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ABSTRACT 

This research introduces an innovative technique designed to effectively minimize errors in machine lear-
ing, with the intention of subsequently applying it to enhance cloud-computing security. Our approach 
merges gradient-based optimization with the dichotomy method, streamlining the learning process. Its pri-
mary objective is the swift identification of the minimum point of a differentiable and convex cost function. 
To evaluate its efficacy in comparison to the traditional Gradient Descent approach, we apply it to linear 
regression models and conduct a comprehensive analysis across various dataset sizes and precision settings. 
Our experiments reveal significant advantages, including reduced execution time and fewer iterations re-
quired for convergence. This research contributes to the advancement of optimization techniques in ma-
chine learning and deep learning, promising potential benefits for practitioners, especially in the context of 
cloud computing security. 

Keywords: Deep Learning, Dichotomous Search, Gradient Descent, Linear regression, Machine Learning, 
Optimization 

 
1. INTRODUCTION 

In recent years, the fields of machine learning (ML) 
and deep learning (DL) have witnessed remarkable 
growth, propelled by advancements in ML 
algorithms and the availability of extensive datasets 
[9]. ML and DL offer a multitude of advantages in 
data analysis tasks such as feature extraction, 
clustering, classification, regression, prediction, and 
more [14]. However, a central challenge within 
these fields revolves around optimizing cost 
functions, pivotal metrics utilized to quantify the 
deviation between a model’s predictions and the 
actual values it aims to estimate. Among these 
metrics, the mean squared error (MSE) stands out 
as one of the most frequently used indicators for 
assessing the performance of regression models, 
encompassing linear regression, neural networks 

for regression, and polynomial regression [22]. The 
primary goal during the training of a regression 
model is to minimize the MSE. This optimization 
process frequently relies on algorithms such as 
gradient descent, stochastic gradient descent, mini-
batch gradient descent, batch gradient descent, and 
others [6], each possessing its own advantages and 
suitability for specific machine learning tasks. 
Nevertheless, these optimization algorithms come 
with their limitations, including sensitivity to 
learning rate selection, sluggish convergence on 
complex cost surfaces, and computational 
inefficiencies when dealing with extensive datasets 
[19]. This paper presents a solution to overcome 
these constraints by improving solution accuracy 
and accelerating the learning process. We introduce 
an innovative method called ’Dichotomous 
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Gradient Descent’ (DGD), designed to efficiently 
pinpoint minima in convex and differentiable cost 
functions. DGD offers notable advantages, 
including rapid convergence, robustness, 
computational efficiency, adaptability to high-
dimensional spaces, and precision. Moreover, it 
simplifies practical implementation by eliminating 
the requirement for a learning rate. Nevertheless, 
we will also explore critical limitations, 
encompassing susceptibility to local minima, 
interval constraints, limited parallelism, and 
sensitivity to cost function shapes. These 
limitations necessitate careful consideration in 
specific applications. The following sections of this 
article are organized as follows: Section 2 provides 
an in-depth review of related works, offering a 
comprehensive exploration of gradient descent and 
the dichotomous method. In Section 3, we 
introduce our proposed methodology, known as 
Dichotomous Gradient Descent, and discuss its 
implementation in linear regression. Section 4 
presents the Numerical Results and Discussion. 

2. RELATED WORKS 

2.1 Gradient Descent And Its Derivatives 

Gradient descent stands as a ubiquitous 
optimization algorithm within the domains of 
machine learning and deep learning, primarily 
employed for the minimization of objective 
functions during the iterative learning process. Its 
operational principle involves the descent along the 
negative gradient direction to ascertain the local 
minima of differentiable and convex cost functions. 
This methodological framework finds pervasive 
utilization in machine learning and deep learning 
paradigms, including applications like linear 
regression [5]. 

As delineated in Figure 1, the algorithm advances 
iteratively by the computation of the subsequent 
step based on the gradient at the current spatial 
coordinate. Subsequently, this step undergoes 
adjustment through a learning rate, and the resultant 
value is subtracted from the present position 
according to the prescribed formula: 

𝐴௧ାଵ = 𝐴௧ − 𝛼𝛻𝑓(𝐴௧) (1) 

with: 
𝐴௧ାଵ = Next position 
𝐴௧ = Current position 
𝛼 = Learning rate (Step Size) 
𝛻𝑓(𝐴௧) = Gradient at current position 
 

 

Figure 1: Gradient descent algorithm 

There exist three distinct variants of the gradient 
descent algorithm, primarily differentiated by their 
data utilization strategy for determining the 
subsequent step. Batch gradient descent (BGD) 
methodically leverages the entire dataset in each 
epoch to compute the next step, while stochastic 
gradient descent (SGD) draws upon a singular 
example from the dataset per epoch. Mini-batch 
gradient descent, on the other hand, employs a 
fixed batch size of data examples from the dataset 
to compute the ensuing step during each 
epoch[11][6]. 

