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ABSTRACT 
 

In hyper spectral imaging (HSI), sensors capture detailed spectral data across numerous narrow spectral 
bands, resulting in high dimensionality. This dimensionality issue significantly affects HSI classification. 
Therefore, feature extraction (FE) for dimensionality reduction is crucial in HSI processing. This study 
explores the use of a 2D-Convolutional Neural Network (CNN) for HSI data analysis. Traditional 2D-
CNNs, however, may not effectively integrate spectral and spatial features for HSI classification. To 
enhance the CNN’s architecture for HSI categorization and analysis, this research investigates the 
integration of a lifting-scheme-based Discrete Wavelet Transform (DWT) with 2D-CNN, which we refer to 
as the Discrete Wavelet 2D-CNN model. The proposed methodology’s main objective is to provide 
guidance for future research in selecting the appropriate mother wavelets for spectral FE in conjunction 
with a 2D-CNN classifier. By integrating 2D-CNN with the DWT, which maintains spectral signature 
distinctions, it may enhance the emphasis on spectral features. The novelty of this work lies in its accuracy 
evaluation of three DWTs: Haar, Daubechies 4-tap orthogonal filter (D4), and Cohen-Daubechies-Feauveau 
9/7-tap biorthogonal filter (CDF-9/7-wavelet), for spectral FE in HSI classification using Discrete Wavelet 
2D-CNN. This approach utilizes a lifting scheme-based DWT for spectral FE in HSI. The lifting-scheme is 
an effective nonlinear transformation approach for DWTs. The resulting spectral characteristics from 
wavelet decomposition are then fused with a 2D-CNN, preserving spatial information, thus creating a 
spectral-spatial feature vector for classification. The Discrete Wavelet 2D-CNN model's accuracy was 
assessed on benchmark HSI datasets, including Indian Pines (IP), Salinas (SA), and Pavia University (PU). 
It was observed that the D4 wavelet-based model outperformed other configurations. Furthermore, we 
compared the model's classification accuracy with several state-of-the-art deep learning algorithms and 
found that the choice of the mother wavelet for HSI spectral FE can significantly impact the model's overall 
performance. 

Keywords: Hyper Spectral Images (HSIs) Classification, Discrete Wavelet Transforms (DWTs), 
Convolutional Neural Network (CNN), Lifting-Scheme, Feature Extraction (FE) 

 
1. INTRODUCTION  

 
1.1. HSI Background 

Hyper spectral imaging (HSI) is the 
process of gathering imagery in a lot of adjacent 
spectral bands such that each pixel's radiant 
spectrum may be determined. In HSI each spectral 
band corresponds to a separate region of the 
visible-infrared spectrum [1]. Due to its fine 
spectral resolution with hundreds of wavelengths, 

HSI can capture and distinguish various earth 
surface objects like water, grass land, plain land 
and different vegetation etc. Because of the unique 
ability to identify different spectral reflectance 
values, numerous studies concentrate on utilization 
of HSI data in various application areas like 
agricultural and forest management, geology and 
mineralogy, invasive species detection, 
coastal/ocean monitoring, carbon monitoring, 
volcanic activity and many more [2]. 
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1.2. Challenges In HSI Classifications 

Although HSI data can discriminate 
among different target objects on earth with 
comparable surface properties, the narrow and 
contiguous spectral bands produce redundant 
information. This redundancy is unnecessary and 
compromises the goal of collecting HSI data.  

 
In recent years, wide ranges of processing 

methods that can effectively extract data from 
remotely sensed HSI cubes have been developed. 
Specifically, feature extraction (FE) and feature 
selection (FS) are the two techniques that help 
reduce the HSI dimensionality. By using the FE 
approach, the initial feature space is transformed 
into a new feature space, whereas the FS technique 
selects a small number of important characteristics 
while eliminating unnecessary, redundant, or noisy 
features. Researchers have recently concentrated on 
a number of metaheuristic techniques that are 
frequently employed to look for an ideal or nearly 
ideal subset of characteristics in HSI. For instance, 
authors of [3] have developed a metaheuristic 
optimization strategy for FS in HSI classifications. 
Further, there have been numerous variations of 
works done that use HSI classification along with 
FE approaches to enhance the efficiency of 
classification algorithms [1, 4, and 5]. 

 
Although the two methods—FE and FS—

help to reduce the HSI data's dimensionality, the 
primary goal of our research is to assess the 
efficiency and performance of wavelet-based FE 
methods with regard to HSI classification. 
1.2.1. Spectral-spatial FE methods 

There are numerous spectral-spatial feature 
mining techniques for the classification of HSI in 
the literature. For instance, simple linear iterative 
clustering (SLIC), gabor filter, extended 
morphological profiles (EMPs) and the multiple 
kernel learning have been proposed as spectral and 
spatial feature based classification frameworks of 
HSI [6-9]. Researchers in [10] have investigated 
spatial consistency by dividing HSIs into several 
super pixels based on their similarity in terms of 
intensity or textures. These spectral-spatial 
characteristics and hyper-parameters, however, are 
task-specific and selected in accordance with the 
data at hand. Performance in classification is 
influenced by the volume of training samples [11]. 
Additionally, majority of spectral-spatial HSI 
classification algorithms might not be able to 
distinguish small differences between classes or 

significant differences within classes. Therefore, 
one of the main problems with HSI categorization 
still involves the process of obtaining more 
discriminative features. 

 
Recent studies have suggested 

incorporating Wavelet Transform (WT) into FE 
system for HSI classification task. Wavelet filters 
for dimensionality reduction allow for the 
separation of classes without severely losing the 
original data. It has been found that Discrete 
Wavelet Transforms (DWTs), a subset of WT 
approaches, significantly improve the performance 
of FE [12]. The authors of [13] looked towards 
lowering the dimensionality of HSI using a variety 
of wavelet filters.  The authors in [14] proposed a 
reliable classification method based on 3D-DWT 
for HSI classification by taking into account DWTs' 
capacity for extracting the spatial and spectral 
information. 

 
Motivated by those successful applications 

in the literature, the method of DWT is chosen for 
analysis in this work among the variety of already 
existing techniques for HSI-FE. Different wavelet 
families and basis functions can be used to create 
DWTs. It is seen in the literature, many methods 
are suggested for creating quick and low-power 
DWTs [15]. Specifically an approach called Lifting 
Scheme [16-19] provides less power consumption 
and uncomplicated design for DWTs. Instead of set 
of filters, it (Lifting Scheme) is based on simple 
predict and update mechanism for DWT 
implementation. Lifting scheme creates new 
wavelets from mother wavelets depends on the 
domain characteristics. Many different mother 
wavelets are available for DWT. The properties of 
the final transform are determined by the mother 
wavelet.  

 
Therefore, when choosing the mother 

wavelet, care should be given to the specifics of a 
given application. In the wavelet family, 
Daubechies wavelets [20, 21] are the most 
common, and Haar wavelets are the simplest. The 
wavelets are chosen for the intended application 
based on their forms and ability to analyse the 
signal. 
1.2.2. Deep learning-based techniques for 

classifying HSI  
Along with the foregoing spectral-spatial 

FE methods for HSI, current publications also 
demonstrate HSI classification using various CNN 
models [5, 22]. A growing number of studies are 
examining HSI categorization methods using 
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FuSENet, hybrid 3D-2D CNNs, 3D CNNs and 2D-
CNNs to investigate HSI categorization approaches 
[23, 24, 25-29]. Additionally, Residual Networks, 
Recurrent Neural Networks (RNNs), Double-
branch Networks, Graph CNNs, Generative 
Adversarial Networks, and Capsule Networks are 
frequently employed in HSI categorization [13, 30-
36]. On the other hand, in [37] it is stated that due 
to the limitations of HSI data, it is challenging to 
get acceptable spectral-spatial properties with 
standard convolution in independent models (such 
as 2D, 3D and 3D-2D CNNs).  

