
Journal of Theoretical and Applied Information Technology

30th November 2023. Vol.101. No 22
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7425

TOWARDS A HYBRID APPROACH TO REVERSE
ENGINEER BEHAVIORAL UML DIAGRAMS FROM

SOURCE CODE

HAMZA ABDELMALEK1, ISMAÏL KHRISS2, AND ABDESLAM JAKIMI3
1,3GLISI team, FSTE, Moulay Ismail University Meknès, Errachidia, Morocco

2Département de Mathématiques, d’Informatique et de Génie, Université du Québec à Rimouski, Rimouski,

Canada

E-mail: 1h.abdelmalek@edu.umi.ac.ma, 2ismail_khriss@uqar.ca, 3ajakimi@yahoo.fr

ABSTRACT

Software reverse engineering plays an important role when maintaining legacy systems, enabling
understanding of a system by extracting high-level models from its source code. These models can
represent the structural or behavioral aspects of the system. Several approaches have been proposed in the
literature for recovering structural models, such as the Unified Modeling Language (UML) class diagram.
Conversely, there is less work concerning extracting behavioral representations that capture different
interactions within a given system. This paper investigates approaches to extracting behavioral UML
diagrams, precisely sequence and use case diagrams. We have categorized these approaches into three
groups, depending on the type of analysis employed: static, dynamic, or hybrid. Subsequently, we
conducted a comparative analysis of these approaches, evaluating them based on various criteria to
highlight their strengths and weaknesses. Based on this comparison, we propose an approach that combines
static and dynamic analysis techniques to recover behavioral diagrams from source code. This proposed
approach can potentially assist software developers in maintenance by providing a higher-level
representation of a system that can even be employed in a modernization process to migrate it from a legacy
environment to a modern one.

Keywords: Reverse Engineering, Modernization Process, Behavioral model, UML Sequence Diagram,
UML Use Case Diagram.

1. INTRODUCTION

Software development is a systematic process
where each phase builds upon the previous one.
Poor choices at any stage can lead to issues later
on. The phases in the software development
process include requirements analysis, design,
implementation, testing, and maintenance. The
phases from software requirements to
implementation are called forward engineering [1].
Several artifacts, such as documentation and
source code, are created throughout the process.
These artifacts are valuable for developers to aid in
future maintenance tasks.

During the maintenance phase, developers
must update a system for different reasons, such as
correcting bugs or changes in requirements.
Unfortunately, the documentation no longer
reflects what is in the source code, as changes are
only done in the source code and not in other
artifacts. Which greatly complicates the

maintenance process as it becomes difficult to
understand the system. That is why reverse
engineering, one of the main approaches to
software comprehension, becomes necessary.

According to Chikofsky et al., reverse
engineering involves a two-step process. The first
step involves analyzing an existing system to
identify its components and interrelationships. The
second step consists of creating representations of
the system at a higher level of abstraction, relying
on the information obtained in the first step [1].
The primary artifacts used in the analysis step are
source code and execution traces. Therefore, three
types of analysis are used in the literature: static,
dynamic, or hybrid. Different modeling languages
are used to represent the higher level of
abstraction. One of the most used is the Unified
Modeling Language (UML) with its structural
diagrams, such as class diagrams, or behavioral
diagrams, such as use case diagrams and sequence
diagrams.

Journal of Theoretical and Applied Information Technology

30th November 2023. Vol.101. No 22
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7426

This paper discusses a set of approaches
focusing on extracting UML behavioral diagrams.
We categorize these approaches based on the type
of analysis. First, we present the static analysis
approach, which analyzes the software without
executing it. Instead, it analyzes artifacts such as
source code or byte code. Static analyses are
effective in recovering the system's overall
structure and extracting details about the software's
components, and they don't require modifying the
source code. However, it can be challenging to
identify certain dynamic aspects like
polymorphism using static analysis, and it
demands significant processing time when
analyzing larger systems. Therefore, static analysis
is better suited for simpler systems.

