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ABSTRACT 
 

Visual attribution (VA) methods play a crucial role in tuberculosis (TB) research by providing valuable 
insights into disease patterns and aiding in diagnostic interpretation. The advent of generative adversarial 
network (GAN)-based VA methods has gained significant attention from researchers due to their ability to 
generate fine-grained feature maps that accurately reflect the location of lesions. These methods localize 
lesions by converting chest X-ray (CXR) images containing lesions into normal CXR images and analyzing 
the differences between the two. However, current methods only perform surface-level transformations, 
neglecting the vital information of whether lesions are present. Moreover, the transformation process assigns 
equal weights to the entire image, without specifically prioritizing the regions with a higher probability of 
lesions occurrence. In this study, a novel framework is proposed, namely the class activation mapping-guided 
tuberculosis visual attribution generative adversarial network (TBVA-GAN). This innovative model 
leverages the informative regions derived from class activation mapping to effectively guide the GAN in 
prioritizing the transformation of these crucial areas. Moreover, to guarantee the precision of TB localization, 
an auxiliary TB detection model is incorporated, ensuring that the converted CXR images are devoid of TB 
pathology. By employing this additional verification step, the accuracy of TB localization is significantly 
enhanced. The proposed TBVA-GAN in this study achieves promising VA results on the TBX11K dataset, 
surpassing existing GAN-based TB VA models. 
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1. INTRODUCTION  
 

Deep learning techniques have demonstrated a 
remarkable ability to automatically learn and extract 
complex patterns from medical images, leading to 
significant breakthroughs in various fields such as 
skin cancer diagnosis [1], lung nodule detection [2], 
and hypertrophic cardiomyopathy recognition [3].  
Progress has also been achieved in the field of 
tuberculosis diagnosis with this technology, 
surpassing even radiologists in detecting active 
pulmonary tuberculosis [4]. This advancement holds 
the potential to assist medical practitioners more 
effectively in making diagnostic decisions [5]. 
However, the opacity of deep learning models, often 
referred to as the black box nature, presents a 
significant obstacle to their acceptance and adoption 
by radiologists [6]. The lack of interpretability and 
explain ability hampers radiologists' confidence in 

the decision-making process and raises concerns 
regarding clinical accountability.  

 
Visual attribution (VA) techniques have emerged 

as a promising tool in the realm of medical imaging 
[7][8][9], affording researchers and radiologists 
invaluable discernment into the intrinsic patterns 
and distinguishing characteristics that guide 
diagnostic determinations. VA is a task that involves 
localizing and visualizing evidence of a specific 
category within an image, thereby highlighting the 
areas that contribute most significantly to the final 
diagnostic outcome. This technology is widely 
applied in medical image analysis, particularly in 
weakly supervised localization and segmentation 
[10][11][12][13][14]. 

 
The traditional methods of VA are based on 

gradient-based approaches [15], where the gradients 



Journal of Theoretical and Applied Information Technology 

30th November 2023. Vol.101. No 22 
© 2023 Little Lion Scientific  

 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
7276 

 

of the model's output with respect to a specific class 
are computed to identify the regions in the image 
associated with that class. This approach is known 
as class activation mapping (CAM)-based methods 
which have been widely used in medical image 
analysis applications, such as lung cancer detection 
[16], diabetic retinopathy classification [17], covid-
19 prediction [18], tuberculosis (TB) detection and 
visual explanation [19]. However, the heat maps 
generated by this method are based on lower-
resolution feature maps and can suffer from miss 
alignments, resulting in poor performance in fine-
grained localization tasks. As shown in Figure 1(a), 
the red region indicates areas with a high probability 
of TB presence. However, due to the low resolution 
of its feature map, this red region extends beyond the 
lung region, resulting in an imprecise localization of 
the TB location. To address this issue, the 
researchers put forward GAN-based methods [7][8]. 

