ISSN: 1992-8645
 VARIABLE LENGTH PACKET CIPHER USING CATALAN SEQUENCE

V. UMA KARUNA DEVI KAKARLA ${ }^{\mathbf{1}}$, CH. SUNEETHA ${ }^{\mathbf{2}}$
${ }^{1}$ Research Scholar, GITAM University, Department of Mathematics, Visakhapatnam, India
${ }^{2}$ Associate Professor, GITAM University, Department of Mathematics, Visakhapatnam, India
${ }^{1}$ ukakarla@gitam.in, ${ }^{2}$ schivuku@gitam.edu

Abstract

In recent times, the world is transforming to digital communication from than physical communication. Secure data transfer has become essential and challenging task all over the world. Cryptography is the science of secure communication of sensitive data via public channel. Encryption algorithms use mathematical techniques to create confusion and non-comprehensible to unintended persons. Applied number theory and cryptography have inextricable attachment. Many tools of elementary and applied number theory have vast applications in cryptography. The present paper aims at designing a variable length packet cipher using Catalan number sequence. Sequence of Catalan numbers forms variable size matrices when arranged in a special pattern. The interesting fact is that all these matrices are symmetric having determinant one. These matrices are used in the present algorithm for encryption and decryption.

Key Words: Catalan Number Sequence, Encryption, Decryption, Matrices.

1. INTRODUCTION

The modern Cryptography has significance to research in order to transfer data securely between two or more entities, especially when the data transferred classified as a critical or important data. Even though there are numerous encryption algorithms exist, it is always doubtful. So, it is necessary to introduce a secure and hack proof method to cyber security. The proposed work represents a new algorithm to encrypt and decrypt data securely with the benefits of catalan number sequences, Matrix Diagonal Function to generate variable length packet ciphers. Many cryptographic algorithms mostly based on specialized branch of mathematics, the number theory. Computational number theory especially is the most important field in information security.

A Cryptographic primitive which uses fixed size input is called Fixed Input Length (FIL) primitive. All the conventional packet ciphers like AES, DES operate on a fixed size input. Fixed size packet ciphers are easily vulnerable to linear and differential cryptanalysis, because of fixed permutation table and fixed same rounds of encryption. To avoid this, construction of new primitives using Variable Length Input (VIL) have been developed in the history. The situation where the encryption algorithm deals with varying packet lengths, presenting the property of having same
plain text and cipher text size is usual in internet and wireless applications.

1.1 Catalan Numbers

Catalan numbers were discovered by a Belgian mathematician Eugene Catalan. It is a sequence of natural numbers denoted by C_{n}.

The formula for number sequence is

$$
C_{n}=\frac{2 n!}{\mid n-1) \mid n!}=\frac{1}{n+1}\binom{2 n}{n} n \geq 0
$$

Catalan number using Euler`s triangulation problem can also be defined as

$$
\begin{aligned}
& C_{0}=1 \quad C_{1}=1 \\
& C_{n}=\frac{4 n-2}{n+1} C_{n-1} \text { for } n \geq 2
\end{aligned}
$$

For example
If $n=20, C_{n}=6564120420$
The Catalan number sequence for first 10 natural numbers are given below

Table 1: Catalan number sequence

S.No.	n	C_{n}
1	1	1
2	2	2
3	3	5
4	4	14
5	5	42

ISSN: 1992-8645	www.jatit.org		
	6	6	132
	7	7	429
	8	8	1,430
9	9	4,862	
10	10	16,796	
both security and integrity of the transmission. The			
proposed Encryption algorithm encrypts given plain			
text based on the catalan number sequences,			
symmetric matrices and MDF(Matrix Diagonal			
Function). The proposed Decryption algorithm			
produces plain text for the cipher text by the same			
steps as enciphering with inverse matrix			
multiplication..			