In the second part of the related work, we
delve into approaches that leverage dynamic
analysis. These approaches require the
instrumentation of the software, followed by its
execution, during which execution traces are
generated. These traces are analyzed to identify
dynamic information such as invoked operations
and object interactions. This type of analysis
extracts the behavior of the systems that can be
captured in dynamic UML diagrams like sequence
and use case diagrams. Nevertheless, it is
important to note that instrumentation can
significantly slow down the software [2], and
ensuring that the scenario information accurately
reflects in the execution traces can be challenging.

Alternatively, some approaches adopt hybrid
techniques combining static and dynamic analysis.
In these cases, both the source code and the
execution traces are analyzed. Hybrid analysis
proves beneficial because it allows us to gather
information in two modes: before and after running
the software, thus providing rich and various data.
The precision offered by dynamic analysis and the
generalization provided by static analysis
complement each other effectively, resulting in
improved results [3]. Hybrid analysis serves the
purpose of minimizing the need for extensive
instrumentation of the source code. It accomplishes
this by selectively extracting important data using
dynamic analysis and then enhancing it by
incorporating static analysis. This analysis enables
us to extract maximum helpful information from
the software, yielding higher abstraction in our
results.

The investigation and comparison of these
approaches allow us to propose a complete
methodology aimed at reverse engineering
sequence and use case diagrams from source code.
Our proposed approach uses a combination of

static and dynamic analysis. Dynamic analysis is
applied first, involving the instrumentation of the
source code and the generation of execution traces
based on important scenarios. Subsequently, static
analysis is employed to enhance these execution
traces with additional information. To further
refine the results, we apply other operations to the
execution traces. The first operation is trace
reduction, which filters irrelevant data, such as
implementation details. Next, we propose merging
multiple traces representing different scenarios for
a given use case. The final step in our approach is
straightforward, allowing the generation of use
case and sequence diagrams from the improved
execution traces.

aligning with our ongoing modernization
approach following the Model Driven Engineering
(MDE) paradigm, this research establishes a
systematic methodology for extracting behavioral
UML diagrams through a combination of static and
dynamic analyses. Building on previous work
targeting the reverse engineering of the static
aspect of a system, namely the UML class diagram
for the problem domain [4] and the Platform
Description Model (PDM) for the solution domain
[5, 6], this study aims to facilitate the
understanding of both static and dynamic aspects
of software systems. Furthermore, the extracted
models from the reverse engineering task can be
employed in generating modern systems for new
implementation platforms and architectures
through a forward engineering process [7].

The structure of this paper is as follows.
Section 2 presents related work regarding reverse
engineering behavioral diagrams. Section 3 is
dedicated to a comparative analysis of the
approaches in this field. In section 4, we introduce
our reverse engineering approach. Finally, section
5 concludes the paper.

2. RELATED WORK

The addressed problem in this research
revolves around the challenges faced during the
maintenance phase of software development,
particularly in scenarios where the documentation
no longer accurately reflects the changes made in
the source code. This problem hinders the
comprehension of the system, making maintenance
a complex task. The specific problem to be
addressed is the need for effective reverse
engineering approaches, specifically focusing on
the extraction of UML behavioral diagrams, to
enhance understanding during the maintenance
phase.

Journal of Theoretical and Applied Information Technology

30th November 2023. Vol.101. No 22
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7427

The literature screening criteria encompass a
targeted selection of studies addressing the
challenges in software maintenance, specifically
focusing on reverse engineering methodologies for
extracting UML behavioral diagrams. Emphasis is
placed on the analysis approaches, including static,
dynamic, and hybrid methods, with a consideration
of their effectiveness in diverse software
environments. Additionally, the impact of
instrumentation on software performance, the
advantages and limitations of each analysis
approach. The objective is to assemble a cohesive
body of literature that not only addresses the
identified problem of differences between
documentation and source code during
maintenance but also contributes to the
formulation of a comprehensive and efficient
reverse engineering approach for extracting
behavioral diagrams that serve other purposes such
as software modernization.