 
GAN-based methods transform abnormal images 

into healthy images and analyze the differences 
between the two to locate the lesion regions. Figure 
1(b) showed the changemap, which has the same 
resolution as the input raw image, indicating the 
differences between abnormal and healthy images. 
Brighter regions in the changemap correspond to the 
lesion areas. However, when applying this 
technology to TB detection [9], the contrast between 
light and dark areas in the changemap is not clearly 
discernible, posing challenges for researchers and 
physicians in accurately identifying the lesion area 
with the naked eye. Besides, selecting an optimal 
threshold value to extract the lesion region becomes 
a challenging task. In addition to the above 
problems, the GAN-based TB detection method can 
only ensure that the transformed images appear 
healthy at a superficial level, with the presence of 
TB remaining unknown. As a result, the resulting 
changemap lacks some critical TB information, 
making it inaccurate to use for TB localization. 
Moreover, a further limitation of this method is that 
when converting TB-infected images to normal 
ones, the transformation weight is uniformly 
distributed across the entire image, without any 
special consideration given to areas containing TB. 
This deficiency could significantly impact the 
quality and reliability of the transformed images, 
particularly in areas where the concentration of TB 
is high. 
 

In response to the aforementioned issues, this 
study introduces a class activation mapping-guided  

 
 

Figure 1: Two Commonly Used VA Methods 

 
tuberculosis visual attribution generative adversarial 
network (TBVA-GAN) model. This model exhibits 
the following advantages: 

 
(a) Compared to CAM-based methods, the 

proposed TBVA-GAN model is capable of 
generating fine-grained changemaps that are 
consistent with the resolution of the original image, 
enabling more precise localization of TB regions. 

 
(b) In the process of transforming TB-infected 

CXRs to normal CXRs, this model enhances the 
weight of TB region conversion guided by CAM. As 
a result, the generated changemap exhibits a more 
pronounced contrast between light and dark areas, 
resulting in clearer and well-defined contours of the 
TB region. Consequently, the TB-affected area can 
be visually observed with the naked eye. 

 
(c) In contrast to the manual threshold setting 

required in MDVA-GAN [9], this study proposes a 
threshold estimation algorithm guided by CAM, 
which can automatically extract the TB mask. 

 
(d) When employing conventional methods to 

convert TB-infected CXRs to normal CXRs, the 
resulting normal CXRs may appear normal 
superficially but cannot guarantee the absence of TB 
within. The algorithm proposed in this study ensures 
that the converted normal CXR is free from TB, 
thereby ensuring the accuracy of the changemap. 

 
2. LITERATURE REVIEW 

 
Visual analysis plays a crucial role in automated 

diagnosis, providing significant support for medical 
professionals' diagnostic procedures. Currently, two 
mainstream approaches dominate VA research: 
CAM-based methods and GAN-based methods. 
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2.1 Class Activation Mapping (CAM)-based 
Methods 

 
 
CAM enables the visualization of image regions 

contributing significantly to specific classification 
outcomes within convolutional neural networks 
(CNNs). Grad-CAM [15] and its variants 
[20][21][22] have made improvements by 
employing gradient-based computations and have 
found successful applications in medical image 
analysis. For example, research [23] has integrated 
deep Bayesian optimization and Grad-CAM to 
develop an interpretable AI framework for 
diagnosing COVID-19. This framework assists 
radiologists in swiftly identifying lesion locations. 
However, Grad-CAM exhibits limitations. Due to 
the computational efficiency requirements, 
convolutional neural networks often employ pooling 
operations, which reduce the resolution of the 
extracted feature maps. Consequently, heat maps 
based on low-resolution feature maps suffer from 
low resolution and alignment issues, leading to 
suboptimal performance in fine-grained image 
localization. Similar challenges are encountered in 
tuberculosis diagnosis using CAM-based methods. 
For instance, research [24][25] employed CAM-
based methods to locate lesion areas in tuberculosis 
cases. However, due to the diverse nature of 
tuberculosis types, especially in the case of cavitary 
pulmonary tuberculosis, lesions exhibit small spatial 
extents in CXR, and the low resolution of heat maps 
often results in out-of-range localizations, which can 
disrupt radiologist diagnoses. Hence, in tuberculosis 
diagnosis, CAM-based methods are constrained by 
the limitations of heat map resolution and can only 
provide approximate lesion localization, falling 
short in achieving fine-grained precision. 

