
Journal of Theoretical and Applied Information Technology

30th November 2023. Vol.101. No 22
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7045

ENHANCING ERROR MINIMIZATION IN MACHINE
LEARNING: A NOVEL APPROACH INTEGRATING
GRADIENT-BASED AND DICHOTOMY METHODS

COMPARED TO GRADIENT DESCENT

ABDELHAMID OUAZZANI CHAHDI1, WIAM SAIDI2, KHALID SATORI3, RAFIK LASRI4,
ABDELLATIF EL ABDERRAHMANI5

1, 2 Researcher, Department of Computer Science, Sidi Mohammed Ben Abdellah University Fez, Morocco

3, 5 Professor, Department of Computer Science, Sidi Mohammed Ben Abdellah University -Fez, Morocco

4Associate Professor, Physics Department, Abdelmalek Essaadi University Larache, Morocco

E-mail: 1abdelhamid.ouazzanichahdi@usmba.ac.ma, 2wiam.saidi@usmba.ac.ma,
3khlid.satori@usmba.ac.ma, 5abdellatif.elabderrahmani@usmba.ac.ma

ABSTRACT

This research introduces an innovative technique designed to effectively minimize errors in machine lear-
ing, with the intention of subsequently applying it to enhance cloud-computing security. Our approach
merges gradient-based optimization with the dichotomy method, streamlining the learning process. Its pri-
mary objective is the swift identification of the minimum point of a differentiable and convex cost function.
To evaluate its efficacy in comparison to the traditional Gradient Descent approach, we apply it to linear
regression models and conduct a comprehensive analysis across various dataset sizes and precision settings.
Our experiments reveal significant advantages, including reduced execution time and fewer iterations re-
quired for convergence. This research contributes to the advancement of optimization techniques in ma-
chine learning and deep learning, promising potential benefits for practitioners, especially in the context of
cloud computing security.

Keywords: Deep Learning, Dichotomous Search, Gradient Descent, Linear regression, Machine Learning,
Optimization

1. INTRODUCTION

In recent years, the fields of machine learning (ML)
and deep learning (DL) have witnessed remarkable
growth, propelled by advancements in ML
algorithms and the availability of extensive datasets
[9]. ML and DL offer a multitude of advantages in
data analysis tasks such as feature extraction,
clustering, classification, regression, prediction, and
more [14]. However, a central challenge within
these fields revolves around optimizing cost
functions, pivotal metrics utilized to quantify the
deviation between a model’s predictions and the
actual values it aims to estimate. Among these
metrics, the mean squared error (MSE) stands out
as one of the most frequently used indicators for
assessing the performance of regression models,
encompassing linear regression, neural networks

for regression, and polynomial regression [22]. The
primary goal during the training of a regression
model is to minimize the MSE. This optimization
process frequently relies on algorithms such as
gradient descent, stochastic gradient descent, mini-
batch gradient descent, batch gradient descent, and
others [6], each possessing its own advantages and
suitability for specific machine learning tasks.
Nevertheless, these optimization algorithms come
with their limitations, including sensitivity to
learning rate selection, sluggish convergence on
complex cost surfaces, and computational
inefficiencies when dealing with extensive datasets
[19]. This paper presents a solution to overcome
these constraints by improving solution accuracy
and accelerating the learning process. We introduce
an innovative method called ’Dichotomous

Journal of Theoretical and Applied Information Technology

30th November 2023. Vol.101. No 22
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7046

Gradient Descent’ (DGD), designed to efficiently
pinpoint minima in convex and differentiable cost
functions. DGD offers notable advantages,
including rapid convergence, robustness,
computational efficiency, adaptability to high-
dimensional spaces, and precision. Moreover, it
simplifies practical implementation by eliminating
the requirement for a learning rate. Nevertheless,
we will also explore critical limitations,
encompassing susceptibility to local minima,
interval constraints, limited parallelism, and
sensitivity to cost function shapes. These
limitations necessitate careful consideration in
specific applications. The following sections of this
article are organized as follows: Section 2 provides
an in-depth review of related works, offering a
comprehensive exploration of gradient descent and
the dichotomous method. In Section 3, we
introduce our proposed methodology, known as
Dichotomous Gradient Descent, and discuss its
implementation in linear regression. Section 4
presents the Numerical Results and Discussion.

2. RELATED WORKS

2.1 Gradient Descent And Its Derivatives

Gradient descent stands as a ubiquitous
optimization algorithm within the domains of
machine learning and deep learning, primarily
employed for the minimization of objective
functions during the iterative learning process. Its
operational principle involves the descent along the
negative gradient direction to ascertain the local
minima of differentiable and convex cost functions.
This methodological framework finds pervasive
utilization in machine learning and deep learning
paradigms, including applications like linear
regression [5].

As delineated in Figure 1, the algorithm advances
iteratively by the computation of the subsequent
step based on the gradient at the current spatial
coordinate. Subsequently, this step undergoes
adjustment through a learning rate, and the resultant
value is subtracted from the present position
according to the prescribed formula:

𝐴௧ାଵ = 𝐴௧ − 𝛼𝛻𝑓(𝐴௧) (1)

with:
𝐴௧ାଵ = Next position
𝐴௧ = Current position
𝛼 = Learning rate (Step Size)
𝛻𝑓(𝐴௧) = Gradient at current position

Figure 1: Gradient descent algorithm

There exist three distinct variants of the gradient
descent algorithm, primarily differentiated by their
data utilization strategy for determining the
subsequent step. Batch gradient descent (BGD)
methodically leverages the entire dataset in each
epoch to compute the next step, while stochastic
gradient descent (SGD) draws upon a singular
example from the dataset per epoch. Mini-batch
gradient descent, on the other hand, employs a
fixed batch size of data examples from the dataset
to compute the ensuing step during each
epoch[11][6].