 
To resolve the above-mentioned issue, 

researchers initiated investigations into the 
extraction of valuable spectral-spatial attributes 
employing versatile models. These models include 
the integration of CNN with Graph Residual 
Architecture [38], FPGA-Fast Patch-Free Global 
Learning Framework [39], SSRN-Spectral-Spatial 
Residual Network [40] and spectral-spatial-
dependent global learning model [1]. These models 
can classify HSIs with a high degree of 
classification accuracy. 

 
However, most existing methods are still 

based on convolution operations for spectral-spatial 
feature extraction thus exhibit high computational 
complexity. The literature has shown that 
convolution is insufficiently effective for high-
resolution remote sensing pictures such as HSIs and 
primarily captures the spatial properties while 
neglecting its spectral aspects because of its 
linearity. In comparison to FE based on 
convolution, the wavelet transform is lighter, faster, 
and capable of nonlinear transformation [41]. 
Therefore, the wavelet transform might be viewed 
as a preferable alternative implementation for 
spectral FE in future CNN-based HSI scene 
categorization research. 

 
1.3. Motivations And Contributions 

Our present work in this paper was 
motivated by the successful integration of wavelet 
transform with 2D CNN model (SpectralNet) in 
[37] for extracting discriminative features of multi-
resolution HSI classification. Furthermore, in [22], 
an approach named CNN-MHWF2N (Combining 
Multilevel Haar Wavelet Features with CNN 
Enhancement) was explored. While the previously 
mentioned HSI approach demonstrated superior 
results, it's worth noting that these models primarily 
emphasized the utilization of the Haar wavelet to 
capture spectral-spatial information. 

 

Indeed, concerning DWT, the Haar wavelet 
exhibits limited utility. It excels in handling signals 
primarily composed of square waveforms; 
however, its effectiveness diminishes when 
confronted with the processing of broader harmonic 
waveforms, as it does not yield distinct information 
in such cases. Moreover, there exists an extensive 
variety of mother wavelets, and the choice of the 
mother wavelet can significantly impact the 
accuracy of 2D-CNN. Hence our paper provides 
further investigation of this subject with multiple 
discrete wavelet functions for HSIs, with the goal 
of providing an in-depth comparison of the 
methodologies. It is needed because different 
mother wavelets applied to the same signal might 
provide different outcomes, choosing the best 
mother wavelet for the task at hand is the key 
problem when utilizing wavelet transforms. In 
addition, motivated by the effective use of the 
lifting method as a superior substitute 
implementation for the convolution in basic CNNs 
in [42], our current research relies on the lifting-
scheme approach to produce truly loss-less DWTs 
for spectral FE in Discrete Wavelet 2D-CNN 
model. This may be a new direction for better 
extraction of discriminative spectral features for 
HSI classification. 
1.3.1. Strategy and organization 

During the pre-processing phase of 
Discrete Wavelet 2D-CNN model, the original HSI 
dimensionality is decreased using the factor 
analysis (FA) technique. After that, patches are 
generated to input into the model. Then, multi-level 
decomposition features (spectral) are produced 
using lifting scheme-based discrete wavelet 
decomposition, and these features are combined 
with multi-layer convolution features (spatial) to 
build a spectral-spatial feature vector. 
Subsequently, this spectral-spatial feature vector 
serves as input for the dense layers within a 2D 
CNN. 

 
In this study, we utilize a four-level 

wavelet decomposition based on the lifting scheme 
and implement a four-layer CNN in Python to 
construct the classifier under examination. We use 
HSI data cubes sourced from benchmark datasets, 
including Indian Pines (IP), Salinas (SA), and Pavia 
University (PU). We opted to assess the accuracy of 
the Discrete Wavelet 2D-CNN model with respect 
to the three core discrete wavelets, Haar, 
Daubechies 4-tap orthogonal filter (D4), and 
Cohen-Daubechies-Feauveau 9/7-tap biorthogonal 
filter (CDF-9/7-wavelet). Subsequently, we provide 
a comprehensive evaluation report confirming the 
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enhancements in HSI data classifiers achieved 
through the incorporation of the wavelet technique. 
As a result, this work focuses on presenting a 
summary of wavelet approaches for Spectral-
Spatial FE and comparing the performance of the 
model with various wavelet combinations in 
classification of HSI. 

 
The remainder of this document is 

structured as follows: Section II details the 
methodology for implementing the wavelet 
functions and the Discrete Wavelet 2D-CNN 
framework. Section III delves into the analysis and 
discussion of the classification performance of 
Discrete Wavelet 2D-CNN-HSI, focusing on the 
three fundamental discrete wavelet functions. It 
also includes a comparison with existing deep 
learning methods in terms of classification 
performance. Finally, the last section presents the 
conclusion of this work. 

 
2. MATERIALS AND METHODS 

 
In this section, we first consider the idea of 

Discrete Wavelet Transform (DWT) for FE. Then 
we present the Lifting Scheme for implementing 
DWT. With that, we provide the lifting scheme 
implementation for 3 basic discrete mother 
wavelets-- Haar, Daubechies 4-tap orthogonal filter 
(D4), and Cohen-Daubechies-Feauveau 9/7-tap bi-
orthogonal filter (CDF-9/7-wavelet) in HSI-FE. 
Finally, Lifting Scheme based Discrete Wavelet 
2D-CNN framework is described. This section also 
includes a description of the datasets utilized in the 
experiments. 

 
2.1. DWT In FE 

The time-frequency localization feature of 
the DWT has made it popular in signal and image 
processing. Figure 1 illustrates the DWT which is 
constructed through an iterative filtering process. 
As depicted in figure 1, at each decomposition 
level, the input image undergoes filtering using two 
filters: a Low Pass Filter (LPF) and a High Pass 
Filter (HPF). For each level of decomposition, the 
LPF produces coarse approximations, while the 
HPF produces detailed information of the input 
image. The output of this LPF is recursively filtered 
until the necessary depth has been reached or until 
no more filtering is possible. 

 
Figure 1: A 3-Level DWT Decomposition 

 
This method, known as forward DWT, 

decomposes the image first row-wise and then 
column-wise using high pass and low pass filters. 

 
Similar to the forward DWT, the inverse 

DWT (IDWT) can also be used to recover the 
reconstructed image. Inverse DWT uses filter banks 
that are referred to as synthesis filters, while 
forward DWT uses analysis filters [43]. 

 
2.2. Lifting Scheme For DWT 

Traditional DWT involves decomposing 
Finite Impulse Response (FIR) filters, or filters 
having real coefficients, and subsampling them. In 
order to avoid the computational demands 
associated with conventional DWT methods, Wim 
Sweldens introduced a novel DWT design approach 
in 1996, referred to as the Lifting Scheme [44]. 
Split, Predict, and Update are the three steps of this 
strategy (see figure 2). 

