
Journal of Theoretical and Applied Information Technology

30th November 2023. Vol.101. No 22
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7080

SECURING AND COMPRESSING TEXT FILES USING THE
AES 256 ALGORITHM AND LEVENSTEIN CODE

HANDRIZAL1, FAUZAN NURAHMADI2, MUHAMMAD FADLI3

1,2,3Department of Computer Science, Faculty of Computer Science and Information Technology,
Universitas Sumatera Utara, Jl. Universitas No. 9-A, Medan 20155, Indonesia

E-Mail: handrizal@usu.ac.id

ABSTRACT

In using technology, humans cannot exchange information without the internet. However, along with the
development of technology, Data security, and confidentiality are significant issues to be considered in
communication since there is a negative impact in the form of data tapping, which results in data being seen
and information being taken or possessed by persons who do not have access rights. Methods for securing
data are needed in this case. Cryptography is extremely appropriate in the field of data security. The AES
algorithm is a security system for protecting data. However, in this case, the impact of cryptography is to
create large files, so compression techniques are needed. As a result, a compression method is needed,
specifically the Levenstein code, required to compress ciphertext in smaller size. The test used 2 types of
characters, namely homogeneous and heterogeneous characters. The test parameters used Ratio of
Compression, Compression ratio, space-saving, and bitrate. From the test results, it was found that
encryption with AES 256 experienced an increase in the number of characters, but the resulting character
length has the same ciphertext length. Testing with the Ratio of Compression parameter shows that
homogeneous characters have a smaller percentage value of 62.09% than heterogeneous characters 62.22%.
The compression Ratio test for homogeneous characters has the same ratio as heterogeneous characters,
namely 1.61. In space saving test, the percentage of homogeneous characters is 37.91% greater than
heterogeneous characters at 37.78%. Testing based on Bitrate, homogeneous characters with heterogeneous
characters has the same value of 4.97. Moreover, in The time comparison, homogeneous characters are faster
than heterogeneous characters on a 1000-character test with a homogeneous time of 1.0907 ms and a
heterogeneous time of 1.7975 ms.

Keywords: AES 256, Cryptography, Compression, Levenstein Code

1. INTRODUCTION

In using technology, humans cannot exchange
information without the internet. However, along
with the development of technology, Data security,
and confidentiality are significant issues to be
considered in communication since there is a
negative impact in the form of data tapping, which
results in data being seen and information being
taken or possessed by persons who do not have
access rights. Methods for securing data are needed
in this case. Cryptography is extremely appropriate
in the field of data security.

The AES algorithm is a secure algorithm for
protecting data. This AES was first published by
NIST (National Institute of Standards and
Technology) where it replaced the DES algorithm
which was considered outdated and easy to break

into. AES is proven to be immune to conventional
attacks (linear and differential attacks) that use
statistics to crack passwords, and every encryption
and decryption process must perform 10 turns or 10
rounds in carrying out security or opening the
security.

In the AES modification, there are certain
changes made in the key-encryption process by
improving the encryption quality and also
improving the existing effect on the chipper image
to be produced. The difference in key length will
affect the number of rounds in the AES algorithm
[1]. Research that has been done on Modified AES
for text and Image Encryption explained that the
results of AES modifications have increased
efficiency due to faster timing and reduced CPU
usage where this AES algorithm also produces
higher effects that can improve algorithm

Journal of Theoretical and Applied Information Technology

30th November 2023. Vol.101. No 22
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7081

performance [2]. For the Levenstein algorithm,
Vladir Levenstein developed a code in 1968 that
could be used for non-negative integers. There are
several encoding steps in searching for this
algorithm code. The steps in decompression with
this algorithm are to enter the result of the
compression text, the result of the string bit of the
Levenstein code that becomes the value of the file is
changed back to binary, returns the binary to the
original string bit by reading the last 8 bits, the
reading result is a decimal number, declare the
reading with n and then remove the bit in the last
part by 7 + n.

The number of studies described above means
that the security and confidentiality of this data is a
factor that needs to be considered, especially with
the study and development of technology today. It
also relates to data compression which is done to
facilitate with some cryptographic or compression
methods.

