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ABSTRACT 
 

Traffic surveillance is crucial for modern urban infrastructure, providing real-time data on traffic 
conditions, vehicle movements, and road safety. It aids traffic management, accident prevention, and law 
enforcement. Ensuring road safety is a top priority, and traffic surveillance significantly reduces accidents. 
An enduring challenge in traffic surveillance is accurate object detection under diverse conditions, 
including adverse weather, low lighting, and occlusions. Traditional algorithms often struggle in these 
scenarios, potentially jeopardizing safety and traffic management. The Self-Adaptive Lion Pride 
Optimization-based Enhanced Random Forest (SALPO-ERF) algorithm is developed to address the 
challenges in object detection in traffic surveillance. SALPO-ERF combines SALPO’s adaptability with 
ERF’s enhanced object detection capabilities. SALPO adjusts feature importance dynamically, even in 
complex and noisy traffic situations, while ERF provides a strong foundation for robust object detection. 
SALPO-ERF’s evaluation on the AAU RainSnow Traffic Surveillance Dataset, featuring 22 five-minute 
videos and 13,297 objects, demonstrated superior object detection accuracy and robustness compared to 
state-of-the-art algorithms. This underscores SALPO-ERF’s potential to significantly enhance traffic 
surveillance accuracy and contribute to safer, more efficient roadways. 

Keywords: Optimization, Object Detection, Traffic Surveillance, Random Forest, Lion Pride, Fitness 
 
1. INTRODUCTION 

 
Traffic surveillance is crucial to modern 

transportation management, improving road safety 
and efficiency. These systems encompass a range 
of technologies, from cameras to sensors, designed 
to monitor traffic conditions in realtime[1]. The 
primary goal of traffic surveillance is to enhance 
safety by detecting and responding to incidents 
such as accidents, road hazards, and reckless 
driving. Surveillance cameras are strategically 
positioned at intersections, highways, and busy 
urban areas, allowing authorities to take swift 
action in emergencies, potentially preventing 
accidents and minimizing their 
consequences.Beyond safety, traffic surveillance 
plays a pivotal role in reducing traffic 
congestion[2]. By collecting and analyzing traffic 
data, these systems enable authorities to optimize 

traffic signal timings and make informed decisions. 
Surveillance systems can predict congestion, 
allowing for detours and diversions to minimize 
commuter travel delays. Integrating advanced 
technologies, such as artificial intelligence and 
machine learning, has expanded traffic surveillance 
capabilities, offering predictive analytics for better 
traffic management and informed urban planning 
decisions, such as infrastructure enhancements and 
improvements in public transportation[3] Traffic 
surveillance. Traffic surveillance systems are 
invaluable tools for contemporary cities and 
regions, enhancing road safety, streamlining traffic 
flow, and contributing to the sustainable 
development of urban environments. 

 
Traffic surveillance systems are essential 

for monitoring and managing traffic, regardless of 
the weather conditions. However, they face unique 
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challenges in adverse weather like rain, snow, and 
fog[4]. Surveillance cameras with self-cleaning 
lenses or wipers are crucial to maintaining clear 
visibility in rainy conditions. Snow and ice present 
additional challenges, as accumulated snow can 
obstruct camera lenses, and icy roads pose risks. 
These systems must be rugged and equipped with 
de-icing features to function effectively. In foggy 
conditions, thermal imaging and radar technologies 
become invaluable as they can penetrate the fog and 
provide clear images[5]. Despite these challenges, 
traffic surveillance remains vital in assessing road 
conditions and making informed decisions 
regarding road closures, snowplow deployment, 
and traffic diversion. 

 
Bio-inspired optimization-based 

classification is a cutting-edge approach to object 
detection in traffic surveillance inspired by nature’s 
evolutionary principles[6]–[20]. These algorithms 
replicate natural selection processes to improve 
object detection accuracy, making them 
exceptionally effective in complex real-world 
traffic scenarios. By dynamically evolving their 
real-time classification strategies, they adapt to 
challenging conditions, such as adverse weather, 
low-light environments, and occlusions. By 
embracing these bio-inspired optimization 
techniques, traffic surveillance systems can 
significantly enhance the accuracy of identifying 
vehicles, pedestrians, and objects, ultimately 
boosting road safety and traffic management 
efficiency[21]. This approach’s adaptability and 
potential for ongoing advancements position it as a 
promising solution to address the ever-evolving 
challenges in traffic surveillance, making our 
roadways safer and more efficient through 
innovative technology. 

1.1. Problem Statement 
Traffic surveillance systems are pivotal in 

ensuring road safety, managing traffic flow, and 
preventing accidents. Effective classifying objects 
in traffic scenes is a challenging problem due to the 
substantial variability in object appearance. This 
variability stems from dynamic factors such as 
changing weather conditions, fluctuating lighting, 
diverse vehicle types, varying angles of view, 
occlusions, and environmental alterations. These 
factors collectively introduce significant 
uncertainties and complexities in recognizing and 
categorizing objects, including vehicles, 
pedestrians, and road signs, in real-world traffic 
scenarios. The inability of existing object 
classification models to consistently and accurately 
identify objects under these conditions impedes the 

development of reliable and robust traffic 
surveillance systems. Addressing the issue of 
appearance variability in traffic surveillance is 
crucial for improving road safety, traffic 
management, and law enforcement. Thus, there is a 
critical need for innovative solutions that enhance 
the generalization and adaptability of object 
classification algorithms, enabling them to 
effectively handle the diverse appearances of 
objects in the context of traffic surveillance. 
 
1.2. Motivation 

The motivation for addressing the 
variability in object appearance in traffic 
surveillance is deeply rooted in ensuring road 
safety, optimizing traffic management, and 
strengthening law enforcement within our ever-
evolving urban landscapes. Traffic surveillance 
systems are essential for accident prevention, 
congestion mitigation, and the seamless 
transportation flow. However, their effectiveness 
heavily relies on their capability to precisely 
classify objects amidst the constantly shifting and 
unpredictable traffic scenarios. By tackling the 
challenge of object appearance variability, this 
research not only bolsters the reliability of these 
surveillance systems but also directly contributes to 
saving lives, reducing accidents, and minimizing 
traffic disruptions.  

 
1.3. Objectives 

This research endeavor aims to develop 
and implement a robust and adaptable object 
classification system for traffic surveillance, 
effectively addressing the pervasive issue of 
variability in object appearance within complex 
urban traffic environments. This system will 
leverage advanced computer vision techniques to 
accurately recognize and categorize diverse objects 
under challenging and dynamic conditions, 
including vehicles, pedestrians, and traffic signs. 
The primary goal is to enhance the reliability and 
precision of traffic surveillance systems, thereby 
contributing to improved road safety, more efficient 
traffic management and strengthened law 
enforcement. This research aims to facilitate the 
seamless integration of object classification 
capabilities into emerging autonomous vehicle 
technologies, ensuring their safe and effective 
operation in real-world traffic scenarios. 

 
2. LITERATURE REVIEW 

“Enhanced Traffic Surveillance”[22] 
discusses the application of RBF-FDLNN and CBF 
algorithms, leading to improved moving object 
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detection and tracking. It enhances the reliability 
and efficiency of traffic surveillance, offering 
benefits for traffic management and security. 
“Nighttime Object Detection”[23] presents an 
advanced SSD framework for nighttime object 
detection. This framework significantly bolsters 
traffic investigations and safety in low-light 
conditions, offering crucial insights for road safety 
during nighttime. “Automated Labeling for 
Detection”[24] describes an automated labeling 
approach utilizing deep convolutional networks, 
notably enhancing object detection models’ 
accuracy in traffic videos. This simplifies the data 
labeling process and streamlines the development 
of more dependable traffic video analysis systems. 
“Deep Learning for Accidents”[25] introduces a 
real-time deep learning system for road accident 
detection, enabling swift responses and improved 
safety in traffic surveillance videos. This innovation 
potentially leads to quicker incident response, 
saving lives and reducing risks. 

 
“Cooperative Vehicle Tracking”[26] 

highlights the implementation of edge AI and 
representation learning for more accurate and 
efficient multi-camera vehicle tracking in traffic 
surveillance. This cooperative approach enhances 
overall traffic monitoring and strengthens security 
measures. “Maritime Traffic Fusion”[27] discusses 
the robust fusion of AIS and visual data to improve 
maritime safety and provide comprehensive 
monitoring in inland waterways. This fusion 
empowers safer navigation and more effective 
waterway traffic management. “LiDAR-Based 
Surveillance”[28] presents a novel LiDAR-based 
method for creating a dense background 
representation, significantly improving object 
detection and tracking in traffic surveillance. This 
method contributes to more accurate and 
dependable traffic monitoring. “Fall Detection 
System”[29] describes an innovative fall detection 
system using object-level feature thresholding and 
Z-numbers in video surveillance. This system 
improves care for individuals prone to falls, 
ensuring timely assistance and support. 
 

