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ABSTRACT 
 

The relationship between the response variable and the explanatory variable can show discernible patterns 
in certain cases, while in others, such patterns can remain unknown. Nonparametric regression techniques 
can potentially be employed to ascertain the unidentified pattern of relationships. The nonparametric 
regression technique provides a high degree of flexibility. In this work, we propose a new function for the 
kernel and use it with the mixed nonparametric regression between the kernel and truncated spline to 
compare it with the mixed Gaussian and the mixed biweight. Therefore, according to the study performed, 
we suppose that  have a specific pattern that was used with the spline method. On the other 
hand,  do not have a specific pattern that was used with the kernel method. Based on the 
GCV and MSE values, the best model was produced using the optimal bandwidth for each variable and one 
point of optimal knot for various sample sizes. The simulation study demonstrated that the mixed model 
with the proposed function has a suitable and superior performance when compared to the mixed Gaussian 
and mixed biweight models. The results of this investigation clearly demonstrated this model's superiority 
over its competitors. The highest obtained results have been confirmed by the coefficients of determination 
(R-square), which are 90.5%, 94.4%, and 97.2%, and the mixed nonparametric model with suggested 
function (AMS) provided the lowest mean square error (MSE) values of 4,074, 2,185, and 2,361 for various 
sample sizes. This indicates that the model will be able to produce accurate predictions and improve the 
performance of the data that we have been concentrating on. 
 
Keywords: Kernel Regression, Spline Truncated, Nonparametric Regression, Mixed Estimator, Mean 

Square Error. 
 
1. INTRODUCTION  
            Regression analysis is a method that 
statisticians use to determine the relationship 
between a response and one or more explanatory 
variables[1]. When the nature of the relationship 
patterns is uncertain or hard to figure out, such as 
their linearity, quadraticity, cubicity, or other 
specific form, the nonparametric regression model 
is used. Nonparametric models of regression 
demonstrate a high degree of flexibility because 
they possess the ability to mitigate the potential for 
misspecification. The shape of the regression 
function is determined solely by the data, 
independent of any subjective input from the 
researcher [2]. It is possible to explain the 
relationship by using a regression curve and 
applying either parametric or nonparametric 
regression estimation methods. The method of 
estimation known as parametric regression is used 

when it is possible to determine the form that the 
regression curve will take. Nonparametric 
regression is the method of estimation that is used 
when there are no shapes that can be ruled out for 
the regression function and preliminary information 
about the regression curve is limited. The 
regression model is very suitable for analyzing 
unknown data patterns due to its inherent flexibility 
[3, 4] .Regression models that are nonparametric 
compared to parametric ones require fewer 
conditions. Because of this, nonparametric 
regression models are a useful tool for researchers 
[5]. Recently, a variety of techniques, including 
kernels, local polynomials, truncated splines, 
Fourier, Wavelet, and others, have been developed 
for the nonparametric approach [6]. Specifically, 
truncated splines and kernel splines in fact, one of 
the most utilized estimation methods in 
nonparametric regression is the spline-truncated 
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estimate. This estimator excels in its capacity to 
deal with data whose behavior varies at sub-
specified intervals, and it provides exceptional 
statistical and visual interpretation as well [7,8]. In 
addition to the spline, the kernel is an excellent 
choice for modeling data that does not conform to 
any particular pattern [7]. There are many kernel 
functions, including triangular, quartic, 
epanechnikov, uniform, Gaussian, and others. In 
the context of kernel regression, the selection of 
bandwidth has more significance compared to the 
choice of kernel functions [9]. In the context of 
nonparametric regression, there are several 
fundamental premises that must be considered. The 
researcher only employs one version of the model 
estimator for each explanatory variable, and the 
pattern in each explanatory multivariable is 
expected to have the same pattern. The ensuing data 
patterns in their application to various situations 
frequently diverge from each explanatory variable. 
As a result, if just one estimator has been used to 
estimate the nonparametric regression curve, the 
resulting estimator does not fit the data pattern. As 
a result, the estimation of the regression model that 
results is less accurate and more likely to have high 
errors [4]. Many methods have been developed to 
tackle issues that can be resulted from dealing with 
multivariate models. Some researchers employed 
mixture model as a valid tool to cluster data to a 
number of subsets and use the appropriate model 
with each subset [10 , 11, 12]. In this study, we 
proposed a new kernel function and employed it in 
the mixed nonparametric estimator between the 
truncated spline and kernel regression. The 
objective of this study is to build a nonparametric 
mixture model using a new kernel function and 
then compare its performance to that of the 
Gaussian mixed model and the biweight mixed 
model. In addition, the simulation data had been 
submitted to a mixed estimator known as the 
(AMS), which compares the Gaussian and biweight 
models. The simulation data in this study is 
obtained from six different functions. It is assumed 
that certain exploratory variables are approximated 
using truncated splines, while others are estimated 
using kernel regression. Hence, the mixed model 
incorporating the suggested function exhibited 
superior performance in comparison to both the 
mixed Gaussian and mixed biweight models. 
The rest of this paper is organized as follows: 
Sections 4.1 and 4.2 introduce the Methodology 
and methods used in this study. The form of the 
nonparametric regression model estimator using the 
proposed function (AMS), Gaussian, and biweight 