The gradient descent methodology presents several 
intricate challenges demanding meticulous 
consideration. Firstly, the selection of an 
appropriate learning rate poses a non-trivial task. 
An excessively small learning rate engenders 
sluggish convergence, whereas an overly large one 
impedes convergence and introduces erratic 
behavior into the loss function, potentially leading 
to divergence [11]. Secondly, conventional 
strategies such as learning rate schedules endeavor 
to dynamically adjust the learning rate during 
training. However, these adaptations frequently rely 
on predefined schedules or thresholds rooted in the 
variations of the objective function between epochs, 
lacking adaptability to the idiosyncratic 
characteristics of a given dataset [1]. Lastly, the 
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uniform application of a singular learning rate to all 
parameter updates may not be well-suited for 
datasets characterized by sparsity, featuring 
features with varying frequencies. In such 
circumstances, it may prove more advantageous to 
enact substantial updates for rarely occurring 
features, while adopting a more cautious approach 
for frequently encountered ones [15]. In the ensuing 
sections, we shall delineate several algorithms 
widely embraced within the Deep Learning 
community to confront the aforementioned 
challenges. 

2.1.1 Momentum  

Momentum gradient descent is a variant of the 
gradient descent optimization algorithm used in 
machine learning and deep learning. It incorporates 
a momentum term to help accelerate convergence, 
particularly when dealing with complex and high-
dimensional optimization problems. As delineated 
in Fig. 2, the update to the model’s parameters at 
each iteration is influenced not only by the current 
gradient of the loss function but also by a moving 
average of past gradients. This moving average, 
often referred to as "momentum," helps to smooth 
out variations in the gradient and allows the 
optimization process to continue in the same 
direction even when the gradient changes direction 
frequently[17][3]. 

The formula for updating the parameters in 
momentum gradient descent typically looks like 
this: 

V୲ାଵ =  γV୲ −  α∇f(A୲) 
𝐴௧ାଵ = 𝐴௧ − V୲ାଵ 

(2) 

With: 
𝑉௧ = is the velocity or momentum at time step t. 
𝐴௧ = Current position 
𝛾 = is the momentum coefficient, often set between 
0 and 1 [17]. 
 

 

Figure 2: Momentum Algorithm 

2.1.2 Nesterov accelerated gradient  

Nesterov Accelerated Gradient (NAG), commonly 
referred to as Nesterov Momentum, stands as a 
specialized variant of the Momentum optimization 
algorithm with widespread adoption in the domains 
of deep learning and optimization. Diverging from 
the conventional Momentum methodology, as 
elucidated in Fig. 3, Nesterov Momentum initiates 
its process by computing an initial step that 
advances in the direction of the prevailing 
momentum vector. Subsequently, it refines this step 
by incorporating the gradient information at the 
updated position. This distinctive ’look-ahead’ 
capability endows Nesterov Momentum with the 
capacity to proactively anticipate forthcoming 
updates, thereby resulting in expedited 
convergence, particularly in cases characterized by 
cost functions that feature elongated and narrow 
valleys. Nesterov Momentum adeptly strikes a 
harmonious balance, harnessing the advantages of 
momentum to accelerate convergence while 
maintaining precision during proximity to the 
minimum [21]. The computation of NAG can be 
succinctly represented through the following update 
rules: 

𝑉௧ =  𝛾𝑉௧ିଵ +  𝛼∇𝑓(𝐴௡ −  𝛾𝑉௧ିଵ ) 

𝐴௡ାଵ =  𝐴௡–  𝑉(𝑡) 

(3) 

Here are the key components: 
𝑉௧ = is the velocity or momentum at time step t. 
𝐴௡ = Current position 
𝐴௡ାଵ = Next position 
𝛾 = is the momentum coefficient, often set between 
0 and 1 [17]. 
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Figure 3: Nesterov Accelerated Gradient Algorithm 

2.1.3 Adagrad  

Adagrad, an acronym denoting Adaptive Gradient 
Algorithm, is a fundamental optimization technique 
extensively employed in the realms of machine 
learning and deep learning. Its prominent feature 
lies in its adaptability to dynamically tailor learning 
rates for individual model parameters during the 
training process. This adaptability bestows upon 
Adagrad a particular utility in scenarios 
characterized by sparse data or problems where 
certain features exert a significantly more 
pronounced influence than others. The algorithm 
achieves this by modulating the learning rate for 
each parameter based on the historical gradients 
encountered, thereby effectuating smaller updates 
for frequently changing parameters and more 
substantial updates for those exhibiting less 
frequent alterations [11][20][19]. The AdaGrad 
update rules can be succinctly articulated as 
follows: 

𝐴௧ାଵ = 𝐴௧ −
ఈ

ටఢାఀ೔సభ
೟ ఇ௙(஺೔)

𝛻𝑓(𝐴௧)         (4) 

with: 
𝐴௧ାଵ = Next position 
𝐴௧ = Current position 
𝛼 = Initial learning rate (Step Size) 
𝛻𝑓(𝐴௧) = Gradient at current position 
𝜖 = is typically set to a small positive value 
(e.g.,1𝑒 − 8) to prevent division by zero in case the 

denominator, 𝛴௜ୀଵ
௧ 𝛻𝑓(𝐴௜), equals zero. 

However, one notable drawback of AdaGrad is its 
accumulation of squared gradients in the 
denominator. Since these accumulated terms are 
always positive, the learning rate can become 
excessively small, potentially causing a slowdown 

and, in some cases, hindering convergence to the 
minimum [11][10]. 

2.1.4 Adadelta  

Adadelta, an extension derived from the Adagrad 
optimization paradigm, introduces a more robust 
optimization strategy by effectively addressing the 
issue of monotonically decreasing learning rates 
inherent in Adagrad. In stark contrast to Adagrad, 
which accumulates all historical squared gradients, 
Adadelta employs a limited-size window 
mechanism to maintain a decaying average of prior 
gradients. This adaptive algorithm eliminates the 
necessity of specifying an initial learning rate, as it 
dynamically adapts the learning rate in response to 
the historical gradients and updates. The inherent 
stability and adaptability of Adadelta render it a 
particularly valuable choice for the training of 
neural networks, especially in scenarios marked by 
fluctuating gradient magnitudes. As a result, it 
significantly enhances the convergence and overall 
optimization performance [19]. 

