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ABSTRACT 
 

In the present article, a simulation of a robotics application based on random walk is described. Typically, 
robots employ navigation algorithms based on planning and adjustments with respect to their working 
environment. As a specific case for mobile robots with two-dimensional navigation, the navigation algorithm 
is implemented with the characteristics of a random walk. The route planning module is a stochastic process 
in which it operates with random numbers following a uniform distribution as input data to the navigation 
module, and the outputs are movement instructions, both in direction and distance of advance. As a test, a 
closed scenario is used with 1, 2, and up to 5 robots operating simultaneously. The objective is to cover the 
area of the scenario. The results include the percentage of visited area, as well as the decision metrics of the 
stochastic processes involved in navigation. This navigation algorithm is oriented towards applications in 
service and surveillance robots. 

Keywords: Random Walk, Stochastic Processes, Simulation, Robotics, Random Numbers. 
 
1. INTRODUCTION  
 

Considering that technological trends are 
moving towards the Internet of Things and Smart 
Cities, robotics plays a predominant role. Clear 
examples include the autonomy of devices and 
services for both the masses and households. 
Currently, there is a variety of service robots with 
multiple applications, such as food preparation, 
cleaning, surveillance, and more. In this case, mobile 
robots were studied, which, in their general 
configuration, have a physical and movement 
structure, control and power electronics, an 
electronic data analysis stage, and, if applicable, a 
communication stage. 

In general, the applications of mobile robots 
are based on algorithms with artificial intelligence, 
including pattern recognition and decision-making 
based on sensor measurements. This implies that the 
robot must have a navigation algorithm that allows it 
to move, either in response to stimuli or 
autonomously. The complexity of these algorithms 
and the quantity or diversity of sensors included in 
the robots increase their cost and maintenance 
difficulty [1], [2]. 

In public spaces where there is an 
unpredictable flow of people over varying periods, 
surveillance or cleaning activities may be 
predominant. In the case of surveillance, if 
predefined routes are used for either a security guard 
or a surveillance robot, there is no guarantee of an 
increase or decrease in incident detection. 
Considering that incidents may occur 
opportunistically to some extent randomly or within 
a context based on opportunity and the surveillance 
route [3] [4], it is not advisable to employ a 
navigation algorithm that could be predictable or 
routine in generating travel routes [5], [6]. 

The present work describes a navigation 
algorithm based on a random walk for use in a 
service robot designed for situations where the robot 
needs to visit or cover a surface without considering 
time optimization but rather following a random 
pattern of visiting each point on the surface. This 
approach is suitable for potential applications such 
as surveillance or cleaning within defined areas. For 
instance, it could be applied in settings like airport 
waiting rooms, commercial zones, or even urban 
areas. 
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2. METHOD 

A simulation of robot navigation using a 
basic random walk algorithm with random numbers 
following a uniform distribution is presented. The 
algorithm's test scenario is bounded. Simulation tests 
are conducted in an obstacle-free scenario. For each 
scenario, conditions are set for 1 to 5 robots 
simultaneously. The test variable is the percentage of 
the scenario visited concerning both time and the 
number of robots operating concurrently. The 
simulation is programmed in the Python language. 

Below, the random walk algorithm and the 
definition of the robot's movement direction based 
on random numbers are described. This algorithm 
includes details such as the initial position, 
movement direction, step or path length the robot 
will move, and handling collisions of the robot with 
the scenario boundary or other robots. 
 
2.1 Algorithm 

Random walk algorithms have a wide range 
of variations and applications [7], [8]. A random 
walk is a model of random, independent, and 
identically distributed events representing the 
movement of an object in a space. 