The gradient descent methodology presents several
intricate challenges demanding meticulous
consideration. Firstly, the selection of an
appropriate learning rate poses a non-trivial task.
An excessively small learning rate engenders
sluggish convergence, whereas an overly large one
impedes convergence and introduces erratic
behavior into the loss function, potentially leading
to divergence [11]. Secondly, conventional
strategies such as learning rate schedules endeavor
to dynamically adjust the learning rate during
training. However, these adaptations frequently rely
on predefined schedules or thresholds rooted in the
variations of the objective function between epochs,
lacking adaptability to the idiosyncratic
characteristics of a given dataset [1]. Lastly, the

Journal of Theoretical and Applied Information Technology

30th November 2023. Vol.101. No 22
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7047

uniform application of a singular learning rate to all
parameter updates may not be well-suited for
datasets characterized by sparsity, featuring
features with varying frequencies. In such
circumstances, it may prove more advantageous to
enact substantial updates for rarely occurring
features, while adopting a more cautious approach
for frequently encountered ones [15]. In the ensuing
sections, we shall delineate several algorithms
widely embraced within the Deep Learning
community to confront the aforementioned
challenges.

2.1.1 Momentum

Momentum gradient descent is a variant of the
gradient descent optimization algorithm used in
machine learning and deep learning. It incorporates
a momentum term to help accelerate convergence,
particularly when dealing with complex and high-
dimensional optimization problems. As delineated
in Fig. 2, the update to the model’s parameters at
each iteration is influenced not only by the current
gradient of the loss function but also by a moving
average of past gradients. This moving average,
often referred to as "momentum," helps to smooth
out variations in the gradient and allows the
optimization process to continue in the same
direction even when the gradient changes direction
frequently[17][3].

The formula for updating the parameters in
momentum gradient descent typically looks like
this:

V୲ାଵ = γV୲ − α∇f(A୲)
𝐴௧ାଵ = 𝐴௧ − V୲ାଵ

(2)

With:
𝑉௧ = is the velocity or momentum at time step t.
𝐴௧ = Current position
𝛾 = is the momentum coefficient, often set between
0 and 1 [17].

Figure 2: Momentum Algorithm

2.1.2 Nesterov accelerated gradient

Nesterov Accelerated Gradient (NAG), commonly
referred to as Nesterov Momentum, stands as a
specialized variant of the Momentum optimization
algorithm with widespread adoption in the domains
of deep learning and optimization. Diverging from
the conventional Momentum methodology, as
elucidated in Fig. 3, Nesterov Momentum initiates
its process by computing an initial step that
advances in the direction of the prevailing
momentum vector. Subsequently, it refines this step
by incorporating the gradient information at the
updated position. This distinctive ’look-ahead’
capability endows Nesterov Momentum with the
capacity to proactively anticipate forthcoming
updates, thereby resulting in expedited
convergence, particularly in cases characterized by
cost functions that feature elongated and narrow
valleys. Nesterov Momentum adeptly strikes a
harmonious balance, harnessing the advantages of
momentum to accelerate convergence while
maintaining precision during proximity to the
minimum [21]. The computation of NAG can be
succinctly represented through the following update
rules:

𝑉௧ = 𝛾𝑉௧ିଵ + 𝛼∇𝑓(𝐴௡ − 𝛾𝑉௧ିଵ)

𝐴௡ାଵ = 𝐴௡– 𝑉(𝑡)

(3)

Here are the key components:
𝑉௧ = is the velocity or momentum at time step t.
𝐴௡ = Current position
𝐴௡ାଵ = Next position
𝛾 = is the momentum coefficient, often set between
0 and 1 [17].

Journal of Theoretical and Applied Information Technology

30th November 2023. Vol.101. No 22
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7048

Figure 3: Nesterov Accelerated Gradient Algorithm

2.1.3 Adagrad

Adagrad, an acronym denoting Adaptive Gradient
Algorithm, is a fundamental optimization technique
extensively employed in the realms of machine
learning and deep learning. Its prominent feature
lies in its adaptability to dynamically tailor learning
rates for individual model parameters during the
training process. This adaptability bestows upon
Adagrad a particular utility in scenarios
characterized by sparse data or problems where
certain features exert a significantly more
pronounced influence than others. The algorithm
achieves this by modulating the learning rate for
each parameter based on the historical gradients
encountered, thereby effectuating smaller updates
for frequently changing parameters and more
substantial updates for those exhibiting less
frequent alterations [11][20][19]. The AdaGrad
update rules can be succinctly articulated as
follows:

𝐴௧ାଵ = 𝐴௧ −
ఈ

ටఢାఀ೔సభ
೟ ఇ௙(஺೔)

𝛻𝑓(𝐴௧) (4)

with:
𝐴௧ାଵ = Next position
𝐴௧ = Current position
𝛼 = Initial learning rate (Step Size)
𝛻𝑓(𝐴௧) = Gradient at current position
𝜖 = is typically set to a small positive value
(e.g.,1𝑒 − 8) to prevent division by zero in case the

denominator, 𝛴௜ୀଵ
௧ 𝛻𝑓(𝐴௜), equals zero.

However, one notable drawback of AdaGrad is its
accumulation of squared gradients in the
denominator. Since these accumulated terms are
always positive, the learning rate can become
excessively small, potentially causing a slowdown

and, in some cases, hindering convergence to the
minimum [11][10].

2.1.4 Adadelta

Adadelta, an extension derived from the Adagrad
optimization paradigm, introduces a more robust
optimization strategy by effectively addressing the
issue of monotonically decreasing learning rates
inherent in Adagrad. In stark contrast to Adagrad,
which accumulates all historical squared gradients,
Adadelta employs a limited-size window
mechanism to maintain a decaying average of prior
gradients. This adaptive algorithm eliminates the
necessity of specifying an initial learning rate, as it
dynamically adapts the learning rate in response to
the historical gradients and updates. The inherent
stability and adaptability of Adadelta render it a
particularly valuable choice for the training of
neural networks, especially in scenarios marked by
fluctuating gradient magnitudes. As a result, it
significantly enhances the convergence and overall
optimization performance [19].

