
Journal of Theoretical and Applied Information Technology

15th December 2023. Vol.101. No 23
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7941

AUTOMATING DATA WAREHOUSE DESIGN WITH MDA
APPROACH USING NOSQL AND RELATIONAL SYSTEMS

LAMYA OUKHOUYA1 , ANASS EL HADDADI2 ,BRAHIM ER-RAHA1 , ASMA SBAI3

1ESTIDMA team, National School of Applied Sciences, Agadir, Morocco

2SDIC team, National School of Applied Sciences, Al Hoceima, Morocco
3LBH Laboratory, Faculty of Medicine and Pharmacy, Marrakech, Morocco

E-mail: 1l.oukhouya@uiz.ac.ma, 2a.alhaddadi@uae.ac.ma, 1b.erraha@uiz.ac.ma , 3asma.sbai@uca.ac.ma

ABSTRACT

Data warehouses and OLAP systems provide methods and tools for analyzing data from enterprise
information systems. Unfortunately, relational data warehouses are unable to store and analyze data with the
3V characteristics of Big Data: volume, variety, and velocity. To address this, NoSQL systems are introduced
in addition to RDBMS, offering scalability to data warehouses to effectively adapt to the volume and variety
of collected data. However, integrating these two systems in the same architecture in Big Analytics processes
is complex, both in terms of data modeling and data processing. In this regard, several approaches have been
proposed to alleviate this complexity. However, several points, which relate to integrated modeling
abstractions, adapting the conceptual model with various NoSQL and relational systems, or automating the
design process, remain unexamined. In this article, our approach Accounts for all these limitations through a
model-driven architecture approach (MDA). This approach proposes a design with three levels of abstraction:
conceptual, logical, and physical. The conceptual level is presented by a multidimensional model. The logical
level is described by a generic model for all NoSQL and relational families, and the physical level is described
by three models related to the implementation; MySQL DBMS for relational systems, and Cassandra DBMS
and MongoDB DBMS for NoSQL systems. Moreover, the entire design process is automated through a set
of implemented transformation rules rom the conceptual model to source code extraction, thereby facilitating
the design task for developers. Furthermore, we conducted a qualitative evaluation compared to other
methodologies, revealing that our approach excels in using a generic logical model that can be adapted at the
physical level to five types of NoSQL systems and relational systems. Additionally, the automation of the
transition from a conceptual model to source code extraction offers a notable advantage in simplifying the
migration between concepts.

Keywords: Data Warehouse, Relational Systems, Nosql Systems, Hybrid Architecture, Model-Driven
Architecture.

1. INTRODUCTION

Decision support systems have evolved in
terms of infrastructure and technologies adopted
given the growth of data volumes. This evolution has
allowed the traditional architecture of decision-
making systems to manage Big Data more efficiently
and effectively. Data storage is among the elements
affected by this evolution. Indeed, information
architects have several possible storage modes such
as RDBMS, NoSQL, Apache Hadoop [1]. These
storages are not exclusively linked and can even
coexist with each other. As such, the most striking
evolution of decision-making systems is the
hybridization of storage modes [2].

The design of a hybrid storage architecture
makes it possible to bridge the boundaries of
RDBMS, which is the most adopted system, either
by data warehouses or in the data sources used by the
decision support systems. Since the RDBMS uses a
relational model, the new data formats cannot be
structured or supported by the model [3]. The
implementation of relational models with NoSQL
models solves this problem. Indeed, NoSQL
Systems have an unstructured storage format; they
do not assign a format or schema when storing data.
Scalability in storage and processing also
characterizes these systems, allowing for great
flexibility and performance in data processing [4].

Journal of Theoretical and Applied Information Technology

15th December 2023. Vol.101. No 23
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7942

The hybridization of relational systems
with NoSQL systems has made it possible to migrate
to distributed architectures, offering new approaches
to design massive data warehouses in order to
effectively adapt to the scalability of the data
volume, the variety of data sources, and data
velocity. Put differently, hybridization has made it
possible to modernize the architecture of decision
support systems and to acquire modern 3V data
warehouses. In this article, we propose a hybrid
storage architecture that integrates both NoSQL and
relational systems into the data warehouse design
process.

Moreover, designing a data warehousing
project presents certain difficulties. These result
from the transformation of the multidimensional
model, which represents the conceptual level of
multidimensional modeling to the other levels,
namely the logical and physical levels, which
describe the technology chosen for the
implementation of the data warehouse. To facilitate
this, the MDA approach was proposed as a way to
reduce the complexity of data warehouse
development [5]. This approach automates
transitions between different levels of abstraction,
conceptual, logical, and physical, and ultimately
leads to the generation of the source code of the
design, based on the DBMS chosen for
implementation [6]. Furthermore, the similarity
between the levels of abstraction of this approach
with the three levels of multidimensional modeling
offers more efficient management throughout the
project life cycle.

This article presents an approach to design
a hybrid decision-making architecture on two
relational storage systems. Section 2 presents the
state of the art. Section 3 describes the approach
used to design a relational and NoSQL data
warehouse. Section 4 describes the experimentation
and validation of our transformation. Section 5
validates our approach by means of a quantitative
study. Finally, section 6 presents our conclusion and
future work.

2. RELATED WORK

In this section, we will examine the
different works involved in the design of NoSQL
and relational data warehouses, or the approaches
presenting a hybridization with these two
technologies.

