
Journal of Theoretical and Applied Information Technology

30th November 2023. Vol.101. No 22
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7173

ABC ALGORITHM AS AN ENHANCEMENT FOR
MQO PROCESS IN BIG DATA

MANAL A. ABDEL-FATTAH 1, SAYED ABDELGABER 2, S. A. NASR 3, WAEL MOHAMED 4
1,2,3,4 Faculty of Computers and Artificial Intelligence, Information system department,

 Helwan University, Cairo, Egypt

E-mail: 1 Manal_8@hotmail.com, 2 sgaber14@gmail.com ,
 3 safaa.anwer.nasr@gmail.com, 2 waelmohamed@fci.helwan.edu.eg

ABSTRACT

Multi-query optimization is the task of generating an execution plan for a collection of multiple queries. In
recent years, big data querying has become an important field because it provides better data understanding
and valuable insight. This paper studies the ability to enhance the process of multi-query using one of the
swarm algorithms. Join operation is the most time-consuming operation, the study focuses on join operation
and illustrates the effect of the join execution order on the time. Many techniques can be used to decide the
optimal order to execute a set of join operations, swarm algorithms are proposed in this research to scan all
possible solutions and choose the optimal one. The paper provides a model for the process, examines it on
the big data set, and compares it with previous work. The experiment results that applying artificial bee
colony algorithm on multi-query optimization enhances the time of execution.
Keywords: Multi-Query Optimization (MQO), Query Execution Plan (QEP), Artificial Bee Colony (ABC)

1. INTRODUCTION

Many organizations own a large amount of
data, and they tend to analyze it to extract data, gain
business benefits, and collect information about
customers and their habits.

Big data querying allows businesses to
quickly and easily search their data. There are huge
chunks of data that aren't relevant to the business, and
a lot of that data is useful. It is a hard process even
for experts to decide what is valuable for the business
and what isn't from this sheer amount of information
available. Querying data can separate irrelevant data
and let experts focus on useful data. Quiring huge
amounts of data is not a normal quiring process, the
first challenge of big data querying is that big data is
very big, with millions of records about customers'
interests, website visitors, conversion rates, churn
rates, financial data, and so much more. This multi-
query can be duplicated, and conflicted, that cause
overhead from large files resulting from every single
query.

Performing multiple queries on big data is
necessary to extract valuable insights and
information from the data. With big data, there is
often too much information to analyze in one query,
and breaking it down into smaller queries can help to
identify patterns, trends, and correlations that may
have been missed in a single query. Additionally,
multiple queries can help to refine the analysis and

ensure the accuracy of the results. By performing
multiple queries, organizations can gain a more
comprehensive understanding of their data and make
informed decisions based on the insights gleaned
from the analysis.

Traditional data analysis methods have
certain limitations. For example, they may not be
able to handle large volumes of data, they may not be
able to process data in real-time, and they may not be
able to handle unstructured data. Additionally,
traditional methods may not be able to identify
complex relationships and patterns in the data.

Many researchers [1] [2] [3] [4] [5] handle
this problem on a relational database by so many
techniques, such as the grouping technique in [6], the
Shared Predicate-based technique [7], the greedy
algorithm [8], and different swarm algorithms
particle swarm [9], such as bee algorithm [10] [11]
[12], ant colony [13] [14] and many other techniques
than optimize multi-query.

In our research [15], the comparison
between different techniques concludes that the
artificial bee colony (ABC) algorithm is the most
efficient swarm algorithm for dealing with MQO.

In this research, MQO was applied to a big
dataset and solved using the ABC algorithm. The
research mainly focuses on certain feature of big data
which is volume. The research illustrates the ability
of enhancing the process of querying bigdata. The
research also focuses on using one of swarm

Journal of Theoretical and Applied Information Technology

30th November 2023. Vol.101. No 22
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7174

algorithms to perform this enhancement. The
enhancement intended in this research is the
increasing of the time needed to execute the multi-
query. The swarm algorithm used in this research
determined based on a comparison conducted
between different swarm algorithms [15] to find the
most appropriate one for our case. The experiment
performed on big data set to evaluate algorithm and
compare it with previous works. Large scale data is
our scope, other big data features are out of the scope
of this research.