is presented in Section 4.3. Section 4.4 presents the 
selection of optimal knot points and bandwidth 
parameters to obtain the best model. Section 5 
demonstrates the evaluation criteria used in this 
study. In Section 6, we illustrated the simulation 
study and computed the GCV, MSE, and values. 
Finally, the last section illustrates the conclusions 
of the simulation study. 
 
2. RESEARCH CONTRIBUTIONS 

         This paper makes significant contributions to 
the fields of statistics, mixed nonparametric 
regression modelling, applied mathematics, and 
computer science. by providing a comprehensive 
analysis of various statistical nonparametric 
regression techniques. The analysis includes a 
comparison of the performance and accuracy of 
these techniques on different sample sizes, 
highlighting their strengths and limitations. 
Additionally, the paper proposes a novel approach 
that combines nonparametric regression methods to 
further improve prediction accuracy and model 
flexibility, paving the way for future research and 
advancements in this area. 
i- Introducing a new kernel function and 
incorporating it into the mixed model in order to 
improve the accuracy and flexibility of the mixed 
model for future predictions. 
ii- The best optimal knot points and the optimal 
parameter value were selected by using the most 
accurate criteria for different sample sizes. These 
criteria were chosen based on their ability to 
minimize errors and maximize precision in the 
selection process. The selected knot points and 
parameter values will ensure the highest level of 
accuracy and efficiency in the given sample sizes. 
iii- The mean square error (MSE) and the 
coefficient of determination (R-square) can be used 
to compare the proposed function (AMS) with the 
Gaussian and biweight functions and find the most 
accurate and reliable model for the data. These 
criteria provide quantitative measures of how well 
the function fits the data, allowing for a more 
objective evaluation. By considering both the mean 
square error (MSE) and coefficient of 
determination (R-square), we can gain a 
comprehensive understanding of the model's 
performance and make an informed decision on 
which function is best suited for the given data. 
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3. RELATED WORK 
            Researchers that work on the development 
of nonparametric regression models almost always 
employ the same kind of estimate approach for 
some or all of the variables that are predicted. This 
is because the researchers only use a single type of 
regression function for all of the variables of 
prediction, which is based on the premise that all 
of the predictors are regarded as having the same 
data pattern. although in practice, there are 
numerous situations in which each predictor 
variable exhibits a unique pattern. Because of this, 
the estimate of the regression model becomes less 
accurate, resulting in significant inaccurate 
information. As a result, a number of researchers 
came up with nonparametric regression estimators 
that combined two distinct types of estimators. 
These estimators are known as mixed estimators. 
Alan and Rukun [13] developed a mixed model 
using local polynomial and spline-truncated 
methods, using the square weighted least squares 
(WLS) criterion to estimate parameters. They also 
used kernel functions as weights and the 
Generalized Cross Validation (GCV) criterion to 
determine optimal band width and knot points. 
Despite the complexity, the mixed model is not 
guaranteed to be superior to the simple model. To 
figure out nonparametric regression curves for 
longitudinal data, Maulidia et al.  [14] used spline-
truncated and kernel estimators. They used cross-
sectional data from the kernel estimator and 
spline-trimmed weighted least squares (WLS) 
optimization. The optimal bandwidth and knots 
were chosen using the Generalized cross-
validation (GCV) approach to select the best 
model. In addition, Adrianingsih et al. [15] 
presented a method that incorporated three 
methods of the modelling process, which are 
kernel, truncated spline, and Fourier series. The 
goal was to obtain a mixed non-parametric 
regression model, which was then applied to the 
actual data. The mixed estimation model was 
chosen based on the smallest value of the 
generalized cross-validation (GCV). Three knot 
points and three oscillations were used in this 
study, and the smallest value was chosen for each: 
The generalized cross validation (GCV), mean 
squares of error (MSE) at each node point, and 
oscillations. They also used the simulation 
program to estimate the parameters of the 
estimated model and prove the efficiency of the 
estimated model based on the criterion of the 
coefficient of determination (R-square). 
Furthermore, according to Ratnasari et al. [16] 