2. SCOPE AND LIMITATION

The scope and limitations of this research are as
follows:

 The data used are text files with UTF-8
encoding format, such as *.txt, and *html.

 The cryptographic method used is the Aes
256 Algorithm and the Levenstein Code
Algorithm.

 The measurement parameters are
calculating the compression ratio,
compression ratio (CR), space-saving (SS),
and bit rate.

 The programming language to be used is
C#.

3. LITERATURE REVIEW

3.1. Cryptography

Etymologically the word cryptography comes
from the Greek language which consists of two
words krupto which means hidden and grafh which
means writing. This can mean that cryptography is a
rule in the encryption and decryption of data or
messages. The message to be encrypted is
commonly called plaintext. After that, an algorithm
is used to encrypt the message so that the plaintext
that has been encoded is called ciphertext/ cipher
text. Classical Cryptography In this algorithm,
conventional or symmetric encryption techniques

are used namely substitution techniques and
transposition techniques. However, the algorithm is
outdated because it is so easy to crack that it is no
longer safe [3]. Modern Cryptography This
algorithm focuses on the level of the algorithm and
the key used. It generally operates in bit mode
compared to character mode. Modern cryptography
is an improvement that refers to cryptography.

Figure 1. Asymmetric cryptographic schemes

3.2. Compression

Compression is a process of converting a set of
data into a form of code or symbol that is used as a
utilization to minimize data storage and shorten the
time in transferring data. Data compression in simple
terms has characteristics that can be likened to a
process to replace a string in the form of a collection
of characters into a new string with the same content
but with less length or size.

3.2.1. Lossy Compression.

This lossy compression is a type of compression
that can cause the data resulting from the
compression to be lost or cannot be restored like the
original data [4]. This compression can be used for
images or videos, but it is not suitable for use in text
form. Examples of lossy compression algorithms are
CS&Q (coarser sampling and/or quantization),
JPEG, and MPEG. The Lossy Compression Scheme
can be seen in Figure 2.

Figure 2. Lossy Compression Scheme

3.2.2. Lossless Compression.

Lossless Compression is a type of compression
that does not allow the difference between the initial
data (before compression) and the loss after
compression. Lossless compression has a smaller
degree of compression but with complete data
accuracy between before and after the compression

Journal of Theoretical and Applied Information Technology

30th November 2023. Vol.101. No 22
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7082

process. Lossless compression can work by using
repeated patterns on messages that the compression
process will carry out and the process of coding
those patterns is carried out efficiently. Examples of
algorithms in lossless compression are Run-Length,
Huffman, Delta, Lempel Ziv Welch (LZW), Elias
Omega Code, Levenstein Code, and others. The
Lossless Compression Scheme can be seen in Figure
3.

Figure 3. Lossless Compression Scheme

3.3. Test Parameters

Several factors are often used in analyzing the
quality of a data compression technique as follows:

1. Ratio of Compression (Rc)

Ratio of compression (Rc) is the percentage
of data size after the compression process is
carried out with the size of the data before the
compression process is carried out.

Rc =
Data Size After Compression

Data Size Before Compression
 × 100%

2. Compression Ratio (Cr)

Compression ratio (Cr) is a comparison of the
size of the data before the compression
process with the data after the compression
process.

Cr =
Data Size Before Compression

Data Size After Compression

3. Space Savings (Ss)

Space Savings (Ss) is a percentage of storage
space savings.

Ss = ൬1 −
Data Size After Compression

Data Size Before Compression
 ൰ × 100 %

4. Bit rate

Bit Rate is the average number of bits used to
encode a single character, formulated by the
compressed bit size divided by the number of
unique characters in the text.

Bit Rate =
Number of bits compressed

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑈𝑛𝑖𝑞𝑢𝑒 𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑠 𝐼𝑛 𝑇𝑒𝑥𝑡

3.4. Research Problem

There are several problems in this research,
namely:

 Negative impacts in the form of data
tapping which results in data being seen
and information taken or owned by
people who do not have access rights.

 This also relates to data compression
which is done to make it easier with
several cryptographic or compression
methods.

