 
putting them to zero result in the equations 

𝑤 =  ෍ 𝛼௜𝑦௜𝑥௜                                                          (8)

௠

௜ୀଵ

 

and 

෍ 𝛼௜𝑦௜

௠

௜ୀଵ

= 0                                                                                  (9) 
Putting the above equations into L(𝑤,b,𝛼)  results in 
the dual optimization problem, 

max
ఈ

𝐿(𝛼)=∑ 𝛼௜
௠
௜ୀଵ −

ଵ

ଶ
∑ 𝛼௜𝛼௝𝑦௜𝑦௝(𝑥௜𝑥௝)௠

௜,௝ୀଵ  

subject to:   ∑ 𝛼௜𝑦௜
௠
௜ୀଵ = 0,  

 and 𝛼௜ ≥ 0,   for all   𝑖 = 1,2, … , 𝑚. 
Substituting the unique solution 𝛼ത of the above dual 
problem into the above expression for 𝑤 gives us 
required expression for 
𝑤 =
∑ 𝛼ത௜𝑦௜𝑥௜

௠
௜ୀଵ                                                                 (10)                              
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For the expression for b observe that if 𝑥௜ is a support 
vector then  

𝑦௜(𝑤 ⋅ 𝑥௜ + 𝑏) = 𝑦௜ ൮ቌ෍ 𝛼ఫഥ 𝑦௝𝑥௝

௠

௝ୀଵ

ቍ 𝑥௜ + 𝑏൲

= 1                                 (11) 
Thus, if 𝑥௜ is a support vector then     

෍ 𝛼ఫഥ 𝑦௝(𝑥௝

௠

௝ୀଵ

. 𝑥௜) + 𝑏

= 𝑦௜                                                                    (12) 
Hence 𝑏௜ = 𝑦௜ −
∑ 𝛼௝𝑦௝

௠
௝ୀଵ (𝑥௝ . 𝑥௜)                                                    (13) 

Now averaging over all the various support vectors 
we get  

b = 
ଵ

ேೄೇ
∑ ൫𝑦௜ − ∑ 𝛼ത௝𝑦௝൫𝑥௝ ⋅௠

௝ୀଵ௜∈ௌ௏

𝑥௝൯൯                                                                          (14) 
where SV is the index set of all support vectors and  
𝑁ௌ௏ is the number of support vectors.  
 
2.4.4. AdaBoost 
AdaBoost is one of the most popular ensemble 
techniques (Balram, Hsieh & Mcfall, 2019). It is the 
best-known family of algorithms using boosting 
(Adaptive Boosting). In adaptive boosting 
(AdaBoost), an initial classifier is trained on a 
training set. The weights of incorrectly classified 
samples are incremented. A second classifier is 
again trained on the dataset that contains the 
incremented or updated weights. This iterative or 
recursive process terminates when the 
predetermined estimator number is reached or an 
optimal predictor is found. The down side of the 
model is the fact that, it is sequential and cannot be 
executed in parallel. However, due to its skill and 
stability in prediction, we used it for our 
classification. The description of the AdaBoost 
algorithm is given below. 
 
Let us consider the labeled data 
൛൫𝑥ଵ,𝑦ଵ,൯, … , ൫𝑥ே 𝑦ே,൯ൟ , with 𝑥௜ ∈ ℝௗ,  𝑑 ≥ 1  and  
𝑦௜ ∈ 𝑆 = {−1, +1}. The objective of Adaboost 
algorithm is to use a collection of weak classifies 
{ℎଵ, ℎଶ, … , ℎ௄} and optimally constructed weights 
{𝛼ଵ, 𝛼ଶ, … , 𝛼௄} to generate a strong classifier  

ℎ(𝑥)

= sign ൭෍  𝛼௞ ℎ௞(𝑥)

௄

௞ୀଵ

   ൱                                 (15) 

The weights  𝛼ଵ, 𝛼ଶ, … , 𝛼௄ are generated 
incrementally with the help of the following 
algorithm: 

 Initialize by putting  𝑤௜
(ଵ)

= 1 for all 𝑖 =

1,2,3, … , 𝑁 
 for k=1 to K do 
  Fit classifier ℎ௞ to data to 
minimize the error 

  𝜀௞ =
∑ ௪೔

(ೖ)
ூ(௛ೖ(௫೔)ஷ௬೔)ಿ

೔సభ

∑ ௪
೔
(ೖ)ಿ

೔సభ

 

  where 𝐼(ℎ௞(𝑥௜) ≠ 𝑦௜)=1 if  
ℎ௞(𝑥௜) ≠ 𝑦௜  and 0 otherwise 

  𝛼௞ = log ቀ
ଵିఌೖ

ఌೖ
ቁ 

  for all   𝑖 = 1,2,3, … , 𝑁, do 

  𝑤௜
(௞ାଵ)