2.1.5 RMSprop  

Root Mean Square Propagation (RMSprop) 
constitutes an evolutionary step beyond AdaGrad, 
meticulously designed to counteract the issue of 
diminishing learning rates. Notably, both RMSprop 
and Adadelta emerged as independent solutions, 
nearly concurrently, to address the challenge of 
Adagrad’s rapidly declining learning rates. In 
contrast to Adagrad, which accumulates gradient 
sums for each dimension, RMSprop computes the 
learning rate through a process involving a 
decaying average of gradients, significantly 
enhancing its computational efficiency. By 
harnessing this decaying average of gradients, 
RMSprop effectively attenuates the influence of 
extreme historical values, thereby fostering 
expeditious convergence, particularly in scenarios 
characterized by convex structures. Consequently, 
RMSprop has earned widespread acclaim as an 
exceedingly efficient and widely adopted 
optimization technique, particularly within the 
domain of deep neural networks, cementing its 
status as a gold standard among practitioners in the 
field of deep learning [10][12]. 
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2.1.6 Adam  

Adam, an abbreviation for Adaptive Moment 
Estimation, represents a widely adopted 
optimization algorithm within the domain of deep 
learning and machine learning research. It 
harmoniously amalgamates the virtues of both 
momentum-based optimization and RMSprop. 
Adam meticulously maintains two distinct moving 
averages: the first-order moment, encapsulating the 
mean of historical gradients, and the second-order 
moment, encapsulating the uncentered variance of 
historical gradients. These moving averages hold 
the pivotal role of tailoring the learning rate for 
each parameter individually, thereby facilitating 
swift convergence, even when faced with the 
challenges posed by gradients characterized as 
sparse or noisy. The distinctive attributes of Adam, 
including its adaptive learning rate and momentum 
components, imbue it with exceptional efficiency, 
rendering it highly applicable across a wide 
spectrum of optimization tasks. Consequently, it 
has emerged as the preferred choice for training 
deep neural networks and other machine learning 
models. Its remarkable versatility and robust 
empirical performance have solidified its position 
as a preeminent optimization algorithm, garnering 
widespread adoption and endorsement among both 
researchers and practitioners in the field [16]. 

2.1.7 AdaMax  

AdaMax, an optimization algorithm derived from 
the Adam algorithm, has been engineered to 
strategically address select limitations inherent to 
its predecessor. In contrast to Adam, which relies 
on the management of two moving averages 
(specifically, the first and second moments), 
AdaMax simplifies this process by exclusively 
considering the first moment (representing the 
mean of gradients) while introducing the concept of 
the infinity norm (characterizing the maximum 
absolute value) for the second moment. This 
strategic adaptation imparts enhanced robustness, 
particularly in the presence of gradients marked by 
noise or sparsity. AdaMax’s design notably excels 
in scenarios typified by significant variability in 
gradient updates. By employing this approach, 
AdaMax deftly maintains adaptive learning rates 

tailored to each parameter, thereby fostering 
efficient convergence, especially in the intricate 
landscape of non-convex optimization problems 
frequently encountered within the domain of deep 
learning. The algorithm’s inherent simplicity, 
coupled with its compelling empirical performance, 
establishes AdaMax as a promising and viable 
alternative to Adam. It thus furnishes researchers 
and practitioners with a valuable tool for the 
training of neural networks and the optimization of 
various machine learning models [16]. 

2.1.8 Nadam  

Nadam, an acronym signifying Nesterov-
accelerated Adaptive Moment Estimation, 
represents an advanced optimization algorithm that 
harmoniously amalgamates the robust features of 
Nesterov’s accelerated gradient descent with the 
adaptive learning rate mechanisms inherent to 
Adam. Notably, it introduces Nesterov momentum, 
thereby expediting convergence by computing 
gradients with an enhanced estimate of future 
positions. Nadam maintains the practice of 
retaining moving averages of historical gradients 
and their uncentered variance, a hallmark feature 
akin to Adam. However, it innovatively 
incorporates the Nesterov update scheme for 
gradient calculation. This fusion of methodologies 
engenders a highly efficient optimization algorithm, 
exquisitely tailored for navigating the intricate 
terrains typified by deep neural networks and 
complex optimization landscapes. Empirically, 
Nadam consistently exhibits competitive 
performance metrics in terms of training speed and 
convergence accuracy, firmly establishing itself as 
a prominent choice among researchers and 
practitioners operating within the realms of 
machine learning and deep learning [13]. 