 
2.2 Generative Adversarial Network (GAN)-
based Methods  

 Due to the limitations of CAM, researchers have 
attempted to use GAN to address VA problems. 
GAN-based methods transform images containing 
lesions into healthy images, highlighting the 
differences between the two to generate a change- 
map that accurately reflects the location of the 
lesions. Baumgartner developed a novel VA 
technique based on Wasserstein GAN (WGAN), 
which was able to accurately localize lesion regions 
in real data from patients with mild cognitive 
impairment (MCI) and alzheimer's disease (AD) 
[26]. Similarly, VANT-GAN [8] utilized a similar 
approach to transform abnormal images into normal 
images and localize lesion regions by highlighting 

the differences between the two. However, both of 
these methods do not specifically emphasize the 
regions with a higher probability of containing 
lesions during image transformation. Instead, they 
assign uniform weights to the entire image. This 
results in excessive noise in regions without lesions. 
Recently, Nawaz proposed a multi-domain VA GAN 
(MDVA-GAN) [9] that can perform VA tasks for 
multiple diseases and achieve good results on 
CheXpert and TBX11K datasets. Nevertheless, the 
study did not specify how to extract the 
corresponding disease mask from the changemap.  
Furthermore, ANT-GAN [7] can transform 
abnormal images into normal images while focusing 
on the lesion regions without affecting the healthy 
parts. Nevertheless, the resulting "normal" image 
may visually resemble a typical image but does not 
guarantee the absence of lesion-related information 
within it. Fortunately, TUNA-NET [27] has 
introduced a solution to detect the presence of 
lesion-related information in the transformed 
images.  TUNA-NET, by incorporating an auxiliary 
function for lesion detection, preserves lesion-
related information when transforming adult 
pneumonia images into pediatric pneumonia images. 
Research [28] accomplishes image transformations 
in the latent space, thereby avoiding pixel-level 
conversions and maintaining superior semantic 
consistency. 

 
Based on the analysis of the aforementioned 

literature, there is still a need for improvement in the 
following areas: (a) In the process of image 
transformation, specific attention should be given to 
regions with a high likelihood of containing lesions, 
rather than applying uniform weighting across the 
entire image. (b) To ensure the accuracy of the 
changemap, it is essential to guarantee the absence 
of lesion-related information in the transformed 
normal images. (c) A method capable of 
automatically extracting masks from a changemap 
should be designed. 

 
3. TUBERCULOSIS VISUAL 
ATTRIBUTION GENERATIVE 
ADVERSARIAL NETWORK (TBVA-GAN) 

 
This section will discuss the proposed 

methodology for this work. Figure 2 shows the 
architecture of TBVA-GAN and each part will 
discuss in the next subsection. 

 
3.1 Definition of Elements in TBVA-GAN 

This section will be explained the definitions in 
figure 2. TBVA-GAN is improved based on Cycle-
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GAN [29] and Grad-CAM [15]. Based on figure 2, 
real_x୘  is the CXR with TB (The red regions in 
real_x୘ indicate the TB areas). G୘ଶ୒ is a generator 
to produce a changemap that depicts the location of  

Figure 2:  The Overall Framework of TBVA-GAN

TB from the CXR image which contains TB. The 
fake_x୒  is obtained by subtracting changemapଵ 
from real_x୘ . The purpose of this process is to 
minimize the presence of TB information in 
fake_x୒ , thereby generating a normal-looking 
CXR image. G୒ଶ୘  is another generator to 
generate a TB-looking CXR image from a normal 
CXR image. D୘ is the discriminator of the GAN, 
capable of distinguishing whether the input CXR 
is real_x୘  or fake_x୘ . Similarly, D୒  serves as 
another discriminator to determine whether the 
input CXR is real_x୒ or fake_x୒.  CAM refers to 
the heat map produced by Grad-CAM [15].   It is 
used to guide the generated changemap to focus 
more on the regions with the highest probability 
of TB occurrence. 

