
Journal of Theoretical and Applied Information Technology

15th December 2023. Vol.101. No 23
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7717

RANDOM WALK-BASED APPROACH FOR ADDRESSING
OF NAVIGATION ALGORITHMS IN SERVICE AND

SURVEILLANCE ROBOTS
ALBERTO MALDONADO ROMO1, JESUS YALJA MONTIEL PEREZ2, CESAR CASTREJON

PERALTA3, LUIS ENRIQUE ANDRADE GORJOUX4, JOSE ALBERTO TORRES LEON5

Instituto Politécnico Nacional, Centro de Investigación en Computación,
Laboratorio de Robótica y Mecatrónica, México

E-mail: 1amaldonador2021@cic.ipn.mx, 2yalja@ipn.mx, 3castrejonp2021@cic.ipn.mx,
4landradeg2022@cic.ipn.mx, 5jtorresl2019@cic.ipn.mx

ABSTRACT

In the present article, a simulation of a robotics application based on random walk is described. Typically,
robots employ navigation algorithms based on planning and adjustments with respect to their working
environment. As a specific case for mobile robots with two-dimensional navigation, the navigation algorithm
is implemented with the characteristics of a random walk. The route planning module is a stochastic process
in which it operates with random numbers following a uniform distribution as input data to the navigation
module, and the outputs are movement instructions, both in direction and distance of advance. As a test, a
closed scenario is used with 1, 2, and up to 5 robots operating simultaneously. The objective is to cover the
area of the scenario. The results include the percentage of visited area, as well as the decision metrics of the
stochastic processes involved in navigation. This navigation algorithm is oriented towards applications in
service and surveillance robots.

Keywords: Random Walk, Stochastic Processes, Simulation, Robotics, Random Numbers.

1. INTRODUCTION

Considering that technological trends are
moving towards the Internet of Things and Smart
Cities, robotics plays a predominant role. Clear
examples include the autonomy of devices and
services for both the masses and households.
Currently, there is a variety of service robots with
multiple applications, such as food preparation,
cleaning, surveillance, and more. In this case, mobile
robots were studied, which, in their general
configuration, have a physical and movement
structure, control and power electronics, an
electronic data analysis stage, and, if applicable, a
communication stage.

In general, the applications of mobile robots
are based on algorithms with artificial intelligence,
including pattern recognition and decision-making
based on sensor measurements. This implies that the
robot must have a navigation algorithm that allows it
to move, either in response to stimuli or
autonomously. The complexity of these algorithms
and the quantity or diversity of sensors included in
the robots increase their cost and maintenance
difficulty [1], [2].

In public spaces where there is an
unpredictable flow of people over varying periods,
surveillance or cleaning activities may be
predominant. In the case of surveillance, if
predefined routes are used for either a security guard
or a surveillance robot, there is no guarantee of an
increase or decrease in incident detection.
Considering that incidents may occur
opportunistically to some extent randomly or within
a context based on opportunity and the surveillance
route [3] [4], it is not advisable to employ a
navigation algorithm that could be predictable or
routine in generating travel routes [5], [6].

The present work describes a navigation
algorithm based on a random walk for use in a
service robot designed for situations where the robot
needs to visit or cover a surface without considering
time optimization but rather following a random
pattern of visiting each point on the surface. This
approach is suitable for potential applications such
as surveillance or cleaning within defined areas. For
instance, it could be applied in settings like airport
waiting rooms, commercial zones, or even urban
areas.

Journal of Theoretical and Applied Information Technology

15th December 2023. Vol.101. No 23
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7718

2. METHOD

A simulation of robot navigation using a
basic random walk algorithm with random numbers
following a uniform distribution is presented. The
algorithm's test scenario is bounded. Simulation tests
are conducted in an obstacle-free scenario. For each
scenario, conditions are set for 1 to 5 robots
simultaneously. The test variable is the percentage of
the scenario visited concerning both time and the
number of robots operating concurrently. The
simulation is programmed in the Python language.