conducted a study on mixed estimators using 
truncated spline and Gaussian kernel methods. 
They investigated three methods for selecting the 
optimal node point and smoothing parameter: 
cross-validation (CV), Generalized cross-
validation (GCV), and unbiased risk (UBR). A 
simulation study was conducted to compare the 
performance of these methods on a non-parametric 
regression model. The results showed that the 
Generalized cross-validation (GCV) method 
provided better performance and accuracy. In the 
same year, Researchers Nurcahayani et al.  [17] 
provided a method for estimating a multivariate 
semi-parametric regression curve by combining 
truncated spline and Fourier series. They used 
Penalized Least Square (PLS) optimization and 
minimum Generalized cross validation (GCV) to 
estimate model parameters. The optimal model 
was determined based on the GCV value and the 
R-square. 
 

4.  METHODOLOGY 
4.1 Truncated spline Non-parametric Regression 
          Spline Truncated Regression has become a 
widely utilized estimate since it provides an 
excellent visual interpretation, is capable of 
handling smooth functions, and is elastic. One of 
the merits of this regression is that it tends to get its 
data estimates anywhere the data patterns move and 
is flexible. This is one of the reasons why this 
model is advantageous [18]. Spline regression is a 
type of polynomial regression in which several 
polynomial segments are combined at knots to 
create a continuous model [3]. Overall, the spline 
truncated regression model, characterized by its 
degrees and knots, is a mathematical function that 
can be expressed in the form of an equation. 

   
0 1

             (1 )
p k

ps
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    Where and are unknown parameters, and  
is the spline truncated function degree with knot 
points. Therefore, the function of truncated can be 
described as following   
                

           
The truncated spline regression model can 
generally be expressed as the following formula: 
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The above equation may be expressed as a matrix, 
expressed by 
 

                                                 (3) 
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 , 
 The size of the 

vector    is ,  and the size of the matrix   
 is while the size of the 

vector  is  . 
 
4.2 Kernel Non-parametric Regression 
        The main goal of non-parametric regression is 
to figure out the regression function. Several 
methods for estimating this function have been 
proposed; the most commonly used is the kernel 
estimator. The kernel estimator has a flexible 
property. Also, the math form is easy to understand, 
and convergence levels can be found quickly [9,15] 
One of the most significant nonparametric kernel 
estimators of a regression function is the Nadaraya 
[19] and Watson [20]  kernel regression estimator. 
The regression curve can be approximated 
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The equation shown above may also be written as 
follows: 
 

 (6)  

Furthermore, the equation (6) can be written in 
matrix form as follows: 
                                                  (7) 
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, and  
  , The vectors  and  
are sized ,and the matrix  is sized . 
 

4.3- The Form of the Non-parametric Regression    
Mixed Model Estimator of Truncated Spline 
and Kernel Regression               

         Under this mixed estimator, we propose a new 
function to use with this mixed estimator, and then 
we compare the new mixed method with the 
Gaussian kernel and the biweight kernel. 
Furthermore, there are two components for 
explanatory variables: the first one will be 
estimated using the spline truncated method, while 
the kernel method will be used to estimate the 
second. So, Both the spline-truncated method and 
the kernel method will be used to estimate the 
regression curve or regression function. Consider 
the data  and the relationship between 
explanatory variables  and a response 
variable  are presumed to follow a nonparametric 
regression model. Generally, the non-parametric 
regression model for the mixture of the spline and 
kernel is represented by the equation below. 
                      (8) 
 
Moreover, Assume the regression curve  is 
to be additive, which means that it can be written as 
the following form: 
                              (9) 
 
The function  and  is presumed to be 
unknown and smooth, which means that it is 
continuous and differentiable. A random error  
has a normal distribution with a zero mean and 
constant variance. Furthermore, the function  
is approached using the method of the truncated 
spline with knots , while the function 

 is approached using the Nadaraya-Watson 
kernel with a vector of the smoothing parameter 
(bandwidth). Consequently, the shape of the 
equation that appears in (9), can be represented in 
the following form: 
 

                    (10) 
Where is the knot points vector 
and is the bandwidth 
parameters. consider the basis of the truncated 
spline space: 
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Where  being unknown 
parameters. Furthermore, the estimate of the 
function  can be provided by utilizing the 
Nadaraya-Watson kernel as follows:  
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Where  and  may be expressed as 
the following formula: 
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With  is the kernel function. There are many 
types of kernel functions [21]. In this study, we 
propose a new function for the kernel and use the 
Gaussian kernel and the biweight kernel with the 
following formula:( see Table 1) 
 