2.2 The Dichotomy Method (Bisection 
Method)  

The dichotomy method, also recognized as the 
bisection method, stands as a straightforward yet 
formidable technique utilized for the minimization 
of convex functions. Its efficacy is particularly 
pronounced when employed on functions that 
exhibit a confirmed convexity property over a 
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closed interval. As visually represented in Fig. 4, 
this method initiates with an initial interval 
encompassing the sought-after minimum value and 
subsequently subdivides the interval systematically 
while assessing the function’s value at the 
midpoint. It sequentially discerns which segment of 
the interval contains the minimum and 
progressively refines the search domain until a 
predefined tolerance level is satisfied [8]. This 
iterative procedure ensures a convergence trajectory 
towards the global minimum for convex functions 
by perpetually narrowing the search space, thus 
methodically homing in on the optimal solution. 
The dichotomy method, characterized by its 
computational efficiency, finds broad utility in the 
domain of optimization, particularly in 
circumstances where function evaluations entail 
high computational cost or exhibit noise. Its 
convergence is linear, and it operates autonomously 
of gradient information. Nevertheless, its foremost 
constraint lies in its applicability, which is 
principally confined to one-dimensional 
optimization tasks. Consequently, its suitability 
diminishes when confronted with intricate, high-
dimensional, or non-convex optimization problems 
that frequently emerge in contemporary research 
undertakings [2]. 

 

Figure 4: Bisection Method 

3. THE PROPOSED APPROACH 

3.1 Methodology Overview  

Optimizing convex and differentiable functions 
plays a pivotal role in various machine learning and 
deep learning applications. In this context, we 
introduce DGD, an innovative approach that blends 
Gradient-Based and Dichotomy methods to 
efficiently minimize such functions. Our method 

involves crucial steps, including level set 
determination, gradient computation, intersection 
point identification, and iterative updates. DGD 
offers a robust and efficient means of optimizing 
convex and differentiable functions, delivering 
precise solutions while minimizing iteration 
requirements. Moreover, our algorithm seamlessly 
integrates with a range of machine learning and 
deep learning models, with a primary focus on 
reducing learning errors for convex and 
differentiable functions. For a visual representation 
of our approach, refer to the flowchart in Fig. 5, 
which illustrates the iterative steps in the process. 

 
Figure 5: Dichotomous Gradient Descent Algorithm 

Our approach begins with an initial iterated point 

𝐴(ଵ) ∈ 𝐸 where 𝐸 defines a differentiable and 
convex function 𝑓, and a precision tolerance 𝜖 > 0. 
Our method establishes a sequence of iterates, 

𝐴(ଶ), 𝐴(ଷ), 𝐴(ସ), . . . ∈ 𝐸, with the condition that 

𝑓൫𝐴(௜ାଵ)൯ < 𝑓൫𝐴(௜)൯, ensuring that the precision 

criterion of 𝑓൫𝐴(௜)൯ − 𝑓൫𝐴(௜ାଵ)൯ < 𝜖 is met. The 
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transition from it passes from 𝐴(௜) to 𝐴(௜ାଵ) 
involves the following steps: 

1. Selecting an initial point at random and 

denoting it as 𝐴(௜), where 𝑖 = 0 (see Fig. 6). 

  

  

Figure 6: Random Starting Point A 

2. Identifying the level set LS passing through 

the random point 𝐴(௜) (see Fig. 7). 

  

Figure 7 : Level Set LS Passing Through A 

 

3. Computing the gradient vector 𝐺 ←

𝛻𝑓൫𝐴(௜)൯(see Fig. 8). 

  

Figure 8: Gradient Vector G At Point A 

4. Determining the equation of the line D 

passing through 𝐴(௜) in the direction of vector 
G (see Fig. 9). 

  

Figure 9: Line D Passing Through A In The Direction Of 

Vector G 

5. Calculating the coordinates 𝐵(௜), which 
represent points of intersection between line 
D and the level set LS (see Fig. 10). 
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  

Figure 10: Point B: Intersection Points Between Line D 

And The Level Set LS 

6. Finding the midpoint coordinates 𝑃𝑀(௜) of 

the segment ൣ𝐴(௜), 𝐵(௜)൧, 

𝑃𝑀(௜) ←
஺(೔)ା஻(೔)

ଶ
  (see Fig. 11). 

  
Figure 11: Midpoint Pm (𝑥ெ , 𝑦ெ ) 

7. Updating the iterate: 𝐴(௜ାଵ) ← 𝑃𝑀(௜) and 
repeat step 2 until the desired level of 
precision for the minimum is achieved (see 
Fig. 12). 

  

Figure 12: Convergence Of Dichotomous Gradient 

Descent Algorithm 

To demonstrate the effectiveness of our approach, 
we have tested the algorithm on a basic linear 
regression model. 

3.2 Application To Linear Regression Model  

Linear regression, a classical statistical method, 
coexists synergistically within the domains of ML 
and DL. While ML extends the capabilities of 
linear regression for more sophisticated predictive 
modeling tasks, DL, employing deep neural 
networks, offers unparalleled complexity for tasks 
like image recognition and natural language 
processing. Nonetheless, linear regression retains 
its pivotal role as a foundational model for 
interpretability in ML and DL projects, 
underscoring its enduring relevance in the context 
of data-driven research and practical applications 
[18]. 

At its core, linear regression seeks to elucidate the 
optimal linear equation that encapsulates the 
relationship between a dependent variable (the 
outcome variable) and independent variables 
(predictors). Mathematically, this relationship is 
articulated as: 𝑌 = 𝛽଴ + 𝛽ଵ𝑋ଵ + 𝛽ଶ𝑋ଶ + ⋯ +

𝛽௡𝑋௡ + 𝜀 where 𝑌 is the dependent variable, 𝛽଴ 
denotes the intercept, 𝛽ଵ, 𝛽ଶ, . . . , 𝛽௡ signify the 
coefficients, 𝑋ଵ, 𝑋ଶ, . . . , 𝑋௡ denote the independent 
variables, and 𝜀 symbolizes the error term. Linear 
regression encompasses various forms, including 
simple, multiple, polynomial, and regularized 
regressions, each tailored to address distinct 
research needs [7]. The analytical journey involves 
fundamental steps such as data acquisition, model 
specification, training, evaluation, inference, and 
real-world application across diverse fields, ranging 
from economics to medicine. It mandates vigilant 
consideration of key challenges including 
overfitting, model interpretability, adherence to 
underlying assumptions, and the robust handling of 
outliers [4]. 