The rest of this paper is organized as
follows. We start in section 2 with formal definitions
of multi-join optimization, why we need to optimize
multi-query, and why we focus on join operation. We
discuss ABC Algorithm as a solution for MQO on
big data in Section 3, the technique has been
discussed, and pseudocode has been illustrated. In
Section 4, the experiment has been conducted,
discussed, and the results have been summarized.
Also, a comparison has been conducted between
multi-query ABC technique and technique used in
[16]. Finally, Section 5 concludes the paper
2. MULTI-JOIN OPTIMIZATION

The optimization of the query response
strategy is an area where improvements can be made.
This is thus a major step in the processing of queries.
Processing a query involves a variety of activities
that are required to retrieve information from the
database. These activities contain the queries
translation into suitable expressions that can be
implemented at the file system’s level since these
queries are delivered to the DBMS in a high-level
language, query optimization steps, transformations,
and query evaluation. Multi-join Query optimization
is a complex problem, not only in the SQL server but
in any other relational database system.

In case of a single query at a time, the
executor generates a temporary file to hold the result
of the query. If we do the same on the multi-query,
we will create excessive overheard, time-consuming,
and unnecessary files in many cases because these
files will be used as input to the next operation. This
is where the importance of generating the query
execution plan that corresponds to algorithms for a
combination of operations in a query. For example,
we have 4 relations with 3 join operations, as shown
in Figure 2. Instead of creating three temporary files,
we apply the plan directly and get just one result file.
The size of the file that holds the result increases as
the data volume is increased. So, dealing with huge
files in big data forces us to use a technique to reduce
duplication or any overhead that becomes extremely
big.

If the user inputs a query, the query is first
analyzed by the parser for syntax errors, and if there
is no error, the query is converted to a standard
format, query graph [9]. Next, the query optimizer is
taking this query graph as an input and setting up
different query execution planes for that query
according to which it will be best performed by
selecting optimal query execution plans among all
these. This optimal query plan shall then be
transferred to a query execution engine in order to
determine its performance and return the query result

Figure 1: Query Evaluation And Answering Process And
The Role Of ABC Algorithm In This Process

Individual queries are transformed into
relation algebra expressions (algebra trees) and are
represented as query graphs. After that, a query
optimizer has selected an appropriate Physical
Method for implementing each relational Algebra
operation and thus produced the query execution
plan. For all equivalent QEPs, the optimizer selects a
query execution engine with the lowest cost output
to perform an operation on that plane and returns
answers to the user. The process showed in Figure 1
2.1 The order of executing join operation

Many factors affect the optimization
process depending on the procedural behavior of
executing the query such as the shape of the join
query and the order of the join operation. This effect
is increased when applying the join process to big
data. Also, if data is distributed over multiple sites,
the allocation of data and the arrangement of queries
among these sites affect the optimization process.
The most influential factor is the order of join
operation of the involved relations in the query. The
join operation is one of the most time-consuming
operations in query processing.

Journal of Theoretical and Applied Information Technology

30th November 2023. Vol.101. No 22
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7175

Figure 2: Different Shapes Of Relational Algebra Trees

In relational database systems, each query
execution plan can be represented by a processing
tree where the leaf nodes are the base relations, and
the internal nodes represent operations. Different tree
shapes have been Considered: left-deep tree, right-
deep tree, and bushy tree. Figur.2 explains tree
structures of relational operators associated with the
multi-join query R1∞R2 ∞R3∞R4.

Search space can be restricted according to
the nature of the execution plans and the applied
search strategy. The nature of execution plans is
determined according to two criteria: the shape of the
tree structures (i.e. left-deep tree, right-deep tree, and
bushy tree) and the consideration of plans with
Cartesian products.