Below, the random walk algorithm and the
definition of the robot's movement direction based
on random numbers are described. This algorithm
includes details such as the initial position,
movement direction, step or path length the robot
will move, and handling collisions of the robot with
the scenario boundary or other robots.

2.1 Algorithm

Random walk algorithms have a wide range
of variations and applications [7], [8]. A random
walk is a model of random, independent, and
identically distributed events representing the
movement of an object in a space.

A random walk is a set of integer numbers
that evolve in discrete time {xk: k=0, 1, 2,...}. In the
simple case, if the position evolves to the left or
right, then each subsequent state will have a
probability p or q, respectively, such that p+q=1. xk
is the state of the stochastic process at time k, valid
for any k>=0 and for any integers i and j. These
probabilities can be expressed as follows:

 𝑃(𝑥௞ାଵ = 𝑗|𝑥௞ = 𝑖) = ൝
𝑝 𝑖𝑓 𝑗 = 𝑖 + 1
𝑞 𝑖𝑓 𝑗 = 𝑖 − 1
0 𝑎𝑛𝑜𝑡ℎ𝑒𝑟 𝑐𝑎𝑠𝑒

 (1)

As the probabilities do not depend on k,

they are said to be homogeneous over time, meaning
they remain the same at any time value k. Based on
the properties of Markov, the future state of the
process depends solely on the current state and not
on previously visited states [9]. Therefore, the
random walk can be defined as x1, x2, ...; a sequence
of random values, independent and identically
distributed. Thus, P(x=+1)=p and P(x=-1)=q, also
satisfying p+q=1. Then, for n≥1, it is defined as:

 𝑥௞ ≔ 𝑥଴ + 𝜉ଵ + 𝜉ଶ + ⋯ + 𝜉௞ (2)

Without loss of generality, we can define

x0=0. With this, some statistical properties of the

process can be derived. For any k≥0, the expected
value is:

 𝐸(𝑥௞) = ∑ 𝐸(𝜉௜) = 𝑛𝐸(𝜉)௞
௜ୀଵ

 𝐸(𝑥௞) = 𝑛(𝑝 − 𝑞) (3)

On the other hand,
E(x)=p+q=1 y E(x)=p-q it is necessary

Var(x)=1-(p-q)2=4pq. Therefore, the variance is:

 𝑉𝑎𝑟(𝑥௞) = ∑ 𝑉𝑎𝑟(𝜉௜)௞

௜ୀଵ = 𝑛𝑉𝑎𝑟(𝜉)

 𝑉𝑎𝑟(𝑥௞) = 4𝑛𝑝𝑞 (4)

If p>q, the walk takes steps to the right with

a higher probability, so the average state after k steps
is a positive number. If p<q, the average final state
of the walk after k steps is negative, indicating a
tendency towards the left. In both cases, the variance
increases as the number of steps k grows. The greater
the number of steps k, the greater the uncertainty
about the final position of the process. When p≠q,
the walk is called asymmetric. When p=q=½, it is
called symmetric, and on average, the process
remains in its initial state, as the expectation
E(xk)=0. However, the variance of p is Var(xk)=n,
which corresponds to the maximum value of 4npq,
for p in the interval (0,1), [9], [10], [11].

For the simulation scenario, the robot is
square and initially placed at a random position
within the scenario. With these considerations,
Algorithm 1 comes into operation.

Algorithm 1: Random walk.

Input:
Output: Visited area of the scenario at time t
1: i ← 1
2: At ← 0
3: Positioni ← GenerateRandomPair
4: repeat
5: Path ← GenerateDirection(Generate Random)
6: while DetectObstruction(Path) = false or End

 Path(Path) = false
7: MoveOneStep(Path)
8: At ← CalculateVisitedArea(Path)
9: end while
10: Position ← StopStep(Path)
11: until SimulationEnds
12: return

Variables are initialized, one of which is the

percentage of visited area counter, steps 1-3. A loop
is started, steps 4-12, in which a random movement
direction is obtained. This direction is used to
calculate the trajectory from the current point to the

Journal of Theoretical and Applied Information Technology

15th December 2023. Vol.101. No 23
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7719

final point of the path, and the step size remains
constant throughout the simulation, steps 5-6.