“Real-Time Traffic Events Detection”[30] 
discusses a real-time video surveillance system 
designed to detect traffic-related pre-events such as 
congestion and accidents early. This system 
enhances traffic management and safety measures 
through prompt incident detection. “Hyperspectral 
Maritime Detection”[31] introduces aerial 
hyperspectral remote sensing for improved 
maritime search and surveillance, enhancing safety 

and security. This approach enables the detection of 
small floating objects, such as debris or vessels, in 
diverse maritime environments with high precision. 
“3D-Net for Traffic Recognition”[32] presents the 
“3D-Net” framework for monocular 3D object 
recognition in traffic scenes, improving traffic 
management and safety. This innovative framework 
offers a real-time solution for accurately tracking 
and recognizing various objects, including vehicles 
and pedestrians, contributing to safer and more 
efficient traffic flow. “Multi-Sensor Traffic 
Perception”[33] discusses a multi-sensor approach 
for multi-level object detection in complex traffic 
scenes, enhancing accuracy in traffic management. 
Combining data from multiple sensors, such as 
cameras and LiDAR, provides a more 
comprehensive understanding of traffic scenarios, 
resulting in more effective object detection and 
improved safety measures. 

 
“Dolphin Swarm Object Detection 

(DSOD)”[34] describes the fusion of Dolphin 
Swarm Optimization and the Improved Sine Cosine 
Algorithm for automated object detection and 
classification in surveillance videos, improving 
surveillance efficiency and security. This fusion 
approach optimizes the performance of surveillance 
systems, automating the detection and classification 
of objects in real time, thus strengthening security 
and surveillance capabilities. “DenseYOLO”[35] 
enhances vehicle detection in surveillance videos 
by integrating DenseNet-201 with the YOLOv2 
model. This adaptation streamlines feature 
extraction and reduces model complexity while 
improving detection precision. DenseNet-201’s 
direct layer connections efficiently capture essential 
image information. The model offers threshold 
precision and compactness, advancing vehicle 
detection in surveillance applications beyond 
existing methods. 
 
3. SELF-ADAPTIVE LION PRIDE 

OPTIMIZATION-BASED ENHANCED 
RANDOM FOREST (SALPO-ERF) 

 
3.1. Random Forest 

The Random Forest Classifier [36]is an 
advanced machine learning algorithm that operates 
as an ensemble learning technique that handles 
classification and regression tasks. It excels by 
aggregating the predictive power of numerous base 
models, primarily decision trees, to bolster its 
predictions’ accuracy, robustness, and 
generalization capabilities. This ensemble approach 
is precious when dealing with intricate and noisy 
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datasets where individual models may falter. At its 
core, the Random Forest leverages decision trees as 
the fundamental building blocks of the ensemble. 
These trees are hierarchical structures that make 
data-driven decisions based on informative 
features. However, decision trees often suffer from 
overfitting, especially when they become intense 
and intricate. To mitigate this, the Random Forest 
introduces a crucial element of randomization into 
the modeling process, enhancing its performance 
and resilience. 
 

Randomization plays a pivotal role in the 
Random Forest’s effectiveness. It constructs an 
ensemble of decision trees by utilizing bootstrapped 
subsets of the training data. This involves randomly 
selecting and resampling the data with replacement, 
diversifying each tree’s training samples. 
Furthermore, when making decisions at each node 
in these trees, only a random subset of features is 
considered for feature selection. This deliberate 
introduction of randomness imparts diversity to the 
ensemble and diminishes the risk of overfitting, 
making the Random Forest better equipped to 
handle noisy or complex datasets.  

 
When generating predictions, the Random 

Forest Classifier capitalizes on the collective 
intelligence of its decision trees. In classification 
tasks, it employs a majority voting mechanism, 
wherein each tree “votes” for a particular class, and 
the class that accumulates the most votes is 
adjudged as the final prediction. In regression tasks, 
it aggregates the predictions made by each tree, 
culminating in a more accurate and robust 
prediction. This ensemble decision-making process 
enhances prediction accuracy and provides critical 
insights into the relative importance of different 
features in the dataset, making it an invaluable tool 
for a wide array of machine-learning applications 
where precision, reliability, and interpretability are 
paramount. Algorithm 1 provides the pseudocode 
of the core Random Forest algorithm. 

 

Algorithm 1: Random Forest Classifier 

Input: 
 Labeled dataset containing features and 

target classes. 
Output: 
 Prediction. 

 
Procedure: 

Step 1: Define Hyperparameters 
 Number of Trees (ntrees). 
 Number of Randomly 

Selected Features (nfeatures). 
 Maximum Tree Depth 

(maxdepth). 
Step 2: Training 

 For each tree (i = 1 
ton_trees): 
 Create a bootstrap 

sample from the 
dataset. 

 Randomly select 
n_features for feature 
splits. 

 Build a decision tree 
within max_depth. 

 Repeat for each tree. 
Step 3: Making Predictions 

 For classification: Use 
majority voting from all trees. 

 For regression: Average 
predictions from all trees. 

 
3.2. Enhanced Random Forest 

Introducing a Laplacian strategy to 
enhance the Random Forest algorithm differs from 
traditional methods such as ID3 and C4.5. Instead, 
the technique embraces the CART (Classification 
and Regression Tree) approach, which relies on the 
Gini coefficient for quantifying variable impurity. 
By employing the Gini coefficient, the 
computational load associated with logarithmic 
operations is significantly reduced, thus 
streamlining the decision tree construction 
process.The Gini coefficient is determined using 
Eq.(1), ensuring that variable impurity is measured 
efficiently:  

𝑮𝒊𝒏𝒊(𝑌) = ෍ 𝑚(𝑝௦) × ൫1 − 𝑚(𝑝௦)൯

௧

௦ୀଵ

= 1 − ෍ 𝑚(𝑝௦
ଶ)

௧

௦ୀଵ

 

(1) 

By transitioning to the CART technique 
and incorporating Laplacian weighting and 
regularization, the enhanced Random Forest 
becomes adept at dynamically adjusting feature 
importance, prioritizing informative features, and 
optimizing decision tree construction. This strategic 
shift improves the model’s adaptability, precision, 
and resistance to overfitting, making it particularly 
well-suited for complex and noisy datasets. Careful 
tuning of the Laplacian-related hyperparameters 
and thorough performance evaluation are essential 
to harness the full potential of this advanced 
algorithm. 
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3.2.1. Feature Selection 
If there are 𝑡 categories, then the 

likelihood that category 𝑝௦ will occur is 𝑚(𝑝௦). The 
𝐺𝑖𝑛𝑖(𝑌) metric reflects the probability of 
inconsistency between class labels when two 
samples are randomly drawn from the dataset 𝑌. 
Consequently, a lower 𝐺𝑖𝑛𝑖(𝑌) indicates higher 
purity. To determine the efficacy of features in 
bettering Random Forest performance, we use the 
Adaptive Laplacian Score, an adaptive feature 
selection approach. Using a filter-like methodology, 
the Laplace Score is a tried and true method for 
selecting the most discriminative characteristics. 

 
For simplicity’s sake, let’s say that the 

training data has 𝑦 dimensions and 𝑡 samples. In 
terms of data matrices, it has the form 𝑃 𝜔 𝐵௧×௬. 
Samples are represented by rows in 𝑃 =
(𝑝ଵ, 𝑝ଶ, … . , 𝑝௧)ி, whereas features are represented 
by columns; for example, the 𝑠th sample is 
represented by 𝑃௦ 𝜔 𝐵௬ . For this reason, we may 
alternatively write the data matrix as 𝑃 =

൫𝑔ଵ, 𝑔ଶ, … . , 𝑔௬൯, where 𝑔௪𝜔𝐵௧  stands for the 𝑤𝑡ℎ 
feature. Algorithm 2 provides the feature selection 
process. 

 

Algorithm 2: Feature Selection 

Input: 
 Training data with y dimensions and t 

samples. 
 Category likelihoods m(ps). 
 Gini(Y) metric for quantifying 

inconsistency. 
 Feature matrix P with samples as rows and 

features as columns. 
 
Output: 
 The selected features for enhancing 

Random Forest performance. 
 Laplace Scores for feature discriminability. 
 Improved Random Forest accuracy and 

robustness. 
 
Procedure: 

Step 1: Calculate category likelihoods (m(ps)) 
for each category ps. 

Step 2: Compute the Gini(Y) metric to measure 
inconsistency between class labels when 
two samples are drawn randomly. 