Table 1: Kernel Function 

 
Therefore, the kernel estimator that is often used for 
estimating random instances is the Nadaraya-
Watson kernel estimator. Hence, the multivariate 
Nadaraya-Watson kernel estimator can be defined 
in the following form: [19,20] 
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To get an estimate of the combined nonparametric 
regression model of truncated spline and kernel 
regression in the form of (9), we will be using the 
method of least squares. According to Ratnasari et 

al.[22] presented some theorems and lemmas. If the 
function  is approached using 
the linear truncated spline function with knots 

, Therefore, it can be expressed 
as: 
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Moreover, if the function  is 
approached using the kernel Nadaraya-Watson. 
Using formula (14), the following matrix shape 
gives the kernel estimator for a multivariate 
regression curve. 
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Where is the vector of the response 
variable. Additionally, the formula (16) can be 
expressed in the next matrix representation. 
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Further, the estimate of the mixed nonparametric 
regression between the truncated spline, and the 
kernel estimators is provided by: 

 
           

                                                           
 
4.4-Selection knot points and optimal bandwidth 

parameter of the mix spline truncated and 
kernel regression 

       The Knots point and optimum bandwidth 
parameters are required for the estimation of 
nonparametric curve regression using a mixed 
truncated spline and kernel.  Generalized Cross-
Validation (GCV) is a technique that may be 
utilized in order to select the knot point and 
determine the appropriate parameter bandwidth [4]. 
The generalized cross-validation (GCV) method 
shows asymptotically optimal properties, making it 
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suitable for application in cases involving large 
sample sizes. One characteristic that distinguishes 
the asymptotically optimal trait from other 
approaches, such as cross-validation (CV), is its 
lack of shared attributes [23]. Thus, the next 
formula provides the expression for the criteria 
function used for generalized cross-validation 
(GCV), denoted by the formula (18). 
 

                   

   (18) 

 
Where I is an identity matrix, and the vector of the 

optimum knot point .In 
this study, 1-knot point ,2-knots point 

,3-knots point  and four knots point 
 were used. Furthermore, the  

obtained by optimization: 
 

                (19)  

 
5. EVALUATION CRITERIA  
        Finding the optimal model to describe the 
relationship between the response and explanatory 
variables based on predetermined criteria is one of 
the purposes expected from performing regression 
analysis. The criteria that are employed to evaluate 
the appropriateness of the model of regression are 
Mean Square Error (MSE) and coefficient of 
determination. The lower the Mean Squared error 
(MSE) value obtained, the better the model 
obtained. In contrast, the model obtained will be 
best if the value of  is substantial [24]. mean 
squared error Creritia is one of the most commonly 
used due to its clarity, interpretability, and 
adaptability for optimization, it continues to be a 
common option for assessing regression models 
[25]. In addition, R squared is a statistical metric 
that is used to evaluate the explanatory power of a 
model as well as its fit to the data. It may be 
interpreted, and it provides a standardized measure 
that can be used to compare the performance of the 
model with a variety of independent variables. It 
also helps in picking the best appropriate model 
when several regression models are available, with 
larger R-squared values suggesting a better fit. This 
is because R-squared values are proportional to the 
amount of overlap between the variables. However, 
one has to consider other aspects, such as the 
complexity of the model and the possibility of 
overfitting  [26]. 

6. SIMULATION STDY  
        By using R software programming, we wish to 
test how well the proposed new function (AMS) 
with the mixture of the non-parametric regression 
of kernel and spline truncated performs, then 
compare the new proposed function with a 
Gaussian and biweight kernel. The explanatory 
variable is generated from  and the 
number of the explanatory variable is Considered 

 with three different sample sizes 
, random error generated  

from and  from . 
Furthermore, the optimal bandwidth parameter and 
knot points are obtained by using generalized cross-
validation (GCV). The generated data are repeated 
(100) times for each sample size to compute the 
Mean Square error (MSE) and coefficient of 
determination . Moreover, we use the following 
regression functions to generate a new data. 