Then, a nested loop begins, steps 7-10. The
loop continues as long as there is no collision with a
wall of the scenario, a collision with another robot
occurs, or the path is completed, step 7. As the robot
moves along its path, a count of the percentage of
visited area is maintained, and if an area has already
been visited, it is not added to the counter, steps 8
and 9.

Once the nested loop is finished, the robot
is stopped, and its current position is recorded, step
11.

Steps 5 and 6 are executed again to generate
a new direction and path based on a random number.
The steps of the algorithm are then executed again
until the termination condition is met.

If a collision is detected during the nested
loop (step 7), the nested loop terminates, meaning
the robot stops, the current position is recorded (step
11), and the algorithm of the outer loop begins again.

The termination conditions of the algorithm
are by time, by percentage of visited area, or by the
number of steps.

2.2 Random numbers

The random walk algorithm requires
random numbers to determine a movement direction
at the beginning of each step.

Random numbers were generated using the
ROOT data analysis framework with a uniform
probability distribution. It's worth noting that there
are other distributions available, such as normal,
geometric, Landau, among others [12] [13].

The movement direction of the robot is
determined by a random number sampled from a
uniform distribution to ensure that there are no
biases or weights associated with specific directions.

Figure 1 displays the histogram of the
distribution of 5 million integer random numbers
ranging from 0 to 120, which are used in the
simulation.

2.3 Initial position

The random walk algorithm starts with an
initial position of the robot, which is obtained using
the random number generator from the Python
library numpy (the numpy.random method). This
method provides a floating-point number in the half-
open interval [0.0, 1.0).

Once the initial position in the scenario is
determined, the representation of the robot is a pixel
matrix of size nXm, where n and m represent the
width and length. In the case of the simulation, the
dimensions of the robot are set to 11X11 pixels.

Subsequently, the movement direction of
the robot must be generated.

Figure 1: Histogram of the distribution of 5 million

random numbers.
2.4 Robot movement

The robot is considered to be in a stationary
state both initially in the algorithm and when it needs
to change direction. Therefore, before it begins its
movement, its direction must be defined, and this
direction is random. There are eight possible
directions for the robot to move independently of its
orientation in its static position, as shown in Figure
2. Each direction has an equal probability of being
selected.

In the random walk algorithm, it's
important to ensure that the random direction
selection process does not transform its uniform
distribution into another distribution with a weighted
bias (such as the cases of normal, binomial, etc.
distributions). This is to maintain the randomness
and equal probability of each direction being
selected during the random walk.

Figure 2: The eight possible movement directions of the

robot.

Journal of Theoretical and Applied Information Technology

15th December 2023. Vol.101. No 23
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7720

For example, if a random number with a
uniform distribution is used to represent an angle in
the polar coordinate plane, which has a cyclic
property. Then, angles of 0 and 360 degrees
represent the same direction, and therefore, this
direction will have a higher probability of being
selected compared to other directions represented by
angles. This results in a distribution that resembles a
normal distribution from a uniform distribution.

The movement direction is determined
using a roulette technique [14]. The random numbers
are in the range of 0.0 to 1.0. This range is divided
into 8 sections, with each section corresponding to a
direction as indicated in Figure 2.

In the case of the robot's static state, if it has
an initial coordinate (x, y) and you want to move it
in one of the four cardinal directions (up, down, left,
right), you can determine the final coordinate as
follows:
1. For moving up:
 The final coordinate will be (x, y + 50).
2. For moving down:
 The final coordinate will be (x, y - 50).
3. For moving left:
 The final coordinate will be (x - 50, y).
4. For moving right:
 The final coordinate will be (x + 50, y).

These calculations involve simply adding
or subtracting 50 pixels to the respective coordinate
depending on the desired direction.