1.2 Ubiquitous Nature of Catalan Numbers

Like Fibonacci and Lucas numbers Catalan numbers have ubiquitous nature. Catalan sequences have many applications in Combinatorics in finding the number of lattice paths of mountain ranges (Dyck paths), in formation of binary trees, in parenthesizing problem and in abstract algebra and sports. Polygon triangulation and Catalan numbers have several applications in cryptography. They are used to design encryption algorithms, cryptography key generation algorithms in the history of cryptography.Interesting problem on Catalan numbers One interesting problem on Catalan numbers is that the sequences of Catalan numbers can be arranged in the form of matrices in a special pattern. The Catalan number sequences are $1,1,2$, $5,14,42,132,429, \ldots$

These number sequences can be arranged as $2 \times 2, \quad 3 \times 3,4 \times 4$ matrices as
$\left[\begin{array}{ll}1 & 2 \\ 2 & 5\end{array}\right]$
$\left[\begin{array}{ccc}1 & 2 & 5 \\ 2 & 5 & 14 \\ 5 & 14 & 42\end{array}\right]$
$\left[\begin{array}{cccc}1 & 2 & 5 & 14 \\ 2 & 5 & 14 & 42 \\ 5 & 14 & 42 & 132 \\ 14 & 42 & 132 & 429\end{array}\right] \quad$ and so on.

All the matrices are symmetric and having the determinant one. This special property of Catalan numbers is used to develop variable length packet cipher in the present paper. All these matrices are symmetric with degrees of freedom 3, $5,7,9$ and so on. That is 3 elements are required to describe the first (2×2) matrix, 5 elements require to describe second (3×3) matrix, 7 elements to (4 x 4) matrix and so on.

In this work, we developed proposed Encryption and Decryption algorithms to balances

2. LITERATURE SURVEY

Bellare and Rogway [1] introduced the conversion of FIL packet cipher to VIL packet cipher. They proposed a new technique for constructing packet ciphers with arbitrary length input using Parsimonious Pseudo Random functions and schemes. Later, number of other papers were published in this direction. Ruby and Rackoff [2] showed the conversion of n bit Pseudo Random function into packet cipher, operating on 2 n bits. The following work by Naor and Reingold [3] was conversion of packet cipher operating on n bits to packet cipher $C^{*} n$ bits for constant $C \geq 1$. Sarvar Patel et.al [4] constructed a variable input packet cipher which is an improvement of Bellare and Rogway. K.C. Syamala Bai et.al [5] suggested variable size packet encryption using dynamic key mechanism.

Muzafer saracevic [6] et.al. Proposed cryptographic key generation algorithm of polygon triangulation and Catalan numbers in three phases. Faruk selimovic[7] et.al. applied Delaunay triangulation and Catalan objects in steganography. In that chapter the authors used image encryption technique D.Sravan kumar et.al.[8] proposed a novel encryption scheme based on catalan numbers. Muzafer Saracevic[9] et.al. suggested method in biometric identification process in application of triangulation combination with face recognition technique.

Moses Liskov et.al [10] proposed the construction of tweakable packet ciphers. Christot Beierle et.al. [11] developed a lightweight tweakable packet cipher with efficient protection against DFA attack.
V. U. K. D. Kakarla, C. H. Suneetha[12] applied special property of Fibonacci sequences to generate positioned stream cipher.

Kalika Prasad, Hrishikesh Mahato [13] introduced generalized Fibonacci matrices in HineHill ciphers. They have also established a key exchange matrix method with the help of multinacci sequences under prime modulo.

Katha chanda [14] studied security analysis and strength of passwords. In that chapter the author carried out different tests to evaluate the

| ISSN: 1992-8645 | www.jatit.org | E-ISSN: 1817-3195 |
| :--- | :--- | :--- | resistance of the password against brute force lengths $4,9,16,25,36$ and so on, equal to the sizes attacks.

Sravana Kumar et.al [15] suggested password encryption scheme based on elliptic curve cryptography over finite fields. Amounas et-al [16] designed Novel Encryption Schemes Based on Catalan Numbers. Higgins P.M.[17] explained how different kinds of numbers arose and why they are useful. Koscielny C et-al [18] proposed Theoretical Foundations and Practical Applications. In that chapter, the author introduced some basic mathematical concepts necessary to understand the design of modern cryptographic algorithms and protocols.

Considering the literature on variable block ciphers and application of Catalan numbers in cryptography the present technique is designed to overcome the difficulties arose in the abovementioned techniques.