2.1.5 RMSprop

Root Mean Square Propagation (RMSprop)
constitutes an evolutionary step beyond AdaGrad,
meticulously designed to counteract the issue of
diminishing learning rates. Notably, both RMSprop
and Adadelta emerged as independent solutions,
nearly concurrently, to address the challenge of
Adagrad’s rapidly declining learning rates. In
contrast to Adagrad, which accumulates gradient
sums for each dimension, RMSprop computes the
learning rate through a process involving a
decaying average of gradients, significantly
enhancing its computational efficiency. By
harnessing this decaying average of gradients,
RMSprop effectively attenuates the influence of
extreme historical values, thereby fostering
expeditious convergence, particularly in scenarios
characterized by convex structures. Consequently,
RMSprop has earned widespread acclaim as an
exceedingly efficient and widely adopted
optimization technique, particularly within the
domain of deep neural networks, cementing its
status as a gold standard among practitioners in the
field of deep learning [10][12].

Journal of Theoretical and Applied Information Technology

30th November 2023. Vol.101. No 22
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7049

2.1.6 Adam

Adam, an abbreviation for Adaptive Moment
Estimation, represents a widely adopted
optimization algorithm within the domain of deep
learning and machine learning research. It
harmoniously amalgamates the virtues of both
momentum-based optimization and RMSprop.
Adam meticulously maintains two distinct moving
averages: the first-order moment, encapsulating the
mean of historical gradients, and the second-order
moment, encapsulating the uncentered variance of
historical gradients. These moving averages hold
the pivotal role of tailoring the learning rate for
each parameter individually, thereby facilitating
swift convergence, even when faced with the
challenges posed by gradients characterized as
sparse or noisy. The distinctive attributes of Adam,
including its adaptive learning rate and momentum
components, imbue it with exceptional efficiency,
rendering it highly applicable across a wide
spectrum of optimization tasks. Consequently, it
has emerged as the preferred choice for training
deep neural networks and other machine learning
models. Its remarkable versatility and robust
empirical performance have solidified its position
as a preeminent optimization algorithm, garnering
widespread adoption and endorsement among both
researchers and practitioners in the field [16].

2.1.7 AdaMax

AdaMax, an optimization algorithm derived from
the Adam algorithm, has been engineered to
strategically address select limitations inherent to
its predecessor. In contrast to Adam, which relies
on the management of two moving averages
(specifically, the first and second moments),
AdaMax simplifies this process by exclusively
considering the first moment (representing the
mean of gradients) while introducing the concept of
the infinity norm (characterizing the maximum
absolute value) for the second moment. This
strategic adaptation imparts enhanced robustness,
particularly in the presence of gradients marked by
noise or sparsity. AdaMax’s design notably excels
in scenarios typified by significant variability in
gradient updates. By employing this approach,
AdaMax deftly maintains adaptive learning rates

tailored to each parameter, thereby fostering
efficient convergence, especially in the intricate
landscape of non-convex optimization problems
frequently encountered within the domain of deep
learning. The algorithm’s inherent simplicity,
coupled with its compelling empirical performance,
establishes AdaMax as a promising and viable
alternative to Adam. It thus furnishes researchers
and practitioners with a valuable tool for the
training of neural networks and the optimization of
various machine learning models [16].

2.1.8 Nadam

Nadam, an acronym signifying Nesterov-
accelerated Adaptive Moment Estimation,
represents an advanced optimization algorithm that
harmoniously amalgamates the robust features of
Nesterov’s accelerated gradient descent with the
adaptive learning rate mechanisms inherent to
Adam. Notably, it introduces Nesterov momentum,
thereby expediting convergence by computing
gradients with an enhanced estimate of future
positions. Nadam maintains the practice of
retaining moving averages of historical gradients
and their uncentered variance, a hallmark feature
akin to Adam. However, it innovatively
incorporates the Nesterov update scheme for
gradient calculation. This fusion of methodologies
engenders a highly efficient optimization algorithm,
exquisitely tailored for navigating the intricate
terrains typified by deep neural networks and
complex optimization landscapes. Empirically,
Nadam consistently exhibits competitive
performance metrics in terms of training speed and
convergence accuracy, firmly establishing itself as
a prominent choice among researchers and
practitioners operating within the realms of
machine learning and deep learning [13].

2.2 The Dichotomy Method (Bisection
Method)

The dichotomy method, also recognized as the
bisection method, stands as a straightforward yet
formidable technique utilized for the minimization
of convex functions. Its efficacy is particularly
pronounced when employed on functions that
exhibit a confirmed convexity property over a

Journal of Theoretical and Applied Information Technology

30th November 2023. Vol.101. No 22
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7050

closed interval. As visually represented in Fig. 4,
this method initiates with an initial interval
encompassing the sought-after minimum value and
subsequently subdivides the interval systematically
while assessing the function’s value at the
midpoint. It sequentially discerns which segment of
the interval contains the minimum and
progressively refines the search domain until a
predefined tolerance level is satisfied [8]. This
iterative procedure ensures a convergence trajectory
towards the global minimum for convex functions
by perpetually narrowing the search space, thus
methodically homing in on the optimal solution.
The dichotomy method, characterized by its
computational efficiency, finds broad utility in the
domain of optimization, particularly in
circumstances where function evaluations entail
high computational cost or exhibit noise. Its
convergence is linear, and it operates autonomously
of gradient information. Nevertheless, its foremost
constraint lies in its applicability, which is
principally confined to one-dimensional
optimization tasks. Consequently, its suitability
diminishes when confronted with intricate, high-
dimensional, or non-convex optimization problems
that frequently emerge in contemporary research
undertakings [2].

Figure 4: Bisection Method

3. THE PROPOSED APPROACH

3.1 Methodology Overview

Optimizing convex and differentiable functions
plays a pivotal role in various machine learning and
deep learning applications. In this context, we
introduce DGD, an innovative approach that blends
Gradient-Based and Dichotomy methods to
efficiently minimize such functions. Our method

involves crucial steps, including level set
determination, gradient computation, intersection
point identification, and iterative updates. DGD
offers a robust and efficient means of optimizing
convex and differentiable functions, delivering
precise solutions while minimizing iteration
requirements. Moreover, our algorithm seamlessly
integrates with a range of machine learning and
deep learning models, with a primary focus on
reducing learning errors for convex and
differentiable functions. For a visual representation
of our approach, refer to the flowchart in Fig. 5,
which illustrates the iterative steps in the process.