 
3.2 Loss function of TBVA-GAN 

The objective of this architecture is to obtain a 
changemap that is capable of effectively 
visualizing the precise location of TB. This 
changemap can be represented as changemapଵ =
real_x୘ − fake_x୒. To obtain this changemap, a 
comprehensive objective loss function was 
devised in this study, consisting of five 
components, as expressed by the following 
equation:  

 
𝐿𝑜𝑠𝑠 = ℒୋ୅୒ + ℒେ୷ୡ୪ୣ + ℒ୍ୢୣ୬୲୧୲୷ + 𝜆ଵℒେ୪ୱ + 𝜆ଶℒେ୅୑ 

(1) 
 
Among them, the role of ℒୋ୅୒ is to generate a 

visually similar image fake_x୒  that resembles 
real_xே . ℒେ୷ୡ୪ୣ ensures that the only difference 
between fake_x୒  and real_xே  is the style, while 
the overall content remains consistent. 
ℒ୍ୢୣ୬୲୧୲୷ guarantees that if the input image is 
real_x୒, the resulting transformed image remains 
real_x୒ , thereby ensuring an empty changemap 
that does not reflect the presence of TB. ℒେ୪ୱrefers 
to the classification loss, which ensures that 
fake_x୒ not only visually resembles real_x୒ but 
also maintains consistency in terms of the 
presence or absence of TB information. ℒେ୅୑ 
aims to guide the generated changemap to focus 
more on the regions with the highest probability 
of TB occurrence. The following sections provide  
detailed explanations for each of the 
aforementioned components. 
 
3.3 Generative Adversarial Network (GAN) 

Loss 
The full name of GAN is generative adversarial 

network, which consists of a generator (G୘ଶ୒) and 
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a discriminator (D୒). For example, in Figure 2, 
when taking a CXR containing TB (real_x୘) as 
input, the role of the generator G୘ଶ୒ is to generate 
a changemap ( changemapଵ = G୘ଶ୒(real_x୘) ), 
and it can reflect the position of TB. The 
generated normal CXR is fake_x୒. The role of the 
discriminator D୒ is to distinguish the real normal 
CXR real_xୌ  from the generated normal CXR 
fake_x୒ . The generator and the discriminator 
fight against each other and evolve with each 
other to ensure that the generator G୘ଶ୒ can obtain 
a more realistic normal CXR fake_x୒ and a more 
accurate changemap. This paper is based on 
Cycle-GAN and uses a bidirectional conversion 
model, in addition to G୘ଶ୒ and D୒, there are also 
G୒ଶ୘  and D୘  to accomplish the conversion of 
normal CXR real_x୒  to CXR containing TB 
fake_x୘ . We assume that the observed samples 
are drawn from their respective distributions, with 
real୶೅

~𝑝்(𝑥)  and real୶ಿ
~𝑝ே(𝑥) . 𝔼  represents 

the mathematical expectation. The GAN loss 
function can be expressed as: 

 
ℒୋ୅୒  = 𝔼௣೅

ൣln 𝒟்൫𝑟𝑒𝑎𝑙௫೅
൯൧ + 𝔼௣ಿ

ൣln 𝒟ே൫𝑟𝑒𝑎𝑙௫ಿ
൯൧

+𝔼௣ಿ
ቂln ൬1 − 𝒟் ቀ𝐺୒ଶ୘൫𝑟𝑒𝑎𝑙௫ಿ

൯ቁ൰ቃ

+𝔼௣೅
ቂln ൬1 − 𝒟ே ቀ𝑟𝑒𝑎𝑙௫೅

− 𝐺୘ଶ୒൫𝑟𝑒𝑎𝑙௫೅
൯ቁ൰ቃ

(2) 
 