 
Figure 2: Forward Lifting Scheme For DWT 

 
 Step1- Split: This phase takes an input signal 

X = (xk), where k is an integer with real 
samples xk. It splits this input data into 2 
separate sets such as: 
even (Xe= x2k) and odd (Xo = x2k+1) indexed 
samples. 

 Step2- Predict: Since the correlation between 
the above two sets is strong. As a result, using 
one set, such as the even, one may create a 
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good predictor called P for the other set (Of 
course the predictor need not be exact).  
So the difference or detail dk: Xo –Predict (Xe). 

 Step3- Update: The above prediction step can 
handle the spatial correlation, however for 
wavelets to achieve some separation in the 
frequency domain, the 3rd step replaces the 
even indexed samples with smoothened values 
sk by using an Update(U) operator applied on 
the details, sk: Xe + Update(dk).  
 

Here the update operator will be used to 
keep the correct running average of the even 
samples and reduces the aliasing (under-sampling) 
errors.  It is because the even sample set was 
created through simple subsampling, its running 
average differs from that of the original samples. 

 
The above steps correspond to the forward 

transform. The lifting scheme for Inverse DWT can 
be designed in a similar way. A clear representation 
of the implementation steps in forward and inverse 
transforms of lifting scheme are provided in table 1 
and table 2 respectively.  

 
Table 1: Lifting Scheme Steps In Forward 

Transformation Or Decomposition. 
Split:        𝑆𝑝𝑙𝑖𝑡(𝑋) =  
Predict:  Wavelet (or) Detail Coefficients 

@Level-k :  𝑑 = 𝑋 − 𝑃𝑟𝑒𝑑𝑖𝑐𝑡(𝑋 ) 
Update: Smooth(or)Approximate Coefficients  

@Level-k : 𝑠 = 𝑋 + 𝑈𝑝𝑑𝑎𝑡𝑒(𝑑 ) 

 
Table 2: Lifting Scheme Steps In Inverse Transformation 

Or Reconstruction. 
𝑋 =  𝑠 − 𝑈𝑝𝑑𝑎𝑡𝑒(𝑑 ) 

𝑋 = 𝑑 + 𝑃𝑟𝑒𝑑𝑖𝑐𝑡(𝑋 ) 

𝑥 = 𝑋  and  𝑥 = 𝑋  
 
Unlike conventional procedures, this 

lifting scheme does not require complex 
mathematical calculations. As opposed to 
conventional convolution-based DWT, it requires 
half as many computations. From the even samples, 
odd samples are created, and update and prediction 
blocks are used in place of filters. 

 
2.3. Basic DWTS For FE Using Lifting Scheme 

In this study, each pixel of HSI patch will 
be individually decomposed in the spectral domain 
using the discrete 2D Wavelet transform. Due to the 
wavelet's inherent ability to retain peaks and 

troughs in standard spectra, it becomes possible to 
extract the majority of discriminative multiscale 
features using the DWT. Selecting the right wavelet 
family is essential when employing the wavelet 
transform. There will be different types of wavelets 
available, for instance, orthogonal and bi-
orthogonal. Bi-orthogonal wavelet filters produce 
two sets of scaling functions and wavelets: one pair 
for decomposition and another pair for 
reconstruction. In contrast, orthogonal wavelet filter 
banks generate a single pair for both the 
decomposition and reconstruction processe. In this 
section, we discuss some of the most basic wavelet 
families with implementation details using lifting 
scheme. 
2.3.1. Haar wavelet 

Alfred HAAR invented the HAAR 
wavelet in 1909 as a simplest and most 
straightforward orthogonal wavelet. It is a step-like, 
discontinuous function with excellent temporal 
localization but poor frequency localization. They 
can reproduce constant functions only. The HAAR 
wavelet transform is quick, easy on the memory, 
and easy to comprehend. In the Haar wavelet, the 
discrete signal is split into two sub-signals, with 
each sub-signal having half the length of the 
original signal. 
 
Lifting scheme on HAAR WT: 

There are two steps in the lifting scheme 
for HAAR WT: one Predict ‘P’ and one Update 
‘U’. The split procedure that divides input signal 
‘X’ into even ‘Xe’ and odd ‘Xo’ samples is depicted 
in figure 3. 

 
All the forward and inverse transform 

operations are given in equations 1–6. 
 
Forward transformation-HAAR- WT: 

𝑆𝑝𝑙𝑖𝑡(𝑋) =  
𝑋 = 𝑥

𝑋 = 𝑥
               (1) 

 

 
Figure 3:Lifting Scheme For HAAR DWT 
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𝑃𝑟𝑒𝑑𝑖𝑐𝑡: 𝑑 = 𝑋 − 𝑋                (2) 

𝑈𝑝𝑑𝑎𝑡𝑒: 𝑠 = 𝑋 + 𝑑                (3) 

Inverse transformation-HAAR- WT: 

𝑋 = 𝑠 − 𝑑                       (4) 

𝑋 = 𝑑 + 𝑋                        (5) 

𝑥 = 𝑋
𝑥 = 𝑋

                       (6) 

 

From equations 2 & 3, it is evident that the 
detail (or wavelet) coefficient (dk) in prediction step 
for HAAR wavelet is just the distinction between 
an odd (Xo) and an even (Xe) samples. Then, to 
restore the right running average and to resolve the 
under-sampling (or aliasing) issue, the HAAR 
wavelet’s update lifting step will add half of the 
detail (or wavelet) coefficient to the even samples 
to yield the sk value, (it is because, as stated in [44], 
two even locations are influenced by the 
approximation scale, which is twice the detail 
scale). 
2.3.2. Daubechies  4-tap orthogonal filter (D4) 

wavelet 
A continuous, piecewise smooth signal 

model is incompatible with the HAAR wavelet 
since it is a step function and cannot approximate 
an analogue signal. Thankfully, Ingrid Daubechies 
developed orthonormal wavelet bases in 1988, 
which are compatible with continuous, piecewise 
smooth signal models. In addition, Daubechies 
filters are often known as maxflat filters since their 
frequency response provides the greatest flatness at 
0 and π. The D2 to D20 range covers the 
Daubechies family of orthogonal wavelets. The D2 
wavelet is same as Haar wavelet. For our research, 
we take into account the Daubechies 4-tap 
orthogonal filter (D4), the most basic wavelet in the 
Daubechies family with two vanishing moments. 
The number of analysis filter coefficients is 
represented by the 4 tap. The vanishing moments, 
which are equal to half of the filter coefficients, are 
a need for the smoothness of the wavelet function. 

 
Constructing and inverting the Daubechies 

4-tap orthogonal filter (D4) wavelet transform is 
straightforward. Like the Haar transform, it can be 
performed through a series of decompositions. 
However, D4 differs in having a filter length 
greater than two. Consequently, it offers a more 
concentrated and consistent transformation. 

Lifting scheme on daubechies 4-tap orthogonal 
filter (D4) WT: 

The Lifting-scheme for D4 WT is depicted 
in figure 4. It has four steps, as shown in figure 4: 
predict1 ‘P1’, update1 ‘U1’, predict2 ‘P2’, 
normalization - ‘N1’ and ‘N2’. 

 
Figure 4:Lifting Scheme For D4 DWT 
 
The lifting scheme uses less memory and 

doesn't need a temporary storage like regular D4. 
The forward operations for D4 are provided in 
equations 7–11. As seen in equations 12 through 
16, the inverse transform results from reversing the 
operations and flipping the signs. 
 