Step 3: Apply the Adaptive Laplacian Score for 
feature selection using a filter-like 
methodology to identify discriminative 
features. 

Step 4: Select the most relevant features based 
on Laplace Scores. 

Step 5: Integrate the selected features into the 

Random Forest training process to 
enhance accuracy and robustness. 

Step 6: Evaluate the improved Random Forest’s 
performance using appropriate metrics 
and cross-validation techniques to 
confirm the enhancement 
achievedthrough feature selection. 

 
3.2.2. Localization 

The Laplacian scores of various 
characteristics are determined by considering their 
locality-preserving power, which is determined by 
first constructing a 𝑎-nearest neighbor graph. The 
training set, denoted by 𝑅 = {𝑝ଵ , 𝑝ଶ, … . . 𝑝௧}, and 
the adjacency matrix, denoted by 𝐻 𝜔 𝐵௧×௧, form a 
graph, which we refer to as 𝐽 = {𝑅, 𝐻}. Nearest-
neighbor and cosine similarity are used to calculate 
the edge weights in Eq.(2) and Eq.(3). 

𝑯 = {𝑝௦௪}௧×௧ 

 
(2) 
 
 

ℎ௦௪

= ቐ

ℵ(𝑝௦, 𝑝௪)

ඥℵ(𝑝௦, 𝑝௦)ℵ(𝑝௪ , 𝑝௪)
, 𝑝௦  𝜔 𝑎𝑇𝑇(𝑝௪) 𝑜𝑟 𝑝௪  𝜔 𝑎𝑇𝑇(𝑝௦)

0,                                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (3) 

 
The set of vectors that are 𝑎-nearest 

neighbours of 𝑝௪ is denoted by 𝑎𝑇𝑇(𝑝௦), and the 
inner product of two vectors is computed using 
ℵ(. ). Take the degree matrix to be 𝑌 𝜔 𝐵௧×௧, a 
diagonal matrix whose (𝑠, 𝑠)th element is the sum 
of the 𝑠th row in 𝐻. 𝐽 has a graph Laplacian equal 
to 𝑍 = 𝑌 − 𝐻. This allows to calculate the 𝑒th 
feature’s Laplacian score 𝑔௦, as given in Eq.(4) and 
Eq.(5). 

𝑒௦ =
𝑔෤௦

ி𝑍𝑔෤௦

𝑔෤௦
ி𝑌𝑔෤௦

 (4) 

𝑔෤௦ = 𝑔௦ −
𝑔෤௦

ி𝑌ℎ

ℎி𝑌ℎ
ℎ (5) 

where ℎ = (1, … . ,1)ி. As per Equation (4), all 
Laplacian scores for 𝑦features can be collectively 

represented as 𝐸 = ൫𝑒ଵ, 𝑒ଶ, … . . , 𝑒௬൯
ி

. To better 
retain locality information, we provide greater 
weight to features with lower Laplacian scores; 
hence, it is necessary to define the weight of feature 
𝑔௦ as 𝑧௦ = 1 − 𝑒௦. 
 

Algorithm 3: Localization 
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Input: 
 Training data with features and samples. 
 Laplacian scores for feature importance. 

 
Output: 

 Selected features for localization-aware 
analysis. 

 
Procedure: 

Step 1: Build an adjacency matrix to create an a-
nearest neighbor graph using training 
data. 

Step 2: Calculate edge weights based on 
similarity measures. 

Step 3: Create a degree matrix that represents the 
local connectivity of data points. 

Step 4: Compute the graph Laplacian by 
incorporating the degree matrix and the 
adjacency matrix. 

Step 5: Calculate Laplacian scores for each 
feature without specifying the formula. 

Step 6: Adjust feature representations based on 
Laplacian scores. 

Step 7: Define feature weights according to the 
computed Laplacian scores without 
specific equations. 

Step 8: Prioritize features with better locality-
preserving power for localization-aware 
analysis. 

 
3.2.3. Adaptive Feature Weighting 

To obtain the normalized feature weights, 
we represent them as 𝑍෨ = ൫𝑧̃ଵ, 𝑧̃ଶ, … . , 𝑧̃௬൯ by 
dividing each feature weight by the sum of all 
feature weights. The predicted weights, 𝑍෨, roughly 
reflecting the relative importance of each 
characteristic. Then, many random subspaces are 
generated using weighted random sampling. The 
feature weights are modified to reflect the 
importance of each feature while building the 
Laplacian-weighted random forest. 
 

To quantify the effect of features on 
prediction, this research uses the accuracy of out-
of-bag (OOB) data after introducing random noise 
during the random forest generation process. 
Higher feature importance indicates that changes in 
its value can lead to more pronounced prediction 
errors. In random forests, a feature’s importance in 
prediction is determined by the sum of its 
importance across all decision trees. 
 

Assuming that there are 𝑐 trees in the 
random forest 𝐹 = {𝑓ଵ, 𝑓ଶ, … . , 𝑓௖}, Eq.(6) determine 
how significant the 𝑠𝑡ℎ feature is for making 
predictions. 

𝛽௦ =
∑ ℎ௦,௪

௞௞௏ଵ − ∑ ℎ௦,௪
௞௞௏ଶ௖

௪ୀଵ
௖
௪ୀଵ

𝑐
 (6) 

 
The error of the 𝑤th decision tree’s out-of-

bag data is represented by ℎ௦,௪
௞௞௏ଵ, while the error of 

the out-of-bag data with random noise is 
represented by ℎ௦,௪

௞௞௏ଶ. 𝑆ሚ = ൫𝛽෨ଵ, 𝛽෨ଶ, … . . , 𝛽෨௬൯ is a 
normalized measure of the influence of 
characteristics on prediction. As the number of 
decision trees increases, the feature weights are 
adjusted based on 𝑆ሚ. The adaptive feature weights 
are calculated using Eq.(7). 

𝑛෤௦ =
(1 − 𝜗) × 𝑧̃௦ + 𝜗 × 𝛽෨௦

2
 (7) 

 

Algorithm 4: Adaptive Feature Weighting 

Input: 
 Initial feature weights for each feature. 
 Random Forest with multiple decision 

trees. 
 
Output: 
 Adjusted feature weights for enhanced 
  Random Forest predictions. 

 
Procedure: 

Step 1: Calculate relative feature importance 
by normalizing initial weights. 

Step 2: Create random subspaces based on the 
normalized feature weights. 

Step 3: Adjust feature weights to highlight 
important features during Random 
Forest construction. 

Step 4: Assess the influence of each feature on 
prediction accuracy using Random 
Forest and out-of-bag (OOB) data. 

Step 5: Combine initial feature weights and 
feature influence to determine adaptive 
feature weights. 

Step 6: Modify feature weights to improve the 
Random Forest’s predictive power. 

 
3.2.4. Adaptive Weight Update 

The normalized Laplacian weight for the 
𝑠th feature is denoted by 𝑧̃௦, whereas the 
normalized relevance of the 𝑠th feature on 
prediction is denoted by 𝛽෨௦. The parameter 𝜗 acts as 
a multiplier representing the fraction of trees that 
have been constructed relative to the overall 
number of trees that will be formed. 
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Updates to feature weights are performed 
iteratively with a weight update interval of 𝜇. 
Additionally, a random operator 𝜚 is employed to 
enhance tree diversity. During the development of 
decision trees, feature weights are modified based 
on their selection frequency.  
 

The chances of lower-weight features 
being selected are raised, allowing for more varied 
tree structures to be built. Let’s pretend that the 
created decision trees store the frequency with 
which features are chosen as 𝑅 = ൫𝑟ଵ, 𝑟ଶ, … . , 𝑟௬൯, 
and the probability of selecting the 𝑠th feature is 
specified as Eq.(8). 

𝜑௦ =
𝑟௦

∑ 𝑟௪
௬
௪ୀଵ

 (8) 

where 𝜚 is set to 0.9 when a characteristic is less 
frequently picked, suggesting higher locality and 
lesser relevance. The 𝑠th feature’s weight can be 
changed if the randomly generated number is more 
significant than 𝜚 where Eq.(9) expresses the same. 

𝑛෤௦
ᇱ =

𝑛෤௦ + 𝜑௦

2
 (9) 

 

Algorithm 5: Adaptive Weight Update 

Input: 
 Initial feature weights (z1, z2, ..., zy). 
 Random Forest. 
 Parameters: ϑ, μ, ϱ. 
 Feature selection frequencies (R). 

 
Output: 
 Enhanced feature weights (n1, n2, ..., ny) 

for improved diversity and relevance in 
the Random Forest. 

 
Procedure: 
Step 1: Set parameters and initialize feature 

weights. 
Step 2: Perform iterative weight updates. 
Step 3: Adjust feature weights based on 

selection frequency to diversify tree 
structures. 