3.4 Cycle Loss 

To ensure that the only difference between 
real_x୘  and fake_x୒  is the style, while 
maintaining consistent overall content, it is 
required that the rec_x୘  generated by fake_x୒ 
closely resembles real_x୘ . The cycle loss is 
introduced as below: 

 
ℒେ୷ୡ୪ୣ = 𝔼௣ಿ

ቂቛ𝐺୘ଶ୒ ቀ𝐺୒ଶ୘൫𝑟𝑒𝑎𝑙௫ಿ
൯ቁ − 𝑟𝑒𝑎𝑙௫ಿ

ቛ
ଵ

ቃ +

𝔼௣೅
ቂቛ𝐺୒ଶ୘ ቀ𝑟𝑒𝑎𝑙௫೅

− 𝐺୘ଶ୒൫𝑟𝑒𝑎𝑙௫೅
൯ቁ − 𝑟𝑒𝑎𝑙௫೅

ቛ
ଵ

ቃ
 

(3) 
 
3.5 Identity Loss 

G୘ଶ୒ is functional in the conversion of a CXR 
containing TB real_x୘  to normal CXR fake_x୒ . 
However, if the input of G୘ଶ୒ is a normal CXR  
real_x୒ , the output should be an empty 
changemap. Likewise, if the input of G୒ଶ୘  is a 
CXR containing TB real_x୘ , the output should 
remain unchanged. Therefore, identity loss is 
proposed with the following expression. 
 

ℒidentity = 𝔼௣೅
[‖𝐺ேଶ்(𝑟𝑒𝑎𝑙_𝑥்) − 𝑟𝑒𝑎𝑙_𝑥்‖ଵ] +

𝔼௣ಿ
[‖𝐺்ଶே(𝑟𝑒𝑎𝑙_𝑥ே)‖ଵ]

    

(4) 
 
3.6 Classification Loss 

Using GAN, we can generate realistic fake_x୒ 
that may appear to be similar to real_x୒ , but 
crucial information may be missing, such as the 
presence of TB. For instance, the discriminator 
D୘  can distinguish between real image real_x୘ 
and generated image fake_x୘ , but it cannot 
guarantee whether fake_x୘  contains TB. 
Similarly, the discriminator D୒  can differentiate 
between real image real_x୒ and generated image 
fake_x୒ , but the presence of TB in fake_x୒ 
remains unknown. Creating similar-looking 
images is meaningless. We want the generated 
images not only to be visually similar but also to 
remain consistent in terms of the presence or 
absence of TB. To achieve this, we trained an 
auxiliary model ℱ  to detect TB on a labeled 
dataset. In the experimental section, the auxiliary 
model will be introduced. 
 

ℒୡ୪ୱ = 𝔼௣೅
ln ቂ1 − ℱ ቀ𝑟𝑒𝑎𝑙௫೅

− 𝐺୘ଶ୒൫𝑟𝑒𝑎𝑙௫೅
൯ቁቃ

+𝔼௣ಿ
ቂln ൬ℱ ቀ𝐺୒ଶ୘൫𝑟𝑒𝑎𝑙௫ಿ

൯ቁ൰ቃ
    

(5) 
 
3.7 Class Activation Mapping (CAM) Loss 

Grad-CAM is capable of generating attention 
maps, as demonstrated in the CAM section of  
Figure 2. The intensity of red color in the attention 
map corresponds to a higher likelihood of TB 
occurrence. When the input is a CXR containing 
TB, G୘ଶ୒  can generate a changemap, then the 
attention map generated by Grad-CAM can guide 
the transformation of G୘ଶ୒. G୘ଶ୒ focuses on the 
red region of the attention map and tries to keep 
the rest of the region unchanged. Then CAM loss 
can be expressed as: 