Forward transformation- D4- WT: 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡 1: 𝑑 = 𝑋 − √3𝑋   (7) 

𝑈𝑝𝑑𝑎𝑡𝑒 1: 𝑠 = 𝑋 +
√

𝑑 +
√

𝑑  (8) 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡 2: 𝑑 = 𝑑 + 𝑠   (9) 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 1: 𝑠 =
√

√
𝑠   (10) 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 2: 𝑑 =
√

√
𝑑   (11) 

 

Inverse transformation- D4- WT: 

𝑑 =
√

√
𝑑    (12) 

𝑠 =
√

√
𝑠    (13) 

𝑑 = 𝑑 − 𝑠    (14) 

𝑋 = 𝑠 −
√

𝑑 −
√

𝑑  (15) 

𝑋 = 𝑑 + √3𝑋    (16) 

2.3.3. Cohen-Daubechies-Feauveau 9/7-tap bi-
orthogonal filter 

The term "CDF-9/7 Wavelet" is an alias 
for the Cohen-Daubechies-Feauveau 9/7-tap Bi-
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Orthogonal Filter Wavelet. This wavelet employs a 
9-coefficient analysis low-pass filter and a 7-
coefficient synthesis low-pass filter. Both the 
analysis and synthesis high-pass filters possess four 
vanishing moments, and they exhibit symmetric 
scaling and wavelet functions. These characteristics 
make them particularly popular for use in picture 
compression applications. 

 
Lifting scheme on CDF- 9/7- wavelet:  

The five steps constituting the lifting 
scheme for the CDF-9/7 Wavelet are depicted in 
figure 5: predict1 ‘P1’, update1 ‘U1’, predict2 ‘P2’, 
update2 ‘U2’, normalizations – ‘N1’ and ‘N2’. 
 

The complexity and the lifting steps of 
CDF-9/7 wavelet are greater than those of D4 
wavelet as the filter coefficients rise. Equations 17 
to 23 provide the forward transform operations, 
while equation 24 lists the values of the constants. 
 

Figure 5: Lifting Scheme For CDF-9/7 DWT 
 
Forward transformation- CDF- 9/7- WT: 

 𝑆𝑝𝑙𝑖𝑡(𝑋) =
𝑠 = 𝑥

𝑑 = 𝑥
   (17) 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡 1: 𝑑 = 𝑑 + 𝛼(𝑠 + 𝑠 ) (18) 

𝑈𝑝𝑑𝑎𝑡𝑒 1: 𝑠 = 𝑠 + 𝛽(𝑑 + 𝑑 ) (19) 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡 2: 𝑑 = 𝑑 + 𝛾(𝑠 + 𝑠 ) (20) 

𝑈𝑝𝑑𝑎𝑡𝑒 2: 𝑠 = 𝑠 + 𝛿 𝑑 + 𝑑 _  (21) 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 1: 𝑠 = 𝜁𝑠   (22) 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 2: 𝑑 =   (23) 

And, 

𝛼 = −1.586134342
𝛽 = −0.05298011854

𝛾 = 0.8829110762
𝛿 = 0.4435068522
𝜁 = 1.149604398

   (24) 

 
2.4. Discrete Wavelet 2D-CNN framework 

After covering the basic specifics of the 
DWT methods needed in HSI - FE, we now attempt 
to describe the overall Discrete Wavelet 2D-CNN 
model used for HSI categorization in our present 
work. The steps of the adopted model are 
represented in figure 6 as follows: 

Figure 6: Outline Of The Wavelet CNN- Model For 
Classification Of HSI 

 
The initial step involves working with an 

HSI cube with dimensions (P, Q, and R), where P 
and Q represent the spatial dimensions, and R 
corresponds to the spectral dimension. Next, to 
reduce the massive dimensionality of the HSI data, 
the model must go through pre-processing phase. 
Among a variety of available methods to minimize 
the HSI dimensionality, FA-Factor Analysis is used 
in the current model. Since in HSI, it is required to 
differentiate similar variables effectively and 
commonly used PCA approximates the necessary 
variables but is not very effective at differentiating 
closely related variables. 

 
Contrarily, FA is a technique for 

condensing the number of variables in a dataset into 
a small number of factors by extracting the highest 
common variance from each variable and 
converting it to a common scale. As a result, 
training takes less time. Hence FA is beneficial in 
HSI pre-processing. By using this FA algorithm, 
the original HSI cubes are changed to a size (P, Q 
and B). Subsequently, the Wavelet 2D-CNN is 
employed to handle the extracted patches, which 
have dimensions (M, M, and B). 
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The discrete wavelet block is applied to 

obtain a four-level decomposition of spectral 
information for every extracted HSI patch. Next, to 
capture spatial characteristics, four convolution 
layers are employed. In this context, the spatial 
information from each convolutional layer is 
integrated with the decomposition features from 
each level of the wavelet transform to acquire a 2-D 
spectral-spatial feature vector. In contrast to a 3D 
CNN, the spectral characteristics obtained through 
DWT require fewer computational resources. 

 
Lastly, the architecture includes an 

average pooling layer (used for filtering and 
reducing the number of outputs from the 
convolution layers before passing them to 
subsequent layers), multiple fully connected (FC) 
layers, and a softmax classifier, which collectively 
assess classification accuracies. 

 
Within the Discrete Wavelet 2D-CNN 

technique, the labeled samples of each dataset are 
partitioned into two subsets: the training data 
(Xtrain) along with their corresponding labels (Ytrain) 
and the testing data (Xtest) along with their 
respective labels (Ytest). The training data is utilized 
for parameter updates, while the testing data is 
employed to evaluate the model's generalization 
performance. 

 
For this project, we chose the “Categorical 

Cross-entropy" loss function and the "Stochastic 
gradient descent (SGD)" optimizer. The loss 
function equation is as follows: 

𝐿 =  − ∑ (𝑦 ∗ log 𝑦 )  (25) 

In this equation, "n" represents the number of 
categories, 𝑦  denotes the probability value for the 
‘ith’ class in the actual sample labels: 𝑌 =
{𝑦 , 𝑦 , … 𝑦 }, and 𝑦  represents the probability 
value corresponding to the ‘ith’ class in the 
predicted sample labels: 𝑌 = {𝑦 , 𝑦 , … 𝑦 }. 
2.4.1. Multi-level wavelet feature decomposition 

To enable a hierarchical breakdown of HSI 
data within a multi-resolution CNN, the 2D DWT 
uses the following four kernels (fLL, fLH, fHL, fHH) 
for wavelet transform, as stated in [41]. In this 
study, fLL is the low-pass wavelet kernel, and it is 
employed as the scaling function. Furthermore, fLH, 
fHL and fHH serve as the high-pass wavelet kernels, 
being utilized as the wavelet kernel functions at 

each level of the hierarchical decomposition of the 
HSI data. 

 
Given an input image patch f(x, y) with 

size MxM, the four wavelet kernels(fLL, fLH, fHL, 
fHH) with fixed parameters and a stride of 2, 
produce four sub-image features: fHH(x, y), fHL(x, 
y), fLH(x, y) and fLL(x, y).   