In essence, the linear regression model stands as the 
foundational representation of the intricate 
relationship between the dependent variable Y and 
the independent variables X through a linear 
function. 
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𝑓(𝑥) = 𝑎𝑥 + 𝑏  (5) 

3.2.1 Dataset  

The algorithm is tested on a simple linear 
regression model from a randomly generated 
dataset with a single variable 𝑥. 

We will therefore have a dataset with 𝑚 examples 
and 𝑛 = 1 features (Fig. 13) 

 

Figure 13: Random Dataset 

3.2.2 Mean squared error function  

In the multitude of potential lines, our objective is 
to pinpoint the line that achieves the minimal 
average of squared errors. In our approach, we will 
endeavor to find the minimum of the MSE cost 
function 𝐽(𝑎, 𝑏): 

𝐽(𝑎, 𝑏) =
ଵ

ଶ௠
𝛴௜ୀଵ

௠ ൫𝑎𝑥(௜) + b – y(୧)൯
ଶ
 (6) 

The J cost function, illustrated in Fig. 14, serves as 
a measure of this average error. Referred to as the 
Mean Squared Error, this function depends solely 
on two parameters: ’a’ and ’b’. Importantly, The 
MSE is a convex and differentiable function, a 
critical attribute ensuring the convergence of our 
method to the minimum. 

 

Figure 14: Linear Regression Line 

We will employ the coordinates (𝑥, 𝑦, 𝑧) in place of 
(𝑎, 𝑏, 𝑐), resulting in the transformation of the 
function 𝐽 to: 

𝐽(𝑎, 𝑏) =
ଵ

ଶ௠
𝛴௜ୀଵ

௠ ൫𝑥𝐴(௜) + y – 𝐵(୧)൯
ଶ
 (7) 

where ൫𝐴(௜), 𝐵(௜)൯ is our dataset, 𝐴(௜) are the 

features and 𝐵(௜) are the targets. 

3.2.3 Utilizing Our Approach DGD to 
Minimize the MSE Function  

1. Selecting an initial point at random, denoted 
as 𝐴(𝑥஺ , 𝑦஺, 𝑧஺), from within the domain of 
the function’s definition, where: 

𝑍஺ = 𝐽(𝑥஺, 𝑦஺)  (8) 

2. Identifying the level set LS passing through 
the random point 𝐴, defined by: 

𝐽(𝑥, 𝑦) = 𝑍஺ 
1

2𝑚
𝛴௜ୀଵ

௠ ൫𝑥𝐴(௜) + y – 𝐵(୧)൯
ଶ

= 𝑍஺ 

 

(9) 

3. Computing the gradient vector 𝐺 ← 𝛻𝑓(𝐴): 
To compute the gradient G of the function 
J(x, y), we needed to establish the partial 
derivatives of J with respect to each 
parameter, x and y, denoted as 𝛻𝐽 =

ቀ
డ௃(௫,௬)

డ௫
,

డ௃(௫,௬)

డ௬
ቁ where: 
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𝜕𝐽(𝑥, 𝑦)

𝜕𝑥
=

1

𝑚
𝛴௜ୀଵ

௠ ൫𝑥𝐴(௜) + 𝑦 − 𝐵(௜)൯𝐴(௜)

𝜕𝐽(𝑥, 𝑦)

𝜕𝑦
 =

1

𝑚
𝛴௜ୀଵ

௠ ൫𝑥𝐴(௜) + 𝑦 − 𝐵(௜)൯

 
(10) 

4. Determining the equation of the line 𝐷 
passing through 𝐴 in the direction of vector 
𝐺: Consider 𝐴(𝑥஺, 𝑦஺) as a point on the 
straight line 𝐷, and let 𝐺(𝛼, 𝛽) a directional 
vector of D. A point 𝑀(𝑥, 𝑦) belongs to line 
D if and only if the vectors 𝐴𝑀(𝑥 − 𝑥஺, 𝑦 −

𝑦஺) and 𝐺(𝛼, 𝛽) are collinear. This condition 
is expressed as: 

𝛽(𝑥 − 𝑥஺) − 𝛼(𝑦 − 𝑦஺) = 0

𝑦 =
𝛽

𝛼
𝑥 + ൬𝑦஺ −

𝛽

𝛼
𝑥஺൰

 

 

(11) 

 This equation can be reconfigured into the 

form 𝑦 = 𝑎𝑥 + 𝑏 with: 𝑎 =
ఉ

ఈ
  and 

𝑏 = ቀ𝑦஺ −
ఉ

ఈ
𝑥஺ቁ. 