                                                    (1)   
                                   (2)  

                                      (3) 
                                         (4) 

                                   (5) 
                                   (6) 
 

Therefore, the combined model of the Non-
parametric Regression between the truncated spline 
and kernel that has been created will have the 
following form:   

1 2 3 4 5 6 7 8i i i i i i i i i iy z z z z z z z z         
  
Moreover, suppose that the explanatory variables 

 have specific patterns and are used 
with the truncated spline, which is named 

, and  do not form 
a particular pattern, then is used with kernel 
regression ,which is named .The 
bandwidth of the Nadaraya-Watson kernel method 
for nonparametric regression curve estimation is 
highly important. Hence, in order to achieve 
optimal outcomes, it is imperative to carefully 
choose the most suitable bandwidth parameter. 
Determining the optimal bandwidth  for each 
variable y is performed by evaluating the minimum 
generalized cross-validation (GCV) using Equation 
(17). As shown in Table 2, the values of the 
bandwidth parameter and GCV, MSE, and  for 
the proposed function AMS, Gaussian and biweight 
kernels.
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Table 2: GCV, MSE, and R-Squares Values To The Proposed Kernel Function (AMS), Gaussian, and Biweight for 
Different Sample Sizes 

n hj 
GCV 

(AMS) 
MSE 

(AMS) 
R2 

(AMS) 
GCV 

(GAUS) 
MSE 

(GAUS) 
R2 

(GAUS) 
GCV 

(BIW) 

MSE 
(BIW) 

R2 
(BIW) 

 

50 

0.428 
0.368 
0.391 
0.495 

0.00629 
0.03766 
0.33918 
0.12758 

4.074 
4.533 
5.642 
5.223 

90.5% 
87.5% 
91.8% 

87.46% 

0.0381 
0.1396 
0.4394 
0.1469 

26.408 
27.913 
26.951 
27.483 

43.1% 
24.4% 
22.3% 
30.4% 

0.35184 
0.98402 
1.65214 
0.97183 

142.164 
182.165 
142.676 
122.825 

35.18% 
13.17% 
15.28% 
18.03% 

130 

0.374 
0.409 
0.319 
0.376 

0.00545 
0.01517 
0.22634 
0.01925 

2.185 
3.457 
4.075 
4.277 

94.4% 
92.7% 
96.3% 
91.5% 

0.0517 
0.0809 
0.1772 
0.0824 

18.843 
21.557 
23.006 
24.047 

51.7% 
38.5% 
35.7% 
48.7% 

0.65909 
0.95840 
1.49122 
0.8888 

123.176 
129.907 
137.139 
119.824 

21.40% 
20.90% 
20.51% 
23.04% 

200 

0.348 
0.429 
0.317 
0.357 

0.00922 
0.00943 
0.01604 
0.01310 

2.361 
2.375 
3.468 
3.369 

97.2% 
95.2% 
98.7% 
97.4% 

0.0639 
0.0697 
0.0815 
0.0718 

16.291 
17.287 
17.563 
18.389 

52.3% 
51.6% 
54.0% 
53.9% 

0.73022 
0.78517 
1.00117 
0.73409 

111.786 
115.761 
122.824 
112.995 

39.23% 
42.39% 
53.59% 
39.65% 

 

According to the simulation results offered in Table 2, it 
is observed that the proposed function (AMS) of the 
mixed non-parametric regression model yields the  
lowest value for the GCV and MSE for different sample 
sizes (n=50,130, and 200), as highlighted in bold. 
indicating its superior performance compared to the 
Gaussian and Biweight functions. Hence, the optimal 
bandwidths for different sample sizes and for each 
explanatory variable  , which is named 

, are present in Table 3. 
 

Table 3: Optimal Bandwidth For Different Sample Sizes 
 

Optimal band 
widths 

Sample size 

50 130 200 

 
 
 
 

0.4278 
0.3674 
0.3906 
0.4943 

0.3732 
0.4083 
0.3192 
0.3754 

0.3475 
0.4286 
0.3163 
0.3561 

Additionally, the following step is the choosing of the 
knot points with the associated explanatory variables  

with a truncated spline method. The 
function   is approached by a truncated spline 
linear function with knots . In this study, a 1-knot 
point , a 2-knots point , a 3-knots point 

 and 4-knots point  were used.The 
number and location of optimal knot points have been 
determined using the Generalized Cross-Validation 
(GCV) requirements and MSE, considering the 
previously acquired optimal bandwidths. Tables (4, 5, 6) 
shows the number of knot points for different sample 
sizes (n=50,130, and 200). with associated explanatory 
variables ,which are named 

.