PROPOSED SCHEME

As explained in the previous section, Catalan number sequences can be arranged as symmetric matrices in a special pattern as
$C_{1}=\left[\begin{array}{ll}1 & 2 \\ 2 & 5\end{array}\right]$
$\mathrm{C}_{2}=\left[\begin{array}{ccc}1 & 2 & 5 \\ 2 & 5 & 14 \\ 5 & 14 & 42\end{array}\right]$
$C_{3}=\left[\begin{array}{cccc}1 & 2 & 5 & 14 \\ 2 & 5 & 14 & 42 \\ 5 & 14 & 42 & 132 \\ 14 & 42 & 132 & 429\end{array}\right] \quad$ and so on.

These matrices are used as keys for encryption and decryption along with a secret agreed upon random function. Prior to the transmission, the legitimate users agree upon to use a random Matrix Diagonal Function (MDF) of diagonal elements of the cipher packet matrices.
$\operatorname{MDF}\left[a_{11}, a_{22}, a_{33} \ldots.\right]=a_{11}+a_{22}+a_{33}+\ldots+[3$ or 5 or $7 \ldots$] depending on the key matrices used for encrypting plain text packets. $a_{11}, a_{22}, a_{33} \ldots$ are the diagonal elements of the matrices $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}$ and so on; (a_{11}, a_{22}) are diagonal elements of first C_{1} with degree of freedom $3 ;\left(a_{11}, a_{22}, a_{33}\right)$ of second cipher packet matrix with degree of freedom 5; (a_{11}, a_{22}, $\mathrm{a}_{33}, \mathrm{a}_{44}$) of third cipher packet with degree of freedom 7 and so on.

The whole message is divided into plain text packets $\mathrm{M}_{1}, \mathrm{M}_{2}, \mathrm{M}_{3} \ldots$ of different sizes with
of square matrices C_{1}, C_{2}, C_{3} and so on. The characters are coded to ASCII equivalent decimals.

3.1 Encryption

The following steps are involved in encryption process.

1. First data packet matrix is multiplied with C_{1}, to yield the cipher packet matrix S_{1} (say)

$$
\mathrm{S}_{1}=\mathrm{C}_{1} \mathrm{M}_{1}=\left[\begin{array}{ll}
S_{11} & S_{12} \\
S_{13} & S_{14}
\end{array}\right]
$$

2. $\operatorname{MDF}\left(\mathrm{S}_{11}, \mathrm{~S}_{14}=\mathrm{S}_{11}+\mathrm{S}_{14}+3=\mathrm{n}_{1}\right.$ (say)
3. Second key matrix C_{2} is multiplied with n_{1}
4. Second plain text packet matrix M_{2} is multiplied with $\mathrm{n}_{1} \mathrm{C}_{2}$ yielding second cipher packet matrix S_{2} (say)

$$
\mathrm{S}_{2}=\mathrm{n}_{1} \mathrm{C}_{2} \mathrm{M}_{2}=\left[\begin{array}{lll}
S_{21} & S_{22} & S_{23} \\
S_{24} & S_{25} & S_{26} \\
S_{27} & S_{28} & S_{29}
\end{array}\right]
$$

5. Compute $\mathrm{n}_{2}=\mathrm{S}_{21}+\mathrm{S}_{25}+\mathrm{S}_{29}+5$
6. Compute $\mathrm{S}_{3}=\mathrm{n}_{2} \mathrm{C}_{3} \mathrm{M}_{3}$

Same iteration of encryption is done for all plain text packets.

Here Matrix Diagonal Function (MDF) acts as secret key (private key). Enciphering of variable input length packets contributes easier migration path. The entire data is enciphered in the same way by considering packets with variable lengths, coded to equivalent ASCII characters that constitute the Cipher text. As the block size is varying, the whole plain text and cipher text sizes are same unnecessary involvement of adversary can be reduced and code reuse can be maintained. To add on more security for the packets, the present cipher text packet is concatenated if the succeeding packet key using a random MDF.

3.2 Decryption

As the present Methodology is Symmetric enciphering technique (Private Key Cryptography), deciphering follows the same steps as enciphering with inverse matrix multiplication. For the first packet decryption,

$$
\mathrm{S}_{1}=\mathrm{C}_{1} \mathrm{M}_{1} \Rightarrow \mathrm{M}_{1}=\mathrm{S}_{1} \mathrm{C}_{1}^{-1}
$$

Compute $\mathrm{n}_{1}=\mathrm{S}_{11}+\mathrm{S}_{14}+3$.
Second packet deciphering is $\mathrm{M}_{2}=\frac{1}{n_{1}} \mathrm{~S}_{2} \mathrm{C}_{2}{ }^{-1}$,

		¢intit
ISSN: 1992-8645	www.jatit.org	E-ISSN: 1817-3195
For third packet, $\mathrm{M}_{3}=\frac{1}{n_{2}} \mathrm{~S}_{3} \mathrm{C}_{3}{ }^{-1}$	where $\mathrm{N}_{2}=\mathrm{S}_{21}+\mathrm{S}_{25}+\mathrm{S}_{29}+5$ and so on.	