2.1 Static Approaches
Fauzi et al. used Abstract Syntax Tree (AST)

to reverse engineer sequence diagrams of a system
[8]. They implemented their approach in a tool
called RE-VUML, which extracts and illustrates
important information within the sequence
diagrams. This information includes method calls,
loops, conditional statements, class/object types,
object creation, package, import statements, and
object-oriented concepts like inheritance and static
polymorphism. The process begins by extracting
the AST from the source code using the JavaParser
API. Next, they trace all the AST nodes using the
Depth-First Search (DFS) Post Order algorithm.
This traversal algorithm evaluates nodes
sequentially following the source code. Finally,
they use the PlantUML API1 to create the
sequence diagram.

Nanthaamornphong and Leatongkam
extended the ForUML tool [9] to recover sequence
diagrams from the source code of object-oriented
Fortran applications [10]. They begin by parsing
the source code into smaller parts and then
discovering relationships between them using
transformation rules. These transformation rules
are based on UML specifications to map the
source code into sequence diagram elements.
Later, from the derived relationships, an XMI file
is created and imported into the Modelio tool2 to
visualize the diagram.

1 https://plantuml.com/api
2 https://www.modelio.org

Alvin et al. implemented a tool called
StaticGen, which extracts sequence diagrams from
source code using static analysis [11]. The first
step concerns transforming the source code into a
typed Control Flow Graph (CFG). The subsequent
step involves the construction of a directed code
hypergraph, which captures additional
information, including interactions between
objects within the code. The final step concerns
creating the sequence diagrams. In this stage, the
user employs a query-based refinement interface to
navigate the hypergraph and extract important
interactions present in the source code.

2.2 Dynamic Approaches

Delamare et al. are inspired by the work
presented in [12]. They generate basic sequence
diagrams from execution traces and combine them
into a single sequence diagram while identifying
fragments such as loop and alt [13]. The difference
between these two approaches lies in the manner
of combination. The contribution of Delamare et
al. is their approach's ability to capture the
program's state both before and after each message
within the basic sequence diagrams. This ability
enables them to identify iterations and conditional
statements within the diagrams.

Li et al. introduced an approach to construct
use case diagrams based on execution traces [14].
They leverage call trees derived from execution
traces to retrieve the initial operations that present
the call tree's root. These root operations represent
the basic use cases, which are then arranged into a
single sequence. Subsequently, they apply an
algorithm to establish relationships between these
basic use cases, yielding a composite use case
diagram.

Dugerdil and Repond proposed an approach
to extract the sequence diagrams from legacy
systems to facilitate software understanding [15].
Their process commences by recovering the use
cases from the software's users. Then, they
instrument the source code to generate execution
traces for specific scenarios. Based on dynamic
information, they construct clusters of classes
where each cluster represents a set of strongly
interconnected classes that implement common
business logic. To achieve more abstraction, they
added two reduction techniques to the execution
trace. They eliminate accessor methods and
compress repeated events. They performed a
bottom-up approach to identify event repetition,
systematically replacing repeated events with a
special node. This node will later be transformed
into a loop fragment within the sequence diagram.

Journal of Theoretical and Applied Information Technology

30th November 2023. Vol.101. No 22
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7428

Grati et al. employed interactive visualization
as a part of a semi-automatic approach to reverse
engineer sequence diagrams from execution traces
[16]. The first part of their approach concerns the
instrumentation of source code to generate
execution traces from the specified scenarios. Each
scenario may contain different alternatives,
resulting in distinct behaviors and trace generation
for each case. To align two execution traces, they
are structured as trees where each node
corresponds to a method call. Then, the trees are
compared node by node. This task is implemented
based on the Smith-Waterman algorithm [17]. In
the second part, the approach involves visualizing
the execution traces through an interactive
environment. The interactive visualization
application contains two components. The first
component facilitates the visualization of the
execution traces using geometric shapes. The
second component is used to generate the
corresponding sequence diagram and provides
users with suggestions to enhance the process.

Ziadi et al. introduced a dynamic approach to
reverse engineer UML sequence diagrams from
multiple execution traces [18]. The initial phase
involves the collection of traces based on various
scenarios to capture the overall system behavior.
In the subsequent step, each trace is represented
using a Labeled Transition System (LTS), where
each method invocation within the trace
corresponds to a transition between two states in
the LTS. They merge all the LTSes using the k-tail
algorithm [19]. This algorithm combines two
states if they share the same path length of method
invocations. Finally, the resulting LTS is presented
as a regular expression to simplify the conversion
into a sequence diagram.