 
Thus, mathematically we can define the 

DWT operation as: 

𝑓 (𝑥, 𝑦) = 𝑓 ∗ 𝑓(𝑥, 𝑦) ↓ 2

𝑓 (𝑥, 𝑦) = 𝑓 ∗ 𝑓(𝑥, 𝑦) ↓ 2

𝑓 (𝑥, 𝑦) = 𝑓 ∗ 𝑓(𝑥, 𝑦) ↓ 2

𝑓 (𝑥, 𝑦) = 𝑓 ∗ 𝑓(𝑥, 𝑦) ↓ 2

  (26) 

 

In this context, equation 26 signifies the 
first-order wavelet decomposition. In this equation, 
'*' represents the convolution operator, and '↓2' 
denotes the standard down-sampling operation with 
a factor of 2. The result, fLL(x, y) corresponds to the 
approximate sub-image, while (fLH(x, y), fHL(x, y), 
fHH(x, y)) represent the detail sub-images.  

 
This decomposition process is iteratively 

applied to the approximate sub-image fLL(x, y), and 
continues until four levels of decomposition are 
reached. This concept is depicted in figure 7. 
Strong time-frequency localization of the wavelet 
transform enables it to translate various underlying 
visual features into various wavelet coefficients, 
enabling deeper feature extraction. 

Figure 7: Feature Decomposition Using Four Levels of 
Wavelet Analysis [13] 

 
In our methodology, we employ a wavelet 

transform to partition a HSI patch into sub-bands, 
and the convolutional layers are utilized to learn the 
spectral and spatial aspects by processing these sub-
bands. The wavelet transform breaks down the sub-
band component in the subsequent layer and 
forwards it to the convolution layer.  This iterative 
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process is maintained in each layer of the CNN, 
enabling the continuous learning of spectral-spatial 
characteristics within HSI patches. 
 

Specifically, for an input HSI image patch 
f(x, y) of size MxMxB (we take B =3 for our 
experiments), we can define the current Wavelet 
2D-CNN model as follows: 

𝐹 = 𝐶𝑜𝑛𝑣 + 𝑅𝑒𝐿𝑈(𝑓 (𝑥, 𝑦), 𝐾 ∗ ) (27) 

𝐹 = 𝐶𝑜𝑛𝑣 + 𝑅𝑒𝐿𝑈(𝐶𝑜𝑛𝑐𝑎𝑡𝑒[𝐹 , 𝐶𝑜𝑛𝑣 +
𝑅𝑒𝐿𝑈(𝑓 (𝑥, 𝑦), 𝐾 ∗ )], 𝐾 ∗ )  (28) 

𝐹 = 𝐶𝑜𝑛𝑣 + 𝑅𝑒𝐿𝑈(𝐶𝑜𝑛𝑐𝑎𝑡𝑒[𝐹 , 𝐶𝑜𝑛𝑣 +
𝑅𝑒𝐿𝑈(𝑓 (𝑥, 𝑦), 𝐾 ∗ )], 𝐾 ∗ )  (29) 

𝐹 = 𝐶𝑜𝑛𝑣 + 𝑅𝑒𝐿𝑈(𝐶𝑜𝑛𝑐𝑎𝑡𝑒[𝐹 , 𝐶𝑜𝑛𝑣 +
𝑅𝑒𝐿𝑈(𝑓 (𝑥, 𝑦), 𝐾 ∗ )], 𝐾 ∗ )  (30) 

In equations 27-30, fl
DWT(x, y) corresponds 

to 4 discrete wavelet decomposed sub band images 
(i.e. fLL_l(x, y), fLH_l(x, y), fHL_l(x, y) and fHH_l(x, y)), 
here l value reflects the level of decomposition and 
it takes values from 1 to 4. K represents 3x3 kernels 
that are utilized as convolution filters. And F1, F2, 
F3 are the intermediate spectral-spatial features 
extracted during the first 3 levels and F4 gives the 
final level’s spectral-spatial feature map. To 
enhance information flow and HSI feature richness, 
the model provides sequential interactions among 
the obtained four-level features. 

 
Then these fused features serve as input to 

the final stage of the developed model. This stage 
encompasses an average-pooling layer, two fully 
connected layers, and a softmax classifier, 
ultimately yielding the prediction results. 

 
2.5. Materials 

For evaluating the performance of our 
current approach, we have utilized the datasets [45], 
which include Indian Pines (IP), Salinas (SA), and 
University of Pavia (PU). These are the state-of-
the-art agricultural, rural-urban and urban HSI 
datasets in remote sensing and image analysis. 
These datasets are frequently used for creating and 
testing algorithms and models for feature 
extraction, classification, and other related tasks for 
Hyper spectral images [4, 12, 14, 22-24, 37, 40- 
42].  

 
Indian Pines (IP) Dataset 

The Indian Pines (IP) data set comprises 
hyper spectral images of agricultural and urban 

areas in North-western Indiana, constituent state of 
the USA. The AVIRIS sensor collected this 
information, which includes 224 spectral 
reflectance bands in the wavelength range of 0.4–
2.5 10-6 meters. By deleting bands that cover the 
water absorption zone, the 224 spectral bands are 
reduced to 200. The scene is 145 pixels wide by 
145 pixels tall. This IP dataset is composed of two-
thirds cropland and one-third woodland or other 
naturally occurring permanent vegetation. There are 
two major dual-lane motorways, a rail line, a few 
low-density homes, various man-made structures, 
and minor roadways. In terms of land use and land 
cover, the dataset has 16 classes (as indicated in 
table 3), with 1972 training samples and 7392 
testing samples.  This dataset intends to address 
problems with mapping land cover, detecting crop 
diseases, and classifying crops. 
 
Salinas (SA) Dataset 

This view of the Salinas Valley in 
California, which includes arid soils, grape crops, 
and vegetables, was taken with the 224-band 
AVIRIS sensor. This has 512 lines and 217 samples 
in the area covered. Similar to the IP situation, the 
20 water absorption bands were deleted (in this 
case, bands [108-112], [154-167], and 224). For 
this image, all that was available was at-sensor 
radiance data. 16 lessons are included in SA ground 
truth as shown in table 4. The SA dataset is 
frequently employed in agricultural applications 
like crop classification, yield prediction, and 
precision farming. 

 
Table 3: The IP Dataset's Ground Truth Classes with 

Their Respective Samples [45] 
IP_Class_ 

Label 
IP_Class_Name IP_No_of_ 

Samples 
C1

IP Alfalfa 46 

C2
IP Corn_notill 1,428 

C3
IP Corn_mintill 830 

C4
IP Corn 237 

C5
IP Grass_pasture 483 

C6
IP Grass_trees 730 

C7
IP Grass_pasture_mowed 28 

C8
IP Hay_windowed 478 

C9
IP Oats 20 

C10
IP Soybean_notill 972 

C11
IP Soybean_mintill 2,455 

C12
IP Soybean_clean 593 

C13
IP Wheat 205 

C14
IP Woods 1,265 

C15
IP Buildings_Grass_Trees_Drives 386 

C16
IP Stone_Steel_Towers 93 

 
Table 4: The SA Dataset's Ground Truth Classes with 

Their Respective Samples [45]. 
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SA_Class_ 
Label 