4. METHOD

3.1. Advanced Encryption Standard Algorithm
(AES)

The AES algorithm is a secure algorithm for
protecting data. This AES was first published by
NIST (National Institute of Standards and
Technology) where it replaced the DES algorithm
which was considered outdated and easy to break
into. AES is proven to be immune to conventional
attacks (linear and differential attacks) that use
statistics to crack passwords, and every encryption
and decryption process must perform 10 turns or 10
rounds in carrying out security.

3.1.1. AES Algorithm Encryption Process

There are 4 types of byte transformations for the
AES algorithm encryption process, namely
SubBytes, ShiftRows, and AddRoundKey. The AES
encryption process can be described in the picture
below :

Journal of Theoretical and Applied Information Technology

30th November 2023. Vol.101. No 22
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7083

Figure 4. AES Algorithm Encryption Process
Illustration [5]

3.1.2. AES Algorithm Decryption Process

The cipher transformation can be reversed and
implemented in the opposite direction to produce an
inverse cipher that can be easy to understand. The
byte transformations used are InvShiftRows,
InvSubBytes, InvMixColumns, and AddRoundKey.

The decryption process of the AES algorithm can
be seen in Figure 5 below :

Figure 5. AES Decryption Process Illustration [5]

3.2. Levenstein Code Algorithm

This little-known code for non-negative integers
was created in 1968 by Vladimir Levenshtein. Both
encoding and decoding are multi-step processes [6].
The Levenstein process code for n=0 is 0. As for the
positive number N, do the following :

1. Denote the first number of C by 1. Initialize
the current code on an empty string.

2. Take the binary value of n without the
previous value of 1. Add it to the current
code.

3. Denote M as the number of bits added in
stage 2.

4. If M ≠ 0, add C with 1 and do step 2 back,
but with a value of M instead of n.

5. If M = 0, add 1 followed by 0 on C to the
current code and stop.

The decoding process is carried out with the
following steps:

1. Denote C with a sequential value of number
1 before the first number 0.

2. If C = 0, the decoding value is zero, stop.
3. Denote N=1, and repeat step 4 (C-1) times.
4. Read N bits, add 1, and set the result of the

bitstring to N (thereby removing the previous
value from N). The string entered for N in the
last iteration is its decoding value.

Table 1. Levenstein Code

n Levenstein Code

0 0

1 10

2 1100

3 1101

4 1110000

5 1110001

6 1110010

7 1110011

8 11101000

9 11101001

10 11101010

11 11101011

12 11101100

3.3. General Architecture

General Architecture is an overview of how a
system runs and the features that support the
resolution of a problem. The general architecture in
Figure 6 below can be seen in that the user inputs a

Journal of Theoretical and Applied Information Technology

30th November 2023. Vol.101. No 22
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7084

text file and then processes it by the system with the
Aes-256 Algorithm and also the Leveinstein Code
Algorithm. Then the output of the file is
decompressed by the system and produces a
decompressed text result file.

Figure 6. General Architecture of the System

5. RESULTS AND DISCUSSIONS

4.1. System implementation

At this stage the system is built using the C#
programming language and using the Sharp Develop
5.1 application, in the process of building this system
will be divided into three forms in the C# language
including the Main Page, Encryption-Compression
Page, and Decompression-Decryption Page.

4.1.1. Testing Encryption – compression

The initial stage in carrying out the compression
encryption process is to press the encryption-
compression menu.

After that, follow these steps:

1. Press the "browse" button to open the File
Dialog, and select the text file (*.txt) as the
file you want to encrypt and compress

2. The user must enter the key for encryption in
the key textbox.

3. If you have entered the key, the user can press
the encryption button to carry out the
encryption process and the result in the form
of ciphertext will be seen on the right side,
namely the ciphertext textbox.

4. On the compression side, you can see
ciphertext characters that are ready to carry
out the compression process

5. The user can press the compression button to
perform the compression process. If the
compression has been completed,
information will appear in the form of the
ratio of compression, compression ratio,
space-saving, bitrate, and running time which
can be seen in Figure 7.