Sarkar and Chaterjee employ dynamic
analysis to extract sequence diagrams from Java
applications [20]. Initially, they instrument the
source code by identifying all classes, objects, and
functions. Then, they insert two methods, begin
and end at the start and end of each function. The
begin method contains parameters to indicate the
origin and destination of the function call. During
the system's execution, when a method is invoked,
it triggers the begin and end functions. These
functions, in turn, call another function called
WritePicFile which constructs a file in the .pic
format. This file is used to generate the sequence
diagram.

Hammad and Al-Hawawreh proposed an
approach for generating sequence diagrams and
call graphs from execution traces [21]. The process
begins by defining the target methods that require

instrumentation. Subsequently, a Classes/Objects
finder is used to locate the suitable positions for
instrumentation within the source code.
Instrumenting the source code involves identifying
the start and end points of the target methods and
inserting a monitoring function at the appropriate
locations. This monitoring function includes two
parameters: the first parameter specifies the
method's name, while the second parameter
identifies whether it's the method's beginning or
ending. In the second phase, the system is
executed to generate execution traces, and finally,
these traces are utilized to construct the sequence
diagrams and call graphs.

2.3 Hybrid Approaches
Guéhéneuc and Ziadi proposed an approach

for reverse engineering UML sequence and state
machine diagrams using dynamic and static
analysis techniques [12]. This work aims to
perform high-level analyses like conformance
checking and pattern identification. The first step
of the approach is to generate the execution traces
from the JAVA program using the Caffeine tool
[22]. To ensure that the execution trace contains
sufficient information for constructing the
sequence diagram, the same scenario is executed
multiple times with different inputs. The second
step involves creating basic sequence diagrams
from the generated traces, followed by their
combination using fragments like loop, alt, seq,
and par. Finally, they use the approach proposed
by [23] to generate the state machine diagram from
the generated sequence diagram.

Dugerdil and Jossi introduced a technique to
recover complete use cases when those initially
provided by system users are incomplete and
inaccurate [24]. Their approach involves
instrumenting the legacy system's source code.
Then, executing user scenarios are executed to
generate execution traces, which in turn are
analyzed to extract the executed operations. The
next step is to analyze the source code AST using
the visitor design pattern [25] to identify
conditional statements for each method. Any
statement found represents an alternative flow,
thus an alternative behavior. All the alternatives
are found using the backward slicing technique
[26] of the AST corresponding to the source code
of the operation. If the users confirm that the
alternative statement could be executed, an extra
step is added to the scenario under study.
Therefore, a new execution trace for the scenario is
generated. This step is repeated until obtaining a

Journal of Theoretical and Applied Information Technology

30th November 2023. Vol.101. No 22
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7429

final trace for the scenario with the different
alternatives.

In [27], the authors adopt a similar
methodology to that in [24] but with notable
enhancements. They introduce a novel execution
trace format and employ a dynamic decision tree
compression technique. The process is initiated by
documenting the main use cases of the system
based on user experience, resulting in one scenario
per use case. After source code instrumentation,
they execute the system according to the initial
scenario and capture the generated execution trace.
The new execution trace format enables the
identification of conditional statements, potentially
revealing alternative scenarios within the same use
case. Next, the execution trace is analyzed to find
conditional and control statements, which are then
structured as a decision tree and subsequently
reduced. Following this, the reduced tree is
analyzed to identify control statements that users
could alter via actions on the user interface. Source
code analysis aids in identifying the actions
leading to various variants of the initial scenario.
Lastly, for each valid variant uncovered, a new
scenario is designed to generate a new execution
trace, and this entire process is repeated as
necessary.

Labiche et al. proposed combining static and
dynamic analyses to reverse engineer scenario
diagrams [2]. The hybrid analysis aims to reduce
the instrumentation and avoid affecting the
program's behavior. In dynamic analyses, they
instrument the source code with Aspects [28] to
gather essential information without affecting the
program's behavior. In addition, they perform
static analysis to extract further information, such
as the method and class associated with a
particular call and whether the call is located
within a conditional statement or loop.
Consequently, they obtain execution traces and a
Control Flow Graph (CFG) from the dynamic and
static analyses. These are transformed into
scenario diagrams using a model transformation.