ℒେ୅୑ = 𝔼௣೅
൤ቛ൫𝟏 − 𝐌஼஺ భ

൯ ⊙ ቀ𝐺୘ଶ୒൫𝑟𝑒𝑎𝑙௫೅
൯ቁቛ

ଶ

ଶ
൨

+𝔼௣ಿ
ቈቛ൫𝟏 − 𝐌஼஺ெమ

൯ ⊙ ൬𝐺୘ଶ୒ ቀ𝐺୒ଶ୘൫𝑟𝑒𝑎𝑙௫ಿ
൯ቁ൰ቛ

ଶ

ଶ

቉
 

(6) 

      The ⊙  represents element-wise 
multiplication and 𝟏 is an all-ones matrix of the 
same size as the input image. 𝐌஼஺ெ  denotes the 
attention map obtained by Grad-CAM.  The 
region is represented by 𝟏 − 𝐌஼஺ெ  indicates the 
area outside the red region, and changes in this 
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region should be minimized as much as possible. 
If G୘ଶ୒  tries to modify the part of the attention 
map outside the red area, it will be penalized with 
the corresponding L2 loss. 
 
4.  EXPERIMENT 
 

This study was conducted on a computer 
system equipped with an Intel(R) Core(TM) i7-
7700K CPU, 16GB RAM, and a NVIDIA 
GeForce RTX 3090 24GB GPU. The operating 
system was Ubuntu 20.04.3 LTS, with PyTorch 
version 1.12.1 and Python version 3.9.1 
employed. After conducting extensive 
experiments, we observed that the optimal 
performance was achieved when the value of the 
parameter λଵ in Equation 1 was set to 1.5, and the 
parameter λଶ was set to 2. 
 
4.1 Dataset 

The dataset used in this paper is TBX11K, a 
large dataset containing a total of 11,200 CXR 
images with 4 categories: healthy, active TB, sick 
non-TB, and latent TB. Each CXR with TB was 
marked with a box as ground truth by an 
experienced radiologist. 

 
TBX11K was divided into three datasets: 

training set, validation set, and test set. The test 
set was used for competition validation and no 
corresponding annotation was provided, so only 
data from the training set validation set were used 
in this study. In addition, only two types of data, 
healthy and active TB, were used in this study, 
with a total of 3800 healthy CXR and 630 active 
TB data. 

 
4.2 The Auxiliary Tuberculosis Recognition 
Model 

The auxiliary TB recognition model ℱ can be 
employed to detect the presence of TB in the 
generated images. If the input image x contains 
TB, then ℱ(𝑥) = 1, otherwise, ℱ(𝑥) = 0 . This 
model utilized the pre-trained VGG16 [30] as the 
baseline model, modified the classification layer, 
and fine-tuned it on a new dataset. In order to 
ensure the balance of the data, 630 active TB CXR 
and 630 healthy CXR were used in the TB 
recognition model. Among them, the 630 healthy 
CXRs were randomly selected from all 3800 
healthy CXRs. To ensure the diversity of the data, 
preprocessing operations including random 
horizontal flipping and random angle rotation 
were applied to the pictures, with the rotation 
angles of 45º, 90º, 135º, 180º, 225º, 270º, 315º. All 

the pictures were resized to 224*224. The dataset 
was divided into a training set and a testing set 
with 70% and 30% respectively. After testing, the 
model achieved an accuracy of 99.21% and a 
recall rate of 99.21%. Meanwhile, the 
visualization of CXR using Grad-CAM also relies 
on the model. 