Step 4: Calculate the probability of selecting 
each feature. 

Step 5: Update feature weights considering 
selection probabilities. 

 
Algorithm 6 provides the overall 

pseudocode for the enhanced random forest 
algorithm. 

 

Algorithm 6: Enhanced Random Forest 
Algorithm 

Input: 
 Training data with features and 

samples. 
 Initial feature weights (z1, z2, ..., zy). 
 Random Forest with multiple decision 

trees. 
 Parameters: ϑ, μ, ϱ. 
 Feature selection frequencies (R). 

 
 
 

Output: 
 Improved Random Forest with 

enhanced feature selection and 
adaptability. 

 
Procedure: 

Step 1: Laplacian Strategy and Gini 
Impurity: 
 Implement the Laplacian 

strategy for enhanced Random 
Forest, transitioning from 
traditional methods. 

 Utilize the CART approach and 
the Gini coefficient for efficient 
variable impurity measurement. 

Step 2: Feature Selection with Adaptive 
Laplacian Score: 
 Calculate category likelihoods 

and Gini(Y) metric for feature 
selection. 

 Apply the Adaptive Laplacian 
Score to select the most 
discriminative features. 

 Enhance Random Forest 
accuracy and robustness by 
integrating selected features. 

Step 3: Localization for Locality 
Preservation: 
 Create a nearest-neighbor graph 

using the training data. 
 Compute edge weights based 

on similarity measures. 
 Calculate Laplacian scores for 

features to retain locality 
information. 

Step 4: Adaptive Feature Weighting: 
 Normalize feature weights for 

relative importance. 
 Generate random subspaces 

using weighted random 
sampling. 

 Modify feature weights for 
improved decision tree 
construction. 

Step 5: Iterative Feature Weight Update: 
 Perform iterative weight 
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updates with a weight update 
interval of μ. 

 Adjust feature weights based on 
selection frequency for diverse 
tree structures. 

Step 6: Adaptive Weight Update for 
Diversity: 
 Determine feature selection 

probabilities for each feature. 
 Adjust feature weights 

considering selection 
probabilities to enhance 
diversity. 

 
3.3. Lion Pride Optimization 

In the quest to ensure the survival of the 
lion species, a distinctive social system and 
behavior have evolved, known as the “pride,” 
setting them apart from other feline species. 
Regarding reproduction, female lions typically 
remain in the company of the males, and pride can 
consist of one to three lion pairs coexisting 
harmoniously within a well-defined territory. 
Within this domain, the dominant lion, often 
referred to as the territorial lion, maintains its 
authority by safeguarding the territory against 
potential threats, such as roaming or migratory 
lions. This territorial defense continues for two to 
four years or until the cubs reach sexual 
maturity[37]. 

Throughout these two to four years, 
nomadic lions repeatedly attempted to infiltrate the 
pride, sparking intense conflicts for survival 
between the nomads and the territorial lion. To fend 
off these intruders effectively, the pride members 
must unite. Nevertheless, should the nomad lion 
emerge victorious, it may kill or expel the territorial 
lion, subsequently taking control of the territory. 
This takeover is accompanied by the elimination of 
the vanquished lion’s cubs and the induction of the 
lionesses into estrus. The mating occurs between 
the lionesses and the newly established alpha male, 
leading to the birth of a fresh litter of lion cubs. 
This pattern of behavior persists until the territorial 
cubs reach adulthood. 

 
The territorial takeover phase ensues upon 

reaching maturity and demonstrating their physical 
prowess. The weaker territorial lion is either 
eliminated or ousted from the pride, mirroring the 
earlier territorial defense phase. The newly 
dominant lion from within the pride then assumes 
leadership and may choose to expel or eliminate the 
cubs or weaker lions within the pride. This 
dominant lion proceeds to mate with the pride’s 
lionesses, giving rise to the birth of their offspring. 

 
3.3.1. Distinctive Characteristics of Lion Prides 

Lion pride, the complex social group of 
lions, exhibits various distinctive characteristics 
that make them a unique and captivating 
phenomenon in the animal kingdom. These 
characteristics include: 

 Social Structure: Lion pride has an 
organized social structure with lionesses, 
dominant males, subordinates, and cubs. 

 Cooperative Hunting: They engage in 
coordinated hunting, enhancing their 
success in capturing prey. 

 Territorial Defense: Lion prides fiercely 
on defending their territories against rivals 
and potential threats. 

 Maternal Care: Lionesses collectively raise 
and care for their cubs. 

 Communication: Lions use vocalizations 
and body language for effective 
communication, with roaring as a critical 
form of contact. 

 Territorial Takeovers: Leadership and 
pride dynamics changes can occur during 
territorial disputes or takeovers. 

 Cub Play and Learning: Lion cubs play to 
develop crucial skills. 

 Hunting Strategies: Lion pride adapt their 
hunting strategies depending on their prey. 

 Flexible Group Size: The size of lion pride 
can vary widely. 

 Hierarchical Leadership: Dominant males 
establish and maintain leadership, which 
may change over time. 

 
Algorithm 7 provides a high-level 

pseudocode outlining the Lion Pride Optimization 
process for solving complex optimization problems. 
 
3.4. Self-Adaptive Lion Pride Optimization 

Self-Adaptive Lion Pride Optimization 
(SALPO), an advanced evolution of the Lion 
Algorithm, was initially introduced as a search 
algorithm in 2012. Over time, it has undergone 
substantial enhancements, particularly in 
adaptability and autonomy. Six integral processing 
stages characterize the SALPO method are 

a) Initialization: The algorithm’s journey 
begins with the formation of a pride, 
symbolizing the initial population of 
potential solutions, much like traditional 
optimization approaches. 

b) Fitness Assessment: Each lion within the 
pride undergoes an in-depth fertility 
evaluation, allowing for the dynamic 
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assessment of their suitability and 
contribution to the optimization process. 

c) Offspring Generation: The algorithm 
proceeds to the mating stage following 
fertility evaluation. Here, lions engage in 
the reproductive process, giving rise to a 
new generation called cubs. These cubs 
represent potential solutions and play a 
vital role in optimization. 

 

Algorithm 7: Lion Pride Optimization 

Input: 
 Objective Function 
 Initial Population Size (N) 
 Maximum Iterations 
 Territory Parameters 
 Problem-Specific Parameters 

 
Output: 
 Best Solution 

 
Procedure: 
Step 1: Initialize N lion individuals and 

evaluate their fitness. 
Step 2: Organize lions into groups simulates 

territorial behavior. 
Step 3: Implement exploration and defense 

strategies. 
Step 4: Select leaders within each group. 
Step 5: Adapt the strategy dynamically. 
Step 6: Terminate based on a defined 

criterion. 
Step 7: Retrieve the best solution found by 

the leader. 
Step 8: Present the best solution as the 

optimized result for the problem. 

 
d) Solution Space Protection: 

Distinguishing itself from conventional 
optimization methods, SALPO directly 
draws inspiration from the social behavior 
of lions. The territorial defense stage 
comes into play as lions emulate natural 
territorial defense mechanisms. This 
unique aspect of the algorithm involves 
safeguarding promising solutions from 
external threats and rival pride, preserving 
the integrity of their territories. 

e) Exploration: Building on its inspiration 
from nature, the algorithm introduces the 
territorial takeover phase. Similar to the 
territorial behavior of lions in their natural 
habitat, this phase involves the acquisition 
of new territories to explore previously 
uncharted solution spaces. 

f) Termination: The SALPO process is 
designed to conclude based on flexible and 
adaptive termination criteria. Termination 
may occur upon reaching a predefined 
number of iterations or generations or 
successfully identifying an optimal 
solution that aligns with specified 
objectives. 

 
The distinctive characteristic of SALPO 

lies in its ability to autonomously adapt and fine-
tune its parameters and strategies as it progresses 
through the optimization journey. By incorporating 
self-adaptive mechanisms, this advanced algorithm 
enhances its adaptability, allowing it to effectively 
respond to the dynamic nature of optimization 
challenges. Whether through adjusting key 
parameters, strategy adaptation, or real-time 
learning, SALPO offers a highly responsive and 
efficient approach to solving complex optimization 
problems. 
 

This specialized algorithm excels at self-
optimization, ensuring it can efficiently reach a 
predefined number of iterations, achieve an optimal 
solution, or meet specified objectives. Its 
adaptability, combined with the core principles of 
the Lion Algorithm, positions SALPO as a 
powerful tool for addressing a wide range of 
optimization challenges. 