3. COMPARATIVE STUDY

We conduct a comparative analysis based on
several criteria to evaluate the presented
approaches. These criteria include the type of
analysis employed, the target UML diagrams, the
supported systems, the supported programming
languages, the level of abstraction they achieve,
the degree of automation integrated into the
process, the instrumentation, and the technique

used in each approach. Table 1 presents the
comparison of the approaches.

We distinguish between static, dynamic, and
hybrid approaches in the analysis type. The target
UML diagrams are primarily sequence and use
case diagrams, specifically focusing on whether
sequence diagrams respect the UML 2.0 standard
use of fragments. The proposed approaches can
support specific systems such as object-oriented,
legacy, or procedural systems. Furthermore, we
have added the supported programming languages.

The critical objective of software reverse
engineering is to generate abstract representations
for the users. Some approaches present the
business aspect of the software by eliminating the
implementation details to give useful information.
We also explore the presence of trace reduction
techniques, which augment abstraction and
enhance diagram readability. Finally, we provide
the degree of automation within these approaches,
whether they necessitate user intervention or
operate automatically.

4. OVERVIEW OF APPROACH

The complexity of extracting behavioral
UML diagrams at a high abstraction level demands
the application of several techniques and analyses.
Therefore, we combined static and dynamic
analysis to extract sequence and use case
diagrams. Our approach begins with dynamic
analysis, enabling extracting information tied to
specific scenarios, which is subsequently enriched
through static analysis. Additionally, we introduce
two techniques to produce concise and valuable
execution traces: trace reduction and merging.
Figure 1 presents our approach overview and the
techniques employed in each step.

The first step in dynamic analysis is
instrumentation, a technique to insert code pieces
into an existing program. This technique is
valuable when monitoring a software's
performance and gaining insights into its runtime
behavior. During this phase, we instrument a
system's source code or bytecode to generate
dynamic information. Reverse engineering
sequence or use case diagrams from a given source
code requires locating the executed elements when
running a scenario such as invocated operations.
Source code instrumentation proves
straightforward and is often favored when we can
access the source code. In contrast, bytecode
instrumentation becomes necessary when the
source code is unavailable.

Journal of Theoretical and Applied Information Technology

30th November 2023. Vol.101. No 22
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7430

Following the instrumentation, the next step
involves running the system depending on the
desired scenarios. This phase benefits significantly
when essential documentation is accessible or
when the system's users are actively engaged.
Their experience allows us to find the system's use

cases and scenarios in such cases. However,
without these resources, the task becomes notably
more challenging. In such scenarios, identifying
the components that require execution to extract
the desired diagrams becomes less straightforward.

Table 1: Comparison Of The Approaches*.

R
eference

A
nalysis T

ype

T
arget U

M
L

 diagram

S
upported system

S
upported language

Abstraction Other criteria

L
evel

B
usiness logic

T
race reduction

A
utom

ation

Instrum
entation

T
echnique used

[2] H SD OO Java +- - - F Aspects CFG

[12] H

SD2.0

OO Java +- - - F Caffeine -

[13] D SD2.0 OO Java -- - - F JTracor -

[14] D UCD OO C++ +- - - F Reflection Call tree

[15] D SD2.0 OO/L Java ++ + + S JavaCC Clustering

[16] D SD OO Java ++ - + S - Interactive
visualization

[18] D SD2.0 OO/L Java +- - + F Customized
debugger

Labeled transition
system

[20] D SD OO Java +- - - F - Pic language

[21] D SD OO Java -- - - F Monitoring
function

-

[8] S SD2.0 OO Java +- - - F Java Parser AST

[10] S SD2.0 OO Fortra
n

+- - - F - Transformation
rules

[11] S SD OO Andro
id

+- - - S - CFG

[24] H UCD OO/L Java ++ + - S JavaCC AST

[27] H UCD OO/L Java ++ + - S The code
instrumentor

Dynamic
decision tree

*: +: yes, presented, or supported / -: no, not presented, or unsupported.
Analysis Type: S: static, D: dynamic, H: hybrid.
Target UML diagram: SD: sequence diagram, SD2.0: sequence diagram with UML2.0 standard, UCD:
use case diagram.
Supported system: OO: object-oriented systems, L: legacy systems.
Abstraction level: --: low abstraction, +-: medium abstraction, ++: high abstraction.
Automation: F: fully automatic, S: semi-automatic.