A random walk is a set of integer numbers 
that evolve in discrete time {xk: k=0, 1, 2,...}. In the 
simple case, if the position evolves to the left or 
right, then each subsequent state will have a 
probability p or q, respectively, such that p+q=1. xk 
is the state of the stochastic process at time k, valid 
for any k>=0 and for any integers i and j. These 
probabilities can be expressed as follows: 

 

   𝑃(𝑥௞ାଵ = 𝑗|𝑥௞ = 𝑖) = ൝
𝑝       𝑖𝑓 𝑗 = 𝑖 + 1
𝑞       𝑖𝑓 𝑗 = 𝑖 − 1
0  𝑎𝑛𝑜𝑡ℎ𝑒𝑟 𝑐𝑎𝑠𝑒  

     (1) 

 
As the probabilities do not depend on k, 

they are said to be homogeneous over time, meaning 
they remain the same at any time value k. Based on 
the properties of Markov, the future state of the 
process depends solely on the current state and not 
on previously visited states [9]. Therefore, the 
random walk can be defined as x1, x2, ...; a sequence 
of random values, independent and identically 
distributed. Thus, P(x=+1)=p and P(x=-1)=q, also 
satisfying p+q=1. Then, for n≥1, it is defined as: 

 
      𝑥௞ ≔ 𝑥଴ + 𝜉ଵ + 𝜉ଶ + ⋯ + 𝜉௞        (2) 
 
Without loss of generality, we can define 

x0=0. With this, some statistical properties of the 

process can be derived. For any k≥0, the expected 
value is: 

 𝐸(𝑥௞) = ∑ 𝐸(𝜉௜) = 𝑛𝐸(𝜉)௞
௜ୀଵ  

 
                     𝐸(𝑥௞) = 𝑛(𝑝 − 𝑞)          (3) 
 
On the other hand,  
E(x)=p+q=1 y E(x)=p-q it is necessary 

Var(x)=1-(p-q)2=4pq. Therefore, the variance is: 
 
   𝑉𝑎𝑟(𝑥௞) = ∑ 𝑉𝑎𝑟(𝜉௜)௞

௜ୀଵ = 𝑛𝑉𝑎𝑟(𝜉) 
 
                     𝑉𝑎𝑟(𝑥௞) = 4𝑛𝑝𝑞         (4) 
 
If p>q, the walk takes steps to the right with 

a higher probability, so the average state after k steps 
is a positive number. If p<q, the average final state 
of the walk after k steps is negative, indicating a 
tendency towards the left. In both cases, the variance 
increases as the number of steps k grows. The greater 
the number of steps k, the greater the uncertainty 
about the final position of the process. When p≠q, 
the walk is called asymmetric. When p=q=½, it is 
called symmetric, and on average, the process 
remains in its initial state, as the expectation 
E(xk)=0. However, the variance of p is Var(xk)=n, 
which corresponds to the maximum value of 4npq, 
for p in the interval (0,1), [9], [10], [11]. 

For the simulation scenario, the robot is 
square and initially placed at a random position 
within the scenario. With these considerations, 
Algorithm 1 comes into operation. 

 
Algorithm 1: Random walk. 

Input: 
Output: Visited area of the scenario at time t 
1: i ← 1 
2: At ← 0 
3: Positioni ← GenerateRandomPair 
4: repeat 
5:    Path ← GenerateDirection(Generate Random) 
6:    while DetectObstruction(Path) = false or End     

   Path(Path) = false 
7:         MoveOneStep(Path) 
8:         At ← CalculateVisitedArea(Path) 
9:    end while 
10:    Position ← StopStep(Path) 
11: until SimulationEnds 
12: return 

 
Variables are initialized, one of which is the 

percentage of visited area counter, steps 1-3. A loop 
is started, steps 4-12, in which a random movement 
direction is obtained. This direction is used to 
calculate the trajectory from the current point to the 
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final point of the path, and the step size remains 
constant throughout the simulation, steps 5-6. 

Then, a nested loop begins, steps 7-10. The 
loop continues as long as there is no collision with a 
wall of the scenario, a collision with another robot 
occurs, or the path is completed, step 7. As the robot 
moves along its path, a count of the percentage of 
visited area is maintained, and if an area has already 
been visited, it is not added to the counter, steps 8 
and 9. 

Once the nested loop is finished, the robot 
is stopped, and its current position is recorded, step 
11. 

Steps 5 and 6 are executed again to generate 
a new direction and path based on a random number. 
The steps of the algorithm are then executed again 
until the termination condition is met. 

If a collision is detected during the nested 
loop (step 7), the nested loop terminates, meaning 
the robot stops, the current position is recorded (step 
11), and the algorithm of the outer loop begins again. 

The termination conditions of the algorithm 
are by time, by percentage of visited area, or by the 
number of steps. 