 
3.4.1. Problem Identification 

Eq.(1) embodies the central objective 
function that underpins the pursuit of optimal 
solutions. It signifies the search for the optimal 
configuration, Poptimal, where P represents a vector 
of solution variables (p1,p2,…,pt). The term g(⋅) 
constitutes the heart of this function, representing 
the core objective that necessitates minimization. 
This objective function, g, operates continuously 
and is amenable to exhibiting diverse 
characteristics, whether unimodal or multimodal. It 
captures the essence of the optimization problem, 
defining the landscape within which solutions are 
sought. Further nuanced by the scaling factor 
𝜔(𝑝௦

௠௜௡ , 𝑝௦
௠௔௫) the equation highlights the intricate 

interplay between solution variables and their 
permissible ranges (𝑝௦

௠௜௡  𝑡𝑜 𝑝௦
௠௔௫), and the overall 

quest for an optimal configuration. The size of the 
solution space, as determined by Equation (2), 
extends the mathematical canvas for exploration, 
with B representing the set of real numbers and t 
specifying the dimensionality of the solution vector. 
Thus, Eq.(10) and its associated elements lay the 
foundation for addressing multifaceted optimization 
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challenges and providing a structured path to 
uncovering optimal solutions within continuous 
solution spaces. 

𝑃௢௣௧௜௠௔௟

=  
arg 𝑚𝑖𝑛

𝑝௦𝜔൫𝑝௦
௠௜௡, 𝑝௦

௠௔௫൯
𝑔(𝑝ଵ, 𝑝ଶ, … , 𝑝௧);    

𝑡 ≥ 1. 

(10) 

where function 𝑔(. ) is continuous and can be 
unimodal or multimodal. The solution space for 
𝑔(. )  has a size of 𝐵௧ , where 𝐵 represents real 
numbers, 𝑝௦ for 𝑠 in the range of 1 to 𝑡 is the 𝑠௧௛ 
solution variable, and 𝑡 is the dimension of the 
solution vector. The lowest and maximum values 
for the 𝑠th solution variable are denoted by 𝑝௦

௠௜௡ 
and 𝑝௦

௠௔௫ .   
 

The optimal or target solution, denoted as 
𝑃௢௣௧௜௠௔௟  is the desired outcome to be achieved 
through the optimization, as described in Eq.(11) 
and Eq.(12). The scale of the available solutions for 
the function 𝑔(. ) can also be determined. 

𝐵௧ = ෑ(𝑝௦
௠௔௫ − 𝑝௦

௠௜௡)

௧

௦ୀଵ

 (11) 

𝑃௢௣௧௜௠௔௟ = 𝑃: 𝑔(𝑃)

< 𝑔 ቀ𝑃ᇱ|𝑃ᇱ ≠ 𝑃; 𝑝௦
ᇱ  𝜔 (𝑝௦

௠௜௡ , 𝑝௦
௠௔௫)ቁ, 

(12) 

where 𝑃 represents the solution vector, which is 
represented as 𝑃 = [𝑝ଵ, 𝑝ଶ, … . 𝑝௧]. The objective 
function is expressed as a minimization problem in 
Eq.(10). However, it’s worth noting that it needs to 
be maximized in some cases. In such situations, the 
optimization algorithm must use an appropriate 
selection process. 
 
3.4.2. Initialization 

According to Eq.(10), pride is initialized 
with three types of lions: a territorial lion 
represented as 𝑃௠௔௟௘ ,  a lioness represented as 
𝑃௙௘௠௔௟௘ , and a nomadic lion represented as 
𝑃௡௢௥௠௔௟ . While the nomadic lion’s offspring are 
addressed during pride generation, this does not 
make them pride members. The representation of 
lions is similar to that of a solution vector. The 
vector elements of 𝑃௠௔௟௘, 𝑃௙௘௠௔௟௘ and 𝑃௡௢௥௠௔௟ , 
denoted as 𝑝௭

௠௔௟௘ , 𝑝௭
௙௘௠௔௟௘  and 𝑝௭

௡௢௠௔ௗ , are arbitrary 
integers within the specified minimum and 
maximum limits when 𝑡 > 1 (using real encoding). 
The synchronization among lions, denoted by 𝑍, 
may be calculated using Eq.(13), with 𝑧 varying 
from 1 to 𝑍.  

𝒁 = ൜
𝑡;   𝑡 > 1(𝑔𝑒𝑛𝑒𝑟𝑎𝑙𝑐𝑎𝑠𝑒)

𝑐;    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒(𝑠𝑝𝑒𝑐𝑖𝑎𝑙𝑐𝑎𝑠𝑒),
 (13) 

where 𝑐 and 𝑡are integers that determine the length 
of lions. At time 𝑡 = 1,  the algorithm searches with 
binary-encoded lions. Thus, the vector elements can 
only be 1s and 0s. It is essential to ensure that these 
generated values satisfy Eq.(14) and Eq.(15). 

𝒋(𝑝ଵ)𝜔 (𝑝௭
௠௜௡ , 𝑝௭

௠௔௫) (14) 

|𝑐|

2
= 0 (15) 

where 

𝒋(𝑝௭) = ∑ 𝑝௭2ቀ
ೋ

మ
 ି ௭ቁ௓

௭ୀଵ . (16) 

 
The integrity of the binary lion 

representation within the solution space is assured 
by the principles outlined in Eq.(14) and Eq.(16). In 
contrast, the unity of binary bits, both before and 
after the decimal point, is guaranteed as per 
Eq.(15). It’s crucial to emphasize that our 
experimental investigations are exclusively 
centered around the real-coded lion algorithm. 
Henceforth, all discussions and analyses are 
oriented toward the real-coded lion algorithm. 
Given our assumption of two nomadic lions 
attempting to infiltrate, the formation of 𝑃௡௢௥௠௔ௗ is 
bound to occupy one of the two available slots. It is 
only during territorial defense that the activation of 
the other nomadic lion comes into play. This 
research leaves this slot unoccupied for now and 
denotes it as 𝑃ଵ

௡௢௥௠௔ௗ. 
 
3.4.3. Fitness Assessment 

As the Lion Algorithm unfolds, male and 
female territorial lions undergo aging, sometimes 
leading to a loss of fertility and even sterility. This 
gradual reduction in reproductive capability can 
impede these lions’ effectiveness in surviving 
battles or claiming territories, which are pivotal 
aspects of the algorithm’s dynamics. Consequently, 
there comes the point in the algorithm’s progression 
when the fitness of both 𝑃௠௔௟௘  and 𝑃௙௘௠௔௟௘  reaches 
its zenith, rendering them unable to further guide us 
towards optimal solutions, whether on a global or 
local scale. A critical phase of fertility analysis 
becomes indispensable to circumvent the potential 
entrapment in local optima. This analysis is 
instrumental in ensuring that the optimization 
process remains adaptive and responsive to changes 
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in the lion population, thereby preserving the 
algorithm’s efficacy in discovering superior 
solutions. 

 
In this process, 𝑃௠௔௟௘  is identified as 

becoming a laggard if 𝑔(𝑃௠௔௟௘)(the fitness of 
𝑃௠௔௟௘) is greater than a reference fitness value 
𝑔௥௘௙ . When this happens, the laggardness rate 𝑍௕ is 
increased by one. If 𝑍௕ exceeds its maximum 
limit𝑍௕

௠௔௫ , then territorial defence takes place. 
After a crossover event, the sterility rate of 𝐸௕  
increases by one, guaranteeing the fertility of 
𝑃௙௘௠௔௟௘. 𝑃௙௘௠௔௟௘ is updated according to the 
criteria established by Eq.(17) if 𝐸௕exceeds the 
tolerance 𝐸௕

௠௔௫ . The mating procedure can continue 
until the improved female, designated as 𝑃௙௘௠௔௟௘, is 
selected as the new 𝑃௙௘௠௔௟௘ . Alternately, the update 
procedure will keep running until the number of 
female generations exceeds 𝑗௨

௠௔௫ , 𝑗௨. If the 𝑃௙௘௠௔௟௘ 
is not replaced by a 𝑃௙௘௠௔௟௘ା during the updating 
process, then the 𝑃௙௘௠௔௟௘  is still fertile enough to 
have superior children. 

𝑝௭
௙௘௠௔௟௘ା

= ቊ
𝑝௔

௙௘௠௔௟௘ା
;    𝑖𝑓 𝑧 = 𝑎

𝑝௭
௙௘௠௔௟௘

;    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (17) 

𝑝௔
௙௘௠௔௟௘ା

= 𝑚𝑖𝑛[𝑝௔
௠௔௫ , 𝑚𝑎𝑥(𝑝௔

௠௜௡ , ∇௔)] 
(18) 

∇௔= ൣ𝑝௔
௙௘௠௔௟௘

+ (0.1𝑏ଶ

− 0.05)൫𝑝௔
௠௔௟௘

− 𝑏ଵ𝑝௔
௙௘௠௔௟௘

൯൧ 
(19) 

 
where 𝑝௭

௙௘௠௔௟௘ା and 𝑝௔
௙௘௠௔௟௘ା represent the 𝑧௧௛ and 

𝑎௧௛ vector elements of 𝑃௙௘௠௔௟௘ା, respectively. The 
value of 𝑎 is a randomly generated integer within 
the interval [1, 𝑍]. The random numbers denote the 
female updating function 𝑏ଵ and 𝑏ଶ both are created 
within the range [0, 1]. 
 