2.1 Design of relational data warehouse

In article [7], the authors propose a classic
approach for designing a data warehouse to apply

strategic marketing processes. This approach is
based on the use of a snowflake model at the
conceptual level, describing the transactional data of
the data source. The authors began by presenting the
conceptual model used. Then, they described the
results of the ETL process ensuring the migration of
transactional data to the data warehouse, in
accordance with the conceptual model previously
designed. In the same context, this work [8] proposes
the design of a data warehouse by applying the
extraction, transformation, and loading process
(ETL) to an operational external data source. In this
process, the extraction phase involves reading data
from a source file and extracting a required subset
from it. The transformation is to convert the
extracted/acquired data from its form to the form it
must take to be placed in the data warehouse.
Finally, the loading phase consists of transferring the
processed data to the data warehouse in the form of
a multidimensional model with a fact and
dimensions. Furthermore, the work [9] proposes a
model-driven approach to develop a decision
support system, using the canonical
multidimensional distribution approach and a
conceptual model. This approach is based on three
levels. The first level is the CIM, which generates
the multidimensional model of the warehouse. This
is achieved by applying a set of rules to transform an
annotated multidimensional model into a
multidimensional conceptual model. The second is
the PIM level. It describes the logical level of the
implementation, from which the authors chose a
ROLAP metamodel for the data warehouse
implementation. The transformations at this level
correspond to the transition from the
multidimensional conceptual diagram produced in
the previous level to the multidimensional logical
diagram. The last level is the PSM. It represents the
implementation of the ROLAP logical model on a
relational DBMS, which allows the source code of
the data warehouse to be retrieved. All of these
transformations are executed with the QVT (Query/
Query/View/Transformation) language dedicated to
transformation between models.

A thorough analysis of existing works
reveals a general tendency for approaches to be
limited to two levels of modelling, either from
conceptual to logical, or from logical to physical.
While this limitation is practical in a variety of
situations, it presents difficulties in ensuring the
coherence and flexibility of the entire development
process. Adopting an architecture that includes all
three levels of abstraction - conceptual, logical and
physical, appears to be a crucial solution to
overcoming these difficulties. By allowing the

Journal of Theoretical and Applied Information Technology

15th December 2023. Vol.101. No 23
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7943

separation of concerns between these three levels,
this approach aligns perfectly with the Model Driven
Architecture (MDA) framework. Isolating
conceptual, logical and physical considerations
provides greater flexibility, makes it easier for users
to use components and develop more coherent and
adaptable systems.

Additionally, the majority of current
research predominantly concentrates on the ETL
model, which is dedicated to data collection,
transformation, and loading processes, often
overlooking the data structuring model.

Our approach fills this gap by introducing a
three-level abstraction architecture that encompasses
conceptual, logical and physical aspects. In the
context of our study, we place particular emphasis
on the design of the physical model of the target
database, which is derived from the logical model.
This approach enables more efficient data storage
and provides a solid basis for the application of
advanced analytical processes, making our
contribution to the field of database design even
more relevant and valuable.

2.2 Design of NoSQL data warehouses

The article [10] presents the design and
implementation of a column-oriented data
warehouse. The approach used is based on a set of
transformation rules making it possible to transform
the elements of a multidimensional model into a
column-oriented logical model dedicated to the
NoSQL Hbase DBMS. These rules transform each
fact into a column family and each measure into a
unique column belonging to the fact column family.
Likewise, dimensions, are converted into column
families, and each dimension attribute is converted
into a unique column belonging to that column
family. The authors also propose operators
exploiting the Hadoop MapReduce and Apache
Spark paradigms to calculate OLAP cubes. This
work presents the design of a massive document-
oriented big data warehouse [16]. The approach used
by the authors includes two models, successively
describing the multidimensional model and the
document-oriented model. In addition, a set of
transformation rules is proposed, making it possible
to convert the multidimensional concepts of the
conceptual model into logical concepts dedicated to
the document-oriented NoSQL model. In this article
[11], the authors examine the creation of an OLAP
cube in NoSQL key-value databases. They proposed
two approaches; the first is based on the ROLAP
technique, which transforms the star schema into a
NoSQL logic model in two ways: either the fact and
the dimensions are stored in a single key-parent

value, or they are stored separately with a kinship.
The second approach applies an algorithm inspired
by the MOLAP technique to store an OLAP cube
under the key-value database based on the bit-coded
fragmented storage technique. More recently, this
work [12] proposes an approach to transform a
multidimensional star model into a NoSQL graph
model. To do this, the authors defined a set of de-
normalized type transformation rules in order to
transform each fact and dimension into a distinct
node carrying two labels. The first label mentions the
type of component of the conceptual model (fact or
dimension), while the second bears the name of the
component. Concerning the measurements, they are
transformed into properties of the “fact” node.
Likewise, the dimension identifier, parameters, and
weak attributes are transformed into a property of the
"dimension" node. Additionally, the links between
dimensions and facts are represented in the NoSQL
logic model by a relationship that connects the
source node (fact) with the target node (dimension).
All these rules are implemented at the physical level
with the Talend data integration tool under the
NoSQL Neo4j database.

All of these works present the design of a
NoSQL data warehouse, specifically, the
implementation of a conceptual model on NoSQL
systems. However, the data structure used does not
offer a logical level, not offering the architecture
independence of the result in relation to a particular
platform. The key contribution of our approach lies
in the design of a logic model that crosses the
specificities of each NoSQL family, providing a
flexible and universal solution. Unlike previous
approaches, which usually focus on models adapted
to a specific NoSQL family, our generic logic model
provides more portability. As a result, it can be
adapted and physically implemented in a variety of
contexts, covering all the different data structures
typical of each NoSQL family.