 
2.2 Random numbers 

The random walk algorithm requires 
random numbers to determine a movement direction 
at the beginning of each step. 

Random numbers were generated using the 
ROOT data analysis framework with a uniform 
probability distribution. It's worth noting that there 
are other distributions available, such as normal, 
geometric, Landau, among others [12] [13]. 

The movement direction of the robot is 
determined by a random number sampled from a 
uniform distribution to ensure that there are no 
biases or weights associated with specific directions. 

Figure 1 displays the histogram of the 
distribution of 5 million integer random numbers 
ranging from 0 to 120, which are used in the 
simulation. 

 
2.3 Initial position 

The random walk algorithm starts with an 
initial position of the robot, which is obtained using 
the random number generator from the Python 
library numpy (the numpy.random method). This 
method provides a floating-point number in the half-
open interval [0.0, 1.0). 

Once the initial position in the scenario is 
determined, the representation of the robot is a pixel 
matrix of size nXm, where n and m represent the 
width and length. In the case of the simulation, the 
dimensions of the robot are set to 11X11 pixels. 

Subsequently, the movement direction of 
the robot must be generated. 

 
Figure 1: Histogram of the distribution of 5 million 

random numbers. 
2.4 Robot movement 

The robot is considered to be in a stationary 
state both initially in the algorithm and when it needs 
to change direction. Therefore, before it begins its 
movement, its direction must be defined, and this 
direction is random. There are eight possible 
directions for the robot to move independently of its 
orientation in its static position, as shown in Figure 
2. Each direction has an equal probability of being 
selected. 

In the random walk algorithm, it's 
important to ensure that the random direction 
selection process does not transform its uniform 
distribution into another distribution with a weighted 
bias (such as the cases of normal, binomial, etc. 
distributions). This is to maintain the randomness 
and equal probability of each direction being 
selected during the random walk. 

 
 

 
Figure 2: The eight possible movement directions of the 

robot. 
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For example, if a random number with a 
uniform distribution is used to represent an angle in 
the polar coordinate plane, which has a cyclic 
property. Then, angles of 0 and 360 degrees 
represent the same direction, and therefore, this 
direction will have a higher probability of being 
selected compared to other directions represented by 
angles. This results in a distribution that resembles a 
normal distribution from a uniform distribution. 

The movement direction is determined 
using a roulette technique [14]. The random numbers 
are in the range of 0.0 to 1.0. This range is divided 
into 8 sections, with each section corresponding to a 
direction as indicated in Figure 2. 

In the case of the robot's static state, if it has 
an initial coordinate (x, y) and you want to move it 
in one of the four cardinal directions (up, down, left, 
right), you can determine the final coordinate as 
follows: 
1. For moving up:  
    The final coordinate will be (x, y + 50). 
2. For moving down:  
    The final coordinate will be (x, y - 50). 
3. For moving left:  
    The final coordinate will be (x - 50, y). 
4. For moving right:  
    The final coordinate will be (x + 50, y). 

These calculations involve simply adding 
or subtracting 50 pixels to the respective coordinate 
depending on the desired direction. 

For the diagonal directions (up-right, up-
left, down-left, and down-right) as shown in Figure 
2, you can use a right triangle approach to determine 
the final coordinates. In these cases, you should add 
or subtract 35 pixels to both the x and y coordinates 
of the initial position, depending on the direction, to 
find the final coordinate of the step. Here's how you 
can calculate it for each diagonal direction: 
5. For moving up-right:  
    The final coordinate will be (x + 35, y + 35). 
6. For moving up-left:  
    The final coordinate will be (x - 35, y + 35). 
7. For moving down-left:  
    The final coordinate will be (x - 35, y - 35). 
8. For moving down-right:  
    The final coordinate will be (x + 35, y - 35). 

These calculations consider a right triangle 
with legs of 35 pixels each, resulting in the diagonal 
movement of 50 pixels. 

Using the initial and final coordinates of the 
robot's step, you can construct a linear equation. 
With the direction conditions, you can determine the 
coordinates by which the robot will move. This 
linear equation will help you calculate the exact path 

the robot will take based on its initial and final 
positions and the desired direction of movement. 