Table 4: GCV and MSE Values With All Knots Point For Different Functions (AMS, Gaus, Biw) With n=50 

n knots V1 V2 V3 V4 
GCV 

(AMS) 
MSE 

(AMS) 

R2 
(AMS) 

GCV 
(GAUS) 

MSE 
(GAUS) 

R2 
(GAUS) 

 

GCV 
(BIW) 

MSE 
(BIW) 

R2 
(BIW) 

50 

1 5.15 5.14 5.35 4.64 0.00629 4.074 90.5% 0.0381 26.408 43.1% 0.35184 142.164 
35.18

% 

2 
4.92 
5.96 

4.98 
5.89 

5.09 
5.88 

4.48 
5.58 

0.03766 4.533 87.5% 0.1396 27.913 24.4% 0.98402 182.165 
13.17

% 

3 
4.69 
5.32 
6.33 

4.79 
5.29 
6.32 

4.76 
5.59 
6.04 

4.24 
4.88 
6.38 

0.33918 5.642 91.8% 0.4394 26.951 22.3% 1.65214 142.676 
15.28

% 

4 

4.43 
4.37 
4.55 
3.86 

4.92 
4.98 
5.09 
4.48 

5.32 
5.29 
5.59 
4.88 

5.96 
5.89 
5.88 
5.58 

0.12758 5.223 87.46% 0.1469 27.483 30.4% 0.97183 122.825 
18.03

% 



Journal of Theoretical and Applied Information Technology 

15th November 2023. Vol.101. No 21 
© 2023 Little Lion Scientific  

 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
6995 

 

 
Table 5: GCV and MSE Values With all Knots Point For Different Functions (AMS, GAUS, BIW) With n=130 

 

 
n 

knots V1 V2 V3 V4 
GCV 

(AMS) 
MSE 

(AMS) 

R2 
(AMS) GCV 

(GAUS) 
MSE 

(GAUS) 

R2 
(GAUS) 

 

GCV 
(BIW) 

R2 
(BIW

) 

MSE 
(BIW) 

130 

1 5.17 4.99 5.09 5.14 
0.0054

5 
2.185 94.4% 0.0517 18.843 51.7% 0.65909 

21.40
% 

123.176 

2 
4.75 
5.87 

4.78 
5.75 

4.84 
5.89 

4.88 
5.82 

0.0151
7 

3.457 92.7% 0.0809 21.557 38.5% 0.95840 
20.90

% 
129.907 

3 
4.55 
5.39 
6.19 

4.51 
5.16 
6.27 

4.46 
5.29 
6.13 

4.59 
5.33 
6.28 

0.2263
4 

4.075 96.3% 0.1772 23.006 35.7% 1.49122 
20.51

% 
137.139 

4 

4.24 
4.75 
5.39 
5.87 

4.31 
4.78 
5.16 
5.75 

4.17 
4.84 
5.29 
5.89 

4.27 
4.88 
5.33 
5.82 

0.0192
5 

4.277 91.5% 0.0824 24.047 48.7% 0.8888 
23.04

% 
119.824 

Table 6: GCV and MSE Values With all Knots Point For Different Functions (AMS, Gaus, Biw) With n=200 
 

 
n 

knot
s 

V1 V2 V3 V4 
GCV 

(AMS) 
MSE 

(AMS) 

R2 
(AMS) 

GCV 
(GAUS) 

MSE 
(GAUS) 

R2 
(GAUS) 

GCV 
(BIW) 

MSE 
(BIW) 

R2 
(BIW) 

200 

1 4.96 5.09 5.01 5.05 0.00922 2.361 97.2% 0.0639 16.291 52.3% 0.73022 111.79 39.23% 

2 
4.69 
5.69 

4.85 
5.89 

4.82 
5.81 

4.77 
5.98 

0.00943 2.375 95.2% 0.0697 17.287 51.6% 0.78517 115.77 42.39% 

3 
4.24 
4.96 
5.69 

4.18 
5.09 
5.89 

4.23 
5.01 
5.81 

4.06 
5.05 
5.98 

0.01604 3.468 98.7% 0.0815 17.563 54.0% 1.00117 122.83 53.59% 

4 

4.24 
4.69 
5.19 
5.69 

4.18 
4.85 
5.29 
5.89 

4.23 
4.82 
5.31 
5.81 

4.06 
4.77 
5.27 
5.98 

0.01310 3.369 97.4% 0.0718 18.389 53.9% 0.73409 112.99 39.65% 

 
The GCV, MSE, and  values are computed for 
one knot, two knots, three knots, and four knots for 
different sample sizes (n=50,130, and 200) in 
Tables 4, 5, and 6. It shows that the GCV and MSE 
exhibit their lowest values at one knot for all 
sample sizes, and the  values for each sample at 
one knot point are 95.4%, 94.4%, and 97.2% 
respectively. When compared, the proposed 
function AMS exhibits the lowest value among 
GUAS and BIW. Hence, considering the minimum 
values of GCV and MSE achieved through the 
utilization of one knot, the optimal knot points can 
be determined and are indicated in Table 7. 
 