Journal of Theoretical and Applied Information Technology

30th November 2023. Vol.101. No 22
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7431

 Once the system is executed, the results of the
scenarios are reflected in the execution traces. Each
scenario gives a single execution trace, giving a
single sequence diagram. These execution traces
are files containing a sequence of statements
referred to as events. Each event serves as a
representation of a method call and can be tailored
to display pertinent information. For instance, it can
include details such as the class, method, and
package associated with the call's origin.

The previous steps are part of dynamic
analysis, as they involve collecting information
about the system at runtime. On the other hand,
static analysis collects information offline,
acquiring information by examining the software's
source code. Static analysis serves the purpose of
enhancing the execution traces with additional data.
The common technique to analyze source code is
parsing it into an AST and analyzing it sequentially
to extract the needed information.

The initial execution trace typically contains
an important number of events. Some useless
events, such as implementation details and repeated
events, affect the abstraction level. Besides
abstraction issues, analyzing these traces becomes
difficult because of the massive and unstructured
data. In addition, the resulting abstraction level
remains quite low when generating sequence
diagrams from these initial traces. We must reduce
traces by removing unnecessary events and data to
enhance this abstraction. Furthermore, combining
traces originating from scenarios belonging to the
same use case or business logic becomes
advantageous. Combining traces can be
accomplished through trace merging, which can
follow a pairwise approach, merging two execution
traces simultaneously using bioinformatics
sequence alignment algorithms [16] or employing
advanced techniques such as machine learning for
multiple trace alignments and reduction, enhancing
the overall trace abstraction[29, 30].

In previous work [4], we proposed the
separation of platform-independent concepts from
platform-specific concepts within the architecture-
driven modernization (ADM) process [31]. This
separation results in the extraction of the plat-form-
independent model (PIM) expressed in the UML
class diagram, which presents the static aspect of
the system. They operated under the hypothesis that
platform-related concepts tend to be repetitive or
semi-repetitive in the source code. We can apply a
similar approach to extract important information
from execution traces and create abstract behavioral

UML diagrams that represent the business logic of
the systems.

The final step in this approach is generating
the UML diagrams based on the refined execution
traces.

5. CONCLUSION AND FUTUR WORK

This paper reviewed approaches to recover
sequence and use case diagrams from source code
through reverse engineering techniques. We
categorized the approaches based on their analysis
type, which could be static, dynamic, or a
combination of both. By examining and comparing
these existing techniques, we've identified an
appropriate approach for reverse engineering
diagrams from source code while maintaining a
high level of abstraction. Our proposed approach
effectively combines the capabilities of both static
and dynamic analyses.

Despite the considerable research dedicated to
recovering high-level models, the focus on the
behavioral aspect remains moderate compared to
the attention given to the static aspect. The
outcomes often suffer from a lack of robust
standards guiding the process, leading to results
that may lack clarity and abstractness. As
presented, model-driven approaches hold promise
in overcoming these challenges by abstracting the
process through models and leveraging established
standards such as the ADM proposed by the Object
Management Group (OMG).

One challenge in our approach is addressing
scalability, given its involvement in multiple
intermediate steps that require proper
standardization efforts, including aspects such as
instrumentation and specifying the format of the
execution trace. Therefore, the first step is to
suggest a suitable instrumentation technique that
can be applied to any given system, regardless of
the implementation platform, and to specify the
format of the execution trace based on well-
established work such as [32]. Alternatively, it
should be easy to customize to support multiple
programming languages, such as using the
instrumentation of assembled object code [33]. A
platform-independent instrumentation tool is
necessary because, in our approach, we plan to
reverse engineer behavioral UML diagrams for
multiple implementation platforms. Using different
tools for each programming language would be a
complex and impractical task.