Figure 5: Dichotomous Gradient Descent Algorithm

Our approach begins with an initial iterated point

𝐴(ଵ) ∈ 𝐸 where 𝐸 defines a differentiable and
convex function 𝑓, and a precision tolerance 𝜖 > 0.
Our method establishes a sequence of iterates,

𝐴(ଶ), 𝐴(ଷ), 𝐴(ସ), . . . ∈ 𝐸, with the condition that

𝑓൫𝐴(௜ାଵ)൯ < 𝑓൫𝐴(௜)൯, ensuring that the precision

criterion of 𝑓൫𝐴(௜)൯ − 𝑓൫𝐴(௜ାଵ)൯ < 𝜖 is met. The

Journal of Theoretical and Applied Information Technology

30th November 2023. Vol.101. No 22
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7051

transition from it passes from 𝐴(௜) to 𝐴(௜ାଵ)
involves the following steps:

1. Selecting an initial point at random and

denoting it as 𝐴(௜), where 𝑖 = 0 (see Fig. 6).





Figure 6: Random Starting Point A

2. Identifying the level set LS passing through

the random point 𝐴(௜) (see Fig. 7).



Figure 7 : Level Set LS Passing Through A

3. Computing the gradient vector 𝐺 ←

𝛻𝑓൫𝐴(௜)൯(see Fig. 8).



Figure 8: Gradient Vector G At Point A

4. Determining the equation of the line D

passing through 𝐴(௜) in the direction of vector
G (see Fig. 9).



Figure 9: Line D Passing Through A In The Direction Of

Vector G

5. Calculating the coordinates 𝐵(௜), which
represent points of intersection between line
D and the level set LS (see Fig. 10).

Journal of Theoretical and Applied Information Technology

30th November 2023. Vol.101. No 22
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7052



Figure 10: Point B: Intersection Points Between Line D

And The Level Set LS

6. Finding the midpoint coordinates 𝑃𝑀(௜) of

the segment ൣ𝐴(௜), 𝐵(௜)൧,

𝑃𝑀(௜) ←
஺(೔)ା஻(೔)

ଶ
 (see Fig. 11).


Figure 11: Midpoint Pm (𝑥ெ , 𝑦ெ)

7. Updating the iterate: 𝐴(௜ାଵ) ← 𝑃𝑀(௜) and
repeat step 2 until the desired level of
precision for the minimum is achieved (see
Fig. 12).



Figure 12: Convergence Of Dichotomous Gradient

Descent Algorithm

To demonstrate the effectiveness of our approach,
we have tested the algorithm on a basic linear
regression model.

3.2 Application To Linear Regression Model

Linear regression, a classical statistical method,
coexists synergistically within the domains of ML
and DL. While ML extends the capabilities of
linear regression for more sophisticated predictive
modeling tasks, DL, employing deep neural
networks, offers unparalleled complexity for tasks
like image recognition and natural language
processing. Nonetheless, linear regression retains
its pivotal role as a foundational model for
interpretability in ML and DL projects,
underscoring its enduring relevance in the context
of data-driven research and practical applications
[18].

At its core, linear regression seeks to elucidate the
optimal linear equation that encapsulates the
relationship between a dependent variable (the
outcome variable) and independent variables
(predictors). Mathematically, this relationship is
articulated as: 𝑌 = 𝛽଴ + 𝛽ଵ𝑋ଵ + 𝛽ଶ𝑋ଶ + ⋯ +

𝛽௡𝑋௡ + 𝜀 where 𝑌 is the dependent variable, 𝛽଴
denotes the intercept, 𝛽ଵ, 𝛽ଶ, . . . , 𝛽௡ signify the
coefficients, 𝑋ଵ, 𝑋ଶ, . . . , 𝑋௡ denote the independent
variables, and 𝜀 symbolizes the error term. Linear
regression encompasses various forms, including
simple, multiple, polynomial, and regularized
regressions, each tailored to address distinct
research needs [7]. The analytical journey involves
fundamental steps such as data acquisition, model
specification, training, evaluation, inference, and
real-world application across diverse fields, ranging
from economics to medicine. It mandates vigilant
consideration of key challenges including
overfitting, model interpretability, adherence to
underlying assumptions, and the robust handling of
outliers [4].

In essence, the linear regression model stands as the
foundational representation of the intricate
relationship between the dependent variable Y and
the independent variables X through a linear
function.

Journal of Theoretical and Applied Information Technology

30th November 2023. Vol.101. No 22
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7053

𝑓(𝑥) = 𝑎𝑥 + 𝑏 (5)

3.2.1 Dataset

The algorithm is tested on a simple linear
regression model from a randomly generated
dataset with a single variable 𝑥.

We will therefore have a dataset with 𝑚 examples
and 𝑛 = 1 features (Fig. 13)

Figure 13: Random Dataset

3.2.2 Mean squared error function

In the multitude of potential lines, our objective is
to pinpoint the line that achieves the minimal
average of squared errors. In our approach, we will
endeavor to find the minimum of the MSE cost
function 𝐽(𝑎, 𝑏):

𝐽(𝑎, 𝑏) =
ଵ

ଶ௠
𝛴௜ୀଵ

௠ ൫𝑎𝑥(௜) + b – y(୧)൯
ଶ
 (6)

The J cost function, illustrated in Fig. 14, serves as
a measure of this average error. Referred to as the
Mean Squared Error, this function depends solely
on two parameters: ’a’ and ’b’. Importantly, The
MSE is a convex and differentiable function, a
critical attribute ensuring the convergence of our
method to the minimum.