SA_Class_Name SA_No_of_ 
Samples 

C1
SA Brocoli_green_weeds_1 2,009 

C2
SA Brocoli_green_weeds_2 3,726 

C3
SA Fallow 1,976 

C4
SA Fallow_rough_plow 1,394 

C5
SA Fallow_smooth 2,678 

C6
SA Stubble 3,959 

C7
SA Celery 3,579 

C8
SA Grapes_untrained 11,271 

C9
SA Soil_vinyard_develop 6,203 

C10
SA Corn_senesced_green_weeds 3,278 

C11
SA Lettuce_romaine_4wk 1,068 

C12
SA Lettuce_romaine_5wk 1,927 

C13
SA Lettuce_romaine_6wk 916 

C14
SA Lettuce_romaine_7wk 1,070 

C15
SA Vinyard_untrained 7,268 

C16
SA Vinyard_vertical_trellis 1,807 

 
University of Pavia (PU) Dataset 

This 610*610 pixel image was taken by 
the ROSIS sensor during a flight campaign over 
Pavia, northern Italy. Although it has 103 spectral 
bands, some of the samples are useless and must be 
removed before analysis. Geometrical resolution is 
1.3 meters. The ground truth image contains nine 
classes (see table 5). The rejected samples appear in 
the figures as distant black strips. This PU dataset is 
frequently used for applications linked to urban 
remote sensing, such as anomaly detection and the 
classification of urban land cover. 

 
Table 5: The PU Dataset's Ground Truth Classes with 

Their Respective Samples [45]. 
PU_Class_ 
Label 

PU_Class_Name PU_No_of_ 
Samples 

C1
PU Asphalt 6,631 

C2
PU Meadows 18,649 

C3
PU Gravel 2,099 

C4
PU Trees 3,064 

C5
PU Painted_metal_ sheets 1,345 

C6
PU Bare_Soil 5,029 

C7
PU Bitumen 1,330 

C8
PU Self_Blocking_Bricks 3,682 

C9
PU Shadows 947 

 
3. EXPERIMENTS, RESULTS AND 

DISCUSSIONS 
 
3.1. Experimental Setup 

Building of a Discrete Wavelet 2D-CNN 
model for HSI classification is carried out in this 
paper using TensorFlow environment and Keras 
library packages. For patch extraction, MxMx3 is 
the window size.  24x24x3 is the patch size for PU 
and SA datasets. The patch size is set at 64x64x3 
for the IP dataset. In our experiments, first, we 
compared the performances of various discrete 
mother wavelets for spectral FE in 2D-CNN-HSI 

classification problems. These experiments are 
carried out for varying number of epochs and 
training-testing samples. Secondly, we have 
provided the comparison with previous methods 
available for HSI classifications. 

 
To assess the effectiveness of the 

framework, we selected three standard accuracy 
metrics: average accuracy (AA), overall accuracy 
(OA), and Kappa coefficient (Kappa). The OA 
metric calculates the ratio of correctly classified 
samples to the total number of test samples. The 
AA metric computes the average classification 
accuracy across different classes, while the Kappa 
metric quantifies the level of agreement between 
the classification map and the ground truth map. 
The momentum is established at 0.9, and the 
learning rate remains constant at 0.01 throughout 
the training process, employing the "stochastic 
gradient descent (SGD)" optimizer. 

 
3.2. Classification Results 
3.2.1. Comparison of HSI classification results 
using 2D-CNN model with various discrete 
mother wavelets for spectral FE 

Tables 6 -11 show the classification 
findings, where, we conducted an accuracy 
assessment to investigate how different discrete 
mother wavelets for spectral feature extraction 
impact the performance of the 2D-CNN model. We 
compared the classification results of the CNN 
using three different DWT methods across different 
combinations of training data quantities and epochs.  

 
From Tables 6 to 11, it's evident that 

across all three benchmark datasets, the CNN 
utilizing the D4 wavelet consistently outperforms 
the other configurations in terms of OA, AA, and 
Kappa values. Though, HAAR wavelet performs 
well than other wavelets on SA at 20 Epochs with 
constant training ratio of 10%, D4 achieves greater 
accuracy on the same (SA) dataset at increased 
number of Epochs. 

 
Moreover, the figures from 8 to 25 depict 

the visualization of output maps generated by the 
Wavelet 2D-CNN model employing the three 
distinct mother wavelets across various 
combinations of training data ratios and epochs. It's 
evident that the maps utilized for visualization in 
cases of low categorization accuracy exhibit a 
coarse appearance. This is because extracting 
adequate and meaningful spectral-spatial aspects 
using the 2D-CNN model with wavelets like 
HAAR and CDF-9/7 poses a challenge. 
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Conversely, the CNN model employing the D4 
wavelet managed to capture a richer set of 
discriminative features within the HSI data, leading 
to enhanced accuracy in terms of OA, AA, Kappa 
values, and more precise visualization maps. The 
total impact clearly demonstrates that the CNN 
model using the D4 wavelet achieves superior 
accuracy, highlighting the excellence of the 
developed method. This is attributed to the 
compactly supported orthogonal nature of D4, 
which preserves signal energy, while Haar is 
affected by compression through averaging and 
differencing. Additionally, CDF-9/7, due to its 
longer wavelet coefficients and scaling, necessitates 
more computation time compared to both D4 and 
Haar.  

 
Thus, in this experiment, D4 filters 

outperform Haar and CDF-9/7 filters with reference 
to OA, AA and Kappa values, thereby provides 
superior categorization. Also by increasing the 
training ratio, the overall accuracy increased on all 
the datasets for D4. 
3.2.2. Comparison of performance with 
previous models in HSI classification 

To test the superiority of the strategy 
examined in Section 3.2.1 in terms of HSI 
classification accuracies, we have considered the 
available methods in the literature like SpectralNet 
[37], FuSENET [27], SSRN [40], 2D CNN [23] and 
3D CNN [24].  
To compute the results, we used the publicly 
accessible codes for the comparison models: 
[https://github.com/tanmayty/SpectralNET], 
[https://github.com/eecn/Hyperspectral-
Classification].  

 
The results of these deep learning based 

methods are compared with the current approach 
that employs 2D CNN model with Daubechies4 
(D4) as its mother wavelet for spectral FE. The 
models have been trained for 100 epochs. The 
results are tested for 10% and 30% random training 
sets respectively. Tables 12 and 13 present the 
summary of investigations in terms of the OA, AA 
and Kappa values. 

 
As shown in the tables 12 and 13, in both 

the sets, the strategy suggested in this paper for 
Discrete Wavelet 2D-CNN has achieved 
considerable success. Throughout the three 
datasets, the results of SSRN, FuSENET, and 
SpectralNET Methods appear to perform better 
than the results of 2D CNN and 3D CNN methods. 
The SpectralNET by utilizing less spectral bands 

performs better than the remaining models. Though 
it highlights the merit of using wavelets based 
spectral FE with a CNN, this model employs only 
Haar as its mother wavelet and other possible 
DWTs for spectral FE have not been considered. In 
contrast to prior models in the literature, our current 
study employs the lifting-scheme method to 
generate fully lossless DWTs for enhanced spectral 
FE in HSI classification. Furthermore, our present 
work involves verifying the performance of 
Discrete Wavelet 2D CNN with some more DWTs 
for spectral FE and comparing the results. 