2.3 Hybridization of NoSQL and Relational
storage modes

The work [13] presents a generic
metamodel for relational systems and the 4 NoSQL
families implemented at the logical level. the authors
present an approach aligned with the MDA
approach, where the model transformation is
represented by a refinement transformation,
applying merge and split regels in order to produce
the various possible combinations of the logical
model, and this for each family NoSQL and
relational systems. In [14], the authors present a
generic metamodel for NoSQL and relational
systems and modeled with the entity/relationship

Journal of Theoretical and Applied Information Technology

15th December 2023. Vol.101. No 23
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7944

concept and developed with the Ecore tools of the
EMF framework. This metamodel manages
aggregations, references, relationship types, and
structural variations. In another work [15], the
authors propose a functional model with a formal
language to integrate graph databases and relational
databases. Here, the relationships and their direction
in the graph are described as sets of single or
multiple values. The process begins in this work by
querying the data source with SQL and Cypher
languages. Subsequently, the results are adapted and
transformed according to the data structures
corresponding to the source query.

The research described focuses on hybrid
architectures that integrate NoSQL and relational
systems seamlessly. These architectures are
significantly built around an intermediate level,
generally characterised by a metamodel or generic
model designed to adapt to both types of system.
However, a major problem identified in many
existing studies concerns this model, which is often
built around the concept of Entity/Relation (E/R), a
design choice that is poorly adapted to decision-
making contexts. The disadvantages associated with
this modelling approach are complexity,
performance degradation, difficulties in representing
historical data effectively and user comprehension
difficulties.

In our approach, these limitations are
addressed and consciously resolved. Instead of
adopting the E/R model, we use a UML class
diagram enriched with multidimensional concepts to
represent the generic metamodel. This choice of
design offers a representation based on high-level
abstractions, providing a level of maturity and
flexibility that is crucial for the effective modelling
of complex systems. Using a UML class diagram
instead of an E/R modelling approach, our
methodology not only avoids the drawbacks of
previous approaches, but also provides a more
flexible and intuitive way of representing complex
data relationships in the context of decision making.
This strategic change is part of a wider objective to
improve the overall efficiency and applicability of
hybrid architectures in real-life situations within
organizations.

The conclusions drawn from the literature
review underline that our approach strategically
deals with all the limitations that have been
identified in the three categories mentioned above.
Our methodology is designed to perform at three
distinct levels of abstraction - conceptual, logical
and physical, providing a comprehensive and multi-
purpose solutions. At the conceptual level, we
employ a multidimensional model that aligns

perfectly with the data warehousing concepts
described with a UML diagram. This allows for a
robust representation of high-level abstractions,
establishing a solid foundation for the
conceptualization of complex data structures. At the
logical level, our approach is based on a generic
implementation that shows adaptability to the
diverse database management system environment.
This adaptability integrates the four main families of
NoSQL systems as well as traditional relational
systems, providing a unified and generic logical
framework.
Finally, the physical level consists of a set of
database management system (DBMS) models
designed specifically to take into account the unique
characteristics of NoSQL and relational systems.
This complex design enables the physical
implementation of conceptual and logical models,
optimizing data storage and recovery. Our approach
is distinguished above all by its automation
capabilities, which are made possible by the MDA
(Model-Driven Architecture) approach. This
automation provides a transparent transition between
levels of abstraction. From conceptual model to
source code extraction, each physical model
representing the DBMS implementation is
systematically generated automatically from the
logical model, which is in turn obtained
automatically from the conceptual model. This
process, described by a series of transformations
between levels of abstraction, not only improves
efficiency, but also contributes to the general
effectiveness of our approach by simplifying the
complex task of switching from conceptualization to
operational implementation.

In the following section, we will present

our hybrid architecture incorporating the various
characteristics mentioned earlier.

3. HYBRID DECISION-MAKING
ARCHITECTURE WITH NOSQL AND
RELATIONAL SYSTEMS

This article seeks to introduce a decision-

making architecture for hybrid storage, integrating
both relational and non-relational systems.
Specifically, our goal is to establish an automated
approach for designing a data warehouse compatible
with both relational and non-relational systems.

The choice of a hybrid storage architecture
is explained by the current need for organizations to
navigate through situations where it is imperative to
use both systems simultaneously. Let's take the

Journal of Theoretical and Applied Information Technology

15th December 2023. Vol.101. No 23
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7945

example of an e-commerce company that adopts an
approach combining relational and NoSQL database
systems in its infrastructure. Relational systems are
privileged for managing users and orders,
guaranteeing data integrity and financial security
thanks to the ACID properties applied by RDBMSs.
At the same time, NoSQL systems are playing a vital
role in real-time event processing, such as tracking
user interactions and integrating them in real time.
This merger provides a solution adapted to the
specific requirements of each domain, improving the
global efficiency and performance of the system.

In designing our hybrid storage
architecture, we chose to adopt the MDA approach
for several fundamental reasons. This decision was
based on the significant advantages offered by the
MDA methodology. By allowing a clear definition
of the architecture at different levels, this approach
ensures unfailing consistency, satisfying our
requirement for conceptual clarity. In addition, the
flexibility and adaptability inherent in the creation of
technology-independent models is essential to cope
with the variations in hybrid storage. Finally,
interoperability between components and
automation between certain phases is a key factor
that justifies our preference for the MDA approach,
facilitating development while mitigating the overall
complexity of implementation.

Furthermore, the application of the MDA
approach in our work is represented by the
establishment of a set of rules enabling the
implementation of a multidimensional model on
models relating to the following DBMSs: Cassandra,
MongoDB and MySQL. Figure 1 illustrates our
prototype.