For the diagonal directions (up-right, up-
left, down-left, and down-right) as shown in Figure
2, you can use a right triangle approach to determine
the final coordinates. In these cases, you should add
or subtract 35 pixels to both the x and y coordinates
of the initial position, depending on the direction, to
find the final coordinate of the step. Here's how you
can calculate it for each diagonal direction:
5. For moving up-right:
 The final coordinate will be (x + 35, y + 35).
6. For moving up-left:
 The final coordinate will be (x - 35, y + 35).
7. For moving down-left:
 The final coordinate will be (x - 35, y - 35).
8. For moving down-right:
 The final coordinate will be (x + 35, y - 35).

These calculations consider a right triangle
with legs of 35 pixels each, resulting in the diagonal
movement of 50 pixels.

Using the initial and final coordinates of the
robot's step, you can construct a linear equation.
With the direction conditions, you can determine the
coordinates by which the robot will move. This
linear equation will help you calculate the exact path

the robot will take based on its initial and final
positions and the desired direction of movement.

Each step of the robot covers 50 pixels. At
each pixel of movement of the robot or robots in the
scenario, a check for "valid movement" is
performed. This means verifying whether collisions
occur or not. Robot collisions can happen when
reaching the boundary of the scenario or when
colliding with another robot along the trajectory, as
shown in Figure 3. In either case, the robot or robots
stop, and a new movement direction is obtained.

The simulation scenario is a 1000x1000
pixel square. This scenario is represented by a matrix
in CSV format, which is initialized with integer
values of 0. These values change to 1, 2, ..., n. The
number n represents the number of robots traveling
in the scenario. This matrix likely serves as a
representation of the occupancy or presence of
robots in different positions within the scenario.

When robot 1 moves one step of 50 pixels
in a direction, the pixels that are part of its trajectory
are represented in the matrix with integer values of
1. For robot 2, these pixels are represented with the
value 2 in the matrix, and so on for n robots. This
way, the matrix serves as a representation of the
positions occupied by different robots in the
simulation.

In Figure 4, a section of the matrix is
displayed. Based on the conditions of the algorithm,
the robot can revisit the same area multiple times,
resulting in updates to the values in the matrix over
time. As these updates to the matrix values occur, a
count of unvisited pixels (value 0 in the matrix) is
maintained relative to the total number of pixels in
the scenario. This calculation provides a percentage
of visited area over time, as described in Equation 5.

Figure 3: Types of collisions in the simulation:
Collisions between robots and collisions with the wall

that bounds the scenario.

Journal of Theoretical and Applied Information Technology

15th December 2023. Vol.101. No 23
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7721

Figure 4: Section of the CSV matrix recording the pixels
in the scenario visited by the robots.

 %𝑣𝑖𝑠𝑖𝑡𝑒𝑑 𝑎𝑟𝑒𝑎 =
௩௜௦௜௧௘ௗ ௣௜௫௘௟௦

௧௢௧௔௟ ௣௜௫௘௟௘௦
𝑥100 (5)

3. SIMULATION AND TESTING

Based on the mentioned conditions,
multiple tests are conducted. To visualize the
repeatability of the behavior of the graph "time
versus percentage of visited area" by the robot in the
scenario, the same experiment is repeated several
times. This experiment involves using 1 robot, and
in each experiment, there is a random starting point
and different sets of random numbers for directions.
This results in the graphs shown in Figure 5,
demonstrating the similarity or repeatability of the
results.

Figure 5: Percentage of area visited over time for 1 robot,
in multiple simulation runs.

In the interval of 20-40% of visited area, the

graph is considered linear, and an approximation of
the slope is calculated. The slope of the graph
indicates how quickly the scenario is visited. After
the linear interval, there is a curve that slows down
the speed at which the remaining area is covered.
Therefore, under the same conditions and in several
experiments, there is a standard deviation of
0.004627 with respect to the slopes of each curve.
This standard deviation provides a measure of the
variability or spread of the slope values in different
experiments.

The same process is applied to experiments
with 2 robots moving simultaneously in the scenario,
as well as for experiments with 3, 4, and 5 robots.
The experiments are repeated under the conditions
described for 1 robot, and the data is obtained as
shown in Table 1. This process helps analyze and
compare the behavior and deviations for different
numbers of robots operating simultaneously in the
scenario.