 
4.3 Comparison of the Changemap of Each 

Model 
Figure 3(a) displays the original CXR images 

with the TB region marked by a blue box as the 
ground truth. Figure 3(b-d) depicts the 
changemaps generated by MDVA-GAN, ANT-
GAN, and TBVA-GAN, respectively. ANT-GAN 
was reproduced on the TBX11K dataset using the 
method provided by the author. The changemap 
represents the extent of change from TB CXR 
images to CXR images of healthy individuals, 
with brighter areas indicating more pronounced 
changes. If the brighter regions align with the TB 
region in the ground truth, it suggests that the 
model primarily focuses on the TB lesion. By 
employing a reasonable threshold to extract the 
brighter regions from the changemap, the 
approximate location of TB can be determined. 
This process is further elaborated in Figure 4, and 
detailed explanations will follow in subsequent 
experiments. The changemaps produced by 
MDVA-GAN and ANT-GAN exhibit subtle 
variations in brightness, necessitating attentive 
scrutiny to discern the brighter regions. 
Additionally, the outlines and boundaries of these 
brighter areas lack clarity. In contrast, the 
changemap generated by TBVA-GAN exhibits a 
distinct contrast in brightness, allowing the naked 
eye to readily perceive the outlines of the brighter 
regions. 

Figure 3(e) shows the heatmaps generated by 
Grad-CAM, where the areas closer to red indicate 
a higher probability of containing TB. From the 
images, it is evident that the red regions possess 
well-defined outlines and clear boundaries, 
aligning closely with the TB locations indicated in 
the ground truth. Conversely, the green regions 
exhibit less distinct boundaries, making it 
challenging to establish a threshold for extracting 
that specific area. Furthermore, the green regions 
noticeably extend beyond the TB region marked 
in the ground truth, rendering the extraction of 
such regions less meaningful. 

Therefore, from a qualitative analysis 
perspective, TBVA-GAN can provide more 
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precise and distinct localization of TB lesion areas 
compared to other models, thereby offering better 
diagnostic support for medical practitioners. 

4.4 Determination of Threshold Value 
The second row of images in Figure 4 depicts 

the binary mask extracted by Grad-CAM, which 
only extracts the red areas from the heatmap, as 
this region has the highest probability of TB 
occurrence and its boundary is more clearly 
defined. It can also be observed that although the 
mask generated by Grad-CAM misses some TB 
regions marked in the ground truth, it still exhibits 
a general consistency with the position of TB in 
the ground truth, and the overlapping areas 
occupy a significant portion of the mask. 
Therefore, the brighter pixels in the change map 
constitute a considerable proportion within the 
mask, and this characteristic can be leveraged to 
analyze the histogram and estimate an appropriate 
threshold. Figure 5 presents an example of the 
histograms for the Grad-CAM region and the 
ground truth region in the changemap. It can be 
observed from the histograms that their 
distributions are relatively consistent, with the 
brighter pixels occupying the majority. Extensive 
experiments have indicated that selecting a 
threshold at 97% of the pixel value at the peak of 
the histogram yields the best results. 

 

 
Figure 5: Determination of the threshold value 

 
4.5 Comparison of the Binary Masks of Each 
Model 

After obtaining the threshold, the changemap is 
binarized, resulting in a preliminary binary image 
mask. However, this mask often contains a 
significant amount of noise that requires further 
processing. Subsequently, by applying erosion 
(with a 2x2 kernel) and dilation (with a 5x5 
kernel) operations, the final mask can be obtained. 
The second to fifth rows of Figure 4 respectively 
display the VA mask of Grad-CAM, MDVA-
GAN, ANT-GAN, and TBVA-GAN. Comparing 
the masks obtained from these models reveals that 
the mask generated by MDVA-GAN exhibits the 

poorest performance. It fails to capture certain TB 
areas marked in the ground truth and inaccurately 
labels non-TB regions as TB. ANT-GAN shows 
an improvement compared to MDVA-GAN, as it 
no longer misses areas with TB presence. 
However, it still erroneously labels regions 
without TB as positive. TBVA-GAN 
demonstrates the best performance, with its 
generated mask showing a higher degree of 
alignment with the actual location of TB, and 
exhibiting the smallest error. 
 
4.6 Quantitative Results 

Based on the binary images, masks extracted by 
each model can be selected using a red bounding 
box. The TB region annotated in the ground truth 
is shown as a blue box. The ability of each model 
to locate the TB region can be measured using the 
intersection over union (IoU) and Dice score. The 
results of IoU and Dice for MDVA-GAN, Grad-
CAM, ANT-GAN, and Grad-CAM are shown in 
Table 1.  