Figure 1: Our Prototype

Our approach is based on the model-driven
approach (MDA), which uses 3 levels of abstraction:
CIM, PIM, and PSM. In our work, we will only
retain the PIM and PSM levels, since our conceptual

model is not designed according to a requirement
engineering approach,at the PIM level, will use two
types of models: a conceptual PIM, and a logical
PIM. The first model will reflect the conceptual
level, i.e., the multidimensional model of the data
warehouse, while the logical model will represent in
a generic way relational concepts as well as all
NoSQL concepts for the 4 families, namely, column-
oriented, document-oriented, key-value-oriented
and graph-oriented. Regarding the PSM level, it will
describe the 3 models relating to NoSQL and
relational platforms. We chose the Cassandra DBMS
representing the column-oriented model, the
MongoDB DBMS for the document-oriented model,
and the MySQL DBMS for the relational model.

Our automated process, named
ToCreateDWH, ensures the transition between these
different models by involving a set of model-to-
model (M2M) type transformations described with
the QVT language, and a second type of model-to-
text (M2T) transformation.) with the MOF2Text
language allowing you to arrive at the source code
for designing the data warehouse. Figure 2 illustrates
the different components of our process.

Figure 2: ToCreateDWH Processes Steps

The MD2RDBNoSQL transformation

presents the first transformation of our
ToCreateDWH process. It makes it possible to
transform the multidimensional model into a generic
logic model for NoSQL and relational systems. The
LGM2physicalM transformation presents the second
transformation that generates the physical models
relative to the chosen DBMS. Finally, the PS2SC
transformation presents the translation of each
model to the associated source code. In the next
section, will present for each transformation the
input, the output, and the associated transformation
rules. In the next section, we present the input,
output, and associated transformation rules for each

Journal of Theoretical and Applied Information Technology

15th December 2023. Vol.101. No 23
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7946

transformation. For the PS2SC transformation,
which is of the Model-To-Text type, these concepts
cannot be presented. Indeed, the MDA approach
does not consider this step as a real transformation,
which requires an input model and an output model,
but this one has only one input, namely the physical
model. Therefore, this transformation is described in
a code that serves as a translation to the appropriate
source code.

3.1 MD2RDBMNoSQL Transformation

In this part, will present the first
transformation of the ToCreateDWH process that
transforms the conceptual PIM model into a logical
PIM model. First, we will describe the source and
the target of this transformation, then we will present
the associated transformation rules.
3.1.1 Target: Logical PIM
Our conceptual PIM model describes the data
structure according to multidimensional concepts.
Analysis topics, also called Facts, encompass a set of
indicators, known as Measures. The values of these
indicators are observed according to what we call the
axes of analysis, more commonly called dimensions
(Dimension). These dimensions are made up of
different levels of granularity, which are organized
into hierarchies that we have named base. Each Base
is attached to a dimension, which is composed of an
identifier (Identifying Attribute), dimension
attribute (Dimension Attribute), and optionally, an
optional attribute allowing for expressing additional
data on the dimension attribute (OptionalAttribute).
Figure 3 presents the PIM conceptual model used.
3.1.2 Target: Logical PIM
The objective of our logical model is to create a
schema that can be in accordance with various
models used at the physical level. The added value
of our model is enabled to integrate with all NoSQL
families. This means that if a case study is compliant
with a particular family, either NoSQL or relational
systems, it will be automatically adaptable with the
other families thanks to the implementations of our
PIM model that are performed at the physical level.
Figure 4 presents the constituents of our logical PIM
model.This model consists of a concept (Concept)
that groups the recordings. The latter can take
different forms (depending on the constitutive
elements of the physical model of a table, a
collection, a record, or a node (in the graph-oriented
model).

Figure 3 : PIM conceptual metamodel

Figure 4 : PIM logical Metamodel

Journal of Theoretical and Applied Information Technology

15th December 2023. Vol.101. No 23
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7947

Each concept is defined by several "Component"
components that refer to families of columns to
documents (in the document-oriented template) or to
columns (in the relational template). Attribute
properties (Properties Attribute) specify different
characteristics for each component, including an
 identifier (ID) to determine identifier type
attributes, an attribute (Simple Attribute) to specify
atomic value attributes (such as String, int, float,
etc.), and another (Complex Attribute) for nesting
attributes, and finally a reference attribute
(Reference) that determines the notion of foreign key
in the relational model.
3.1.3 Transformation Rules:
After having defined the two source and target
models, we will move on to define the
transformation rules automating the transition from
the conceptual PIM model to the logical PIM model.
This passage is realized by a series of
transformations described as follows:
R1: Each Multidimensional model is transformed
into generic model RDBNoSQl, where name of
conceptual model is equivalent to the name of logical
model, RDBNoSQL_Schema.CName=
MDM_Schema.MDMName.

R2: Each Fact is transformed into a Concept whose
Fact name is equivalent to the Concept name,where
Fact.FName=Concept.CName.

R3: Each Dimension is transformed into Component
of the Logical Model, whose name of the dimension
is equivalent to the name of the Component, where
Dimension.DName= Component.RName.

Moreover, in order to make the logical model richer
in terms of data structuring represented at the
physical level (normalized, and denormalized
approach), the transformation of the dimension is
also duplicated as much as complex attribute, hence
the Dimension.DName = ComplexAttributs.
CXName.

R4: Each IdentifyingAttribute is transformed into ID,
where IdentifyingAttribute.IdName=ID.IDName,
and IdentifyingAttribute.IDType=ID.IDType. This
element is successively transformed into References,
thus representing the dimension identifiers associated
with the Fact, thus
IdentifyingAttribute.IdName=Reference.RName and
IdentifyingAttribute.IDType=Reference.Rtype .