= 𝑤௜
(௞)

𝑒ఈೖூ(௛ೖ(௫೔)ஷ௬೔)  
  end for  
 end for 

Note that the updated weight 𝑤௜
(௞ାଵ) is the same as 

𝑤௜
(௞) if the classifier ℎ௞ correctly classified the data 

point𝑥௜, otherwise the weight 𝑤௜
(௞ାଵ)  is  𝑤௜

(௞) scaled 
by 𝑒ఈೖ. 
After the training and testing the four algorithms 
their performances were measured. 
 
2.4. Training and Testing the Ensembles. 
Ensemble algorithms are also called committee-
based learners. When the data is non-stationary and 
in the presence of class imbalances, the use of 
conventional ML techniques produces suboptimal 
performance [27]. When this happens, the need for 
the use of combination of models is recommended. 
He content that an ensemble is always better than the 
base classifiers. Therefore, the main purpose of 
ensembles is to improve the accuracy of the models 
compared with the individuals. [27] suggested that,  
ensembles can be combined in many ways; majority 
voting where the modal classifier is considered( the 
class with highest frequency). 

The need for ensembles in ML is established as 
means for more accurate prediction than the base or 
individual classifiers. This dates back to the 1990s 
[28]. They are known as committees whose aim is to 
aggregate the classification or prediction of the 
individual classifiers. They include random forest, 
gradient boosting and others. Generally, ensembles 
can take the form of bagging, boosting, stacking and 
heterogeneous ensembles. Many authors in the 
current literature apply machine-learning 
approaches to malware classification, and the 
approach is on a continuum [8]; [18]; [5]. Our 
analysis of the various literature and an initial 
experiment conducted on the use of machine 
learning and homogeneous features led us to identify 
four algorithms for this study. After obtaining the 
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dataset, conducting Exploratory Data Analysis 
(EDA) or preprocessing, and the feature 
engineering, the need for model selection was 
obvious. The Random Forest (RF) Model, Support 
Vector Machine (SVM), AdaBoost, and eXtreme 
Gradient Boost ensemble algorithms. We chose 
these techniques because they are good at binary 
classification and robust against imbalanced data. 
After the selection of the models, we trained them 
using the dataset and features based on the simple 
train-test split. We divided the dataset into two, 
using 80% of the data for training and 20% for 
testing. 

We trained and tested the models first with the 
individual features before and after the malware, 
dataset was obfuscated. This was to test the 
performance accuracy of the models and form the 
baseline performance of the features. Secondly, we 
trained and tested the models on the hybrid features 
before and after the obfuscation of the malware 
dataset. The rationale of this was to observe the 
performance of the proposed approach in handling 
obfuscated malware and to compare the performance 
with the performance of the models on the single 
features. Thirdly, having established the 
performance of the models, the need to deal with the 
problem of class imbalance that leads to the 
‘accuracy paradox’ was considered. Since our 
dataset is imbalanced, as witnessed in many malware 
detection environments, the use of ensemble 
techniques with SMOTE and other imbalance data 
handling techniques would lead to improvements in 
classification performance [25]. Thus, we applied 
the SMOTE technique on the training set with the 
hybrid features and tested to observe the 
performance of the models. This was to observe the 
effect or impact of the accuracy paradox without and 
with data augmentation. Fourthly, the performance 
of the proposed technique is compared with cited 
literature. 

2.5. Performance Evaluation 
Therefore, having evaluated the performance of the 
models on the individual features before and after 
the malware dataset was obfuscated, we evaluated 
same using the hybrid features before and after the 
obfuscation, and the performance of the models with 
the hybrid and SMOTE. The performance of the 
models were obtained from the confusion matrix or 
the contingency table. 
To be able to determine the efficiency of a model, it 
has to be evaluated using performance metrics. 
These refers to standards used to assess the 
characteristic and the behavior of an artifact [31].  

The following performance metrics were used; 
Accuracy, Sensitivity/Hit Rate/Recall/True positive 
Rate (TPR), False positive Rate(FPR)/Precision, 
True Negative Rate/specificity(TNR). These 
measures are obtained from the confusion matrix or 
contingency table as shown in table 3 below. 
 