 
We also evaluated the performance of TBVA-

GAN models with and without the inclusion of 
ℒେ୪ୱ and ℒେ୅୑  constraints, and the results are 
presented together in Table 1. The results show 
that both the ℒେ୪ୱ  and ℒେ୅୑  contributed to the 
improvement of TBVA-GAN's effectiveness. 
This demonstrates that TBVA-GAN is proficient 
at focusing on regions with a high probability of 
TB occurrence, and the resulting normal CXR 
does not contain TB-related information, thus 
yielding a more precise changemap. Moreover, 
this reaffirms the effectiveness of the proposed 
method for mask extraction from the changemap 
as described in this study. Incorporating both ℒେ୪ୱ 
and ℒେ୅୑  concurrently, the TBVA-GAN 
achieved IoU and Dice scores of 38.3% and 
55.2%, respectively, surpassing the performance 
of all the models listed in Table1. This suggests 
that TBVA-GAN outperforms other models in 
accurately localizing TB lesion regions, thereby 
offering improved support for radiologists in 
diagnosis. 

 
Table 1: Performance of TB Localization for Each 
Model 

Methods IoU Dice 
MDVA-GAN [9] 25.4% 40.4% 
Grad-CAM [15] 33.1% 49.6% 
ANT-GAN [7] 35.8% 52.8% 

TBVA-GAN (ℒେ୪ୱ) 32.7% 49.3% 
TBVA-GAN (ℒେ୅୑) 36.1% 52.9% 

TBVA-GAN (ℒେ୪ୱ + ℒେ୅୑) 38.3% 55.2% 
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5. DISCUSSION 
 
     This study compared the performance of 
several models on the TBX11K dataset for VA. 
The results indicate that MDVA-GAN merely 
performs a superficial transformation between 
CXRs containing TB and normal CXRs, resulting 
in a poor conversion quality due to the loss of 
crucial TB presence information. ANT-GAN, on 
the other hand, focuses on the transformation of 
regions containing TB, leading to a significant 
improvement over MDVA-GAN. TBVA-GAN 
leverages the coarse positional information of TB 
provided by Grad-CAM and incorporates an 
auxiliary model for TB presence determination, 
achieving favorable results in TB VA. However, 
TBVA-GAN introduces multiple constraint 
terms, making training convergence difficult and 
requiring extensive parameter tuning for effective 
testing. 
 
6. CONCLUSION 

     This study presents a TB VA generative 
adversarial network guided by Class Activation 
Mapping (TBVA-GAN). The performance of 
TBVA-GAN was tested on TBX11K dataset, 
surpassing current TB VA models with an IoU 
score of 38.3% and a Dice score of 55.2%.  

    Compared to traditional CAM-based models, 
this model is capable of generating fine-grained 
changemaps that reflect the precise locations of 
TB, enabling more accurate TB localization. In 
contrast to existing GAN-based models, this 
model leverages CAM to guide the conversion 
process from CXRs with TB to normal CXRs, by 
assigning higher weights to the region indicated 
by CAM. However, due to the lower resolution of 
CAM, the provided lesion localization 
information may exhibit misalignment and 
introduce potential errors. In the future, it could 
be worthwhile to explore the incorporation of 
multiple CAM resolutions in combination to 
enhance the accuracy of lesion localization by 
considering various scales. Furthermore, this 
research introduces an automatic mask extraction 
method from the changemap, which has been 
extensively validated for its effectiveness. In 
addition, TBVA-GAN leverages an auxiliary TB 
detection model to ensure that the transformed 
normal images are free of TB-related information, 
resulting in a more precise changemap. However, 
this reliance on the accuracy of the auxiliary TB 
detection model, especially when introducing new 

data, highlights the need to enhance the model's 
generalization capabilities to maintain favorable 
outcomes. 
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Figure 3: Comparison of The Changemaps Generated By Each Model  
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Figure 4: Comparison of The Binary Masks of Each Model 