For every relational algebra tree shape that
contains n of relations involved in the join operation,
there is n! of different possible arranges. In our
example that contains only 4 relations we have 24
arranges for every algebra tree shape, the optimizer
has to handle 72 different arranges and find the most
optimal one.
2.2 Evaluating QEP

The solution space of the MJQO problem is
the set of all possible join processing trees for a query
graph (Query Execution Plans). The goal is to find
out the join ordering tree that has a minimal cost in
the mentioned solution space at the best time.

Each relation in the query graph required
parameters which are: n(r): number of tuples in
relation r; v (A, r): number of distinct attributes as in
relation r. The formula to calculate the cost of a join
tree execution is [9].

Figure 3: Model For Multi-Query Enhancement Process

Journal of Theoretical and Applied Information Technology

30th November 2023. Vol.101. No 22
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7176

For the inner node, if r and s are relations
represented by respect timely by the left child and the
right child of t, and C is a common attribute group in
relation, then n (t) is the size result relation of the join
operation of tow relation r and s; which is equal to
the number of rows having similar values of attribute
common in both relation, r and s.
2.1 Nature of data

Our scope in this research will be large-
scale structured data. The nature of data is an
important factor, that makes it possible to conduct
the join operation on it. Existing of common columns
between tables is a main restriction.

Figure 3 shows the phases of the technique
to apply ABC algorithm on large-scale dataset.
Examining data is a pre-step to find a common
column between tables and collect metadata that
interred to the ABC algorithm as an input. ABC
algorithm creates the solution area and suggests an
optimal plan, then the error function tests this plan
and retrieves approval plan to be executed.
3. ABC ALGORITHM AS A SOLUTION

As discussed, our goal is to find the most

optimal QEP that answers the query with a minimum
time of execution. The proposed approach to handle
this problem is to apply a swarm algorithm on a
solution set to find the optimal solution. According
to our research [11], the most suitable swarm
algorithm is Artificial Bee Colony (ABC).

The Artificial Bee Colony (ABC) is one of
the swarm algorithms, which is proposed to be
applied on MQO. The beauty of ABC lies in the
selection and neighbor production mechanism. This
becomes the prime reason behind the efficient
working of ABC. It works well for both local and
global optimization.

Any bee that is currently exploiting a food
source shall be known to have been employed. The
worker bees manipulate the food source, keeping the
information about the food source in the hive and
sharing it with the observer bees. The observer bees
will wait for information to be provided by employed
bees on their discovery of food sources, while scout
bees would seek out new feeding areas close to the
hive.
3.1 Mapping the algorithm

The algorithm started by randomly
generating a solution set which is represented as a set
of vectors in our case instead of nodes in the original
algorithm. Every employed bee is associated with a
single solution and evaluates its quality by
calculating the fitness function (3), then sharing this
information with onlookers. Onlookers in turn

compare the solutions they get information about by
using the probability function.

Algorithm1: Modified Artificial Bee Colony

1 Initialization

2

The population: a set of vectors
containing the number of records in
every relation

3 Set NumIter: number of iterations

4 Iteration ← 0

5 Improvement

6 do while (iteration < NumIter)

7 for i=0 #Employee

8 NewQEP ← select random QEP

9 NewError ← NewQEP error

10 if NewError < BestError

11 BestError ← NewError

12 BestQEP ← NewQEP

13 else

14 Find random QEP

15
Determine probability for

NewQEP 𝑝 =
௧௦௦

∑ ௧௦௦

16 end for

17 for i=1 # onlookers

18
bestSol ← solution with a higher
probability

19
RandomSol ← apply a random
solution

20 if (RandomSol < BestSol)

21 BestSol ← RandomSol

22 end if

23 end for

24

Scout bee checking for exploited
solutions and replace them with new
solutions

25 iteration++

26 end do

Journal of Theoretical and Applied Information Technology

30th November 2023. Vol.101. No 22
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7177

Where k is a random number defined as
k∈(1, 2, …, s), k≠0, s is the number of solutions in
the solution area which is equal to the factorial of the
number of relations involved in the query,

Model for multi-query enhancement
process and f(xi) is the fitness function calculated for
every solution (equation 1), and it measures the
quality of this solution located (xi) by calculating the
time of execution and the error of this solution.