Journal of Theoretical and Applied Information Technology

30th November 2023. Vol.101. No 22
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7432

Figure 1: The Overview of Our Reverse Engineering Approach.

Journal of Theoretical and Applied Information Technology

30th November 2023. Vol.101. No 22
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7433

REFERENCES:

[1] E. J. Chikofsky and J. H. Cross, "Reverse
engineering and design recovery: A
taxonomy," IEEE software, vol. 7, no. 1, pp.
13-17, 1990.

[2] Y. Labiche, B. Kolbah, and H. Mehrfard,
"Combining static and dynamic analyses to
reverse-engineer scenario diagrams," in 2013
IEEE International Conference on Software
Maintenance, 2013: IEEE, pp. 130-139.

[3] M. D. Ernst, "Static and dynamic analysis:
Synergy and duality," in WODA 2003: ICSE
Workshop on Dynamic Analysis, 2003, pp. 24-
27.

[4] I. Khriss and G. Chénard, "Automatic
Discovery of Platform Independent Models of
Legacy Object-Oriented Systems," in
Proceedings of the International Conference
on Software Engineering Research and
Practice (SERP), 2016: The Steering
Committee of The World Congress in
Computer Science, Computer …, p. 3.

[5] G. Chénard, I. Khriss, and A. Salah,
"Towards the automatic discovery of platform
transformation templates of legacy object-
oriented systems," in Proceedings of the 6th
International Workshop on Models and
Evolution, 2012, pp. 51-56.

[6] H. Abdelmalek, G. Chénard, I. Khriss, and A.
Jakimi, "A Bimodal Approach for the
Discovery of a View of the Implementation
Platform of Legacy Object-Oriented Systems
under Modernization Process," in CATA,
2020, pp. 98-111.

[7] I. Khriss, A. Jakimi, and H. Abdelmalek,
"Towards an Effective Implementation of a
Model-Driven Engineering Approach for
Software Development," in 2020 1st
International Conference on Innovative
Research in Applied Science, Engineering and
Technology (IRASET), 2020: IEEE, pp. 1-6.

[8] E. Fauzi, B. Hendradjaya, and W. D.
Sunindyo, "Reverse engineering of source
code to sequence diagram using abstract
syntax tree," in 2016 International Conference
on Data and Software Engineering (ICoDSE),
2016: IEEE, pp. 1-6.

[9] A. Nanthaamornphong, K. Morris, and S.
Filippone, "Extracting uml class diagrams
from object-oriented fortran: Foruml," in
Proceedings of the 1st International Workshop
on Software Engineering for High

Performance Computing in Computational
Science and Engineering, 2013, pp. 9-16.

[10] A. Nanthaamornphong and A. Leatongkam,
"Extended ForUML for automatic generation
of UML sequence diagrams from object-
oriented Fortran," Scientific Programming,
vol. 2019, 2019.

[11] C. Alvin, B. Peterson, and S. Mukhopadhyay,
"Static generation of UML sequence
diagrams," International Journal on Software
Tools for Technology Transfer, vol. 23, pp.
31-53, 2021.

[12] Y.-G. Guéhéneuc and T. Ziadi, "Automated
reverse-engineering of UML v2. 0 dynamic
models," WS Proc. ECOOP, vol. 5, 2005.

[13] R. Delamare, B. Baudry, and Y. Le Traon,
"Reverse-engineering of UML 2.0 sequence
diagrams from execution traces," in Workshop
on Object-Oriented Reengineering at
{ECOOP 06}, 2006.

[14] Q. Li, S. Hu, P. Chen, L. Wu, and W. Chen,
"Discovering and mining use case model in
reverse engineering," in Fourth International
Conference on Fuzzy Systems and Knowledge
Discovery (FSKD 2007), 2007, vol. 4: IEEE,
pp. 431-436.

[15] P. Dugerdil and J. Repond, "Automatic
generation of abstract views for legacy
software comprehension," in Proceedings of
the 3rd India software engineering
conference, 2010, pp. 23-32.