Figure 14: Linear Regression Line

We will employ the coordinates (𝑥, 𝑦, 𝑧) in place of
(𝑎, 𝑏, 𝑐), resulting in the transformation of the
function 𝐽 to:

𝐽(𝑎, 𝑏) =
ଵ

ଶ௠
𝛴௜ୀଵ

௠ ൫𝑥𝐴(௜) + y – 𝐵(୧)൯
ଶ
 (7)

where ൫𝐴(௜), 𝐵(௜)൯ is our dataset, 𝐴(௜) are the

features and 𝐵(௜) are the targets.

3.2.3 Utilizing Our Approach DGD to
Minimize the MSE Function

1. Selecting an initial point at random, denoted
as 𝐴(𝑥஺ , 𝑦஺, 𝑧஺), from within the domain of
the function’s definition, where:

𝑍஺ = 𝐽(𝑥஺, 𝑦஺) (8)

2. Identifying the level set LS passing through
the random point 𝐴, defined by:

𝐽(𝑥, 𝑦) = 𝑍஺
1

2𝑚
𝛴௜ୀଵ

௠ ൫𝑥𝐴(௜) + y – 𝐵(୧)൯
ଶ

= 𝑍஺

(9)

3. Computing the gradient vector 𝐺 ← 𝛻𝑓(𝐴):
To compute the gradient G of the function
J(x, y), we needed to establish the partial
derivatives of J with respect to each
parameter, x and y, denoted as 𝛻𝐽 =

ቀ
డ௃(௫,௬)

డ௫
,

డ௃(௫,௬)

డ௬
ቁ where:

Journal of Theoretical and Applied Information Technology

30th November 2023. Vol.101. No 22
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7054

𝜕𝐽(𝑥, 𝑦)

𝜕𝑥
=

1

𝑚
𝛴௜ୀଵ

௠ ൫𝑥𝐴(௜) + 𝑦 − 𝐵(௜)൯𝐴(௜)

𝜕𝐽(𝑥, 𝑦)

𝜕𝑦
 =

1

𝑚
𝛴௜ୀଵ

௠ ൫𝑥𝐴(௜) + 𝑦 − 𝐵(௜)൯

(10)

4. Determining the equation of the line 𝐷
passing through 𝐴 in the direction of vector
𝐺: Consider 𝐴(𝑥஺, 𝑦஺) as a point on the
straight line 𝐷, and let 𝐺(𝛼, 𝛽) a directional
vector of D. A point 𝑀(𝑥, 𝑦) belongs to line
D if and only if the vectors 𝐴𝑀(𝑥 − 𝑥஺, 𝑦 −

𝑦஺) and 𝐺(𝛼, 𝛽) are collinear. This condition
is expressed as:

𝛽(𝑥 − 𝑥஺) − 𝛼(𝑦 − 𝑦஺) = 0

𝑦 =
𝛽

𝛼
𝑥 + ൬𝑦஺ −

𝛽

𝛼
𝑥஺൰

(11)

 This equation can be reconfigured into the

form 𝑦 = 𝑎𝑥 + 𝑏 with: 𝑎 =
ఉ

ఈ
 and

𝑏 = ቀ𝑦஺ −
ఉ

ఈ
𝑥஺ቁ.

5. Calculating the coordinates 𝐵, which
represent points of intersection between line
𝐷 and the level set LS: To determine the
coordinates of the second intersection point
𝐵, we need to identify the points where the
line 𝐷 intersects the level set LS. This
involves solving the following system of
equations:

1

2𝑚
Σ௜ୀଵ

௠ ൫𝑥𝐴(௜) + 𝑦 − 𝐵(௜)൯
ଶ

= 𝑍஺

𝑦 = 𝑎஽𝑥 + 𝑏஽
(12)

 where 𝑎஽ and 𝑏஽ are the line 𝐷 parameters
By replacing 𝑦 in the level set equation by
𝑎஽𝑥 + 𝑏஽:

ଵ

ଶ௠
Σ௜ୀଵ

௠ ൫𝑥𝐴(௜) + 𝑎஽𝑥 + 𝑏஽ − 𝐵(௜)൯
ଶ

= 𝑍஺

1

2𝑚
𝛴௜ୀଵ

௠ ቀ𝑥൫𝐴(௜) + 𝑎஽൯ + ൫𝑏஽ − 𝐵(௜)൯ቁ
ଶ

= 𝑍஺
(13)

 The equation can be reduced to the form
𝑎𝑥ଶ + 𝑏𝑥 + 𝑐 = 0:

 ቂ
ଵ

ଶ௠
Σ௜ୀଵ

௠ ൫𝐴(௜) + 𝑎஽൯
ଶ

ቃ 𝑥ଶ + ቂ
ଵ

௠
Σ௜ୀଵ

௠ ൫𝐴(௜) +

 𝑎஽൯൫𝑏஽ − 𝐵(௜)൯ቃ 𝑥 + ቂ
ଵ

ଶ௠
Σ௜ୀଵ

௠ ൫𝑏஽ +

𝐵(௜)൯
ଶ

− Z୅ቃ = 0 (14)

 where 𝑥 is the variable, and:

 𝑎 =
ଵ

ଶ௠
Σ௜ୀଵ

௠ ൫𝐴(௜) + 𝑎஽൯
ଶ
,

 𝑏 =
ଵ

௠
𝛴௜ୀଵ

௠ ൫𝐴(௜) + 𝑎஽൯൫𝑏஽ − 𝐵(௜)൯ and

 𝑐 =
ଵ

ଶ௠
Σ௜ୀଵ

௠ ൫𝑏஽ + 𝐵(௜)൯
ଶ

− Z୅

This equation is quadratic, and the number of
solutions depends on the discriminant 𝛥 =

𝑏2 − 4𝑎𝑐:

If 𝛥 > 0: The equation has two distinct
solutions, representing our starting point 𝐴
and the sought-after point 𝐵.

If 𝛥 = 0: The equation has only one solution,
which corresponds exactly to our starting
point 𝐴 (the minimum).