R5: Each DimensionAttributes is transformed into
SimpleAttributes, hence
DimensionAttributes.DAName=SimpleAttributes.A
TName, and DimensionAttributes.DAType =
SimpleAttributes.ATType.

R6: Each OptionalAttributes is transformed into
SimpleAttributes, hence
OptionalAttributes.LAName=SimpleAttributes.AT
Name, and OptionalAttributes.LAType=
SimpleAttributes.ATType.

R7: Each DimensionAttributes is transformed into
SimpleAttributes, hence
DimensionAttributes.DAName=SimpleAttributes.A
TName, and DimensionAttributes.DAType=
SimpleAttributes.ATType.

R8: Each Measures is transformed into
SimpleAttributes, hence Measures.DName=
SimpleAttributes.ATName, and Measures.MType=
SimpleAttributes.ATType.

3.2 LGM2physicalM Transformation

This section will present the second
transformation relating to the transformation of the
PIM logic model representing the source of this
transformation to the targets described by the chosen
implementation DBMS, namely, Cassandra and
NoSQL. We will first introduce the PSM models.
Then, we will describe the rules of transition from
the generic model to the physical models associated
with each of these systems.
3.2.1 Source: logical PIM
The source of this transformation is presented in the
previous section (Figure 4) as well as the output for
the MD2RDBNoSQL transformation. The input is
given the generic PIM logical model with NoSQL
and relational systems.
3.2.2 Target: physical PSM
The LGM2physicalM transformation output
corresponds to physical NoSQL and relational
models. To illustrate our proposal, we chose to
implement our generic model on three DBMSs,
namely, Cassandra (column-oriented), MongoDB
(document-oriented), and MySQL(relational). In
this section, we will introduce the data model
components for each of these systems.
3.2.2.1 MySQL PSM Metamodel
The MySQL model is designed to represent a
relational database. It establishes a predefined
schema that must be defined before adding data.
Data structuring within this schema is based on
several concepts: tables are used to organize rows
and columns of data, primary keys are used to
uniquely identify values, and foreign keys are used
to establish references to values in other tables.
Figure 5 presents the MySQL relational model.

Journal of Theoretical and Applied Information Technology

15th December 2023. Vol.101. No 23
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7948

Figure 5: MySQL PSM Metamodel

3.2.2.2 Cassandra PSM metamodel

The Cassandra model represents a NoSQL database
system that follows a column-oriented approach. In
this model, the data organization is grouped into a
KeySpace that serves as a container for all elements
defining the data structure. The main component of
this structure is the column family (Column Family),
which is defined by both a name and a collection of
columns (Column). Each column is characterized by
a name, a data type and a descriptor. The descriptor
plays a crucial role in identifying the column as a
primary key, which is used to uniquely identify rows
within a column family. Figure 6 presents a visual
representation of the Cassandra metamodel.
3.2.2.3 MongoDB PSM metamodel
MongoDB is a document-driven NoSQL database.
In this database, data is organized using a structure
consisting of a collection and documents. A
collection is defined by a name and contains a set of
documents. The structure of a document is specified
through fields or attributes, which can be
comparable to key/value pairs where the attribute
name acts as the key. We can distinguish between
atomic fields, whose values are elementary (atomic
document), and complex fields, whose values
themselves include documents, which are called
complex documents. You can find a visual
representation of the MongoDB metamodel in
Figure 7.

Figure 6: Cassandra PSM Metamodel

Figure 7 : MongoDB PSM Metamodel

3.2.3 Transformations Rules
3.2.3.1 Transformation To MySQL
The relational model is defined in all RDBMS before
the database is populated. That is, the structure of the
model is fixed, and the data is inserted as tables, key-
primary, foreign-key, and column.
R1: Each model structure is transformed into a
MySQL relational data model from which
RDBNoSQL_Schema.CName= Schema_Relational.
SName.

Journal of Theoretical and Applied Information Technology

15th December 2023. Vol.101. No 23
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7949

R2: Each Concept and Component is transformed
into a Table, where: Table. Name = Concept.CName
and Table.Name= Component.CMName.

R3: Each ID is transformed into a PrimaryKey then
added to the appropriate pair, hence
PrimaryKey.Name=ID.IDName and
PrimaryKey.Type = ID.IDType .

R4: Each Reference is transformed into a
Foreignkey, hence ForeignKey.Name
=Reference.Name and ForeignKey.Type=
Reference.Name .

R5: Each SimpleAttribute is transformed into a
Column, hence Column.Name =
SimpleAttribute.SAName and
Column.Type=SimpleAttribute.SAType.

3.2.3.2 Transformation To Cassandra
Apache Cassandra follows the same philosophy as
relational systems, where the data model must be
fixed in advance. Thus, the name of the database, the
column families and the columns are fixed.
R1: Each Data Schema is transformed into a
KeySpace, where: keyspace.
Name=Schemadata.Name.

R2: Each Concept and Component is transformed
into a distinct Column Family, where:
ColumnFamily.Name=Concept.CName and
ColumnFamily.Name= Component.CName.

R3: Each Reference is transformed into a Column
and added to the corresponding Column Family,
where: the Reference.Name=Column.CName,
Reference.Type= Column.CType, and
Column.Decription= 'primaryKey'.

R4: Each ID is transformed into a Column and added
to the corresponding Column family: ID.Name=
Column.Name, ID.Type=Column.type and
Decription= 'PrimaryKey'. If the ID is represented as
the line identifier, and this is in the case of the
transformation of the Fact identifier to ID that we saw
in the previous section, the transformation will be
described as follows: ID.Name=Column.Name,
ID.Type= "uuid" and Decription= 'primaryKey'. The
“uuid” type is a function used by Cassandra to
determine unique line identifiers.