Each step of the robot covers 50 pixels. At 
each pixel of movement of the robot or robots in the 
scenario, a check for "valid movement" is 
performed. This means verifying whether collisions 
occur or not. Robot collisions can happen when 
reaching the boundary of the scenario or when 
colliding with another robot along the trajectory, as 
shown in Figure 3. In either case, the robot or robots 
stop, and a new movement direction is obtained. 

The simulation scenario is a 1000x1000 
pixel square. This scenario is represented by a matrix 
in CSV format, which is initialized with integer 
values of 0. These values change to 1, 2, ..., n. The 
number n represents the number of robots traveling 
in the scenario. This matrix likely serves as a 
representation of the occupancy or presence of 
robots in different positions within the scenario. 

When robot 1 moves one step of 50 pixels 
in a direction, the pixels that are part of its trajectory 
are represented in the matrix with integer values of 
1. For robot 2, these pixels are represented with the 
value 2 in the matrix, and so on for n robots. This 
way, the matrix serves as a representation of the 
positions occupied by different robots in the 
simulation. 

In Figure 4, a section of the matrix is 
displayed. Based on the conditions of the algorithm, 
the robot can revisit the same area multiple times, 
resulting in updates to the values in the matrix over 
time. As these updates to the matrix values occur, a 
count of unvisited pixels (value 0 in the matrix) is 
maintained relative to the total number of pixels in 
the scenario. This calculation provides a percentage 
of visited area over time, as described in Equation 5. 
 

 
 

Figure 3: Types of collisions in the simulation: 
Collisions between robots and collisions with the wall 

that bounds the scenario. 
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Figure 4: Section of the CSV matrix recording the pixels 
in the scenario visited by the robots. 

 
 

        %𝑣𝑖𝑠𝑖𝑡𝑒𝑑 𝑎𝑟𝑒𝑎 =
௩௜௦௜௧௘ௗ ௣௜௫௘௟௦

௧௢௧௔௟ ௣௜௫௘௟௘௦
𝑥100       (5) 

 
 
3. SIMULATION AND TESTING 
 

Based on the mentioned conditions, 
multiple tests are conducted. To visualize the 
repeatability of the behavior of the graph "time 
versus percentage of visited area" by the robot in the 
scenario, the same experiment is repeated several 
times. This experiment involves using 1 robot, and 
in each experiment, there is a random starting point 
and different sets of random numbers for directions. 
This results in the graphs shown in Figure 5, 
demonstrating the similarity or repeatability of the 
results. 

 

 
Figure 5: Percentage of area visited over time for 1 robot, 
in multiple simulation runs. 

 
In the interval of 20-40% of visited area, the 

graph is considered linear, and an approximation of 
the slope is calculated. The slope of the graph 
indicates how quickly the scenario is visited. After 
the linear interval, there is a curve that slows down 
the speed at which the remaining area is covered. 
Therefore, under the same conditions and in several 
experiments, there is a standard deviation of 
0.004627 with respect to the slopes of each curve. 
This standard deviation provides a measure of the 
variability or spread of the slope values in different 
experiments. 

The same process is applied to experiments 
with 2 robots moving simultaneously in the scenario, 
as well as for experiments with 3, 4, and 5 robots. 
The experiments are repeated under the conditions 
described for 1 robot, and the data is obtained as 
shown in Table 1. This process helps analyze and 
compare the behavior and deviations for different 
numbers of robots operating simultaneously in the 
scenario. 

Table 1: The standard deviation of the experiments. 

Number of 
robots 

Standard deviation 

1 0.004627 
2 0.008017 
3 0.007640 
4 0.004606 
5 0.008901 

 
For each case of the number of robots operating 

simultaneously in the scenario, the standard 
deviation defines their behavior in the graph of "time 
versus percentage of visited area". In other words, if 
the random walk algorithm is executed multiple 
times with k robots moving simultaneously in a 
scenario, the graphs of "time versus percentage of 
visited area" for each run of the algorithm will be 
similar to each other and will fall within the standard 
deviation for that number k of robots. This standard 
deviation helps characterize the variability or spread 
in the behavior of the algorithm for different robot 
counts. 