Table 2: Encryption/Decryption Chart

Calculate $\mathrm{S}_{2}=\mathrm{M}_{2} \mathrm{n}_{1} \mathrm{C}_{2}$
$30^{\text {th }}$ November 2023. Vol.101. No 22
(C) 2023 Little Lion Scientific

ISSN: 1992-8645	www.jatit.org					E-ISSN: 1817-3195
S3 $(\bmod 256)=\left[\begin{array}{cccc\|c\|}100 & 171 & 194 & 131 \\ 190 & 28 & 3 & 83 \\ 159 & 6 & 57 & 237 \\ 166\end{array}\right.$	10	10	0.316			

 encryption schemes, when an adversary tries to decrypt one packet, all the packets in that session will be compromised because of uniform length of the packets and same encryption key for all the packets. But, in the present scheme the packet size differs, plain text and cipher text sizes are identical. Also encryption/decryption keys are different for different packets. By varying packet length leakage of the packets can be avoided to some extent. Here the key matrices $\mathrm{C} 1, \mathrm{C} 2, \mathrm{C} 3 \ldots$, the matrices of Catalan sequences arranged in a special pattern are public and known to everyone. So, a random function; Matrix Diagonal Function (MDF) is an agreement between the legitimate users (secret key). To add more security previous cipher packet is concatenated with the present key packet, used for encrypting the present plain text packet. So, the whole cipher will not be damaged even though one packet is compromised. The execution time (encryption/decryption) for different size messages are recorded on a machine with 1GB RAM and 1.6 GHz processor speed on Win XP platform using MATLAB14, given in table 2. Fig. 1 shows the execution time plot for different sizes of data.

Table 3: Encryption/Decryption Time Graph

Encryption Algorithm	Average time (m sec) for packets of different size		
	$\mathbf{8 4}$ Bytes	$\mathbf{2 5 6 B y t e s}$	$\mathbf{5 1 2}$ Bytes
AES (For 1 round)	48.2	46.2	43.4
DES (For 1 round)	37.3	49.3	52.3
3DES (For 1 round)	46.2	50.1	53.3
Present technique	30.6	71.3	69.4

S.No.	Size of the data in KB	Encryption/Decryption Time in Milli Seconds
1	1	0.0306
2	2	0.04216
3	3	0.0813
4	4	0.1224
5	5	0.1452
6	6	0.1932
7	7	0.2031
8	8	0.2438
9	9	0.2052

ISSN: 1992-8645	www.jatit.org	E-ISSN: 1817-3195

studies on variable block ciphers and application of Catalan numbers in cryptography for cryptography operations to provide the security during the data transmission.

CONCLUSION

In the present work, we propose Encryption and Decryption algorithms. The proposed Encryption algorithm resulted an output of variable length packet ciphers using catalan Number sequences. The proposed Decryption algorithm was itmplemented on the variable size ciphers which were produced as an output of plain text. When comparing the results of proposed work to existing a gorithms, we found that proposed Encryption and Decryption algorithms have been effective in minimizing the average execution time of packets of different sizes.The present algorithm balances bpth security and integrity of the transmission. The strength of the cipher is primarily based on the secret key used. The present algorithm uses varying of keys, the keys can be changed frequently and

Figure 2: Comparison graph with conventional techniques

From the above Table2 and Figure 2, it is clear that the execution time for the present algorithm is slightly higher than one round of encryption of AES, DES and 3DES in all the three cases of different data size. So, when compared for 16 rounds of AES, DES and 3DES the present execution time very low. Though AES, DES and 3DES encrypt the data in 16 rounds, these are fixed block cipher modes, vulnerable to linear and differential crypt analysis.