If 𝛥 < 0: While it was unexpected, the
equation has no solution. In practical
applications, the dichotomy method, a
fundamental component of our approach,
repeatedly divides the interval [a, b] into two
equal segments. However, as the difference
between ’a’ and ’b’ diminishes, there is a
possibility that the midpoint of the interval
may align precisely with one of the endpoints
(a or b). Due to the finite precision of
floating-point calculations, issues related to
numerical stability can arise when subtracting
values that are very close, potentially causing
𝛥 to become negative and, in turn, potentially
causing the optimization process to stall.

6. Finding the midpoint coordinates
𝑃𝑀(𝑥ெ , 𝑦ெ) of the segment [𝐴, 𝐵]:

𝑥ெ =
𝑥஺ + 𝑥஻

2

𝑦ெ =
𝑦஺ + 𝑦஻

2

 (15)

Journal of Theoretical and Applied Information Technology

30th November 2023. Vol.101. No 22
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7055

7. Assign the value of 𝑃𝑀 to the new
coordinates of point 𝐴 and repeat step 2 until
the desired level of precision for the
minimum is achieved.

4. NUMERICAL RESULTS AND
DISCUSSION

4.1 Test Environment Description

The tests and experiments detailed in this research
article were conducted within an environment
characterized by the specifications provided in
Table. 1 below:

Table 1: Specifications Of The Experimental

Environments

It should be noted that the tests can be conducted in
environments with characteristics that are less
robust than those specified in Table 1, particularly
with regard to RAM and processor capabilities.

4.2 Experiments

In the scope of our research, we conducted an
extensive comparative analysis between our
proposed methodology, DGD, and the conventional
Gradient Descent (GD) technique. Our primary aim
was to conduct a comprehensive assessment of the
performance of these two algorithms and elucidate
the potential ramifications of these findings within
the context of machine learning applications.

We executed a quantitative performance evaluation
contrasting our DGD algorithm with the GD

algorithm when applied to the linear regression
model, as outlined in Section 3.2. This comparative
analysis was carried out through two distinct
experiments.

4.2.1 Experiment 1

In this experiment, we monitored the cost evolution
using a random dataset of size 10ଷ examples for
both algorithms, DGD and GD, with a learning rate
of 0.1 for GD. We tracked the cost’s progression
throughout the entire execution, recording it until it
reached a specific precision of 𝜖 = 10ିଵ . The
numerical results will be compared using two
criteria: the number of iterations and CPU time.
The results of experiment 1 are summarized in the
table 2 below:

Table 2: Cost Evolution up to Iteration Number and CPU
Time for Precision 𝜖 = 10ିଵ଺

Algorithm Iterations CPU Time Final cost
GD 1129 81.0 ms 0.4874839408897289

DGD 10 1.6 ms 0.4874839408897289

Fig. 15 and Fig. 16 respectively display a contour
plot and a 3D plot for both algorithms, GD and
DGD, providing a visual representation of how the
theta parameter values evolve over iterations during
the optimization of the MSE cost function towards
its minimum.

Figure 15: Contour Plot Comparing MSE Convergence
Of GD And DGD Algorithms

Operating System
Linux Mint 21 Cinnamon Version

5.4.8

Linux Kernel 5.15.0-41-generic

Processor
Intel© Xeon© CPU E5-1650 v2

@ 3.50GHz × 6

Memory 62.7 GiB

IDE
Spyder Python IDE for scientific

Version 5.4.3 (conda)

Programming
language

Python 3.11.3 64-bit

Journal of Theoretical and Applied Information Technology

30th November 2023. Vol.101. No 22
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7056

Figure 16: 3D Plot Comparing MSE Convergence Of GD
And DGD Algorithms

Fig. 17, depicts the comparison of cost evolution
between the DGD and GD algorithms for the first
10 iterations.

Figure 17: Cost Evolution Comparison Between DGD
And GD

Our observation reveals a significant difference
between DGD and GD in terms of the number of
iterations required to converge. DGD exhibited
much faster convergence with only 10 iterations,
while GD required 1129. This finding suggests that
DGD may be a preferred choice when rapid
convergence is a critical criterion.

The CPU time data confirms the advantage of
DGD. DGD managed to achieve convergence in
just 1.6 milliseconds, while GD took 81
milliseconds. This significant reduction in
computation time is crucial in real-time
applications or when dealing with large datasets.

Despite differences in the number of iterations and
CPU time, both algorithms reached an identical
final cost of 0.4874839408897289. This indicates
that both methods converge to solutions of
comparable quality in terms of cost.

In the field of machine learning, the results of our
experimentation have significant implications. By
opting for the DGD approach, practitioners can
benefit from faster convergence and substantial
reduction in computation time without
compromising the quality of the final solution. This
decision can be crucial in real-time applications or
when processing massive datasets.

4.2.2 Experiment 2

Experiment 2 records the number of iterations and
execution times for random datasets of varying
sizes (number of examples), while maintaining a
fixed precision level of 𝜖 = 10ିଵ଺ (see Table. 3). In
this study, we evaluate the performance of both GD
and DGD algorithms in relation to dataset size, all
while consistently maintaining 𝜖 = 10ିଵ଺
precision. We document the iteration count and
CPU times for datasets of different sizes.

Table 3: Comparison Of GD And DGD Performance
Across Different Dataset Sizes

 GD DGD

Data set
size

Iterations
CPU
Time
(ms)

Iterations
CPU
Time
(ms)

10ାଵ 993 50.5 6 0.842
10ାଶ 979 51.8 11 1.73
10ାଷ 1129 83.5 10 2.2
10ାସ 1103 175 8 2.29
10ାହ 1084 541 8 8.46
10ା଺ 1117 7180 13 215
10ା଻ 1131 101000 15 3040

In this table comparing GD and DGD across
various data set sizes, it’s evident that DGD
consistently outperforms GD in terms of
convergence efficiency and computational time.
For smaller data set sizes, DGD requires fewer
iterations to converge, and as the data set size
increases, the computational advantage of DGD
becomes even more pronounced, with significantly
reduced CPU time. These results highlight the
potential benefits of adopting DGD over GD in
machine learning tasks, particularly when dealing
with larger datasets or scenarios where
computational efficiency is critical.