The first experiment using the random walk 
algorithm involves a single robot traveling in a 
1000x1000 pixel scenario without obstacles and 
with a limit of 100,000 steps. For the analysis of the 
behavior of each robot in the simulation, the 
directions of movement are grouped into pairs of 
opposite directions: up-down, left-right, up-left-
down-right, up-right-down-left. This is done so that 
the pairs of directions are in line with the one-
dimensional model expressed by Equation (1). 
Counts are made for right turns, left turns, upward 
steps, and downward steps with respect to the robot's 
orientation at the time of counting, considering the 8 
possible directions the robot can have. The count of 
down-up turns is shown in Figure 6. With the 
measured data and the one-dimensional model given 
by Equation (1), histograms are generated to 
characterize the behavior of the robot's random walk, 
as shown in Figure 7. In the count, there are 
approximately 55% of downward directions and 
45% of upward directions. It's worth noting that the 
model is one-dimensional. 
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Figure 6: Count of down-up direction decisions in a one-

dimensional representation based on the Equation (1). 
 

 
 

 
Figure 7: Histogram for down-up direction decisions in a 

one-dimensional representation. 
 
The same process is carried out for the other 

directions of movement, yielding similar results 
since the same algorithm is used.  

Based on the definition of the random walk 
model given by Equation (1), the counts of upward-
downward, left-right, upward-rightward-downward-
leftward, and upward-leftward-downward-rightward 
directions follow a binomial distribution. This is 
because to decide the robot's direction of movement, 
random numbers with a uniform distribution are 
used, and therefore, each direction has an equal 
probability of occurrence. 

Experiments are conducted, operating 1 and 
simultaneously 2, 3, 4, and 5 robots with identical 
rules and random initial positions. Multiple tests are 
conducted under the same conditions to observe if 
there is repeatability, and the results indeed show 
variations of less than 3%. In the tests with a 
different number of robots, it is observed that 100% 
of the visited area is not achieved but rather 99.9%, 
as seen in Figure 8, which corresponds to random 
initial positions and 100 steps of progress for 5 
robots. This analysis helps assess the behavior of the 
algorithm with varying numbers of robots and its 
repeatability. 

 

 
Figure 8: Random initial positions for 5 robots and their 
trajectories generated after 100 steps. 

 
Starting from step or time 0, the percentage of 

area occupied in the scenario increases rapidly, with 
the rate of occupancy decreasing to approximately 
85% for any experiment involving 1, 2, or up to 5 
robots. If we linearize the increase from 0% to 85% 
of the occupied area and calculate the slope, the rate 
of increase in occupancy for 1 robot is lower than for 
5 robots operating simultaneously. It is expected that 
more area is covered rapidly with 5 robots than with 
1 robot. The slope is interpreted as the constant for 
the rate at which the area of the scenario is visited, 
regardless of whether previously visited areas are 
revisited at times. This can be observed in the graphs 
in Figure 9.  

 

 
Figure 9: Percentage of visited area for experiments with 
1, 2, 3, 4, and 5 robots working simultaneously in a 
1000x1000 pixel scenario. 

 
On the x-axis, we have time, which has an 

arbitrary time unit since each unit corresponds to a 
step, the discrete state of the system's evolution to 
decide the next direction of movement, and the data 
is recorded to generate the graphs. On the y-axis, we 
have the percentage of visited area, which, as 
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explained, is not counted multiple times and is 
calculated using Equation (5). Based on the 
observations, we calculate the slopes in the indicated 
region, as shown in Table 2. These results show that 
from 3 robots operating simultaneously, the speed at 
which the area of the scenario is covered is no longer 
faster with 4 or 5 robots for a 1000x1000 pixel 
scenario. This analysis provides insights into the 
efficiency of multiple robots in covering an area, 
Figure 10. 

 
Table 2 Slope corresponding to the highest increase in 

the area visited in the experiments. 
Number of 

robots 
Slope 

1 0.038256 
2 0.034380 
3 0.016511 
4 0.007211 
5 0.005371 

 
 

 
Figure 10: Random walk with a uniform distribution of 
random numbers for 5 robots, each color represents a 

robot. 
 