Table 1: The standard deviation of the experiments.

Number of
robots

Standard deviation

1 0.004627
2 0.008017
3 0.007640
4 0.004606
5 0.008901

For each case of the number of robots operating

simultaneously in the scenario, the standard
deviation defines their behavior in the graph of "time
versus percentage of visited area". In other words, if
the random walk algorithm is executed multiple
times with k robots moving simultaneously in a
scenario, the graphs of "time versus percentage of
visited area" for each run of the algorithm will be
similar to each other and will fall within the standard
deviation for that number k of robots. This standard
deviation helps characterize the variability or spread
in the behavior of the algorithm for different robot
counts.

The first experiment using the random walk
algorithm involves a single robot traveling in a
1000x1000 pixel scenario without obstacles and
with a limit of 100,000 steps. For the analysis of the
behavior of each robot in the simulation, the
directions of movement are grouped into pairs of
opposite directions: up-down, left-right, up-left-
down-right, up-right-down-left. This is done so that
the pairs of directions are in line with the one-
dimensional model expressed by Equation (1).
Counts are made for right turns, left turns, upward
steps, and downward steps with respect to the robot's
orientation at the time of counting, considering the 8
possible directions the robot can have. The count of
down-up turns is shown in Figure 6. With the
measured data and the one-dimensional model given
by Equation (1), histograms are generated to
characterize the behavior of the robot's random walk,
as shown in Figure 7. In the count, there are
approximately 55% of downward directions and
45% of upward directions. It's worth noting that the
model is one-dimensional.

Journal of Theoretical and Applied Information Technology

15th December 2023. Vol.101. No 23
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7722

Figure 6: Count of down-up direction decisions in a one-

dimensional representation based on the Equation (1).

Figure 7: Histogram for down-up direction decisions in a

one-dimensional representation.

The same process is carried out for the other

directions of movement, yielding similar results
since the same algorithm is used.

Based on the definition of the random walk
model given by Equation (1), the counts of upward-
downward, left-right, upward-rightward-downward-
leftward, and upward-leftward-downward-rightward
directions follow a binomial distribution. This is
because to decide the robot's direction of movement,
random numbers with a uniform distribution are
used, and therefore, each direction has an equal
probability of occurrence.

Experiments are conducted, operating 1 and
simultaneously 2, 3, 4, and 5 robots with identical
rules and random initial positions. Multiple tests are
conducted under the same conditions to observe if
there is repeatability, and the results indeed show
variations of less than 3%. In the tests with a
different number of robots, it is observed that 100%
of the visited area is not achieved but rather 99.9%,
as seen in Figure 8, which corresponds to random
initial positions and 100 steps of progress for 5
robots. This analysis helps assess the behavior of the
algorithm with varying numbers of robots and its
repeatability.

Figure 8: Random initial positions for 5 robots and their
trajectories generated after 100 steps.

Starting from step or time 0, the percentage of

area occupied in the scenario increases rapidly, with
the rate of occupancy decreasing to approximately
85% for any experiment involving 1, 2, or up to 5
robots. If we linearize the increase from 0% to 85%
of the occupied area and calculate the slope, the rate
of increase in occupancy for 1 robot is lower than for
5 robots operating simultaneously. It is expected that
more area is covered rapidly with 5 robots than with
1 robot. The slope is interpreted as the constant for
the rate at which the area of the scenario is visited,
regardless of whether previously visited areas are
revisited at times. This can be observed in the graphs
in Figure 9.

Figure 9: Percentage of visited area for experiments with
1, 2, 3, 4, and 5 robots working simultaneously in a
1000x1000 pixel scenario.