Journal of Theoretical and Applied Information Technology

30th November 2023. Vol.101. No 22
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7057

Figure 18: Comparison Of GD And DGD Performance
Across Different Dataset Sizes

Fig. 18 provides a comparative analysis of two
optimization algorithms: GD and our approach,
DGD, across various dataset sizes.

On the left side, the plot titled "Number of
Iterations vs. Data Set Size" illustrates the number
of iterations required for both GD and DGD to
converge as the dataset size increases. It is evident
that DGD consistently outperforms GD, requiring
significantly fewer iterations to achieve
convergence. This advantage is particularly crucial
in deep learning tasks where model training can be
computationally intensive.

On the right side, the graph titled "CPU Time vs.
Data Set Size" displays the computational time (in
milliseconds) for GD and DGD. Once again, DGD
demonstrates its efficiency by substantially
reducing CPU time, even as the dataset size grows.
This efficiency is of paramount importance in
machine learning, where faster convergence and
reduced computation times can expedite model
development and deployment.

The results presented in this graph underscore the
practical advantages of employing DGD over GD
in machine learning and deep learning scenarios,
highlighting the potential for accelerated training
and more efficient model optimization, especially
when working with large datasets.

4.3 Advantages And Limitations Of The
Method

4.3.1 Advantages of the method

The newly proposed method combines gradient-
based optimization with the dichotomy method to
efficiently locate the minimum of convex and

differentiable cost functions, offering several
potential advantages:

Fast Convergence: The combination of gradient
and dichotomy enables rapid convergence towards
the global minimum of the cost function,
particularly benefiting convex functions and
reducing the required number of iterations.

Robustness: This approach exhibits robustness and
versatility, accommodating a wide range of cost
functions, including nonlinear ones.

Computational Efficiency: By effectively utilizing
the gradient to guide the search, the method reduces
the computational cost associated with evaluating
the cost function, especially in resource-intensive
scenarios.

Dimension Adaptability: It adapts well to high-
dimensional problems as gradient-based
optimization efficiently exploits the function’s
structure, while the dichotomy method effectively
handles searches over wide intervals.

Numerical Stability: The combination of these two
methods mitigates numerical stability issues,
particularly those related to vanishing gradients,
which can occur when relying solely on the
gradient.

Guaranteed Convergence: For convex functions,
the method guarantees convergence to the global
minimum, offering a substantial advantage.

Broad Applicability: This method finds
applications across various domains, including
mathematical optimization, machine learning,
engineering, finance, and other scientific
disciplines.

When compared to gradient descent and its
derivatives, a significant advantage of this method
lies in its inherent independence from the
requirement for a learning rate, a feature commonly
associated with traditional gradient descent
approaches. This absence of a learning rate bestows
several advantages:

Journal of Theoretical and Applied Information Technology

30th November 2023. Vol.101. No 22
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7058

No Need for Learning Rate Selection:
Eliminating the requirement to select a learning rate
significantly simplifies the method’s
implementation. In traditional gradient descent,
choosing an appropriate learning rate can be
challenging, often involving trial and error. This
new method circumvents this delicate step.

Enhanced Stability: The challenge of learning rate
selection is closely tied to the stability of
convergence. Inappropriate learning rates can lead
to divergence or slow convergence. By removing
this parameter, the method tends to exhibit greater
stability and robustness.

Inherent Adaptability: By employing a
combination of gradient and dichotomy, the method
naturally adapts to the local characteristics of the
cost function without the need for global learning
rate fine-tuning.

In summary, the absence of a learning rate
represents a significant advantage of this method. It
streamlines implementation, enhances stability, and
offers a more natural adaptation to local cost
function characteristics, making the method user-
friendly and robust for a wide range of optimization
problems.

4.3.2 Limitations of the Method

While the novel method we propose combines
gradient-based optimization with the dichotomy
approach, offering several notable advantages for
efficiently locating the minimum of convex and
differentiable cost functions, it is essential to
address certain limitations that may affect its
applicability and performance. We delve into these
limitations, shedding light on potential challenges
that users and practitioners should consider when
employing this method:

Local Minimum Challenge: One of the primary
concerns associated with our method is its
susceptibility to local minima. Depending on the
specific characteristics of the cost function, the
method may become trapped in suboptimal
solutions, making it vital for users to assess the
presence of such minima in their optimization
problems.

Interval Constraints: The dichotomy method,
integral to our approach, continuously divides the
interval [a, b] into two equal segments. However, as
the difference between a and b narrows, there arises
the risk of reaching a point where the midpoint of
the interval aligns precisely (within floating-point
precision) with one of the interval’s endpoints (a or
b). This situation can lead to a stagnation of the
optimization process

Limited Parallelism: Our method may not fully
exploit parallel processing capabilities, which can
potentially restrict its convergence speed when
executed on modern hardware architectures. This
limitation underscores the importance of assessing
computational efficiency, especially for large-scale
optimization problems.

Function Shape Dependency: It is crucial to
recognize that our method relies on the cost
function’s properties, specifically its convex and
differentiable nature. When dealing with cost
functions that significantly deviate from these
characteristics, such as non-convex or non-
differentiable functions, the method’s effectiveness
may be compromised. Users should exercise
caution and consider alternative approaches for
such scenarios.

In conclusion, while our method offers several
advantages, it is essential to acknowledge and
address these limitations to make informed
decisions about its application. Understanding these
limitations will enable users to harness the strengths
of our method effectively while mitigating potential
challenges.