5. Calculating the coordinates 𝐵, which 
represent points of intersection between line 
𝐷 and the level set LS: To determine the 
coordinates of the second intersection point 
𝐵, we need to identify the points where the 
line 𝐷 intersects the level set LS. This 
involves solving the following system of 
equations: 

 

1

2𝑚
Σ௜ୀଵ

௠ ൫𝑥𝐴(௜) +  𝑦 −  𝐵(௜)൯
ଶ

=  𝑍஺ 

𝑦 =  𝑎஽𝑥 +  𝑏஽ 
(12) 

 where 𝑎஽ and 𝑏஽ are the line 𝐷 parameters 
By replacing 𝑦 in the level set equation by 
𝑎஽𝑥 + 𝑏஽: 

 
ଵ

ଶ௠
Σ௜ୀଵ

௠ ൫𝑥𝐴(௜) +  𝑎஽𝑥 +  𝑏஽  −  𝐵(௜)൯
ଶ

=  𝑍஺ 

1

2𝑚
𝛴௜ୀଵ

௠ ቀ𝑥൫𝐴(௜) +  𝑎஽൯ + ൫𝑏஽  −  𝐵(௜)൯ቁ
ଶ

=  𝑍஺ 
(13) 

 The equation can be reduced to the form 
𝑎𝑥ଶ + 𝑏𝑥 + 𝑐 = 0: 

 ቂ
ଵ

ଶ௠
Σ௜ୀଵ

௠ ൫𝐴(௜) +  𝑎஽൯
ଶ

ቃ 𝑥ଶ + ቂ
ଵ

௠
Σ௜ୀଵ

௠ ൫𝐴(௜) +

 𝑎஽൯൫𝑏஽  −  𝐵(௜)൯ቃ 𝑥 + ቂ
ଵ

ଶ௠
Σ௜ୀଵ

௠ ൫𝑏஽ +

𝐵(௜)൯
ଶ

− Z୅ቃ = 0   (14) 

 where 𝑥 is the variable, and:  

 𝑎 =
ଵ

ଶ௠
Σ௜ୀଵ

௠ ൫𝐴(௜) +  𝑎஽൯
ଶ
,   

 𝑏 =
ଵ

௠
𝛴௜ୀଵ

௠ ൫𝐴(௜) + 𝑎஽൯൫𝑏஽ − 𝐵(௜)൯  and 

 𝑐 =
ଵ

ଶ௠
Σ௜ୀଵ

௠ ൫𝑏஽ + 𝐵(௜)൯
ଶ

− Z୅ 

This equation is quadratic, and the number of 
solutions depends on the discriminant 𝛥 =

𝑏2 − 4𝑎𝑐: 

If 𝛥 > 0: The equation has two distinct 
solutions, representing our starting point 𝐴 
and the sought-after point 𝐵. 

If 𝛥 = 0: The equation has only one solution, 
which corresponds exactly to our starting 
point 𝐴 (the minimum). 

If 𝛥 < 0: While it was unexpected, the 
equation has no solution. In practical 
applications, the dichotomy method, a 
fundamental component of our approach, 
repeatedly divides the interval [a, b] into two 
equal segments. However, as the difference 
between ’a’ and ’b’ diminishes, there is a 
possibility that the midpoint of the interval 
may align precisely with one of the endpoints 
(a or b). Due to the finite precision of 
floating-point calculations, issues related to 
numerical stability can arise when subtracting 
values that are very close, potentially causing 
𝛥 to become negative and, in turn, potentially 
causing the optimization process to stall. 

6. Finding the midpoint coordinates 
𝑃𝑀(𝑥ெ , 𝑦ெ) of the segment [𝐴, 𝐵]: 

𝑥ெ =
𝑥஺ + 𝑥஻

2

𝑦ெ =
𝑦஺ + 𝑦஻

2

 (15) 
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7. Assign the value of 𝑃𝑀 to the new 
coordinates of point 𝐴 and repeat step 2 until 
the desired level of precision for the 
minimum is achieved. 
 

4. NUMERICAL RESULTS AND 
DISCUSSION  

4.1 Test Environment Description  

The tests and experiments detailed in this research 
article were conducted within an environment 
characterized by the specifications provided in 
Table. 1 below: 

 

Table 1: Specifications Of The Experimental 

Environments 

It should be noted that the tests can be conducted in 
environments with characteristics that are less 
robust than those specified in Table  1, particularly 
with regard to RAM and processor capabilities. 

4.2 Experiments  

In the scope of our research, we conducted an 
extensive comparative analysis between our 
proposed methodology, DGD, and the conventional 
Gradient Descent (GD) technique. Our primary aim 
was to conduct a comprehensive assessment of the 
performance of these two algorithms and elucidate 
the potential ramifications of these findings within 
the context of machine learning applications. 

We executed a quantitative performance evaluation 
contrasting our DGD algorithm with the GD 

algorithm when applied to the linear regression 
model, as outlined in Section 3.2. This comparative 
analysis was carried out through two distinct 
experiments. 

4.2.1 Experiment 1  

In this experiment, we monitored the cost evolution 
using a random dataset of size 10ଷ examples for 
both algorithms, DGD and GD, with a learning rate 
of 0.1 for GD. We tracked the cost’s progression 
throughout the entire execution, recording it until it 
reached a specific precision of 𝜖 = 10ିଵ . The 
numerical results will be compared using two 
criteria: the number of iterations and CPU time. 
The results of experiment 1 are summarized in the 
table  2 below: 

Table 2: Cost Evolution up to Iteration Number and CPU 
Time for Precision 𝜖 = 10ିଵ଺ 

Algorithm Iterations CPU Time Final cost 
GD 1129 81.0 ms 0.4874839408897289 

DGD 10 1.6 ms 0.4874839408897289 

Fig. 15 and Fig. 16 respectively display a contour 
plot and a 3D plot for both algorithms, GD and 
DGD, providing a visual representation of how the 
theta parameter values evolve over iterations during 
the optimization of the MSE cost function towards 
its minimum. 