 
It can be observed from the results that the 

performance of Discrete Wavelet 2D CNN with D4 
as mother wavelet for spectral FE is superior to all 
the compared methods currently available for HSI 
classification. Even though in the 10% train set, the 
SpectralNet and the SSRN models appears to 
perform better in terms of AA for IP and PU 
datasets, the proposed model with D4 wavelet is 
still able to outperform all the methods in 
remaining all cases. From the results it can be 
established that the performance of a basic deep 
learning model (such as 2D CNN) can be boosted 
by selecting appropriate mother wavelet for spectral 
FE in HSI classification. 
4. CONCLUSION 

 
The lifting-scheme based Discrete Wavelet 

2D-CNN classifier for HSI is studied in this paper. 
To identify the optimal mother wavelet for spectral 
FE within this classifier, we examined and 
evaluated the performance of three essential 
discrete mother wavelets (HAAR, D4, and CDF-
9/7) on three benchmark datasets (IP, PU, and SA). 
We assessed the classification results using metrics 
like OA, AA, and Kappa values. 

 
It is discovered from the experiments that, 

when D4 wavelet-based FE is used, the model’s 
accuracy is substantially higher with decent 
visualization maps than the accuracy gained from 
Haar and CDF-9/7 wavelets on the same HSI data. 
In addition, the results show that the performance 
of the Discrete Wavelet 2D CNN with D4 wavelet 
for spectral FE is superior to all other approaches 
currently in use for HSI classification. In 
conclusion, we observed that the wavelet-based 
deep learning system is particularly responsive to 
the choice of the mother wavelet. However, the 
right selection of the mother wavelet for spectral 
FE can lead to improved classification accuracies. 
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In future, the effectiveness of other 
varieties of mother wavelets and the improvements 
in accordance with the activation functions still 
could be tested. Further, experiments can also be 
made to check whether we get the same results if 

other deep learning classifiers are used with 
wavelet-based spectral FE in HSI. For example, 
recurrent neural networks (RNNs), and auto-
encoders can be used. 

 
 
 

Table 6: Experiment Results For Wavelet 2D-CNN With Different DWTs On IP Dataset For Various Number Of 
Epochs With Training Ratio Fixed At 10% 

No.of Epochs 20 40 60 80 
 OA Kappa AA OA Kappa AA OA Kappa AA OA Kappa AA 
CNN with HAAR 92.11 91.04 79.07 96.95 96.51 91.06 97.00 96.58 91.87 97.84 97.53 94.37 
CNN with D4 95.25 94.58 80.16 97.49 97.14 93.47 97.14 96.74 92.84 98.17 97.92 94.38 
CNN with CDF 9/7 90.92 89.62 77.56 97.04 96.62 90.06 96.87 96.43 90.67 97.43 97.06 94.27 

 
Table 7: Experiment Results For Wavelet 2D-CNN With Different DWTs On IP Dataset For Distinct Amounts Of 

Training Ratios With Epochs Fixed At 80 
Training Ratio 10% 20% 30% 
 OA Kappa AA OA Kappa AA OA Kappa AA 
CNN with HAAR 97.84 97.53 94.37 99.46 99.38 98.61 99.76 99.72 97.92 
CNN with D4 98.17 97.92 94.38 99.52 99.45 98.80 99.84 99.82 99.74 
CNN with CDF 9/7 97.43 97.06 94.27 98.95 98.80 98.04 99.26 99.15 98.56 
 

Table 8: Experiment Results For Wavelet 2D-CNN With Different DWTs On SA Dataset For Various Number Of 
Epochs With Training Ratio Fixed At 10% 

No.of Epochs 20 40 60 80 
 OA Kappa AA OA Kappa AA OA Kappa AA OA Kappa AA 
CNN with 
HAAR 

99.95 99.95 99.95 99.95 99.94 99.94 99.97 99.96 99.96 97.53 97.26 99.23 

CNN with D4 98.14 97.93 99.41 99.96 99.96 99.96 99.98 99.97 99.98 99.94 99.95 99.94 
CNN with CDF 
9/7 

99.92 99.91 99.92 99.94 99.93 99.94 99.96 99.96 99.95 99.93 99.92 99.92 

 
Table 9: Experiment Results For Wavelet 2D-CNN With Different DWTs On SA Dataset For Distinct Amounts Of 

Training Ratios With Epochs Fixed At 80 
Training Ratio 10% 20% 30% 
 OA Kappa AA OA Kappa AA OA Kappa AA 
CNN with HAAR 97.53 97.26 99.23 99.95 99.95 99.96 99.99 99.99 99.99 
CNN with D4 99.94 99.95 99.94 99.99 99.99 99.99 100.0 100.0 100.0 
CNN with CDF 9/7 99.93 99.92 99.92 99.99 99.99 99.98 99.97 99.97 99.99 

 
Table 10: Experiment Results For Wavelet 2D-CNN With Different DWTs On PU Dataset For Various Number Of 

Epochs With Training Ratio Fixed At 10% 
No.of Epochs 20 40 60 80 
 OA Kappa AA OA Kappa AA OA Kappa AA OA Kappa AA 
CNN with 
HAAR 

99.24 98.99 98.15 99.63 99.51 99.02 99.35 99.14 98.84 99.64 99.52 99.15 

CNN with D4 99.26 99.02 98.46 99.66 99.55 99.30 99.52 99.37 99.15 99.65 99.54 99.27 
CNN with CDF 
9/7 

98.92 98.57 97.89 99.39 99.19 99.05 99.51 99.35 98.93 99.61 99.48 99.26 

 
Table 11: Experiment Results For Wavelet 2D-CNN With Different DWTs On PU Dataset For Distinct Amounts Of 

Training Ratios With Epochs Fixed At 80 
Training Ratio 10% 20% 30% 

 OA Kappa AA OA Kappa AA OA Kappa AA 
CNN with HAAR 99.64 99.52 99.15 99.93 99.91 99.90 99.97 99.97 99.96 
CNN with D4 99.65 99.54 99.27 99.93 99.91 99.88 99.97 99.97 99.96 
CNN with CDF 9/7 99.45 99.32 99.11 99.92 99.90 99.86 99.94 99.95 99.94 
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Table 12: The Classification Accuracies (%) Using Proposed 2D-CNN With Spectral FE Based On D4 Wavelet And 
State-Of-The- Art Methods WITH 10% TRAINING DATA 

Training Set: 10%  ; No. of Epochs:100 
Methods Dataset: IP Dataset: PU Dataset: SA 

OA Kappa AA OA Kappa AA OA Kappa AA 
2D CNN 80.39 78.66 68.32 96.71 95.55 94.94 96.37 95.94 94.40 
3D CNN 82.60 79.85 76.50 96.33 94.91 97.09 85.10 83.30 89.66 
SSRN  98.49 98.03 86.10 99.66 99.60 99.50 99.66 99.62 99.70 
FuSENET 97.19 97.35 97.32 97.66 97.65 97.66 99.29 99.96 99.14 
SpectralNet 98.66 98.47 98.40 99.65 99.54 99.15 99.93 99.92 99.92 
This Study 98.72 98.54 97.77 99.71 99.62 99.23 99.95 99.95 99.96 

 
Table 13: The Classification Accuracies (%) Using Proposed 2D-CNN With Spectral FE Based On D4 Wavelet And 

State-Of-The- Art Methods WITH 30%TRAINING DATA 
Training Set: 30% ; No. of Epochs:100 

Methods Dataset: IP Dataset: PU Dataset: SA 
OA Kappa AA OA Kappa AA OA Kappa AA 

2D CNN 89.20 87.50 85.98 96.50 96.58 96.10 96.95 96.91 98.47 
3D CNN 90.64 89.63 91.38 97.60 96.82 97.60 94.54 94.61 97.01 
SSRN 99.10 99.01 98.33 99.91 99.78 99.90 99.97 99.96 99.97 
FuSENet 99.08 98.74 98.72 99.49 99.50 99.55 99.70 99.74 99.70 
SpectralNET 99.76 99.72 99.40 99.97 99.96 99.96 100 100 100 
This Study 99.80 99.77 99.86 99.99 99.99 99.99 100 100 100 
 
 

Figure 8: Visual Mapping of Indian Pines (IP) Dataset: CNN Employing the HAAR Wavelet with Varying Numbers of 
Epochs, and a Fixed Training Ratio of 10%. (A) Ground Truth. (B) Epochs =20 (92.11%). (C) Epochs =40 (96.95%). 