Algorithm 8: Fitness Evaluation 

Input:  
 Male lion’s solution 
 Female lion’s solution, 
 Fitness values,  
 Rates 
 Generation limits. 

 
Output:  

 Updated female lion’s solution. 
 

Procedure: 
Step 1: Check male lion’s fitness. 
Step 2: Manage laggardness and territorial 

defense. 
Step 3: Ensure female lion’s fertility. 
Step 4: Update the female lion’s solution. 
Step 5: Continue mating or updating. 
Step 6: Maintain fertility if there is no 

replacement. 
 
3.4.4. Offspring Generation 

The mating process within the Lion 
Algorithm comprises two essential steps and an 
optional one. The primary processes are crossover 
and mutation, while the secondary process involves 
the clustering of the sexes. Crossover and mutation 
operators are of profound significance, serving as 
critical inspirations that guide our algorithm. 
Through these processes of crossover and mutation, 
both 𝑃௠௔௟௘  and 𝑃௙௘௠௔௟௘ collaboratively give rise to 
offspring known as cubs. These cubs represent 
solutions that inherit characteristics from both 
parents, enhancing the algorithm’s solution space 
exploration. Within this framework, we strictly 
adhere to the concept of a maximum natural 
littering rate, permitting a lioness to give birth to as 
many as four cubs in most instances. This limit of 
four cubs is a direct outcome of our successful 
crossing strategy, ensuring the preservation of 
genetic diversity and the continuous evolution of 
potential solutions. 
 
 Each cube is generated by using a unique 
combination of values for the crossover mask, 𝑉; 
for example, the 𝑚௧௛ mask, 𝑉௠, is used to create 
𝑃௖௨௕௦(𝑚). After these cubs are mutated, they will 
have four more offspring. To distinguish between 
offspring produced by crossover and those created 
via mutation, we use the terms ′𝑃௖௨௕௦′ and ′𝑃௡௘௪ᇱ, 
respectively. These eight cubs make up the cub 
pool, and their genders are assigned using a 
clustering algorithm: ′𝑃௖ି௖௨௕′ and ′𝑃௚ି௖௨௕′.  Self-
updating ′𝑃௖ି௖௨௕′ and ′𝑃௚ି௖௨௕′ are therefore 
generated following the cub growth function.
  
3.4.5. Solution Space Protection 

Incorporating territorial defense into the 
Lion Algorithm expands the solution space 
exploration and is pivotal for steering the algorithm 
away from potential local optima. Simultaneously, 
it facilitates discovering solutions with comparable 
fitness levels, enhancing the algorithm’s versatility 
and adaptability. The process of defending one’s 
territory unfolds in a series of steps. It commences 
with establishing a nomad coalition, followed by a 
relentless struggle for survival. Subsequently, the 
algorithm iteratively revises both the pride and the 
nomad coalition, ensuring that the most promising 
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solutions continue to guide the optimization 
process. A winner-take-all strategy is employed to 
expedite the identification of 𝑃௛೙೚ೝ೘ೌ೏within a 
nomad coalition. This strategy streamlines the 
selection process given in Eq.(20) to Eq.(22). If the 
specified conditions are met, 𝑃௛೙೚ೝ೘ೌ೏ is chosen as 
a strategically optimal solution, aligning with the 
algorithm’s goal of achieving superior solutions in 
the face of fierce competition. 

𝒈(𝑃௛೙೚ೝ೘ೌ೏) < 𝑔(𝑃௠௔௟௘) (20) 

𝒈(𝑃௛೙೚ೝ೘ೌ೏) < 𝑔(𝑃௖ି௖௨௕) (21) 

𝒈(𝑃௛೙೚ೝ೘ೌ೏) < 𝑔(𝑃௚ି௖௨௕) (22) 

To update pride, 𝑃௠௔௟௘  must be defeated, 
whereas 𝑃௛೙೚ೝ೘ೌ೏must be defeated to update the 
nomad coalition. Changing from 𝑃௠௔௟௘  to 𝑃௛೙೚ೝ೘ೌ೏   
is the update for pride, whereas changing from 
𝑃௛೙೚ೝ೘ೌ೏   to 𝐻௡௢௠௔ௗ  The update for a nomad 
coalition is more prominent than or equal to the 
exponential of unity. Only at the time of the next 
territorial defence will the other slot be appointed. 
 
 When both 𝑃௖_௖௨௕and 𝑃௚_௖௨௕have 
developed, as is the case when the age of the cubs 
surpasses the maximum age for cub maturity, 
𝐷௠௔௫, the algorithm triggers territorial takeover, at 
which point 𝑃௠௔௟௘  and𝑃௙௘௠௔௟௘   are updated. 
 
3.4.6. Exploration 

Exploration in SALPO mirrors the natural 
territorial behaviors of lions and plays a pivotal role 
in enhancing the algorithm’s adaptability and 
search capabilities. This phase embodies the 
algorithm’s quest to expand its solution space 
horizons like lions extending their territorial 
dominance in the wild. From a technical 
perspective, this phase can be dissected into several 
critical elements: 

 Uncharted Solution Spaces: Exploration 
involves systematically investigating 
solution spaces that have hitherto 
remained unexplored. These uncharted 
territories represent domains within the 
optimization landscape yet to be 
thoroughly scrutinized. 

 Diverse Search Scope: An essential facet 
of the Exploration phase is its capability to 
diversify the algorithm’s search scope. It 
extends beyond conventional solution 

areas and encompasses regions that may 
have been overlooked, promoting a more 
comprehensive exploration. 

 Mitigation of Local Optima: The 
Exploration phase safeguards against 
falling into local optima. By actively 
seeking alternative solutions within the 
extended solution space, it mitigates the 
risk of stagnation in suboptimal regions. 

 Adaptive Dynamics: Much like lions 
adapt to new territories to ensure their 
survival, Lion Pride Optimization’s 
Exploration phase demonstrates a dynamic 
and adaptive nature. It is poised to respond 
to changes in the optimization landscape, 
evolving in response to varying 
challenges. 

 Superior Solution Discovery: The 
primary objective of this technically 
inclined Exploration phase is to unearth 
superior solutions. By probing the 
uncharted territories, the algorithm seeks 
to identify solutions that offer enhanced 
performance or novel insights that might 
not be apparent in already explored areas. 

 

Algorithm 9: Exploration 

Input: 
 Current solution P 
 Exploration parameters and settings 

 
Output: 
 Improved solution P after exploration 

 
Procedure: 

Step 1: Initialize parameters and settings 
for the Exploration Phase. 

Step 2: For a specified number of 
exploration cycles: 

a. Evaluate the fitness of the 
current solution P. 

b. Explore uncharted solution 
spaces. 

c. Diversify the search scope. 
d. Mitigate local optima risks. 
e. Adapt exploration strategies to 

landscape changes. 
f. Evaluate fitness in explored 

regions. 
g. Update P if superior solutions 

are found. 
Step 3: Repeat exploration cycles until a 

stopping criterion is met. 
Step 4: Output the improved solution P 

obtained through exploration. 
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3.4.7. Termination 
The algorithm is paused once one of the 

following two criteria is met, i.e., Eq.(23) and 
Eq.(24): 
 

𝑇௝ > 𝑇௝
௠௔௫  (23) 

ห𝑔(𝑃௠௔௟௘) − 𝑔(𝑃௢௣௧௜௠௔௟)ห ≤ ℎி , (24) 

where 𝑇௝ is the generational counter; it starts at 0 
and rises by 1 with each successful territory 
conquest. The maximum generation count, denoted 
by 𝑇௝

௠௔௫ , and the error tolerance, denoted by ℎி, 
are shown in the following two symbols. The 
symbol represents the absolute difference |∙|. 
Eq.(24) states that the second criterion may only be 
examined if the desired minimum of 𝑔(𝑃௢௣௧௜௠௔௟) 
(or maximum) is known, and therefore, knowing 
𝑔(𝑃௢௣௧௜௠௔௟) does not entail knowing 𝑃௢௣௧௜௠௔௟ . 
 

Algorithm 10: SALPO 
Input: 
 Initial parameters and the objective 

function. 
 Termination criteria (e.g., max iterations, 

target fitness). 
 Problem-specific settings. 