To find a correlation between the speed or slope 

of the visited area in different combinations of robots 
working simultaneously, a polynomial regression of 
degree 1, 2, 3, and 4, as well as exponential, 
logarithmic, and power types, is performed. As a 
result, the best fit is a 4th-degree polynomial, which 
is expected since there are up to 5 robots. However, 
the best fit is likely to be exponential because it is 
independent of the amount of slope data or robots 
used in this calculation. To confirm this, and as 
future work, a wider range of robot combinations 
working simultaneously should be tested. For now, 

there is an approximation of the type of function that 
governs the speed of robot visits, Figure 11. 

Finally, a test was conducted under the same 
movement rules, using a Gaussian distribution with 
a standard deviation of 1.5 for the random numbers. 
In this case, 100,000 steps were taken with 1 robot 
in a 1000x1000 pixel scenario, which resulted in a 
concentration of visits to segments in the scenario. 
At some point, the robot moved to another area and 
did the same. This behavior is due to the nature of 
random numbers, where the robot's movement is 
biased, even though the 8 possible directions have a 
quasi-binomial distribution, Figure 12. 

 

 
Figure 11: Regression of the slopes or speed factor of 
scene visits for robot configurations. 

 
 

 
Figure 12: Walk of 1 robot with random numbers 

following a Gaussian distribution. 
 

 
4. CONCLUSIONS 

 
The theory and statistical model of random walk 

are applied to the field of service robots, where time 
and route efficiency are not critical factors. This is 
evident in the case discussed in this article, where the 
robot's objective is to cover a specific area. The 
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random walk algorithm with random numbers 
following a uniform distribution ensures that, at 
some time 'k', the scenario's area will be covered. For 
a 500x500 pixel scenario, at least 3 robots are 
required to cover up to 85% of the area in the shortest 
possible time. 

The analysis of left, right, up, and down turns in 
the random walk algorithm provides information 
about the distribution of movement directions and 
characterizes the behavior of robots. The variability 
in movement direction generated by using random 
numbers with a uniform distribution can lead to 
unpredictable robot behavior, which can be 
beneficial in surveillance and cleaning applications 
in dynamic environments. 

Multiple tests were conducted with different 
numbers of robots in a 500x500 pixel scenario, 
observing that the percentage of visited area 
increases rapidly at the beginning and then decreases 
its rate of occupation. The speed of area occupation 
becomes less dependent on the number of robots 
when a threshold is exceeded, suggesting that adding 
more robots may not be significantly beneficial in 
terms of coverage speed in large scenarios. 

Simulating robots using the random walk 
algorithm is a valuable tool for studying and 
understanding the behavior of robots in dynamic and 
random environments. The repeatability of 
simulation results, with standard deviations of less 
than 3%, suggests that the random walk algorithm is 
robust and consistent across different experiments. 

It is important to emphasize that the results 
reported in this work present a random walk 
algorithm specifically designed for service robots 
requiring complete coverage of an area without 
optimization for time efficiency. This characteristic 
makes the algorithm suitable for applications such as 
surveillance, cleaning, or disinfection of spaces. The 
results and arguments put forth reinforce that the 
stochastic nature of the algorithm does not 
necessitate knowledge of the dimensions or surface 
geometry of the environment. Unlike navigation 
algorithms reported in the literature for mobile 
robots, there is no need to create predefined travel 
paths. This work represents a minimalist approach to 
navigation in unknown environments. Notably, it 
avoids the use of complex algorithms such as 
exploration with image or video analysis, 
reinforcement learning-based scene reconstruction, 
Simultaneous Localization and Mapping (SLAM) 
algorithms, bioinspired perception algorithms, 
among others. 

As a continuation of the presented work, the 
next step would be to implement the algorithm on 
real robots and evaluate their random characteristics 

for practical service applications. This would 
involve taking the theoretical insights and findings 
from the simulations and applying them in real-
world scenarios. 

A real-world application scenario could be a 
waiting room at an airport. Such spaces have defined 
areas, furniture, and people generally spend a short 
time in the room. However, their movements can be 
erratic, forming queues, among other behaviors. This 
scenario involves dynamic elements. A robot 
equipped with minimal presence sensors (without 
cameras) and the random walk algorithm could 
effectively perform tasks continuously, whether for 
cleaning or surveillance. Such scenarios are suitable 
for practical implementation and could be explored 
and reported in future work. 
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