Definition-- the ith solution represented as
xi= (xi1, xi2, …, xid), where d is the number of
relations involved in the query.

Onlooker bees will be able to determine
from the scans which of them comes up with the best
solution based on the earlier equation. With every
comparison the onlooker performed, they also
calculate the error and compare it with the best
solution's error, the error of now solution = (fitness
of my solution – the best fitness cached). This way
the agents can recognize if they are far or near to the
optimal solution. ABC algorithm pseudocode is in
Algorithm1.

4. EXPERIMENTAL RESULTS AND

DISCUSSION

In This section we will describe the nature

of the dataset used for testing and evaluating our
algorithm, the computational resources used to
implement and apply the technique, and discuss the
results we get.

The proposed technique has been evaluated
by applying it to a big dataset, with about 9 million
total number of records, 12GB total size, and 14
tables. The data is about fitness and daily activity
hours and their effect on heart rate, calorie loss,
nature of sleep, and so on.
4.1 Experimental Setup

The experiment in this research was
conducted on a computer with processor coreI7-4810
MQ 2.8 GHz and 16 GB RAM. ABC algorithm has
been implemented using Python programming
language (pyspark library) on Anaconda Navigator
(Spyder) software.

The algorithm is designed to optimize a
large number of QEPs answers multi-query over a
big dataset with a minimum time of execution. The
agents in this algorithm search, construct, and
evaluate the different join orders and retrieve the
order that has a minimum response time. The
algorithm receives queries and metadata about tables
involved in these queries as input and then retrieves
the optimal answer to be executed.

4.2 Discussion
Table1. and Figure4. Summarize the results

of performing different numbers of multi-query
processes from 4 to 10 joins. Applying the ABC
algorithm enhances the stability of execution time,
the huge difference in the size of data doesn't make a
huge swing in the time of execution. On the contrary,
when conducting ordinary join, we observed that the
size of data makes a significant effect on execution
time. Figure3. Shows the time of executions in
milliseconds in both cases. We can see that applying
ABC gets close results even with the increasing
number of joins, that accordingly, increased size of
data resulted.

TABLE1: Results of applying ABC join and performing
ordinary join on large-scale dataset

N
o. of Q

uery

N
o, of Iterations

Ordinary Join ABC Join

B
est

A
verage

B
est

A
verage

4 6 69304 97970 7503 7756

6 10 87057 160400 7780 7866

10 10 202777 315146 8329 8778

Journal of Theoretical and Applied Information Technology

30th November 2023. Vol.101. No 22
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7178

Figure 4: The best and the worst time of execution in case
of applying 4 join operations

In this experiment, every multi-query has
been conducted many iterations. In figure 4 for
example we get the best and the worst time of
execution, and then in figure 5 results of all iterations
have been summarized in best and average time of
execution.

The first multi-query examined was
contains 4 queries, and it has been conducted six
times. The ordinary join execution costs in average
97 seconds, and the best time recorded was 69
seconds. The 6 queries in best cases were executed
in 87 seconds, and the 10 queries execution arrived
to more than 300 seconds to get the results.

On other hand, when using ABC algorithm
on the same data set and the same set of queries, we
get results between 7 and 8.7 seconds only. Also, the
stability of execution time is an observed point when
applying ABC algorithm. Because of the technique
used on ABC algorithm that based on finding the
shortest way to execute the given query with no need
to save a huge temporary file that slow the process of
executing query.