 
Output: 
 The optimal solution 𝑃௢௣௧௜௠௔௟ 
 The corresponding fitness value 

𝑔൫𝑃௢௣௧௜௠௔௟൯ 
 Termination status. 

 
Procedure: 

Step 1: Initialization: 
 Create an initial population of 

territorial lions 𝑃௠௔௟௘, lionesses 
𝑃௙௘௠௔௟௘, and nomads 𝑃௡௢௥௠௔௟. 

 Define representation format (binary 
or real-coded) and ensure constraints. 

Step 2: Fitness Assessment: 
 Periodically assess the fitness of 

territorial lions. 
 Address fertility issues and adapt 

strategies. 
 Detect and deal with laggard lions. 

Step 3: Offspring Generation: 
 Implement mating (crossover and 

mutation) among territorial lions. 
 Create cubs inheriting traits from 

parents. 
 Classify cubs as 𝑃(௖ି௖௨௕) and 

𝑃(௚ି௖௨௕) 

Step 4: Solution Space Protection: 
 Introduce territorial defense to 

explore and protect solution spaces. 
 Update the pride and nomad 

coalition. 
 Apply a winner-take-all strategy for 

optimal solutions. 
Step 5: Exploration: 

 Explore uncharted solution spaces. 
 Diversify search scope. 
 Avoid local optima. 

 Adapt to landscape changes. 
 Update P with superior solutions. 

Step 6: Termination: 
 Halt if criteria are met 

3.5. Fusion of SALPO and ERF 
While powerful, the ERF algorithm has 

some inherent limitations. ERF treats all features 
equally, leading to suboptimal performance on 
datasets where some features are more informative 
than others. Additionally, it lacks the adaptability to 
adjust feature importance dynamically and 
struggles with datasets exhibiting complex 
structures and noisy elements. Integrating the 
SALPO technique with ERF addresses these issues. 
SALPO introduces adaptive feature weighting 
based on Laplacian scores, allowing the model to 
dynamically prioritize informative features. It 
incorporates a localization component to better 
handle datasets with complex structures, making 
the model more resilient to noise. SALPO’s 
adaptive feature weighting and weight update 
mechanisms enhance ERF’s adaptability and 
diversity, enabling it to deliver improved 
performance across a wide range of datasets, 
ultimately overcoming the limitations of the 
standalone ERF algorithm. The fusion of the 
SALPO and ERF algorithms can be a powerful 
approach to improve the performance of ERF in 
various machine learning tasks. This fusion will 
leverage SALPO’s self-adaptive and optimization 
capabilities to enhance ERF’s decision-making and 
predictive accuracy. Algorithm11 provides the 
fusion of SALPO and ERF. Algorithm 11 provides 
the pseudocode of SALPO-ERF. 

 

Algorithm 11: SALPO-ERF 

Input: 
 Training data 
 Hyperparameters 
 Optimization parameters 
 Feature weights 
 Feature selection frequencies 
 Data attributes 
 Data relationships 
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Output: 
 Improved ERF Model 
 Fused Feature Weights 
 Selected Features 
 Fusion Parameters 

 
Procedure: 
Step 1: Feature Selection: Apply SALPO’s 

self-adaptive feature selection 
mechanism to rank and select the most 
relevant features from the dataset.  

Step 2: Optimize Hyperparameters: Use 
SALPO to fine-tune ERF’s 
hyperparameters, including thenumber 
of trees, maximum tree depth, and 
feature selection settings. Search for 
optimal hyperparameters via SALPO’s 
optimization process. 

Step 3: Dynamic Data Sampling: Employ 
SALPO to optimize the creation of 
bootstrapped subsets of the training 
data for ERF.  

Step 4: Adaptive Weight Update: Incorporate 
SALPO’s adaptive weight update 
mechanism for modifying feature 
weights during ERF’s tree 
construction, enhancing the diversity 
and robustness of decision trees. 

Step 5: Iterative Model Improvement: 
Establish an iterative process where 
SALPO continuously optimizes ERF’s 
parameters and strategies.  

Step 6: Termination and Stopping Criteria: 
Define flexible termination and 
stopping criteria based on optimization 
goals or when the model reaches a 
specific performancethreshold using 
SALPO. 

Step 7: Localization-Aware Analysis: Integrate 
SALPO’s localization-aware 
capabilities into ERF, considering the 
spatial relationships and locality of data 
points for tasks where data distribution 
is crucial. 

Step 8: Enhanced Model Diversity: Promote 
model diversity by leveraging 
SALPO’s adaptability to explore 
different ensemble configurations, 
avoiding local optima. 

Step 9: Evaluate and Validate: Perform 
rigorous testing and validation to assess 
the performance of the fused SALPO 
and ERF approach.  

Step 10: Optimize Fusion Parameters: Fine-tune 
parameters controlling the interaction 
between SALPO and ERF to achieve 
optimal synergy. 

Step 11: Deploy Fused Model: Deploy the fused 
SALPO and ERF model for real-world 
applications or further analysis once 

the desired level of performance and 
robustness is achieved. 

 
3.5.1. Advantages of SALPO-ERF 

The fusion of SALPO and ERF offers the 
following advantages: 

 Enhanced Generalization: SALPO’s 
adaptability aids ERF in generalizing well 
to a broader range of datasets, including 
complex and noisy ones. 

 Resilience to Overfitting: SALPO’s 
mechanisms help mitigate overfitting in 
ERF, making it more robust in handling 
diverse datasets. 

 Dynamic Parameter Optimization: 
SALPO dynamically fine-tunes ERF’s 
parameters, ensuring they are optimal for 
specific tasks or datasets. 

 Local Optima Avoidance: SALPO’s 
exploration phase helps ERF escape local 
optima, resulting in better global 
optimization. 

 Adaptive Learning: ERF learns and 
adapts over time, becoming more effective 
at capturing complex patterns and 
relationships in data. 

 
By combining these strengths, the fusion 

of SALPO and ERF results in a machine learning 
algorithm that excels in accuracy, robustness, and 
adaptability across a wide spectrum of data-driven 
tasks. 

 
4. ABOUT DATASET 

The AAU RainSnow Traffic Surveillance 
Dataset addresses the challenge of capturing high-
quality data under adverse weather conditions. 
Rainfall, snowfall, and other adverse weather 
conditions severely hinder the performance of 
conventional traffic surveillance systems. This 
dataset compiles 22 five-minute video sequences 
from seven traffic intersections, capturing traffic 
scenes during rain and snowfall. The conditions 
vary from daytime to twilight and night, and the 
data includes glare from car headlights, reflections 
from puddles, and the blurriness caused by 
raindrops on camera lenses. It employs two camera 
modalities to enhance the dataset’s utility: a 
conventional RGB color camera and a thermal 
infrared camera, providing synchronized RGB-
thermal image pairs for each sequence. To enable 
research and experimentation, 100 frames are 
randomly selected from each sequence, and per-
pixel, instance-level annotations are provided for 
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road users. In total, the dataset comprises 2,200 
annotated frames containing 13,297 objects. These 
annotations align with MSCOCO category labels, 
facilitating compatibility and ease of use. Table 1 
unfolds key parameters and their corresponding 
descriptions. 

Table 1: Parameter and Description 

Parameter Description 

Number of Videos 22 

Video Duration 5 minutes each 

Number of 
Intersections 

7 

Resolution (RGB 
Camera) 

640x480 pixels 

Resolution (Thermal 
Camera) 

640x480 pixels 

Frame Rate 20 frames per second 

Annotated Frames 2,200 frames 

Annotated Objects 13,297 objects 

Weather Conditions 
Rainfall, Snowfall, 
Adverse weather 
scenarios 

Lighting Conditions 
Daylight, Twilight, 
Night 

Challenges 
Glare, Reflections, 
Raindrop Blur 

Annotation Format 
JSON (Compatible with 
COCO API) 

 

5. PERFORMANCE METRICS 
 

 Precision (PRCS): Precision is a metric 
that gauges the accuracy of a classification 
model. It calculates the ratio of true 
positive predictions to all positive 
predictions made by the model. 

 Recall (RCLL): Recall, also known as 
sensitivity, measures how well a model 
identifies actual positive instances. It is the 
ratio of true positive predictions to all 
actual positive instances. 

 Classification Accuracy (CL-ACC): 
Classification accuracy quantifies the 
proportion of accurate predictions made by 
the model among all its predictions. 

 F-Measure (FMS): The F-MS, often 
called the F1 score, calculates the 
harmonic mean of both precision and 
recall, providing a well-balanced 
assessment of the model’s effectiveness. 

 Matthew Correlation Coefficient 
(MCC): MCC evaluates the performance 
of binary and multiclass classification 
models by considering both true and false 
positives and negatives to provide a 
comprehensive performance evaluation. 