 

Figure 15: Contour Plot Comparing MSE Convergence 
Of GD And DGD Algorithms 

Operating System 
Linux Mint 21 Cinnamon Version 

5.4.8 

Linux Kernel 5.15.0-41-generic 

Processor 
Intel© Xeon© CPU E5-1650 v2 

@ 3.50GHz × 6 

Memory 62.7 GiB 

IDE 
Spyder Python IDE for scientific 

Version 5.4.3 (conda) 

Programming 
language 

Python 3.11.3 64-bit 
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Figure 16: 3D Plot Comparing MSE Convergence Of GD 
And DGD Algorithms 

Fig. 17, depicts the comparison of cost evolution 
between the DGD and GD algorithms for the first 
10 iterations. 

 

Figure 17: Cost Evolution Comparison Between DGD 
And GD 

Our observation reveals a significant difference 
between DGD and GD in terms of the number of 
iterations required to converge. DGD exhibited 
much faster convergence with only 10 iterations, 
while GD required 1129. This finding suggests that 
DGD may be a preferred choice when rapid 
convergence is a critical criterion. 

The CPU time data confirms the advantage of 
DGD. DGD managed to achieve convergence in 
just 1.6 milliseconds, while GD took 81 
milliseconds. This significant reduction in 
computation time is crucial in real-time 
applications or when dealing with large datasets. 

Despite differences in the number of iterations and 
CPU time, both algorithms reached an identical 
final cost of 0.4874839408897289. This indicates 
that both methods converge to solutions of 
comparable quality in terms of cost. 

In the field of machine learning, the results of our 
experimentation have significant implications. By 
opting for the DGD approach, practitioners can 
benefit from faster convergence and substantial 
reduction in computation time without 
compromising the quality of the final solution. This 
decision can be crucial in real-time applications or 
when processing massive datasets. 

4.2.2 Experiment 2  

Experiment 2 records the number of iterations and 
execution times for random datasets of varying 
sizes (number of examples), while maintaining a 
fixed precision level of 𝜖 = 10ିଵ଺ (see Table. 3). In 
this study, we evaluate the performance of both GD 
and DGD algorithms in relation to dataset size, all 
while consistently maintaining 𝜖 = 10ିଵ଺ 
precision. We document the iteration count and 
CPU times for datasets of different sizes. 

Table 3: Comparison Of GD And DGD Performance 
Across Different Dataset Sizes 

 GD DGD 

Data set 
size 

Iterations 
CPU 
Time 
(ms) 

Iterations 
CPU 
Time 
(ms) 

10ାଵ 993 50.5 6 0.842 
10ାଶ 979 51.8 11 1.73 
10ାଷ 1129 83.5 10 2.2 
10ାସ 1103 175 8 2.29 
10ାହ 1084 541 8 8.46 
10ା଺ 1117 7180 13 215 
10ା଻ 1131 101000 15 3040 

In this table comparing GD and DGD across 
various data set sizes, it’s evident that DGD 
consistently outperforms GD in terms of 
convergence efficiency and computational time. 
For smaller data set sizes, DGD requires fewer 
iterations to converge, and as the data set size 
increases, the computational advantage of DGD 
becomes even more pronounced, with significantly 
reduced CPU time. These results highlight the 
potential benefits of adopting DGD over GD in 
machine learning tasks, particularly when dealing 
with larger datasets or scenarios where 
computational efficiency is critical. 
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Figure 18: Comparison Of GD And DGD Performance 
Across Different Dataset Sizes 

Fig. 18 provides a comparative analysis of two 
optimization algorithms: GD and our approach, 
DGD, across various dataset sizes. 

On the left side, the plot titled "Number of 
Iterations vs. Data Set Size" illustrates the number 
of iterations required for both GD and DGD to 
converge as the dataset size increases. It is evident 
that DGD consistently outperforms GD, requiring 
significantly fewer iterations to achieve 
convergence. This advantage is particularly crucial 
in deep learning tasks where model training can be 
computationally intensive. 

On the right side, the graph titled "CPU Time vs. 
Data Set Size" displays the computational time (in 
milliseconds) for GD and DGD. Once again, DGD 
demonstrates its efficiency by substantially 
reducing CPU time, even as the dataset size grows. 
This efficiency is of paramount importance in 
machine learning, where faster convergence and 
reduced computation times can expedite model 
development and deployment. 

The results presented in this graph underscore the 
practical advantages of employing DGD over GD 
in machine learning and deep learning scenarios, 
highlighting the potential for accelerated training 
and more efficient model optimization, especially 
when working with large datasets. 

4.3 Advantages And Limitations Of The 
Method  

4.3.1 Advantages of the method 

The newly proposed method combines gradient-
based optimization with the dichotomy method to 
efficiently locate the minimum of convex and 

differentiable cost functions, offering several 
potential advantages: 

Fast Convergence: The combination of gradient 
and dichotomy enables rapid convergence towards 
the global minimum of the cost function, 
particularly benefiting convex functions and 
reducing the required number of iterations. 

Robustness: This approach exhibits robustness and 
versatility, accommodating a wide range of cost 
functions, including nonlinear ones. 