On the x-axis, we have time, which has an

arbitrary time unit since each unit corresponds to a
step, the discrete state of the system's evolution to
decide the next direction of movement, and the data
is recorded to generate the graphs. On the y-axis, we
have the percentage of visited area, which, as

Journal of Theoretical and Applied Information Technology

15th December 2023. Vol.101. No 23
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7723

explained, is not counted multiple times and is
calculated using Equation (5). Based on the
observations, we calculate the slopes in the indicated
region, as shown in Table 2. These results show that
from 3 robots operating simultaneously, the speed at
which the area of the scenario is covered is no longer
faster with 4 or 5 robots for a 1000x1000 pixel
scenario. This analysis provides insights into the
efficiency of multiple robots in covering an area,
Figure 10.

Table 2 Slope corresponding to the highest increase in

the area visited in the experiments.
Number of

robots
Slope

1 0.038256
2 0.034380
3 0.016511
4 0.007211
5 0.005371

Figure 10: Random walk with a uniform distribution of
random numbers for 5 robots, each color represents a

robot.

To find a correlation between the speed or slope

of the visited area in different combinations of robots
working simultaneously, a polynomial regression of
degree 1, 2, 3, and 4, as well as exponential,
logarithmic, and power types, is performed. As a
result, the best fit is a 4th-degree polynomial, which
is expected since there are up to 5 robots. However,
the best fit is likely to be exponential because it is
independent of the amount of slope data or robots
used in this calculation. To confirm this, and as
future work, a wider range of robot combinations
working simultaneously should be tested. For now,

there is an approximation of the type of function that
governs the speed of robot visits, Figure 11.

Finally, a test was conducted under the same
movement rules, using a Gaussian distribution with
a standard deviation of 1.5 for the random numbers.
In this case, 100,000 steps were taken with 1 robot
in a 1000x1000 pixel scenario, which resulted in a
concentration of visits to segments in the scenario.
At some point, the robot moved to another area and
did the same. This behavior is due to the nature of
random numbers, where the robot's movement is
biased, even though the 8 possible directions have a
quasi-binomial distribution, Figure 12.

Figure 11: Regression of the slopes or speed factor of
scene visits for robot configurations.

Figure 12: Walk of 1 robot with random numbers

following a Gaussian distribution.

4. CONCLUSIONS

The theory and statistical model of random walk

are applied to the field of service robots, where time
and route efficiency are not critical factors. This is
evident in the case discussed in this article, where the
robot's objective is to cover a specific area. The

Journal of Theoretical and Applied Information Technology

15th December 2023. Vol.101. No 23
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7724

random walk algorithm with random numbers
following a uniform distribution ensures that, at
some time 'k', the scenario's area will be covered. For
a 500x500 pixel scenario, at least 3 robots are
required to cover up to 85% of the area in the shortest
possible time.

The analysis of left, right, up, and down turns in
the random walk algorithm provides information
about the distribution of movement directions and
characterizes the behavior of robots. The variability
in movement direction generated by using random
numbers with a uniform distribution can lead to
unpredictable robot behavior, which can be
beneficial in surveillance and cleaning applications
in dynamic environments.

Multiple tests were conducted with different
numbers of robots in a 500x500 pixel scenario,
observing that the percentage of visited area
increases rapidly at the beginning and then decreases
its rate of occupation. The speed of area occupation
becomes less dependent on the number of robots
when a threshold is exceeded, suggesting that adding
more robots may not be significantly beneficial in
terms of coverage speed in large scenarios.

Simulating robots using the random walk
algorithm is a valuable tool for studying and
understanding the behavior of robots in dynamic and
random environments. The repeatability of
simulation results, with standard deviations of less
than 3%, suggests that the random walk algorithm is
robust and consistent across different experiments.

It is important to emphasize that the results
reported in this work present a random walk
algorithm specifically designed for service robots
requiring complete coverage of an area without
optimization for time efficiency. This characteristic
makes the algorithm suitable for applications such as
surveillance, cleaning, or disinfection of spaces. The
results and arguments put forth reinforce that the
stochastic nature of the algorithm does not
necessitate knowledge of the dimensions or surface
geometry of the environment. Unlike navigation
algorithms reported in the literature for mobile
robots, there is no need to create predefined travel
paths. This work represents a minimalist approach to
navigation in unknown environments. Notably, it
avoids the use of complex algorithms such as
exploration with image or video analysis,
reinforcement learning-based scene reconstruction,
Simultaneous Localization and Mapping (SLAM)
algorithms, bioinspired perception algorithms,
among others.