With the added benefit of faster execution and less computational overhead, the current variable packet cipher is more secure against all sorts of active and passive attacks. In cloud computing packet encryption is a real time application, where the whole message packet is encrypted with the same session key.

When the third party succeeds to decrypt the packet, the whole message can be compromised. As the packet size is variable, the whole message cannot be damaged though it is partially compromised. Even the partial compromise of the message can be restricted by changing the random function MDF time to time.

The proposed algorithms work on catalan number sequences, Matrices and MDF to produce the variable length packet ciphers .Evaluated
suddenly to maintain perfect secrecy of the cipher. So, the present variable packet cipher is equivalent to the conventional block ciphers in all aspects of security and integrity with lesser execution time and relatively less computational risk.

REFERENCES

[1] M. Bellare and P. Rogaway. On the construction of Variable-Input-Length ciphers. In Proc. Fast Software Encryption, 1999.
[2] Luby and C. Rackoff. How to construct pseudorandom permutations from pseudorandom functions. SIAM J. Computing, 17(2):373-386, April 1988.
[3] Naor and O. Reingold. On the construction of pseudo-random permutations: Luby-Rackoff revisited. J. of Cryptology, 12:29-66, 1999. Previously in STOC 97.
[4] Sarvar Patel, Zulfikar Ramzan and Ganapathy S. Sundaram Efficient Constructions of Variable-Input-Length Packet Ciphers, H. Handschuh and A. Hasan (Eds.): SAC 2004, LNCS 3357, pp. 326-340, 2005. c SpringerVerlag Berlin Heidelberg 2005
[5] K.C.Shyamala Bai ,M.V.Satyanarayana , P.A. Vijaya Variable Size Packet Encryption using Dynamic-key Mechanism (VBEDM), International Journal of Computer Applications (0975 - 8887) Volume 27No.7, August 2011
[6] M Saracevic, A Selimi, F Selimovic Generation of cryptographic keys with
ISSN: 1992-8645 \quad www.jatit.org
algorithm of polygon triangulation and catalan [18] Koscielny C., Kurkowski M., Srebrny M.:
numbers- Computer Science, 2018
[7] Selimovi'c, F.; Stanimirovi'c,P.; Sara cevi'c, M.; Krtolica, P.Application of DelaunayTriangulation and Catalan Objects inSteganography. Mathematics 2021, 9,1172.
[8] D. Sravana Kumar, CH. Suneetha, A. Chandrasekhar / International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com Vol. 2, Issue 2,Mar-Apr 2012, pp.161-166
[9] Saračevič M., Elhoseny M., Selimi A., Lončeravič Z. (2021) Possibilities of Applying the Triangulation Method in the Biometric Identification Process. In: Bilan S., Elhoseny M., Hemanth D.J. (eds) Biometric Identification Technologies Based on Modern Data Mining Methods. Springer, Cham.
[10] Liskov, M., Rivest, R.L. \& Wagner, D. Tweakable Block Ciphers. J Cryptol 24, 588-613 (2011)
[11] Beierle, C., Leander, G., Moradi, A., \& Rasoolzadeh, S. (2019). CRAFT: Lightweight Tweakable Block Cipher with Efficient Protection Against DFA Attacks. IACR Transactions on Symmetric Cryptology, 2019(1), 5-45.
[12] V. U. K. D. Kakarla, C. H. Suneetha, Information and Communication Technology for Competitive Strategies (ICTCS 2022), Lecture Notes in Networks and Systems 623, (199-211)2022.
[13] Kalika Prasad, Hrishikesh Mahato arxiv:2003.11936v1[CS.CR]25 March2020
[14] Katha Chanda,'Password Security: An Analysis of Password Strengths and Vulnerabilities" International Journal of Computer Network and Information Security, 2016, 7, 23-30 Published Online July 2016 in MECS
[15] D. Sravana Kumar, C. H. Suneetha, and P. Sirisha. "New password embedding technique using elliptic curve over finite field", http://doi.org/10.1007/978-981-13-6001-5_15
[16] Amounas F., El-Kinani E.H., Hajar M.: "Novel Encryption Schemes Based on Catalan Numbers", International Journal of Information and Network Security, vol. 2(4), pp. 339-347, 2013.
[17] Higgins P.M.: "Number Story: From Counting to Cryptography", Springer Science and Business Media, Berlin, Germany, 2008.