Figure 7. Compression Encryption Text File View

Journal of Theoretical and Applied Information Technology

30th November 2023. Vol.101. No 22
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7085

4.2. Test Results

Table 2. AES test results with Homogeneous Strings

Number of
Characters

Character Type Key Amount of
Ciphertext

Encryption Time (ms)Decryption Time (ms)

100 1 fasilkom 335 0,4592 0,4326

200 1 fasilkom 623 0,5279 0,5047

300 1 fasilkom 911 0,6259 0,6025

400 1 fasilkom 1247 0,7661 0,6422

500 1 fasilkom 1535 0,9043 0,7397

1000 1 fasilkom 3023 2,0456 1,0907

Table 3. Levenstein Code test results with Homogeneous Strings

Amount of
Ciphertext

Compression
result (Number of

Characters)

Ratio
Of

Compression
(%)

CR

SS
(%)

Bitrate

Compression
Time (ms)

Decompression
Time (ms)

335 202 60,3 1,66 39,7 4,82 0,5768 1,9756

623 384 61,64 1,62 38,36 4,93 1,4389 3,7521

911 565 62,02 1,61 37,98 4,96 1,4395 6,4339

1247 774 62,07 1,61 37,93 4,97 1,6926 11,5864

1535 948 61,76 1,62 38,24 4,94 2,0529 14,0352

3023 1877 62,09 1,61 37,91 4,97 4,0384 29,4348

4.2.1. Testing systems with Homogeneous

Strings
For the results of homogeneous string testing

performed by the AES 256 and Levenstein Code
algorithms in Table 2, and Table 3 above, it can be
seen that the comparison between the amount of text
generated by the AES 256 cryptographic process has
increased the number of ciphertext characters. The
characters tested were 100 characters originally to
335, 200 to 623, 300 to 911, 400 to 1247, 500 to
1535, and 1000 to 3023 characters. Thus, there is an
increase in the number of characters, so compression

techniques are needed to reduce the bit size and
number of characters.

Figure 8. Ciphertext Comparison Chart with

Homogeneous Compression

Table 4. AES test results with Heterogeneous Strings

Number of
Characters

Character Type Key Amount of
Ciphertext

Encryption Time (ms) Decryption Time (ms)

100 36 fasilkom 335 0,5291 0,4513

200 36 fasilkom 623 0,3642 0,5237

300 36 fasilkom 911 0,6514 0,5755

400 36 fasilkom 1247 0,7835 0,6495

500 36 fasilkom 1535 0,8839 1,4267

1000 36 fasilkom 3023 2,1483 1,7975

Journal of Theoretical and Applied Information Technology

30th November 2023. Vol.101. No 22
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7086

Table 5. Levenstein Code test results with Heterogeneous Strings

Amount of
Ciphertext

Compression
result (Number of

Characters)

Ratio
Of

Compression
(%)

CR

SS
(%)

Bitrate

Compression
Time (ms)

Decompression
Time (ms)

335 197 58,81 1,7 41,19 4,7 0,5778 2,1545

623 376 60,35 1,66 39,65 4,83 0,9409 3,8894

911 563 61,8 1,62 38,2 4,94 1,6403 6,8557

1247 768 61,59 1,62 38,41 4,93 1,3883 13,3486

1535 953 62,08 1,61 37,92 4,97 2,0523 14,8454

3023 1881 62,22 1,61 37,78 4,98 4,2732 26,8320

4.2.2. Testing system with Heterogeneous
Strings

For the results of heterogeneous string testing
performed by the AES 256 and Levenstein Code
algorithms in Table 4, and Table 5 above, it can be
seen that the comparison between the amount of text
generated by the AES 256 cryptographic process has
increased the number of ciphertext characters. The
characters tested were from the original 100
characters to 335, 200 to 623, 300 to 911, 400 to
1247, 500 to 1535, and 1000 to 3023 characters.
Because of the increase in characters, compression
techniques are used to reduce the bit size and number
of characters.