Table 7: Optimal Knot Points For Each Sample Size 

 

 
Based on the optimal bandwidth parameter values 
we showed in Table 3 and the proposed function 
(AMS), here is the kernel estimator formula for the 
explanatory variables that were used with the kernel 
for different sample sizes (n = 50, 130, and 200). 
Respectively 
 

 

50 5 5 6 6 7 7 8 8
. . . .

0.4278 0.3674 0.3906 0.4943
ˆ , , , ,5 6 7 8

50 5 5 6 6 7 7 8 8
. . .

0.4278 0.3674 0.3906 0.4943

(1) 

u u u u u u u ui i i i
k k k k yi

m u u u u hh
u u u u u u u ui i i i

k k k k

   



   



        
                
        
                

 

 

130 5 5 6 6 7 7 8 8
. . . .

0.3732 0.4083 0.3192 0.3754
ˆ , , , ,5 6 7 8

130 5 5 6 6 7 7 8 8
. . .

0.3732 0.4083 0.3192 0.3754

(2

u u u u u u u ui i i i
k k k k yi

m u u u u hh
u u u u u u u ui i i i

k k k k

   



   



        
                
        
                

) Optimal knot points 

Independent 
variables 

n 

50 130 200 

V1 5.15 5.17 4.96 

V2 5.14 4.99 5.09 

V3 5.34 5.09 5.01 

V4 4.64 5.14 5.05 
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 

200 5 5 6 6 7 7 8 8
. . . .

0.3475 0.4286 0.3163 0.3561
ˆ , , , ,5 6 7 8

200 5 5 6 6 7 7 8 8
. . .

0.3475 0.4286 0.3163 0.3561

(3

u u u u u u u ui i i i
k k k k yi

m u u u u hh
u u u u u u u ui i i i

k k k k

   



   



        
                
        
                

)

 

 

With . 
Also, the estimation of the unknown truncated 
spline parameters ( , v, and k) for the mixture 

nonparametric regression model with truncated 
spline and kernel is done at a one-knot point for 
each relevant explanatory variable and the optimal 
bandwidth. The results of this estimation are as 
follows: (see Table 8) 
 
 
 

 
Table 8: Estimates Of The Parameters For The Truncated Spline To One Knot Point For Different Sample Size. 
 

 50 130 200 

Independent 
variables 

Parameters Estimates Parameters Estimates Parameters Estimates 

Constant  0.5144  -0.1969  0.4418 

 
 -0.0025  -0.2075  -0.3565 

 0.2328  0.04543  0.8227 

 
 -0.0622  0.2251  -0.06903 

 -0.1735  0.07107  -0.4608 

 
 -0.1504  0.07296  0.3973 

 -0.3078  -0.1921  -0.5987 

 
 -1.2247  -0.9409  1.1951 

 0.7054  0.7251  0.01236 

 
 
Therefore, the mixed non-parametric model 
between the kernel and the truncated spline with the 
use of the proposed kernel function (AMS) for each 
sample size (n = 50, 130, and 200) is given as 
follows: 

 

     

1
ˆ 0.5144 0.0025 0.0622 0.1504 1.2247 + 0.2328 5.151 2 3 4 1

1 1 1
0.1735 5.14 0.3078 5.34 0.7054 4.642 3 4

y v v v v vi i i i i i

v v vi i i

     


     
  

 

50 5 5 6 6 7 7 8 8
. . . .

0.4278 0.3674 0.3906 0.4943
  +              (1) 

50 5 5 6 6 7 7 8 8
. . .

0.4278 0.3674 0.3906 0.4943

u u u uu u u ui i i i
k k k k yi

u u u uu u u ui i i i
k k k k

  


  


       
       
       
       
       
       

 
 

 

     

1
ˆ 0.1969 0.2075 0.2251 0.0296 0.9409  +0.4543 5.171 2 3 4 1

1 1 1
0.01707 4.99 0.1921 5.09 0.7251 5.142 3 4

y v v v v vi i i i i i

v v vi i i

      


     
  

 

130 5 5 6 6 7 7 8 8
. . . .

0.3732 0.4083 0.3192 0.3754
+    (2)

130 5 5 6 6 7 7 8 8
. . .

0.3732 0.4083 0.3192 0.3754

u u u uu u u ui i i i
k k k k yi

u u u uu u u ui i i i
k k k k

  


  


       
              
       
              

 
 

 
 

 

     

1
ˆ 0.4418 0.3565 0.06903 0.3973 1.1951 +0.8227 4.961 2 3 4 1

1 1 1
0.4608 5.09 0.5987 5.01 0.01236 5.05        2 3 4

y v v v v vi i i i i i

v v vi i i

      

       

200 5 5 6 6 7 7 8 8
. . . .