 Fowlkes-Mallows Index (FMI): FMI 
measures the likeness between two sets of 
data, often in the context of clustering, by 
determining the geometric mean of 
precision and recall, aiding in the 
assessment of data similarity. 

 
6. RESULTS AND DISCUSSION 
6.1. PRCS and RCLL Analysis 

In Figure 1, this research delves into a 
comprehensive analysis of PRCS (Precision) and 
RCLL (Recall) metrics for three classification 
algorithms: DSOD, DenseYOLO, and SALPO-
RFC.  
 

 

Figure 1: PRCS and RCLL Analysis 

DSOD yields a PRCS of 53.924 and an 
RCLL of 59.428, which appears to strike a balance 
between precision and recall. This suggests that the 
DSOD algorithm accurately classifies positive 
instances (Precision) while capturing a significant 
proportion of positive instances (Recall). Its 
performance can be attributed to a method that 
allows it to make reasonably accurate positive 
predictions without sacrificing its ability to identify 
relevant instances within the dataset. DenseYOLO 
exhibits PRCS and RCLL values of 64.274 and 
65.290, respectively. These figures point to a 
notable precision in generating optimistic 
predictions while effectively capturing a substantial 
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share of true positive instances. This suggests that 
DenseYOLO’s working mechanism focuses on 
achieving a high degree of accuracy in 
classification while maintaining its ability to 
identify a significant portion of the actual positive 
instances. SALPO-ERF outshines the others with 
PRCS and RCLL scores of 79.879 and 80.800, 
respectively. These exceptional values signify a 
mechanism that excels in both precision and recall. 
SALPO-ERF’s working mechanism prioritizes 
achieving highly accurate optimistic predictions 
while exhibiting exceptional sensitivity in 
identifying the most true positive instances within 
the dataset. 

The analysis in Figure 1, supported by the 
abbreviated table, underscores the performance 
disparities between these three classification 
algorithms. While DSOD and DenseYOLO offer 
balanced performance with moderate to good 
accuracy, SALPO-ERF’s exceptional results 
suggest a working mechanism that effectively 
combines high precision with strong recall. The 
latter is particularly valuable in tasks where 
precision and recall are paramount, making 
SALPO-ERF the standout choice among these 
algorithms. 

Table 2 :PRCS and RCLL Analysis Results Values 

Classification 
Algorithms 

PRCS (%) RCLL (%) 

DSOD 53.924 59.428 

DenseYOLO 64.274 65.290 

SALPO-RFC 79.879 80.800 

 
6.2. CL-ACC and FMS Analysis 

Figure 2 analyzes Classification Accuracy 
(CL-ACC) and the Fowlkes-Mallows Index (FMS) 
for three distinct classification algorithms: DSOD, 
DenseYOLO, and SALPO-RFC.  

 
DSOD achieves a CL-ACC of 55.167% 

and an FMS of 56.542. These values indicate that 
the DSOD algorithm, driven by its inherent 
mechanism, demonstrates moderate accuracy in 
classifying instances (CL-ACC) and maintains a 
reasonably balanced trade-off between precision 
and recall (FMS). Its mechanism preserves a fair 
level of accuracy while achieving a modest balance 
between precision and recall. DenseYOLO 
surpasses DSOD, achieving a CL-ACC of 64.997% 
and an FMS of 64.778. This improvement in 

accuracy and balance can be attributed to its 
working mechanism, which prioritizes higher 
classification accuracy (CL-ACC) and delivers a 
more refined balance between precision and recall 
(FMS). Its mechanism allows it to make 
significantly more accurate predictions while 
maintaining an acceptable balance between 
precision and recall. SALPO-ERF outperforms the 
others in CL-ACC and FMS, with values of 
79.696% and 80.337. Its exceptional performance 
indicates a working mechanism that strongly 
emphasizes achieving superior classification 
accuracy (CL-ACC) while excelling in the 
harmonious balance between precision and recall 
(FMS). This mechanism ensures that SALPO-ERF 
is optimal for applications demanding high 
accuracy and a harmonious balance between 
precision and recall. 
 

 

Figure 2: CL-ACC and FMS Analysis 

Table 3: CL-ACC and FMS Analysis Result Values 

Classification 
Algorithms 

CL-ACC (%) FMS (%) 

DSOD 55.167 56.542 

DenseYOLO 64.997 64.778 

SALPO-RFC 79.696 80.337 

 
Figure 2, along with the concise table data 

present in Table 3, underscores the distinctive 
performance characteristics of these three 
classification algorithms. While DSOD offers 
moderate accuracy and a balanced approach, 
DenseYOLO achieves marked improvement in 
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accuracy and balance. SALPO-ERF currently leads 
the pack, excelling in classification accuracy and 
achieving a harmonious balance between precision 
and recall, making it the premier choice among 
these algorithms for applications requiring 
precision, recall, and high accuracy. 

6.3. FMI and MCC Analysis 
In Figure 3, this research undertakes a 

comprehensive analysis of two critical performance 
metrics: the Fowlkes-Mallows Index (FMI) and the 
Matthew Correlation Coefficient (MCC) for three 
distinct classification algorithms: DSOD, 
DenseYOLO, and SALPO-RFC. These abbreviated 
notations facilitate a clear and concise evaluation of 
these algorithm’s performance in the context of 
their specific working mechanisms. 

 

Figure 3: FMI and MCC Analysis 

DSOD achieves an FMI of 56.609% and 
an MCC of 10.522%. These values indicate that 
DSOD’s working mechanism yields a moderate 
level of similarity between true and predicted 
classifications and a low correlation between true 
and predicted values (MCC). This suggests that 
DSOD may require further refinement in its 
working mechanism to improve the similarity 
between classifications and the correlation between 
true and predicted values. It appears to have room 
for enhancement in capturing the nuances of 
classifications. DenseYOLO surpasses DSOD, 
scoring higher in both FMI and MCC, with 64.78% 
and 29.999%, respectively. Figure 3 implies that 
DenseYOLO’s working mechanism is more 
effective in capturing similarities between true and 
predicted classifications (FMI) and achieving a 
significantly higher correlation between true and 
predicted values (MCC). DenseYOLO 
demonstrates substantial progress in these 
performance metrics, indicating a more refined 
working mechanism that aligns better with the true 
classifications. SALPO-ERF stands out with the 

highest FMI and MCC values among the three 
algorithms, recording scores of 80.338% and 
59.354%, respectively. This remarkable 
performance suggests that SALPO-ERF’s working 
mechanism captures similarities between true and 
predicted classifications (FMI) and achieves a 
robust correlation between true and predicted 
values (MCC). It demonstrates a highly effective 
working mechanism that captures the subtleties of 
classifications and aligns closely with the true 
values. 

 
Figure 3 and Table 4 underscore the 

unique performance characteristics of these three 
classification algorithms concerning FMI and 
MCC. DSOD shows moderate performance, 
DenseYOLO exhibits marked improvement, and 
SALPO-ERF excels in capturing similarities and 
establishing strong correlations between true and 
predicted classifications. These insights are 
invaluable in assessing the suitability of each 
algorithm for specific tasks that demand 
classification accuracy and the similarity of 
predicted classifications to true values. 

Table 4 :FMI and MCC Analysis Result Values 

Classification 
Algorithms 

FMI (%) MCC (%) 

DSOD 56.609 10.522 

DenseYOLO 64.780 29.999 

SALPO-RFC 80.338 59.354 

7. CONCLUSION 

The Self-Adaptive Lion Pride 
Optimization-Based Enhanced Random Forest 
(SALPO-ERF) algorithm is a promising solution 
for addressing traffic surveillance and object 
detection challenges, particularly in adverse 
weather conditions and low-light environments. 
Traffic surveillance is integral to urban safety and 
efficiency, yet detecting objects under unfavorable 
conditions remains a significant challenge. To 
overcome this challenge, SALPO-ERF combines 
SALPO's adaptability and ERF's robust decision-
making. This innovative algorithm optimizes 
feature selection and maintains high classification 
accuracy, enabling efficient traffic surveillance in 
various scenarios. The evaluation on the AAU 
RainSnow Traffic Surveillance Dataset, featuring 
22 five-minute videos and 13,297 objects, 
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demonstrates the superior performance of SALPO-
ERF. With a classification accuracy of 79.696% 
and f-measure of 80.337%, it offers a notable 
advancement in traffic surveillance compared to 
existing approaches. SALPO-ERF has the potential 
to enhance urban transportation networks, making 
them safer and more efficient, even in challenging 
environmental conditions. Future enhancement can 
be focused on utilizing different bio-inspired 
strategies to detect objects more accurately. 
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