R5: Each Simpleattributes is transformed into a
Column and added to the corresponding Column
family;hence:Simpleattributes.Name =
Column.Name and
Simpleattributes.type=column.type.

3.2.3.3 Transformation To MongoDB
Before entering data into the MongoDB database,
part of the model is declared. This involves
specifying the name of the database and the names of
the collections. The other components are translated
according to a data normalization approach. It should
be specified that the transformations towards the
physical level all follow this structuring. The
transformation rules are as follows:

R1: Each DataSchema is transformed into a
MongoDB schema, hence: MongoDBModel.Name =
Schemadata.Name.

R2: Each Concept and Component is transformed
into a distinct Collection, hence:
Collection.Name=Concept.CName and
Collection.Name=Component.CMName

R3: Each ID is transformed into a document
identifier Id and added to the corresponding
Collections. Thus, Id.name=ID.Name and Id.Ktype=
ID.IDType .

R4: Each SimpleAttribute is transformed into an
AtomicField, hence: AtomicFeild.Name =
Simpleattributes.SAName, and AtomicField.
AFvalue = Simpleattributes.SAType.

R5: Each complex attribute is transformed into a
ComplexField hence: ComplexField.CFLName =
ComplexAttributs.CXName.

After presenting the input and output for each
transformation, as well as the transformation
regimes, the next section presents the
implementation of these transformations.

3.3 Implementation of transformation rules

The implementation of the transformations
is deployed on the Eclipse platform. Specifically, we
used EMF which is a complete environment for the
implementation of our MDA approach.Thus, we
used the Ecore metamodel to implement our models.
Figure 8 show the Ecore models for the conceptual
PIM(a), the logical PIM(b), and the three physical
PSMs dedicated to DBMS: Cassandra(c),
MongoDB(d), and MySQL(e).

Regarding transformations, we chose the
QVT language to describe the transformation rules
presented in “section A” for the transition from the
conceptual model to the logical model, as well as the
transformation rules determined in “section B”
presenting the transition from the generic model to
the physical models related to Cassandra DBMS,
MongoDB, and MySQL. Figure 9 shows the QVT
code for the first pass and the code for the second

Journal of Theoretical and Applied Information Technology

15th December 2023. Vol.101. No 23
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7950

pass. Besides, the creation code from each PSM is
generated by applying a set of translation rules
formalized in MOF2Text code.

This language is based on a model-based
approach, where the text generated from the model
is defined as a set of configurable text templates with
the elements of the model. This indicates for each
element of the source model, the elements that
correspond to it at the level of the text (code relative
to the DBMS of the source model).

Regarding the implementation of this
language, we chose the Acceleo project, which is a
source code generator to implement the MDA
approach to realize applications from models based
on EMF. Figure 10 presents an extract of the
MOF2Text script for the translation of the Cassandra
model into the CQL script, the MongoDB model into
the "JSON Schema" script, and finally the MySQL
script SQL model.

(a)

(b)

(c)

(d)

Journal of Theoretical and Applied Information Technology

15th December 2023. Vol.101. No 23
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7951

(a)

(b)

(c)

(d)

Figure 9 : QVT Script of the MD2RDBNoSQL transformation (a) and LGM2physicalM (Cassandra, (b)
MongoDB, (c) MySQL).

(e)

Figure 8 : ToCreatDWR Ecore Metamodels

Journal of Theoretical and Applied Information Technology

15th December 2023. Vol.101. No 23
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7952

4. EXPERIMENTATION

The objective of this section is to describe
how the transformations presented in section 3 are
used to implement a multidimensional schema at the
physical level on two types of systems: NoSQL and
relational. We present the steps of the
implementation of a case study on a student and
courses management application. The objective of
this case study is to measure the performance of
students according to the results obtained during an
academic year on the modules studied as well as the
department they are affiliated with. Figure 11
presents the multidimensional model describing this
case study.

Thus, we started the first phase of our
process by instantiating the PIM conceptual model
using the elements of the multidimensional model.
In Figure 12(a), the instantiation PIM model is
composed of a fact named “Results-Student”, which
measures the performance of students by
contribution to 4 dimensions, namely, “Student”,
“Department”, “Module” and “Date”.

Figure 11: Multidimensional model of the case study

(a)

(b)

(c)

Figure10: MOF2Text translation script for: Cassandra(a), MongoDB((b) and MySQL (c)

Journal of Theoretical and Applied Information Technology

15th December 2023. Vol.101. No 23
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7953

In the second step, the first

MD2RDBNoSQL transformation is executed from
the instantiated model, which transforms the
conceptual model into a generic logical model for
both relational and NoSQL systems. The output of
this transformation is presented in Fig. 12 (b), hence
the logical PIM model is presented in XMI format.

The third step executes the second
transformation, which uses the logical PIM model as
input to produce 3 types of physical models as output

namely, the Cassandra physical model, the
MongoDB physical model, and the MySQL physical
model. Figure13 ((a) Cassandra, (b) MySQL, (c)
MongoDB) presents these models.

Finally, the MOF2Text transformation is
executed to translate each physical model into the
associated source code. Figure 13 also successively
presents the CQL script for the Cassandra model (d),
the SQL script for the MySQL model(f), and the
JSON Schema script for the MongoDB model(e).