 
 
Sensitivity is the proportion of correctly classified 
malware samples in the dataset. False Positive Rate 
= 1-specificity. Accuracy is the proportion of 
correctly classified observations in the dataset and is 
represented as shown in equation 17. Other metrics 
such as True Positive Rate (TPR), False Positive 
Rate (FPR), True Negative Rate(TNR) are as shown 
as in equation 18-20. 

𝐴ccuracy =
TP + TN

TP + TN + FP + FN
… (16) 

Precision =   
TP

TP + FP
… … … … … . . (17) 

Recall =  
TP

TP + FN
… … … … ….          (18) 

F1 − Score =
2 ∗ TP

2 ∗ TP + FP + FN
… . (19) 

For the purpose of this work, we used accuracy, false 
positive rate as performance metrics that is 
recommended if accuracy is the aim of the work. The 
next section presents the results of the study. 
 
3. RESULTS AND DISCUSSION OF THE 

STUDY. 
 
The study proposed an improved malware variant 
detection model based on the use of improved 
homogeneous hybrid features, SMOTE data 
augmentation technique and exposure to various 
malware obfuscation techniques. The purpose was to 
provide efficient homogeneous static-based malware 
features, employ SMOTE data augmentation 
technique to overcome the accuracy paradox, and 
exposing ensemble algorithms to sufficient 
obfuscation techniques during the training of the 
models to improve resilience against obfuscated 
malware attacks. This section present the results and 
discussion of this experiment using charts, figures, 
tables and other visuals. 
 
3.1. Performance of Ensemble Techniques on 

Individual Features Malware Obfuscation 
In order to be able to test the accuracy of the 
extracted features, we used each of them in training 
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and testing of the models. We evaluated the 
performance of the models on the individual, or 
mono features in classifying malware samples 
(strings, opcode sequence, and API call features). As 
depicted in figure 8, the string features showed 
relatively good classification performance with the 
dataset, with the eXtreme Gradient Boost ensemble 
scoring 85.6% accuracy and 3.2% false positives. 
The rest of the models scored below with relatively 
high false-positive values compared with the XGB 
Model.  
The relative moderate performance of the models 
might be because the malware dataset comprised a 
variety of malware families with different features or 
attributes, while the models were trained on single 
features. Thus, using a single feature for the training 
meant that the models would not gain sufficient 
experience to be able to generalize with other new 
malware samples, resulting in poor classification 
accuracy. This finding or result is consistent with or 
supported by [27]; [12], who suggested that malware 
detectors start and die based on features and that if 
poor and insufficient features are used to train a 
model, it leads to suboptimal performance. This 
requires that when training a model, there be 
sufficient features with enough variety to enable the 
model to generalize with the unseen data or sample 
later on.  
 

 
 

Figure 8. Performance Of Ensembles On Individual 
Features Before Obfuscation 

 
3.2. Performance of Ensemble Techniques on 

Individual Features after Malware 
Obfuscation 
 

Similarly, we tested performance the models' 
resilience or robustness to obfuscated malware using 
the individual features. The malware samples were 
obfuscated and the experimented repeated to 

determine how resilient the models are to malware 
obfuscation or changes.  As indicated in the figure 9, 
the performance of the models remains unchanged 
with the obfuscated dataset.  
This result suggests that, unlike static and or 
signature-based detection systems that are unable to 
adapt to new and previously unknown malware, our 
approach using the ensemble produces adaptability, 
learnability, and robustness with respect to changes 
that occurred to the malware dataset. Hence, the 
changes in the malware binaries had no effect on the 
predictability of the models. This is in tandem with 
[27] who opined that, the exponential growth in 
malware volumes, variety and complexity leading to 
variants of known malware requires the use of ML 
techniques.  
Consequently, the changes introduced into the 
malware by the obfuscation did not affect the 
classification potential of the models. This is in 
tandem with [29]; [26]; [27], who hold the view that 
the limitations of the existing signature-based 
detection system are a result of malware authors 
adopting obfuscation and other encryption 
techniques, leading to variants of malware such as 
polymorphic, metamorphic, and oligomorphic that 
evade detection. 
 As signature-based static techniques, including 
many anti-virus scanners, operate on the assumption 
that, once a malware is identified, its characteristics 
remain the same for its entire lifespan, the use of 
obfuscation defeats such a position as the technique 
leads to new and or variants of the known malware, 
making detection impossible due to the inflexibility. 
Thus, the use of the adaptable ensemble classifiers 
with our proposed technique allows the machines to 
learn and adapt to the changes introduced in the 
obfuscated malware, leading to the maintenance of 
the same classification performance. Therefore, 
using the features as input and training the ensemble 
ensured that they were able to generalize to detect 
even hitherto unseen malware. This is required to 
detect not only known malware but also unknown 
malware, including zero-day vulnerabilities. 
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Figure 9. Performance of Ensembles on Individual 