(D) Epochs =60 (97.00%). (E) Epochs = 80 (97.84%). 
 
 

Figure 9: Visual Mapping of Indian Pines (IP) Dataset: CNN Employing the D4 Wavelet with Varying Numbers of 
Epochs, and a Fixed Training Ratio of 10%. (A) Ground Truth. (B) Epochs =20 (95.25%). (C) Epochs =40 (97.49%). 

(D) Epochs =60 (97.14%). (E) Epochs = 80 (98.17%). 
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Figure 10: Visual Mapping of Indian Pines (IP) Dataset: CNN Employing the CDF-9/7 Wavelet with Varying Numbers 
of Epochs, and a Fixed Training Ratio of 10%. (A) Ground Truth. (B) Epochs =20 (90.92%). (C) Epochs =40 

(97.04%). (D) Epochs =60 (96.87%). (E) Epochs = 80 (97.43%). 
 

Figure 11: Visual Mapping of the Salinas (SA) Dataset: CNN Utilizing the HAAR Wavelet with Different Numbers of 
Epochs and a Consistent Training Ratio of 10%. (A) Ground Truth. (B) Epochs =20 (99.95%). (C) Epochs =40 

(99.95%). (D) Epochs =60 (99.97%). (E) Epochs = 80 (97.53%). 
 

Figure 12: Visual Mapping of the Salinas (SA) Dataset: CNN Utilizing the D4 Wavelet with Different Numbers of 
Epochs and a Consistent Training Ratio of 10%. (A) Ground Truth. (B) Epochs =20 (98.14%). (C) Epochs =40 

(99.96%). (D) Epochs =60 (99.98%). (E) Epochs = 80 (99.94%). 
 

Figure 13: Visual Mapping of the Salinas (SA) Dataset: CNN Utilizing the CDF-9/7 Wavelet with Different Numbers of 
Epochs and a Consistent Training Ratio of 10%. (A) Ground Truth. (B) Epochs =20 (99.92%). (C) Epochs =40 

(99.94%). (D) Epochs =60 (99.96%). (E) Epochs = 80 (99.93%). 
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Figure 14: Visual Mapping of the University of Pavia (PU) Dataset: CNN Employing the HAAR Wavelet with Different 
Numbers of Epochs and a Fixed Training Ratio of 10% (A) Ground Truth. (B) Epochs =20 (99.24%). (C) Epochs =40 

(99.63%). (D) Epochs =60 (99.35%). (E) Epochs = 80 (99.64%). 
 

Figure 15: Visual Mapping of the University of Pavia (PU) Dataset: CNN Employing the D4 Wavelet with Different 
Numbers of Epochs and a Fixed Training Ratio of 10% (A) Ground Truth. (B) Epochs =20 (99.26%). (C) Epochs =40 

(99.66%). (D) Epochs =60 (99.52%). (E) Epochs = 80 (99.65%). 
 

Figure 16: Visual Mapping of the University of Pavia (PU) Dataset: CNN Employing the CDF-9/7 Wavelet with 
Different Numbers of Epochs and a Fixed Training Ratio of 10%  (A) Ground Truth. (B) Epochs =20 (98.92%). (C) 

Epochs =40 (99.39%). (D) Epochs =60 (99.51%). (E) Epochs = 80 (99.61%). 
 
Figure 17: Visual Mapping of the Indian Pines (IP) Dataset: CNN Utilizing the HAAR Wavelet with Varying Training 
Ratios and a Fixed Number of Epochs Set at 80 (A) Ground Truth. (B) Training Ratio =10% (97.84%). (C) Training 

Ratio =20% (99.46 %). (D) Training Ratio =30% (99.76%). 
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Figure 18: Visual Mapping of the Indian Pines (IP) Dataset: CNN Utilizing the D4 Wavelet with Varying Training 
Ratios and a Fixed Number of Epochs Set at 80 (A) Ground Truth. (B) Training Ratio =10% (98.17%). (C) Training 

Ratio =20% (99.52 %). (D) Training Ratio =30% (99.84%). 

Figure 19: Visual Mapping of the Indian Pines (IP) Dataset: CNN Utilizing the CDF-9/7 Wavelet with Varying 
Training Ratios and a Fixed Number of Epochs Set at 80 (A) Ground Truth. (B) Training Ratio =10% (97.43%). (C) 

Training Ratio =20% (98.95 %). (D) Training Ratio =30% (99.26%). 

Figure 20: Visual Mapping of the Salinas (SA) Dataset: CNN Employing the HAAR Wavelet with Different Training 
Ratios and a Fixed Number of Epochs Set at 80 (A) Ground Truth. (B) Training Ratio =10% (97.53%). (C) Training 

Ratio =20% (99.95 %). (D) Training Ratio =30% (99.99%). 

 

Figure 21: Visual Mapping of the Salinas (SA) Dataset: CNN Employing the D4 Wavelet with Different Training 
Ratios and a Fixed Number of Epochs Set at 80 (A) Ground Truth. (B) Training Ratio =10% (99.94%). (C) Training 

Ratio =20% (99.99%). (D) Training Ratio =30% (100.00%). 
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Figure 22: Visual Mapping of the Salinas (SA) Dataset: CNN Employing the CDF-9/7 Wavelet with Different Training 
Ratios and a Fixed Number of Epochs Set at 80 (A) Ground Truth. (B) Training Ratio =10% (99.93%). (C) Training 

Ratio =20% (99.99 %). (D) Training Ratio =30% (99.97%). 

Figure 23: Visual Mapping of the University of Pavia (PU) Dataset: CNN Utilizing the HAAR Wavelet with Different 
Training Ratios and a Fixed Number of Epochs Set at 80 (A) Ground Truth. (B) Training Ratio =10% (99.64%). (C) 

Training Ratio =20% (99.93 %).(D) Training Ratio =30% (99.97%). 

Figure 24: Visual Mapping of the University of Pavia (PU) Dataset: CNN Utilizing the D4 Wavelet with Different 
Training Ratios and a Fixed Number of Epochs Set at 80 (A) Ground Truth. (B) Training Ratio =10% (99.65%). (C) 

Training Ratio =20% (99.93 %). (D) Training Ratio =30% (99.97%). 

Figure 25: Visual Mapping of the University of Pavia (PU) Dataset: CNN Utilizing the CDF-9/7 Wavelet with 
Different Training Ratios and a Fixed Number of Epochs Set at 80 (A) Ground Truth. (B) Training Ratio =10% 

(99.45%). (C) Training Ratio =20% (99.92 %). (D) Training Ratio =30% (99.94%). 
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