(a)

(b)

Figure 12: (a) Multidimensional Results-STD model instantiated by the user ;(b) PIM Logic models
generated by our prototype

(a)

 (d)

Source Code

Journal of Theoretical and Applied Information Technology

15th December 2023. Vol.101. No 23
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7954

5. EVALUATION APPROACH:

In the present section, we will evaluate the
hybrid approach proposed in this article for
implementing a data warehouse on two NoSQL and
relational systems.

More specifically, we will carry out a
qualitative comparison between our prototype and
the works presented in section 2.

To establish this comparison and come up
with reliable results, only the works that are similar
to our approach are included, namely, works
[7,10,12,16,13-14].

Table 1 presents our qualitative comparison
according to the following four criteria:

 The use of the multidimensional model (MD)

in transformations (1),
 The level of modeling (2) (C: conceptual; L:

logical; P: Physical),
 Compatibility with 3 NoSQL systems (3) (CL:

Column; DC: Document, GR: Graph; RD:
Relational),

 Automation of transformations (4).

(b)

(e)

Source Code

(c)

(f)

Source Code

Figure 13: Physical models generated from logical PIM and translated into associated source
code: (a)PSM Cassandra: (d) CQL script;(b) PSM MySQL: (e) SQL script; (c)PSM

MongoDB: (f)JsonSchema Script.

Journal of Theoretical and Applied Information Technology

15th December 2023. Vol.101. No 23
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7955

From this table, we can see that these works

are similar to our approach, especially at the level of
the following aspects:

 The multidimensional model represents the

conceptual level for the design of a data
warehouse encompassing NoSQL and
relational systems. It is composed of various
elements, namely facts, dimensions, measures,
and hierarchies, which are then transformed
into the target components. This is represented
at the conceptual level in the works
[10,12,7,16] in addition to our approach.

 Compatibility with NoSQL and relational
systems is addressed in our approach, as well
as in the works [13,14], through the use of a
generic logical model which is implemented at
the physical level on four families of Database
Management Systems (DBMS): column-
oriented, document-oriented, graph-oriented,
and relational databases.

 The correspondence between the models is
obtained through the implementation of
transformation rules, thus simplifying the
automatic conversion of the conceptual model
structures into a logical and physical model.
This automation is demonstrated by the MDA
approach in our prototype, as well as in the
work [14].

There are also notable distinctions between

our proposal and the existing works, including:

 Our approach includes the 3 levels of

abstraction for designing a data warehouse,
namely the conceptual, logical, and physical

 levels. On the other hand, the body of work

only covers two levels, namely the conceptual
and physical level, or the logical and physical
level.

 For the work [16], it involves document-
oriented systems only at the logical level,
which does not ensure the sustainability of the
logical model, which is a crucial aspect of the
MDA approach. In our approach, this aspect of
sustainability is ensured since our generical
model can describe all NoSQL and relational
families.

 In our approach, as in the work [13-14],
automation is based on the MDA methodology.
However, the transformation to the physical
level is not covered in those works, unlike our
approach which not only ensures this transition
but also makes it possible to extract the source
code from each physical model, namely, the
Cassandra model, MongoDB, and MySQL.

Based on this qualitative comparison, we
recognize that our hybrid approach to data
warehouse design addresses all the limitations
presented above. Our approach proposes an
architecture with three levels of abstraction, namely,
conceptual, logical, and physical. The conceptual
level is represented by a multidimensional model
consistent with data warehousing concepts. The
logical level is implemented in a generic manner,
adaptable to the three families of NoSQL systems as
well as relational systems. Finally, the physical
model is described according to three DBMS
models, specifically the MySQL model, Cassandra
model and MongoDB model. Concerning the
transitions between these levels, the MDA approach

Table 1: Comparative Study between our prototype and related works

Criteria/ Works (1)
(2) (3)

(4)
C L P CL DC GR RD

[10] x x x x -

[12] x x x x -

[16] x x x x -

[7] x x x x -

[13] - x x x x x x

[14] - x x x x x x x

Our Approach x x x x x x x x x

Journal of Theoretical and Applied Information Technology

15th December 2023. Vol.101. No 23
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7956

is utilized to automate the transition between these
models and generate the source code. It should be
noted that the logical PIM can also describe the other
two NoSQL families, key-value oriented and Neo4J,
but due to space constraints, we limit our discussion
to the NoSQL families mentioned above.

In addition, our approach has some
limitations, especially compared to previous work
[13-14], which explored the concept of polyglot
persistence in the design of the generic logic model.
Polyglot persistence implies the use of a single
multi-model database management system (DBMS)
capable of integrating both NoSQL and relational
systems. Unlike our approach, which uses separate
DBMSs, polyglot persistence offers a consolidated
solution.

The difficulty with our approach lies in the
use of separate DBMSs for NoSQL and relational
systems. This creates complexities in terms of
system management, integration and maintenance.
Using separate DBMSs can result in potential
problems such as data inconsistency, increased
operating costs and the requirement for specialist
expertise to manage different database technologies.

On the other hand, the main advantage of
polyglot persistence lies in its ability to integrate
different types of databases within a single system,
facilitating the handling of diverse data
requirements. By taking advantage of this approach,
businesses can benefit from a single DBMS to meet
the different storage needs of NoSQL and relational
data, rationalizing the architecture, reducing
operational costs and improving efficiency.

Despite these advantages, implementing
polyglot persistence can be complex and costly. The
technical complexities involved in managing
different data structures in a single system require
extensive expertise and significant resources. What's
more, while this approach may be beneficial for
some companies, it is not necessarily accessible to
all, especially those that have already had functional
data warehouses in place for years.

Ultimately, the choice between an approach
using distinct DBMSs and polyglot persistence
depends on the specific needs of each organization,
considering the complexity of implementation,
associated costs, and the ability to effectively
manage data diversity.