Features after Obfuscation 
 

3.3. Performance of Ensemble Techniques with 
Hybrid Features before and after Malware 
Obfuscation 

 
In order to improve the performances of the models, 
we proposed a hybridization of string, opcode, and 
API call features, all extracted from static 
disassembly, to form an integrated feature set. We 
used these features to train and test the ensemble 
techniques in harmony with [26]; [10], who 
suggested that the weaknesses in signature-based 
detection methods could be improved by the 
integration of the techniques in malware analysis. As 
shown in Figure 10, all the models performed 
moderately well, with the eXtreme Gradient Boost 
ensemble outperforming the others in classification 
accuracy and false positive rates. 
 

 
 

Figure 10. Performance Of The Proposed Approach 
Before Obfuscation 

 

The relative good performance of the models might 
be a demonstration of the fact that ensembles always 
outperform their individual classifiers and are good 
for non-stationary datasets. The XGBoost algorithm, 
which is an extension of the usual gradient boosting, 
has shown to be resilient and robust with large 
datasets due to its scalability. Thus, with the 
relatively larger dataset and due to its scalability, the 
XGB demonstrates superior classification 
performance in terms of accuracy and false-positive 
rates compared with the others. This is in line with 
[22], who suggested that the ability of XGB to 
handle large data coupled with its scalability makes 
it a good choice to reduce the residual error of 
estimators leading to improved prediction and a 
suitable candidate for parallel computing and cloud 
computing, where malware attacks are common 
3.4. Performance of Ensemble Techniques on 

Hybrid Features after Malware Obfuscation 
Similarly, the performance of the models was 
evaluated after the malware dataset was obfuscated. 
This was to test the resilience and robustness of the 
homogeneous hybrid in classifying obfuscated 
malware and malware variants such as polymorphic, 
metamorphic, oligomorphic, and other mutant 
malware. The results of the models with the 
obfuscated malware dataset are shown in Figure 11. 
As depicted from the figure, there was no variations 
in performance of the models after the obfuscation. 
Again, the XGB model led in performance accuracy 
and false-positive rates. As explained earlier, the 
lack of variation in performance of the models and 
the relatively high performance accuracy 
demonstrates the resilience and robustness of the 
homogeneous hybrid technique or features as an 
efficient technique for malware classification, which 
is in line with [28]. 

 
 

Figure 11. Performance Of The Proposed Approach 
After Obfuscation 
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3.5. Comparing the performance of the proposed 
approach with the individual features 

Similarly, comparing the performance of the hybrid 
with the individual features, there was a vast 
improvement in the performance of the proposed 
technique over the individual features, 
demonstrating the ability of the proposed approach 
to detect and classify many malware categories. As 
shown in Figure 12, the hybrid approach largely 
outperformed the individual features. This is 
necessary because with the current increase in 
malware volumes, variety, and complexity, there is 
a need for automated tools to not only target a single 
malware family but to be able to detect and classify 
a variety of these malware forms. Thus, the variety 
of malware included in our dataset and the high 
performance in terms of classification accuracy and 
false positive rates demonstrate the resilience of the 
approach in handling diverse malware families. This 
is necessary to avoid the adoption and installation of 
many detection tools at the same premises for 
malware analysis and defense. 

 
 

Figure 12. Comparison Of Hybrid With Individual 
Features 

 
3.6. Overcoming the ‘Accuracy Paradox’ in Class 

Imbalance using the Proposed Hybrid 
Features 

To overcome the class imbalance problem in the 
dataset, data augmentation techniques such as 
oversampleing or undersampling methods can be 
applied. Undersampling is where some random 
samples are extracted from the majority class; whiles 
in oversampling, synthetic samples are added to the 
minority class. Each of these have their trade-offs 

depending on the circumstances. Oversampling 
methods mostly used due to the advantage explained 
earlier. Thus, we applied SMOTE technique, which 
is an oversampling method to rebalance the dataset 
and reduce the skewedness of the model and 
provides for the true classification accuracy.  
As depicted in table 7, the accuracy of the models 
after the application of the SMOTE technique 
reduced. These results suggest that, with the 
imbalance dataset, there was some form of bias, 
which lead to the higher accuracy. However, when 
the data augmentation technique (SMOTE) was 
applied, the true classification accuracy of the 
models were obtained that led to the reduction of the 
accuracy. This position is in tandem with [27], who 
suggested that to efficiently manage the imbalance 
data asymmetry, requires the use of sampling 
methods that rebalances the dataset leading to better 
performance of the classifiers. 
 