5. CONCLUSION

In this research, we introduced a novel approach
called "Dichotomous Gradient Descent" (DGD),
which combines gradient-based optimization with
the dichotomy method to efficiently locate minima
in convex and differentiable cost functions. Our
method is designed to significantly speed up
learning in machine learning and deep learning
models. To assess its effectiveness, we conducted
experiments using the Mean Squared Error (MSE)
cost function in the context of linear regression and
compared DGD to traditional Gradient Descent

Journal of Theoretical and Applied Information Technology

30th November 2023. Vol.101. No 22
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7059

(GD). The results showed outstanding performance,
with fewer iterations needed for convergence and
reduced execution time. This underscores the
importance and effectiveness of our approach in
accelerating learning, promising significant
improvements in machine learning.

Our method offers advantages like fast
convergence, robustness, computational efficiency,
adaptability to high dimensions, precision,
improved numerical stability, ease of
implementation, and guaranteed convergence for
convex functions. Additionally, it doesn’t require a
learning rate, simplifying practical application.

However, it’s essential to consider limitations,
including susceptibility to local minima, interval
constraints, limited parallelism, and dependence on
cost function shape. Users should carefully assess
these limitations in specific applications, potentially
making adjustments or exploring alternatives for
non-convex or non-differentiable cost functions.

In summary, our method is versatile and effective
across various domains, offering speed, precision,
and stability for complex optimization problems.
Users must understand both its advantages and
limitations to use it effectively. Future research can
focus on tailored adaptations and improvements to
overcome these limitations and further expand the
method’s potential.

REFERENCES

[1] Xiong, Y., Lan, L. C., Chen, X., Wang, R., &
Hsieh, C. J. (2022, January). Learning To
Schedule Learning Rate With Graph Neural
Networks. In International Conference On
Learning Representation (ICLR).

[2] Etesami, R., Madadi, M., Mashinchi, M., &
Ganjoei, R. A. (2021). A New Method For
Rooting Nonlinear Equations Based On The
Bisection Method. Methodsx, 8, 101502.

[3] Liu, Z., Feng, R., Li, X., Wang, W., & Wu, X.
(2021). Gradient-Sensitive Optimization For
Convolutional Neural Networks.
Computational Intelligence And
Neuroscience, 2021, 1-16.

[4] Filzmoser, P., & Nordhausen, K. (2021). Robust
Linear Regression For High-Dimensional

Data: An Overview. Wiley Interdisciplinary
Reviews: Computational Statistics, 13(4),
E1524.

[5] Eftekhari, A., Vandereycken, B., Vilmart, G., &
Zygalakis, K. C. (2021). Explicit Stabilised
Gradient Descent For Faster Strongly Convex
Optimisation. BIT Numerical Mathematics,
61, 119-139.

[6] Haji, S. H., & Abdulazeez, A. M. (2021).
Comparison Of Optimization Techniques
Based On Gradient Descent Algorithm: A
Review. Palarch’s Journal Of Archaeology Of
Egypt/Egyptology, 18(4), 2715-2743.

[7] Maulud, D., & Abdulazeez, A. M. (2020). A
Review On Linear Regression Comprehensive
In Machine Learning. Journal Of Applied
Science And Technology Trends, 1(4), 140-
147.

[8] Moheuddin, M. M., Uddin, M. J., & Kowsher,
M. (2019). A New Study To Find Out The
Best Computational Method For Solving The
Nonlinear Equation. Applied Mathematics
And Sciences An International Journal
(Mathsj), 6(3), 15-31.

[9] Ray, S. (2019, February). A Quick Review Of
Machine Learning Algorithms. In 2019
International Conference On Machine
Learning, Big Data, Cloud And Parallel
Computing (Comitcon) (Pp. 35-39). IEEE.

[10] Mukkamala, M. C., & Hein, M. (2017, July).
Variants Of Rmsprop And Adagrad With
Logarithmic Regret Bounds. In International
Conference On Machine Learning (Pp. 2545-
2553). PMLR.

[11] Ruder, S. (2016). An Overview Of Gradient
Descent Optimization Algorithms. Arxiv
Preprint Arxiv:1609.04747.

[12] Goodfellow, I., Bengio, Y., & Courville, A.
(2016). Deep Learning. MIT Press.

[13] Dozat, T. (2016). Incorporating Nesterov
Momentum Into Adam. ICLR Workshop, 1,
2013-2016.

[14] Aggarwal, C. C. (2015). Data Mining: The
Textbook (Vol. 1). New York: Springer.

[15] Dauphin, Y. N., Pascanu, R., Gulcehre, C.,
Cho, K., Ganguli, S., & Bengio, Y. (2014).
Identifying And Attacking The Saddle Point
Problem In High-Dimensional Non-Convex

Journal of Theoretical and Applied Information Technology

30th November 2023. Vol.101. No 22
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7060

Optimization. Advances In Neural
Information Processing Systems, 27.

[16] Kingma, D. P., & Ba, J. (2014). Adam: A
Method For Stochastic Optimization. Arxiv
Preprint Arxiv:1412.6980.

[17] Sutskever, I., Martens, J., Dahl, G., & Hinton,
G. (2013, May). On The Importance Of
Initialization And Momentum In Deep
Learning. In International Conference On
Machine Learning (Pp. 1139-1147). PMLR.

[18] Su, X., Yan, X., & Tsai, C. L. (2012). Linear
Regression. Wiley Interdisciplinary Reviews:
Computational Statistics, 4(3), 275-294.

[19] Zeiler, M. D. (2012). Adadelta: An Adaptive
Learning Rate Method. Arxiv Preprint
Arxiv:1212.5701.

[20] Duchi, J., Hazan, E., & Singer, Y. (2011).
Adaptive Subgradient Methods For Online
Learning And Stochastic Optimization.
Journal Of Machine Learning Research,
12(7).

[21] Nesterov, Y. E. E. (1983). A Method Of
Solving A Convex Programming Problem
With Convergence Rate Ok2. In Doklady
Akademii Nauk (Vol. 269, No. 3, Pp. 543-
547). Russian Academy Of Sciences.

[22] Theobald, C. M. (1974). Generalizations Of
Mean Square Error Applied To Ridge
Regression. Journal Of The Royal Statistical
Society: Series B (Methodological), 36(1),
103–106.Doi:10.1111/J.2517-
6161.1974.Tb00990.X