0.3475 0.4286 0.3163 0.3561
   +  (3)  

200 5 5 6 6 7 7 8 8
. . .

0.3475 0.4286 0.3163 0.3561

u u u uu u u ui i i i
k k k k yi

u u u uu u u ui i i i
k k k k

  


  


       
              
       
              

  
Where 
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 is the proposed new function (AMS) for the kernel. 
The mixed model with the proposed function 
(AMS) achieves the highest coefficient of 
determination , for each sample size (n=50,130 
and 200), 90.5%,94.4% and 97.2% respectively, 
compared to Gaussian mixed and Biweight mixed. 
 

     

  
Figure 1. Plot Of  and The Original Simulation Data Is 
Generated With The Mixed Model Using Proposed 
Function (AMS), Mixed Gaussian, and Mixed Biweight 
Using Sample Size 50. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2. Plot Of  and The Original Simulation Data Is 
Generated With The Mixed Model Using Proposed 
Function (AMS), Mixed Gaussian, and Mixed Biweight 
Using Sample Size 130. 
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Figure 3. Plot Of  and The Original Simulation Data is 
generated with the mixed model using Proposed Function 
(AMS), Mixed Gaussian, and Mixed Biweight Using 
Sample Size 200. 
 

 
Figure 4. Shows That The Curve Of The Proposed 
Function (AMS) With Gaussian and Biweight. 
 

Gaussian, and biweight were computed based on 
the sample sizes 50, 130, and 200 and are presented 
in Figures 1, 2, and 3. While the performance of the 
mixed nonparametric regression model using the 
suggested function (AMS) is superior and 
comparable with the mixed Gaussian, and mixed 
biweight models for different sample sizes, our 
comparable study is based on GCV and MSE; for 
each sample size, the GCV, MSE, and values of 
the mixed (AMS), mixed Gaussian and mixed 
biweight are shown in Tables 4, 5, and 6 
previously. Furthermore, the estimated mixed 
(AMS) model is extremely close to the simulation 
of the original data. Consequently, one may use this 
model to make highly accurate predictions. 
Compared to the Gaussian and the biweight mixed 
models, the mixed model (AMS) has the lowest 
values of GCV, MSE, and value of , which are 
90.5%, 95.4%, and 97.2%, respectively. 
 

7.CONCLUSION AND FUTURE WORKS  
 
        This work presents a new function for the 
kernel and applies it to the mixed nonparametric 
regression model. The optimum bandwidth for each 
variable and the optimal one-knot point were 
determined for the best model for different sample 
sizes, considering the value of generalized Cross-
Validation (GCV) and Mean square error (MSE) 
within the range of options explored. The 
simulation study conducted in Section 4 
demonstrated that the mixed nonparametric model, 
which combines the kernel and spline truncated if 
implemented with the proposed function (AMS), 
demonstrates favourable suitability and superior 
predictive performance very well compared to the 
mixed Gaussian and mixed biweight models. This 
conclusion is confirmed by the coefficients of 
determination , which are 90.5%, 94.4%, and 
97.2%, respectively. The mixed nonparametric 
model (AMS) obtained the lowest mean square 
error values of 4.074, 2.185, and 2.361. The results 
show that the proposed function (AMS) for the 
kernel significantly improves the accuracy of the 
mixed nonparametric regression model. 
Additionally, it suggests that the mixed 
nonparametric model (AMS) not only outperforms 
the mixed Gaussian and mixed biweight models in 
terms of predictive accuracy but also provides a 
more precise estimation of the data. Furthermore, 
the low mean square error values indicate that the 
mixed nonparametric model is able to capture the 
underlying patterns in the data more effectively. On 
the other hand, one knot point was chosen based on 
the value (GCV). The accuracy of the mixed model 
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may increase as the number of optimal knot points 
increases. To improve the accuracy of the mixed 
non-parametric regression model, we should 
investigate and compare diverse kernel functions. 
This will provide insight into their applicability to 
specific datasets and improve customization. The 
most efficient function for enhancing the model's 
precision can be identified through comparative 
analysis. 
In the future, more research could be done to make 
the proposed field of study wider. This could 
include adding more explanatory variables and 
different kernel functions, as well as using different 
criteria to find the best bandwidth parameters and 
knot points. The model could also be used on real 
data from other fields to come up with new 
methods to make it more accurate and complete. 
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