6. CONCLUSION AND FUTURE WORK

The work presented in this article falls into
the category of decision support systems. We have
developed a model-driven approach to designing a
hybrid storage architecture to overcome the

limitations of data warehouses in the face of large-
scale data. To do this, we have established a set of
transformation rules that automate the creation of a
data warehouse, starting with the implementation of
the multidimensional conceptual model into a
generic logical model adapted to NoSQL and
relational databases. This model is then implemented
at the physical level on three different DBMS
platforms: MongoDB, MySQL and Cassandra. The
transition between models is made by the QVT
language. Finally, from each physical model, we
used the MOF2Text language to extract the
appropriate creation source code for each DBMS.

In our forthcoming research, our objective
is to develop a method focused on automating the
extraction of a multidimensional model from a
substantial data source. This data source represents a
consolidation area for the data warehouse, which is
used to integrate the information system of a specific
organization. This novel approach will subsequently
be integrated with the one presented in this article,
thereby establishing a comprehensive automated
process, ranging from the integration of data sources
to the generation of design source code for the data
warehouse.

AUTHOR CONTRIBUTIONS.
 Lamya oukhouya : Conceptualization;
methodology; writing-original draft preparation.
Anass El Haddadi and Brahim ER-Raha :
Supervision and validation. Asma Sbai : review and
editing. All authors read and agreed to the published
version of the manuscript.

REFERENCES:
[1] Imam, A. A., Basri, S., Ahmad, R., Watada, J.,

González Aparicio, M. T., & Almomani, M. A.
(2018). Data modeling guidelines for NoSQL
document-store databases. International Journal
of Advanced Computer Science and
Applications, 9.

[2] Oukhouya, L., El haddadi, A., Er-raha, B., Asri,
H., & Sbai, A. (2022, May). Designing Hybrid
Storage Architectures with RDBMS and
NoSQL Systems: A Survey. In International
Conference on Advanced Intelligent Systems
for Sustainable Development (pp. 332-343).
Cham: Springer Nature Switzerland.

[3] El Mouden, Z. A., & Jakimi, A. (2020). A New
Algorithm for Storing and Migrating Data
Modelled by Graphs.

[4] Padhy, R. P., Patra, M. R., & Satapathy, S. C.
(2011). RDBMS to NoSQL: reviewing some
next-generation non-relational

Journal of Theoretical and Applied Information Technology

15th December 2023. Vol.101. No 23
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7957

database’s. International Journal of Advanced
Engineering Science and Technologies, 11(1),
15-30.

[5] El Beggar, O., Letrache, K., & Ramdani, M.
(2021). DAREF: MDA framework for
modelling data warehouse requirements and
deducing the multidimensional
schema. Requirements Engineering, 26(2), 143-
165.

[6] Hanine, M., Lachgar, M., Elmahfoudi, S., &
Boutkhoum, O. (2021). MDA Approach for
Designing and Developing Data Warehouses: A
Systematic Review & Proposal. International
Journal of Online & Biomedical
Engineering, 17(10)

[7] Aldisa, R. T., & Abdullah, M. A. (2022).
Implementation of Data Warehouse for Food
Sales Strategy Using Snowflake Schema
Model. IJISTECH (International Journal of
Information System and Technology), 6(2),
254-258.

[8] Nyunt, L. S. T. Implementation of
Multidimensional Data Models using Data
Warehouse and OLAP Technology (Doctoral
dissertation, MERAL Portal).

[9] Batoure, A. B. Using Model-Driven
Engineering for Decision Support Systems
Modelling, Implementation and Powering.

[10] Khalil, A., & Belaissaoui, M. (2023). An
Approach for Implementing Online Analytical
Processing Systems under Column-Family
Databases. IAENG International Journal of
Applied Mathematics, 53(1).

[11] Khalil, A., & Belaïssaoui, M. (2020,
December). Key-value data warehouse: Models
and OLAP analysis. In 2020 IEEE 2nd
International Conference on Electronics,
Control, Optimization and Computer Science
(ICECOCS) (pp. 1-6). IEEE.

[12] Sellami, A., Nabli, A., & Gargouri, F. (2020,
November). Graph NoSQL data warehouse
creation. In Proceedings of the 22nd
International Conference on Information
Integration and Web-based Applications &
Services (pp. 34-38).

[13] Mali, J., Atigui, F., Azough, A., & Travers, N.
(2020). ModelDrivenGuide: an approach for
implementing NoSQL schemas. In Database
and Expert Systems Applications: 31st
International Conference, DEXA 2020,
Bratislava, Slovakia, September 14–17, 2020,
Proceedings, Part I 31 (pp. 141-151). Springer
International Publishing.

[14] Candel, C. J. F., Ruiz, D. S., & García-Molina,
J. J. (2022). A unified metamodel for NoSQL
and relational databases. Information
Systems, 104, 101898.

[15] Pokorny, J. (2018). Integration of relational and
graph databases functionally. arXiv preprint
arXiv:1809.03822.

[16] Chavalier, M., El Malki, M., Kopliku, A., Teste,
O., & Tournier, R. (2016, June). Document-
oriented data warehouses: Models and extended
cuboids, extended cuboids in oriented
document. In 2016 IEEE Tenth International
Conference on Research Challenges in
Information Science (RCIS) (pp. 1-11). IEEE.

[17] Oukhouya, L., Er-raha, B., & Asri, H. (2021). A
generic metadata management model for
heterogeneous sources in a data warehouse.
In E3S Web of Conferences (Vol. 297). EDP
Sciences