As a continuation of the presented work, the
next step would be to implement the algorithm on
real robots and evaluate their random characteristics

for practical service applications. This would
involve taking the theoretical insights and findings
from the simulations and applying them in real-
world scenarios.

A real-world application scenario could be a
waiting room at an airport. Such spaces have defined
areas, furniture, and people generally spend a short
time in the room. However, their movements can be
erratic, forming queues, among other behaviors. This
scenario involves dynamic elements. A robot
equipped with minimal presence sensors (without
cameras) and the random walk algorithm could
effectively perform tasks continuously, whether for
cleaning or surveillance. Such scenarios are suitable
for practical implementation and could be explored
and reported in future work.

REFERENCES:

 [1] A. A. Nippun Kumaar, Sreeja Kochuvila,

”Reinforcement learning based path planning
using a topological map for mobile service
robot”, 2023 IEEE International Conference on
Electronics, Computing and Communication
Technologies (CONECCT), Amrita School of
Computing India, July 2023, pp. 1-6.

[2] M. Chen, X. Wang, R. Law, M. Zhang, “Research
on the Frontier and Prospect of Service Robots
in the Tourism and Hospitality Industry Based on
International Core Journals: A Review”, Behav.
Sci., Vol. 13, No. 560, 2023, pp. 1-21.

[3] J. Wang, S. Lin, A. Liu, “Bioinspired Perception
and Navigation of Service Robots in Indoor
Environments: A Review”, Biomimetics, Vol. 8,
No. 350, 2023, pp. 1-39.

[4] Paula Dootson, Dominique A. Greer, Kate
Letheren, “Reducing deviant consumer
behaviour with service robot guardians”,
Journal of Services Marketing, Vol. 37, No. 3,
2023, pp. 276–286.

[5] Anbalagan Loganathan, Nur Syazreen Ahmad, “A
systematic review on recent advances in
autonomous mobile robot navigation”,
International Journal Engineering Science and
Technology, Vol 40, 2023,101343.

[6] Liyana Wijayathunga, Alexander Rassau,
Douglas Chai, “Challenges and Solutions for
Autonomous Ground Robot Scene
Understanding and Navigation in Unstructured
Outdoor Environments: A Review”, Appl. Sci.,
Vol 13, 2023, 9877.

[7] Chen Chen-Yu, Chang Kuo-Chou, Ho Shing-Hua,
“Improved framework for particle swarm

Journal of Theoretical and Applied Information Technology

15th December 2023. Vol.101. No 23
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7725

optimization: Swarm intelligence with diversity-
guided random walking”, Expert Systems with
Applications, Vol. 38, 2011, pp. 12214–12220.

[8] Cameron Musco, Hsin-Hao Su, Nancy A. Lynch,
“Ant-inspired density estimation via random
walks”, Proceedings of the National Academy of
Sciences of the United States of America, 2017,
Vol. 114, No. 40, pp. 10534-10541.

[9] Q. Liu and G. -C. Zhang, "Random walk model in
the application of game", 2010 International
Conference on Machine Learning and
Cybernetics, Qingdao, China, 2010, pp. 1875-
1880.

[10] F. Rong, L. Shasha, L. Fang, L. Aimin, X.
Qingzheng, "Random walk model based
statistical analysis and application on transport
simulation", 2018 Chinese Control And Decision
Conference (CCDC), Shenyang, China, 2018,
pp. 5429-5434.

[11] Y. Gao, T. Fan and S. Cai, "Navigation in
Complex Networks Using Random Walk Theory
and Principal Component Analysis", 2019 16th
International Computer Conference on Wavelet
Active Media Technology and Information
Processing, Chengdu, China, 2019, pp. 349-354.

[12] James M. Hill, M. Gulati Chandra, “The Random
Walk Associated by the Game of Roulette”,
Journal of Applied Probability, Vol 18, No. 4,
1981, pp. 931–36.