Figure 5: The effect of data volume on join
operation execution efficiency

4.3 Comparison with previous work
In [12], the authors propose to improve

multi-join query process by using parallel computing
in two phase optimization strategy. The paper
discusses the optimization of multi-join queries,
which are important operations in data management
and integration systems. Multi-join queries
aggregate data from multiple tables or data sources
to provide material for applications such as data
integration, data sharing, and decision support. The
efficiency of multi-join queries is crucial for real-
time and effective use of data, and is affected by
various factors such as the number of joins, the
amount of data, the join selectivity, the execution
order of joins, the storage location of data, and the
resources, strategies, and methods used for parallel
optimization. The paper focuses on using GPU
technology to optimize multi-join queries and
proposes a multi-phase optimization strategy and
optimization methods for each stage. The
experimental results show that the proposed
optimization algorithm improves the efficiency of

Journal of Theoretical and Applied Information Technology

30th November 2023. Vol.101. No 22
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7179

multi-join queries, especially in the case of high load
and complex join queries, achieving higher
throughput than previous optimization algorithms.

 The authors apply their method to the TPC-

DS benchmark. TPC-DS data set consists of 24
tables with more than 19 million records. To evaluate
the ABC algorithm, we apply it to the same data set
to compare the time of executing under a fixed factor
(queries and dataset). The experiment selects queries
with more join operations (than other operations).
From results summarized in figure 6, ABC algorithm
provide an enhancement on execution time.

The comparison performed in three sizes of
multi-query, which are 6 queries, 8 queries, and 10
queries.

Figure 6: The execution time of join operation on the
same data under ABC algorithm and [12] technique

Analyzing figure 6 results that in case of 6
queries the enhancement was 18.8%, in case of 8
queries the enhancement was 17.9%, and in case of
10 queries the enhancement was 18% better than
paper [12].

5. CONCLUSION

The paper proposed (Artificial Bee Colony)
ABC algorithm as an enhancement for (Multi-Join
Query Optimization) MJQO process applied on big
data. The paper discussed the ABC algorithm and
modeled it on the MJQO process.

The importance of ordering in executing the
join operation has been discussed, and the equations
used to evaluate QEPs have been previewed. Also,
the paper proposed a model for the process of
applying the ABC Algorithm to enhance the time of
executing multi-query, and it introduced the
algorithm that described the process.

The multi-query ABC algorithm has been
applied to a big dataset and compared its
performance with conducting the same queries on
ordinary join. The results showed a large difference
in the performance of the two techniques in favor of
the proposed technique. The main improvement is
the enhancement of quiring process on bigdata set
which was usually performed on relational database
only.

The paper also compared the proposed
technique with previous work in the same area. The
comparison results that ABC accomplished good
enhancement in the time of execution.

This research doesn't debate other bigdata
features, so authors recommend for future work
applying the same technique to other features of big
data doesn't tackle in this research. They recommend
for example, enhancing distributed data querying in
case of applying multi-query on distributed datasets.

References

[1] A. Jonathan, A. Chandra, and J. Weissman,

“Multi-query optimization in wide-area
streaming analytics,” SoCC 2018 - Proc. 2018
ACM Symp. Cloud Comput., pp. 412–425,
2018, doi: 10.1145/3267809.3267842.

[2] A. K. Z. Al Saedi, R. B. Ghazali, and M. B. M.
Deris, “An efficient multi join query
optimization for DBMS using swarm
intelligent approach,” 2014 4th World Congr.
Inf. Commun. Technol. WICT 2014, pp. 113–
117, 2014, doi: 10.1109/WICT.2014.7077312.

[3] H. A.Hanafy and A. M. Gadallah, “Ant
Colony-Based Approach for Query
Optimization,” Data Min. Big Data, pp. 425–
433, 2015, doi: 10.1007/978-3-319-40973-3.