Figure 9. Ciphertext Comparison Chart with
Heterogeneous Compression

4.2.3. Independent testing with t-test sample

Based on tests that have been carried out with
homogeneous strings and heterogeneous strings, it
was found that there was a difference in values
between the two. Therefore, to corroborate the

results of the test, it is necessary to do a t-test. In this
study, the t-test used was the Independent t-test.
Independent sample t-test is a test used to determine
the difference in mean or mean values between two
free groups or two groups that do not belong to the
same subject. The requirements for conducting this
test are from different groups, the data type is
numeric, and for the data scale, namely intervals and
ratios, the data is normally distributed.

In this case, testing will be carried out with
different groups between homogeneous strings and
heterogeneous strings that will be analyzed with
SPSS.

The results of the tests that have been carried out
with the t-test can be described in the table below :

Table 6. Independent t-test results

α = 0,05 Results

Mean
Homogen = 4570.80
Heterogen = 4567.57

t count 0.004

df 58

Sig (2-tailed) 0,997

Mean difference 3.133

From the table above, we can see for the
interpretation of the test results from the independent
t-test. The average value of testing with
homogeneous strings is 4570.80, while for testing
with heterogeneous strings, it is 4567.67. So in
conclusion, there is a difference in the average test
results. To prove whether the difference is

Journal of Theoretical and Applied Information Technology

30th November 2023. Vol.101. No 22
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7087

significant (real) or not, it can be interpreted by way
of decision-making.

One of the decisions made in the independent t-
test is by looking at the Sig. (2-tailed) value of the
SPSS output as in Figure 4.24 obtained 0.997. If Sig.
(2-tailed) > p value then H0 is accepted and Ha is
rejected, and if Sig. (2-tailed) < p value then H0 is
rejected and Ha is accepted.

So in this case it is found that the value is 0.997
> 0.05 so H0 is accepted and Ha is rejected. This
means There is no significant difference between the
average test value of homogeneous strings and
heterogeneous strings.

5. CONCLUSION

Based on the results of the literature study,
implementation, and testing carried out, the
following conclusions are obtained:
The AES 256 algorithm and the Levenstein Code
algorithm in securing & and compressing text files,
it was found that the implementation was carried out
by testing the system which was then successfully
implemented and encoded into scrambled messages
until successfully decrypted into the original
message and also compressed and decompressed the
text file.
Tests on homogeneous and heterogeneous
characters based on the Ratio of Compression
parameter showed that homogeneous characters had
a smaller percentage value of 62.09% than
heterogeneous characters, namely 62.22%.
The Compression Ratio test shows that the
Levenstein Code algorithm with homogeneous
characters has the same ratio as heterogeneous
characters, namely 1.61.
Testing space saving with the Levenstein Code
algorithm with homogeneous and heterogeneous
characters, the results show that the percentage of
homogeneous characters is 37.91% greater than
heterogeneous characters 37.78% because the
characters tested have similar data and take up less
memory space.
Tests on homogeneous and heterogeneous
characters based on Bitrate, homogeneous characters
with heterogeneous characters have the same value,
namely 4.97

REFERENCES:

[1] B. Langenberg, H. Pham, and R.
Steinwandt, “Reducing the Cost of
Implementing the Advanced Encryption
Standard as a Quantum Circuit,” IEEE
Trans. Quantum Eng., vol. 1, pp. 1–12,

2021, doi: 10.1109/tqe.2020.2965697.
[2] Priyanka Sharma, “A New Image

Encryption using Modified AES Algorithm
and its Comparision with AES,” Int. J. Eng.
Res., vol. V9, no. 08, pp. 194–197, 2020,
doi: 10.17577/ijertv9is080083.

[3] D. Ariyus, Pengantar Ilmu Kriptografi :
Teori Analisis dan Implementasi.
Yogyakarta: CV Andi Offset, 2008.

[4] D. Putra, “Pengolahan Citra.” Andi,
Yogyakarta, 2010.

[5] A. Prameshwari and P. N. Sastra,
“Implementasi Algoritma Advanced
Encryption Standard (AES) 128 Untuk
Enkripsi dan Dekripsi File Dokumen,” J.
Eksplora Inform., vol. 8, 2018.

[6] D. Salomon, “Data Compression: The
Complete Reference.” IEEE Signal
Processing Magazine, Northridge, 2007.