Table 7. Performance of Models without and with SMOTE 

 
This implies that, with imbalance dataset as 
experienced in most security domains, the use of 
accuracy as a performance measure or metric 
without data augmentation may result in inaccurate 
results when accuracy is used as performance 
measure. [27] contents that, under such 
circumstances the use of Area Under Curve(AUC) 
and F1-Score or measure provides a better 
evaluation measure. 
 
3.7. Comparison of the Proposed Approach with 

similar cited Literature 
Generally, since our approach is largely different 
from the rest of the works, comparison is a 
challenge. Under such conditions, the recommended 
strategy is the use similar works and situate the new 
work in context. Consequently, to situate the 
performance of our approach within the context of 
literature, we compared the performance of our 
technique with similar studies from 2017 to date. As 
depicted in Table 8, our approach performed 
comparably better with all the cited literature. It is to 
be noted that [29] achieved 99.78% with the use of 
only opcodes. This is contrary to our approach, in 
which we used multiple features (strings, opcodes, 
and API calls) where we obtained 99.87% without 
data augmentation and 98.8%. This allows our 
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model to gain more training experience with a 
variety of features, which results in the detection of 
a variety of malware compared with their approach, 
which has limitations in detecting malware without 
opcode features. In addition, all authors used 
imbalanced data for their models; however, none of 
them used data balancing techniques to avoid 
skewed and biased classification. Consequently, 
their classification accuracy may be subject to the 
accuracy paradox.  
Overall, our proposed approach used relatively 
larger dataset size, efficient homogenous features, 
we used the SMOTE data augmentation technique in 
handling the imbalance data; avoiding the usual 
‘accuracy paradox’ and tested the resilience of our 
approach with obfuscated malware samples. In our 
approach we showed that our classification accuracy 
is unbiased and unskewed, which is necessary for 
handling imbalance data. This observation is 
consistent with [30], who suggest that one way of 
overcoming the data imbalance problem is to use 
ensemble with the oversampling techniques and 
variants of these techniques. 
Table 8. Comparison Of Our Proposed Technique With 

Cited Literature. 

 
Consequently, our proposed technique outperformed 
the cited literature, gave a true measure of the models 
as we have included the SMOTE to handle 
imbalances, demonstrated resilience to malware 
obfuscation, and used a relatively larger dataset in 
our classification. Thus, to the best of our 
knowledge, they demonstrate considerable novelty 
or value and therefore present a huge potential for 
malware classification in general and enhancing 
static techniques in particular. 
 
4. CONCLUSION AND FUTURE WORKS. 

As the volumes, variety and complexity of malware 
increases exponentially, the efficiency and efficacy 
of signature-based detectors is compromised 
requiring the use of automated Artificial Intelligence 
and ML techniques. However, poor malware 
features, poor classification accuracy due to the class 

imbalances and the use of obfuscated malware 
techniques to evade detection remains a major 
challenge in malware detection systems. We have 
demonstrated an efficient hybrid malware features 
based made up of only ‘fine-grained’ features and 
used an ensemble technique with SMOTE data 
augmentation method to overcome malware 
obfuscation and improve malware variant detection. 
Specifically, we have demonstrated the efficiency of 
the hybrid technique in classifying malware and 
variants, overcome the ‘accuracy paradox’ usually 
encountered with imbalanced data using the SMOTE 
Technique, and finally, demonstrated the resilience 
of the technique against malware obfuscation. We 
therefore conclude that on the bases of the achieved 
objectives, the proposed technique provided 
efficient features that improved the performance 
accuracy of the models in classifying unknown 
malware, demonstrated resilience and robust against 
obfuscated malware and variants of previously 
unknown and known malware, including zero-day 
malware. Thus, the proposed approach provides an 
improved malware variant detection approach and 
presents huge promise and potential for malware 
detection including variants of known and unknown 
malware.  

Even though our approach achieved relatively high 
performance, it has some limitations such as not 
using the AUC and F1-Score, not using a rigorous 
feature dimensionality reduction technique and the 
use of ensemble not deep learning methods. in 
future, we will use AUC and F1-Score as a measure 
instead of the accuracy to see the effect. Also, we 
shall apply Principal Component Analysis (PCA) as 
a feature dimensionality reduction technique to 
observe the performance of the models and finally, 
apply deep learning techniques such as 
convolutional neural networks (CNN) and or 
Generative Adversarial Networks (GANs) to 
observe the performance of the models in detecting 
known, unknown and variants of known malware 
including zero-day malware. 
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