[16] H. Grati, H. Sahraoui, and P. Poulin,
"Extracting sequence diagrams from execution
traces using interactive visualization," in 2010
17th Working Conference on Reverse
Engineering, 2010: IEEE, pp. 87-96.

[17] T. F. Smith and M. S. Waterman,
"Identification of common molecular
subsequences," Journal of molecular biology,
vol. 147, no. 1, pp. 195-197, 1981.

[18] T. Ziadi, M. A. A. Da Silva, L. M. Hillah, and
M. Ziane, "A fully dynamic approach to the
reverse engineering of UML sequence
diagrams," in 2011 16th IEEE International
Conference on Engineering of Complex
Computer Systems, 2011: IEEE, pp. 107-116.

[19] A. W. Biermann and J. A. Feldman, "On the
synthesis of finite-state machines from
samples of their behavior," IEEE transactions
on Computers, vol. 100, no. 6, pp. 592-597,
1972.

[20] M. K. Sarkar and T. Chaterjee, "Reverse
engineering: An analysis of dynamic behavior

Journal of Theoretical and Applied Information Technology

30th November 2023. Vol.101. No 22
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7434

of object oriented programs by extracting
UML interaction diagram," International
Journal of Computer Technology and
Applications, vol. 4, no. 3, p. 378, 2013.

[21] M. Hammad and M. Al-Hawawreh,
"Generating sequence diagram and call graph
using source code instrumentation," in
Information Technology-New Generations:
14th International Conference on Information
Technology, 2018: Springer, pp. 641-645.

[22] Y.-G. Guéhéneuc, R. Douence, and N.
Jussien, "No Java without caffeine: A tool for
dynamic analysis of Java programs," in
Proceedings 17th IEEE International
Conference on Automated Software
Engineering, 2002: IEEE, pp. 117-126.

[23] T. Ziadi, L. Helouet, and J.-M. Jézéquel,
"Revisiting statechart synthesis with an
algebraic approach," in Proceedings. 26th
International Conference on Software
Engineering, 2004: IEEE, pp. 242-251.

[24] P. Dugerdil and P. Jossi, "A legacy systems
use case recovery method," in In: ICSOFT
2010: proceedings of the 5th International
Conference on Software and Data
Technologies, Athens, Greece, July 22-24.
Setúbal: SciTePress, 2010, vol. 2, p. 232-237,
2010.

[25] E. Gamma, R. Johnson, R. Helm, R. E.
Johnson, and J. Vlissides, Design patterns:
elements of reusable object-oriented software.
Pearson Deutschland GmbH, 1995.

[26] D. W. Binkley and K. B. Gallagher, "Program
slicing," Advances in computers, vol. 43, pp.
1-50, 1996.

[27] P. Dugerdil and D. Sennhauser, "Dynamic
decision tree for legacy use-case recovery," in
Proceedings of the 28th Annual ACM
Symposium on Applied Computing, 2013, pp.
1284-1291.

[28] J. D. Gradecki and N. Lesiecki, Mastering
AspectJ: aspect-oriented programming in
Java. John Wiley & Sons, 2003.

[29] T.-D. B. Le and D. Lo, "Deep specification
mining," in Proceedings of the 27th ACM
SIGSOFT International Symposium on
Software Testing and Analysis, 2018, pp. 106-
117.

[30] B. Afshinpour, R. Groz, M.-R. Amini, Y.
Ledru, and C. Oriat, "Reducing Regression
Test Suites using the Word2Vec Natural
Language Processing Tool," in
SEED/NLPaSE@ APSEC, 2020, pp. 43-53.

[31] OMG. (2007) Architecture-Driven
Modernization Task Force. Available:
https://www.omg.org/adm

[32] C. T. Pereira, L. I. Martínez, and L. M. Favre,
"TRACEM-Towards a standard metamodel
for execution traces in model-driven reverse
engineering," in XXVIII Congreso Argentino
de Ciencias de la Computación (CACIC)(La
Rioja, 3 al 6 de octubre de 2022), 2023.

[33] T. Kempf, K. Karuri, and L. Gao, "Software
instrumentation," Wiley encyclopedia of
computer science and engineering, pp. 1-11,
2007.