Computational Efficiency: By effectively utilizing 
the gradient to guide the search, the method reduces 
the computational cost associated with evaluating 
the cost function, especially in resource-intensive 
scenarios. 

Dimension Adaptability: It adapts well to high-
dimensional problems as gradient-based 
optimization efficiently exploits the function’s 
structure, while the dichotomy method effectively 
handles searches over wide intervals. 

Numerical Stability: The combination of these two 
methods mitigates numerical stability issues, 
particularly those related to vanishing gradients, 
which can occur when relying solely on the 
gradient. 

Guaranteed Convergence: For convex functions, 
the method guarantees convergence to the global 
minimum, offering a substantial advantage. 

Broad Applicability: This method finds 
applications across various domains, including 
mathematical optimization, machine learning, 
engineering, finance, and other scientific 
disciplines. 

When compared to gradient descent and its 
derivatives, a significant advantage of this method 
lies in its inherent independence from the 
requirement for a learning rate, a feature commonly 
associated with traditional gradient descent 
approaches. This absence of a learning rate bestows 
several advantages: 
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No Need for Learning Rate Selection: 
Eliminating the requirement to select a learning rate 
significantly simplifies the method’s 
implementation. In traditional gradient descent, 
choosing an appropriate learning rate can be 
challenging, often involving trial and error. This 
new method circumvents this delicate step. 

Enhanced Stability: The challenge of learning rate 
selection is closely tied to the stability of 
convergence. Inappropriate learning rates can lead 
to divergence or slow convergence. By removing 
this parameter, the method tends to exhibit greater 
stability and robustness. 

Inherent Adaptability: By employing a 
combination of gradient and dichotomy, the method 
naturally adapts to the local characteristics of the 
cost function without the need for global learning 
rate fine-tuning. 

In summary, the absence of a learning rate 
represents a significant advantage of this method. It 
streamlines implementation, enhances stability, and 
offers a more natural adaptation to local cost 
function characteristics, making the method user-
friendly and robust for a wide range of optimization 
problems. 

4.3.2 Limitations of the Method 

While the novel method we propose combines 
gradient-based optimization with the dichotomy 
approach, offering several notable advantages for 
efficiently locating the minimum of convex and 
differentiable cost functions, it is essential to 
address certain limitations that may affect its 
applicability and performance. We delve into these 
limitations, shedding light on potential challenges 
that users and practitioners should consider when 
employing this method: 

Local Minimum Challenge: One of the primary 
concerns associated with our method is its 
susceptibility to local minima. Depending on the 
specific characteristics of the cost function, the 
method may become trapped in suboptimal 
solutions, making it vital for users to assess the 
presence of such minima in their optimization 
problems. 

Interval Constraints: The dichotomy method, 
integral to our approach, continuously divides the 
interval [a, b] into two equal segments. However, as 
the difference between a and b narrows, there arises 
the risk of reaching a point where the midpoint of 
the interval aligns precisely (within floating-point 
precision) with one of the interval’s endpoints (a or 
b). This situation can lead to a stagnation of the 
optimization process 

Limited Parallelism: Our method may not fully 
exploit parallel processing capabilities, which can 
potentially restrict its convergence speed when 
executed on modern hardware architectures. This 
limitation underscores the importance of assessing 
computational efficiency, especially for large-scale 
optimization problems. 

Function Shape Dependency: It is crucial to 
recognize that our method relies on the cost 
function’s properties, specifically its convex and 
differentiable nature. When dealing with cost 
functions that significantly deviate from these 
characteristics, such as non-convex or non-
differentiable functions, the method’s effectiveness 
may be compromised. Users should exercise 
caution and consider alternative approaches for 
such scenarios. 

In conclusion, while our method offers several 
advantages, it is essential to acknowledge and 
address these limitations to make informed 
decisions about its application. Understanding these 
limitations will enable users to harness the strengths 
of our method effectively while mitigating potential 
challenges. 

5. CONCLUSION  

In this research, we introduced a novel approach 
called "Dichotomous Gradient Descent" (DGD), 
which combines gradient-based optimization with 
the dichotomy method to efficiently locate minima 
in convex and differentiable cost functions. Our 
method is designed to significantly speed up 
learning in machine learning and deep learning 
models. To assess its effectiveness, we conducted 
experiments using the Mean Squared Error (MSE) 
cost function in the context of linear regression and 
compared DGD to traditional Gradient Descent 
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(GD). The results showed outstanding performance, 
with fewer iterations needed for convergence and 
reduced execution time. This underscores the 
importance and effectiveness of our approach in 
accelerating learning, promising significant 
improvements in machine learning. 

Our method offers advantages like fast 
convergence, robustness, computational efficiency, 
adaptability to high dimensions, precision, 
improved numerical stability, ease of 
implementation, and guaranteed convergence for 
convex functions. Additionally, it doesn’t require a 
learning rate, simplifying practical application. 

However, it’s essential to consider limitations, 
including susceptibility to local minima, interval 
constraints, limited parallelism, and dependence on 
cost function shape. Users should carefully assess 
these limitations in specific applications, potentially 
making adjustments or exploring alternatives for 
non-convex or non-differentiable cost functions. 

In summary, our method is versatile and effective 
across various domains, offering speed, precision, 
and stability for complex optimization problems. 
Users must understand both its advantages and 
limitations to use it effectively. Future research can 
focus on tailored adaptations and improvements to 
overcome these limitations and further expand the 
method’s potential. 
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