[4] A. K. Z. Alsaedi and M. M. D. Rozaida
Ghazali, “An Efficient Multi Join Query
Optimization for Relational Database

0 100 200 300 400

6 queries

8 queries

10 queries

execution time in msec

nu
m

be
r o

f q
ue

rie
s

6
queries

8
queries

10
queries

[12] results 250 280 305

our results 203 230 250

[12] results our results

Journal of Theoretical and Applied Information Technology

30th November 2023. Vol.101. No 22
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7180

Management System Using Two Phase
Artificial Bess Colony Algorithm,” Lect. Notes
Comput. Sci. (including Subser. Lect. Notes
Artif. Intell. Lect. Notes Bioinformatics), vol.
9429, pp. 443–453, 2015, doi: 10.1007/978-3-
319-25939-0.

[5] A. K. Z. Alsaedi, R. Ghazali, and M. M. Deris,
“An efficient multi join query optimization for
relational database management system using
two phase artificial bess colony algorithm,”
Lect. Notes Comput. Sci. (including Subser.
Lect. Notes Artif. Intell. Lect. Notes
Bioinformatics), vol. 9429, pp. 213–226, 2015,
doi: 10.1007/978-3-319-25939-0_19.

[6] L. Chen, Y. Lin, J. Wang, H. Huang, D. Chen,
and Y. Wu, “Query grouping–based multi-
query optimization framework for interactive
SQL query engines on Hadoop,” Concurr.
Comput. , vol. 30, no. 19, pp. 1–16, 2018, doi:
10.1002/cpe.4676.

[7] R. Sahal, M. H. Khafagy, and F. A. Omara,
“Comparative study of multi-query
optimization techniques using shared
predicate-based for big data,” Int. J. Grid
Distrib. Comput., vol. 9, no. 5, pp. 229–240,
2016, doi: 10.14257/ijgdc.2016.9.5.20.

[8] P. Roy, S. Seshadri, S. Sudarshan, and S.
Bhobe, “Efficient and extensible algorithms for
multi query optimization,” SIGMOD Rec.
(ACM Spec. Interes. Gr. Manag. Data), vol. 29,
no. 2, pp. 249–260, 2000, doi:
10.1145/335191.335419.

[9] S. Lalwani and H. Sharma, “Multi-objective
three level parallel PSO algorithm for structural
alignment of complex RNA sequences,” Evol.
Intell., vol. 0, no. 0, p. 0, 2019, doi:
10.1007/s12065-018-00198-y.

[10] M. Alamery, A. Faraahi, H. H. S. Javadi, S.
Nourossana, and H. Erfani, “Multi-join query
optimization using the bees algorithm,” Adv.
Intell. Soft Comput., vol. 79, pp. 449–457,
2010, doi: 10.1007/978-3-642-14883-5_58.

[11] M. Alamery, A. Faraahi, H. H. S. Javadi, S.
Nourossana, and E. Hossein, “Application of
Bees Algorithm in Multi-Join Query
Optimization,” Adv. Comput. Sci. An Int. J.,
vol. 1, no. 1, pp. 5–9, 2012.

[12] W. Sun, M. Tang, L. Zhang, Z. Huo, and L.
Shu, “A survey of using swarm intelligence
algorithms in IoT,” Sensors (Switzerland), vol.
20, no. 5, 2020, doi: 10.3390/s20051420.

[13] D. Kumar and V. K. Jha, “An improved query
optimization process in big data using ACO-
GA algorithm and HDFS map reduce
technique,” Distrib. Parallel Databases, vol.
39, no. 1, pp. 79–96, 2021, doi:
10.1007/s10619-020-07285-z.

[14] A. Nayyar, “Ant Colony Optimization-
Computational Swarm Intelligence
Technique,” pp. 1493–1499, 2016.

[15] S. Abdelgaber, M. A. Abdel-Fattah, and S. A.
Nasr, “Why Bee colony is the most suitable
with multi-query optimization ?,” pp. 1–6.

[16] X. X. Hu, J. Q. Xi, and D. Y. Tang,
“Optimization for Multi-Join Queries on the
GPU,” IEEE Access, vol. 8, pp. 118380–
118395, 2020, doi:
10.1109/ACCESS.2020.3002610.

